M1 – A Rák-köd

M1-LRGB-20131201-TTK

M1 – Rák-köd (A 2013-ban készült felvételek 2015-ös feldolgozása.)

2013-10-29, 2013-12-01 – Göd – 70 x 55 sec L és 61 x 55 sec R, G, B

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera, Astronomik RGBL fotografikus szűrőszett

(A bejegyzés a Magyar Csillagászati Egyesület havi folyóiratában, a Meteorban (2017/01. 8-19.) megjelent cikk bővebb, helyenként átdolgozott elektronikus változata.)

Sok-sok ezer évvel ezelőtt egy csillag, melynek tömege sokkalta nagyobb Napunkénál, lassan kifogy üzemanyagkészletéből. Még küzd a gyilkos gravitációval, és a különböző, egyre rövidebb ideig tartó fúziós folyamatok során egymás után hozza létre a nehezebb elemeket. A folyamat azonban a vasnál elakad: ennél nehezebb elemek már nem jöhetnek létre fúzió révén. Energia-utánpótlás hiányában a csillagot utoléri a végzete, elindul a megállíthatatlan kollapszus. Anyaga a mag felé kezd zuhanni, nincs már sugárnyomás, amely ezt megakadályozhatná. A külső rétegek hatalmas nyomása „belepréseli” az elektronokat az atommagokba, így a csillag magjában neutronok keletkeznek. Miközben összeroskad a csillag forgása egyre gyorsul. A neutronokban feldúsuló magban a nyomás hirtelen megnő, és a bezuhanó anyag mintegy visszapattan az összepréselhetetlen neutronmagról. Pusztító lökéshullám indul el kifelé, amely gyorsan energiát veszít, és épp ezért ez még önmagában nem lenne elég a kataklizmához. Ugyanakkor, a nagyságrendileg 100 milliárd K felforrósodó magban neutrínók keletkeznek, és megindul kifelé egy 1046 J energiájú neutrínózápor. Máig nem teljesen tisztázott módon a neutrínók által elszállított energia 1%-kát elnyeli a kifelé tartó lökéshullám, s így bekövetkezik a gigászi szupernóva-robbanás. Az ilyen típusú robbanásokat az összeomló csillagmag miatt kollapszus-szupernóváknak (core collapse supernova) is nevezik.

A csillag anyagának jelentős része szétszóródik, miközben a korábbi energiatermelő folyamataiban született elemeket juttat a környezetébe. Olyanokat, melyek nélkül nem létezhetne élet, de eme kis kékes színű kőzetbolygó, a Föld sem. Maga a szupernóva-robbanás olyan extrém magas hőmérséklettel és nyomással járó körülményeket hozott létre, hogy az úgynevezett neutronbefogásos folyamatokban a vasnál nehezebb elemek is létrejöttek, s melyek egy része szintén szétterült az űrben. Régebbi elképzelések szerint az ilyen kataklizmák voltak azok, melyek beszennyezték a kozmoszt a vasnál nehezebb elemekkel. Azonban manapság már más a csillagászok álláspontja.  Az újabb elméleti megfontolások a neutroncsillagokat tekintik ezek egyik fő forrásnak. Ami még ennél is fontosabb, a megfigyelések is ezt támasztják alá. (A neutroncsillagokról később még szó lesz.)

A robbanás helyén, az égbolton a Messier 1 ködössége látható, melyet szokás Rák-ködként is emlegetni. A kidobott anyag még ma is hatalmas, 1500 km/s sebességgel tágul. Az expanziót akár a saját szemünkkel is láthatjuk, ha bő évtizedes különbséggel készült felvételeket hasonlítunk össze.

A Rák-köd 1999 és 2012 közötti tágulásának mértéke.

 A fentebb vázolt események a Földtől kb. 6500 fényévre történtek. Amikor a fotonok útnak indultak, lassan véget ért az emberiség történetének legelső, és egyben leghosszabb szakasza: az őskor. A Földet már benépesítettük, és gazdálkodni kezdtünk. Lassanként általánosan elterjedt a fémek használata, azoké amelyeket egy másik, több milliárd évvel ezelőtti szupernóva-robbanás szórt szét a világűrben.

1054-ben kínai csillagászok az egyik nyári estén az eget tanulmányozva, éjfél után felfigyeltek egy vendégcsillagra (ko-hszing), mely az általuk Tien-kuan-nak nevezett csillag közelében tűnt fel. Fényességével túlragyogta a Jupitert és a Vénuszt. Sokáig látható maradt még a nappali égen is. A szupernóva feltűnésének írásos emléke a császári főcsillagásznak, Jang Vej-tö-nek hála maradt reánk, aki a vendégcsillag megjelenését arra használta fel, hogy a Szung-dinasztiára és császárra nézve igen hízelgő jóslatot adjon, méltatva az uralkodó bölcsességét és nagyságát.

Jang Vej-tö leírását azonban nem szabad készpénznek venni. Ambiciózus talpnyaló hírében állt, amit jól tükröz maga a jóslat, illetve annak egy kiragadott részlete: „… azt jelenti, hogy él egy nagyon bölcs, és erényes személy ebben az országban.” Az új csillagot fényes sárgának írta le, ami valós is lehet, de nem szabad elmennünk amellett a tény mellett sem, hogy a Szung-dinasztia fő színe a sárga volt. Csak abban lehetünk biztosak, hogy 1054. július 4-én tűnt fel a Tien-kuan-hoz közel, és 1056. április 17-én vesztették szem elől.

A dinasztiával kapcsolatos feljegyzések elemzése nem volt könnyű feladat. A kínaiak nem az általunk ismert nyugati csillagképeket használták. Továbbá meg kellett fejteni az égi koordináta-rendszerüket, és a távolságok leírására használt mértékegységeket. Végül sikerült kibogozni a szálakat, és meghatározni, hol is volt látható a jelenség.

A sinológusok nagy bizonyossággal megállapították, hogy a Tien-kuan a ma ζ Tauri-nak (dzéta Tauri-nak) nevezett csillag. Tehát a vendégcsillag a Bika csillagkép szarvának közelében tűnt fel, méghozzá a Szung-dinasztia krónikái alapján attól délkeletre. A közelséget több leírás is említi, azonban egy 1345-ös változat a Szung-évkönyvben konkrétan pár hüvelyk távolságot állapít meg. Más korabeli kínai csillagászati megfigyelések alapján egy hüvelyk alatt körülbelül 0,1 fokot értettek. Amennyiben a néhányat 3-nak, 4-nek, esetleg 5-nek tekintjük, akkor durván fél fok választotta el a ζ Taurit és a feltűnt égitestet.

De mit is láttak valójában? Mivel a csillag kifejezést igen változatosan használták, így alaposan körbe kellett járni azt a kérdést, hogy valójában nem üstökösről volt-e szó. Semmilyen üstökösökkel kapcsolatos jellemzőt nem sikerült azonban felfedezni a leírásokban. Nem említenek sehol sem csóvát. Márpedig a fényes szabadszemes üstökösök egyik legfőbb ékessége a látványos csóva. Illetve, a csillag nem változtatta a helyzetét az égen, ahogyan azt az üstökösök teszik.

Miután a helyet az égen már azonosították, és kizárták a fényes üstökös lehetőségét már csak azt kellett eldönteni, hogy nóva, vagy szupernóva tűnt-e fel 1054-ben. Az tudható volt, hogy 23 napon át nappal is látszott. A fényessége -4 és -5 magnitúdó lehetett. Ahhoz, hogy nóva lehessen azok tipikus fénygörbéi (a legfényesebbekre a meredek felfutás, majd gyors lefutás jellemző) alapján 60 fényéven belül kellett volna lennie, máskülönben nem ragyoghatott volna három hétig ezen a fényességen. Statisztikai vizsgálatok azt mutatják, hogy átlagosan 30000 évenként következik be nóva robbanás hozzánk ilyen közel. Tehát az esélyek inkább a nóva ellen szóltak. Ráadásul ebből a távolságból a Hold fényével kellet volna ragyognia, amit biztosan szintén megemlítettek volna. Továbbá, ha nóva lett volna a feltűnt csillag, akkor valahol lennie kellene egy vörös óriás és egy fehér törpe párosnak is, mely előfeltétele egy ilyen nóva-robbanás bekövetkezésének. Alkalmas jelöltet azonban nem találtak.

Maradt tehát az a magyarázat, hogy 1054-ben szupernóva-robbanást figyeltek meg a kínai császár csillagászai. A szupernóvák fénygörbéjének karakterisztikája más, mint a nóváké. Abszolút fényességük is nagyobb. Így a néhányszor 1000 fényév távolságban felrobbanó szupernóva látszó fényességének görbéje sokkal jobban illeszthető a leírásokra. Nem beszélve arról, hogy nagyobb valószínűséggel következik be ilyen távolságban szupernóva-robbanás, minthogy 60 fényéves körzetben feltűnjön egy nóva. A nagytömegű csillag halálakor bekövetkező „tűzijáték” során hatalmas mennyiségű gáz lökődik ki, melynek sugárzása hosszú évezredekig megfigyelhető marad. Ha tehát ez a magyarázat helytálló a vendégcsillag mibenlétét illetőleg, akkor lennie kell megfigyelhető maradványnak is!

Messier 1, avagy a Rák-köd

John Bevis orvos és műkedvelő csillagász 1731-ben ködös objektumra bukkant a Bika csillagképben, melyet Uranographia Britannica égbolttérképén is feltüntetett. Tőle teljesen függetlenül, Charles Messier újra felfedezte, majd később katalógusában az 1. sorszámot adta neki. Innen az Messier 1 (M1) elnevezés.

uranographia-britannica-bull

John Bevis az Uranographia Britannica égbolttérképén is feltüntette az szupernóva-maradványt. Forrás: https://listoffigures.wordpress.com/

Messier a mai értelemben vett megfigyelő csillagász volt. Nem sokat foglalkozott matematikával, ugyanakkor megbízott mások elméleti munkáiban. Korábban Edmund Halley kiszámította, hogy az 1531-ben, 1607-ben és az 1682-ben feltűnt üstökös egy és ugyanaz. Ahhoz, hogy elméletét ellenőrizze felkérte a csillagászokat, hogy 1758 vége felé legyenek résen, mert az üstökös újra megjelenik. Igaza is lett. Messier és munkaadója Joseph-Nicolas Delisle szerette volna learatni az újrafelfedezés babérjait. Messier azonban nem Halley, hanem Delisle számításait követve kereste az üstököst. Valószínűleg nagyon megörülhetett, amikor az 1758-as De La Nux üstököst követve rálelt a ζ Tauri közelében a kis ködösségre 1758. augusztus 28-án. Csalódottan kellett azonban tapasztalnia, hogy az nem mozdult el az égen, így nem lehetett üstökös. Végül nem Messier, hanem egy német földműves, Johann Georg Palitzsch vette észre először a Halley üstököst 1758 karácsonyán. Messier csak 1759-ben lelt rá. Ráadásul Delisle nem is hagyta rögtön bejelenteni, mert az ő számításai szerint nem ott kellett volna lennie a Halley-nek. Akárhogy is esett, Messier hamarosan korának kiemelkedő üstökös vadászává vált, és az M1 fontos szerepet játszott abban, hogy összeállítsa katalógusát.

Az idők folyamán több híres csillagász is észlelte a ködöt. Külön meg kell azonban említeni William Parsonst, ismertebb nevén Lord Rosse-t (Rosse harmadik grófját), akitől a Rák-köd elnevezés származik.

william-parsons-crab-nebula

Lord Rosse rajza a Rák-ködről 36 hüvelykes távcsővel készült 1844 körül. Forrás: https://listoffigures.wordpress.com/

Többé nem készült olyan rajz, amin a köd rákszerű lenne, de az elnevezés megmaradt. Lord Rosse 1845-ben megépítette 72 hüvelykes (1.83 m) tükrös távcsövét. A „Leviatánnál” egészen a XX. század elejéig nem is készítettek nagyobb átmérőjűt. A Rák-ködöt ezzel is megfigyelte, és ekkor már egészen más megjelenésűnek találta. Az óriási távcsőben kibontakozó látványt R.J. Mitchell rajzolta le. Ezen, olyan részletek is felfedezhetőek, amelyek a mai fotókon is látszanak. Ilyen például az én felvételemen is látszó kis fekete öböl.

william-parsons-crab-nebula-2

R.J. Mitchell rajza a Rák-ködről, melyet Lord Rosse 72 hüvelykes távcsövével készített 1855-ben. Jól látható a kis fekete „öböl”. Forrás: https://listoffigures.wordpress.com/

Lord Rosse leírása arról is árulkodik, miként vélekedtek akkoriban a ködökről: „…különlegesen elrendezett, jól kivehető fonalakat látunk… Nagyobb felbontás valószínűleg további fonalakat is kihozna, s akkor a köd közönséges halmazformát öltene.” Abban az időben úgy gondolták, hogy minden köd csillagokból áll, és csak elegendően nagy távcsőre van szükség ahhoz, hogy valamennyit felbontsák. Még sok évtizednek kellett eltelnie ahhoz, hogy a csillagászok felismerjék valódi természetét.

A Rák-köd és a modern asztrofizika

C. O. Lampland fejéből pattant ki az ötlet 1921-ben, hogy összehasonlítsa a Lowell Obszervatóriumban a korábbi 8 évben készült felvételeket a Rák-ködről. Így felfedezte, hogy az évek alatt az M1 egyes részei elmozdultak. John C. Duncan volt az, aki végül felismerte, hogy a köd tágul. Hogy mióta? Erre a kérdésre Edwin Hubble is kereste a választ. Feltételezte, hogy az objektum egy pontból indult ki, és az expanzió egyenletes. Számításai szerint a tágulás 900 évvel ezelőtt vette kezdetét.

Ezt a tudományos felismerést, és a korábbi kínai feljegyzéseket összevetve elmondható, hogy anno 1054-ben nagy valószínűséggel azt a szupernóvát látták feltűnni az égen, melynek maradványa az M1. Mire fel mégis az előző mondatban megbújó piciny bizonytalanság? A Rák-köd dzéta Tauritól mért távolsága és iránya nem illeszkedik pontosan a korabeli beszámolókban olvashatókéra. Több helyen is biztosan említik a kínaiak, hogy fél fokra, délkeletre volt a feltűnt csillag a Bika szarvától. Valójában azonban 1.1 fokra és északnyugatra van a Rák-köd ettől a csillagtól. Mivel oldható fel ez az ellentmondás? Elképzelhető, hogy egyszerűen a Szung-dinasztia évkönyveiben a Történeti Hivatal elírt valamit, illetve felcserélhették a két csillag pozícióját. Máig vannak azonban olyan szkeptikus kutatók, akik szerint vitatható az M1 és 1054-ben megjelent vendégcsillag kapcsolata. Tovább lehet azonban érvelni a kapcsolat mellett. Először is, nincs más erős rádióforrás a közelben. Továbbá, ha az M1 nem az 1054-es szupernóva-maradványa, akkor Duncan és Hubble eredményei szerint 100 éven belül két szupernóvának is fel kellet volna lángolnia az ég látszólag közel azonos területén. Mekkora ennek a valószínűsége? Roppant kicsiny. Ha mégis így történt, miért nincsenek feljegyzések a 100 éven belüli másik fényes vendégcsillagról? Ez hát az oka, hogy némi bizonytalanságot belecsempésztem e bekezdés első mondatában.

A spektroszkópia elterjedésével új fejezet kezdődött a csillagászatban. Korábban vajmi keveset tudtunk a távoli égitestek összetéte­léről, az ott uralkodó fizikai viszonyokról. A Messier 1-ről készült első színképek meghökkentőek  voltak. Az addig vizsgált ködökre pusztán az azokat alkotó elemek gerjesztett atomjainak ujjlenyomatai, az emissziós vonalak voltak a jellemzőek – szinte nem is állt a spektrumuk másból. Azt viszonylag korán felismerték a csillagászok, hogy ezt a gerjesztést egy-egy forró csillag intenzív ultraibolya sugárzása okozza. A Rák-köd esetében azonban az emissziós vonalak egy határozott folytonos háttéren, kontinuumon voltak megfigyelhetőek. Mintha két színkép rakódna egymásra. Hamar kiderült, hogy a köd szerkezetét tekintve két eltérő részből áll: az amorf eloszlású gázból, mely ovális alakot kölcsönöz a Rák-ködnek, és a filamentek szövevényes hálózatából. A filamentek, a köd rostokra emlékeztető, 11000 – 18000 K hőmérsékletű, ionizált gázokat tartalmazó struktúrái, melyektől a színkép emissziós vonalai származnak, a ködöt kitöltő amorf gáz pedig a kontinuum forrása. Azonban azt, hogy pontosan miként jön létre a folytonos háttér, vagyis honnan származik a köd fénye, sokáig homály fedte.

A fizikából az ismeretek, mint összerakásra váró puzzle darabjai hevertek az asztalon. Végül 1953-ban Joszif Szamuilovics Sklovszkij volt az, aki az egyes elemeket egységes képpé állította össze.

Még 1948-ban, a rádiócsillagászat hőskorában egy ausztrál kutatócsoport négy fényes rádióforrást fedezett fel az égen, melyből az egyik a Taurus A nevet kapta. Később szintén ez a csapat egy kezdetleges interferométerrel 7 ívperc pontossággal behatárolta a sugárzás irányát, mely az M1-hez igen közel esett. A Taurus A lett az első, Naprendszeren túli diszkrét rádióforrás, melyet optikai tartományban is azonosítottak. A csillagászokat meglepte, hogy az optikai tartományban nem is olyan fényes Rák-köd a Nap után az egyik legerősebb rádióforrás az égen. Az ausztráliai kutatók 1952-ben a rádióforrás méretét is megmérték, és rá egy évre az első rádiótérképet is elkészítették. Ezen a durva térképen a rádióforrás főbb alakzatai meglepően hasonlítottak az optikai tartományban látott képhez. Arra az összefüggésre is rájöttek a kutatók, hogy a Rák-köd (és több más rádióforrás) rádiósugárzásának intenzitása a frekvencia függvényében logaritmikus skálán egy egyenes vonalat ad. Joszif Sklovszkij szovjet csillagász pedig megmutatta, hogy a köd rádiósugárzásáért az úgynevezett szinkrotronsugárzás a felelős.

Egy ideje már ismert volt a fizikus előtt, hogy a közel fénysebességgel mozgó (relativisztikus) töltött részecskék sebességvektoruk megváltoztatása közben szinkrotronsugárzást bocsájtanak ki. Úgy is megfogalmazhatjuk, hogy amikor a töltött részecskét a mágneses tér gyorsítja, a gyorsulás következményeként az sugározni kezd. A mágneses térben végzett körmozgás folytonos gyorsulásnak számít. A ködben lévő mágneses tér erővonalai körül spirálozó elektronokkal pedig pontosan ez történik.

Szinkroton-rot1-cut1-s1

A közel fénysebességgel, a mágneses erővonalak körül spirális pályán mozgó elektronok keskeny nyalábban szinkrotron sugárzást bocsájtanak ki. Ez a sugárzás polarizált, vagyis a látóirány mentén kitüntetett a rezgés síkja. Forrás: Simon Mitton – A Rák-köd (Az ábra jogvédelem alatt áll, az a szerző külön írásos engedélyével került felhasználásra.)

Sklovszkij a mechanizmust kiterjesztette az optikai tartományra is, és azt mondta, hogy nem atomi átmenetekből származik a Rák-köd színképének folytonos része, hanem azt is szinkrotron sugárzás okozza. Vagyis, a mágneses térben őrült sebességgel körtáncot lejtő, nagy energiájú mozgó elektronoktól származik a köd fénye (pontosabban a kontinuum része), míg a „gyengébb” elektronoktól a köd rádiósugárzása.

Az igazán jó elmélet nemcsak megmagyaráz dolgokat, hanem jóslatokat is ad. Sklovszkij megjósolta, hogy a köd fényének részlegesen polarizáltnak kell lennie. A szinkrotron sugárzás sajátossága, hogy polarizált. Pár évvel később megfigyelésekkel igazolták Sklovszkij teóriáját, és annak jóslatait. Először Viktor Alekszejevics Dombrovszkij, majd tőle függetlenül Mikheil Alexandresz dze Vashakidze mutatta ki a Rák-köd fényének polarizáltságát. Majd 1955-ben a Palomar-hegyen, az ötméteres teleszkóppal Walter Baade készített ragyogó felvételsorozatot. A polarizációs szűrőt forgatva változtak az alakzatok, s volt olyan fényes terület is, ami szinte el is tűnt!

Polarizacio-rot1-cut1-s1

A polarizált fény és a polarizációs szűrű szemléltetése. A polarizációs szűrőn teljes áteresztés akkor történik, ha az áthaladó fény polarizációjának síkja a szűrőével egybeesik. Amennyiben a két sík egymásra merőleges, akkor a szűrő nem ereszti át a polarizált fényt. Forrás: Simon Mitton – A Rák-köd (Az ábra jogvédelem alatt áll, az a szerző külön írásos engedélyével került felhasználásra.)

A polarizációs vizsgálatok révén tökéletesen feltérképezhetővé vált a ködben a mágneses tér szerkezete, ugyanis a polarizáció síkja merőleges a mágnese térre. Kiderült, hogy a Messier 1 megjelenése erős kapcsolatban áll a mágneses térrel. Az erővonalak a különböző öblök szélén, szálak mentén futnak, és a filamentek körül tekerednek.

Később kimutatták, amit a szinkrotronsugárzási elméletek is megjósolták, hogy a Rák-köd egyben erős röntgenforrás is az égen. Nem volt egyszerű a pontos irányt és a röntgensugárzás szerkezetét meghatározni. Az első áttöréseket 1964-ben érték el, amikor az M1 röntgen jeleinek változását figyelték a kutatók, miközben a Hold elfedte azt.

Bár most csak az optikai, a rádió és a röntgen tartományokról beszéltem, mert történeti síkon igyekszem mozogni, de elmondható, hogy a szinkrotronsugárzás a felelős a köd teljes spektrumban kibocsájtott sugárzásának igen jelentős részéért. A relativisztikus elektronok idővel energiát veszítenek, egyre „fáradnak”. Kezdetben a gamma, a röntgen, majd az optikai, az infravörös, míg végül a rádiótartomány „megszólaltatásáért” felelősek. Pontosan kiszámítható, hogy mennyi idő alatt „fáradnak” el ezek az elektronok. Például a röntgen szinkrotronsugárzás nagyjából egy év alatt kihunyna, ha nem lenne valamiféle energiautánpótlása. Ennyi idővel a robbanás után a köd ilyen formájában már régen nem is létezhetne. Kell hogy legyen valami hajtómotor a ködben! Sokáig ez volt a Rák-köddel kapcsolatos egyik legnagyobb talán. Tudták már, hogyan világít, de mi táplálja energiával? Honnan származik a mágneses tér?

Crab_Nebula_in_Multiple_Wavelengths

Az M1 látványa különböző hullámhosszakon. Balról jobbra a tartományok: rádió, infravörös, optikai (látható), ultraibolya, röntgen, és gamma.

Pulzár a Rák-ködben

Az első pulzárokat 1967-ben fedezték fel egy szinte teljesen véletlen eseménynek köszönhetően. A Napból kiáramló csillagszélnek köszönhetően egy távoli rádióforrás sugárzása gyorsan fluktuál, amikor az a Naphoz közel látszik az égen. A jelenséget interplanetáris szcintillációnak nevezik. Ez nagyjából hasonló jelenség, mint ahogyan a csillagok fénye a Föld légkörének köszönhetően pislog, vagyis a szcintillál. Ez a jelenség pedig kitűnően felhasználható kompakt rádióforrások keresésére, ugyanis minél kisebb az objektum, annál erősebb a véletlen fluktuáció jelensége. 1967. augusztus egyik éjszakáján úgy éjfél körül arra lett figyelmes Jocelyn Bell Burnell, hogy valami megmozgatta a voltmérőt. Ekkor a Nap jóval a látóhatár alatt tartózkodott, így nem tűnt valószínűnek, hogy ezt interplanetáris szcintilláció okozta volna. Kezdetben valami földi eredetű zavarra gyanakodtak, de 1967. november 28-án igazolást nyert, hogy valóban az űrből származó szabályos pulzusok sorozatát észlelték. Ezt a dátumot tekinthetjük az első pulzár (CP1919 / PSR J1921+2153) felfedezésének.

First_Pulsar

Az első pulzár felfedezése. A felső képen a pulzár jele csak éppen megkülönböztethető a szcintillációktól. Az alsó nagyobb sebességű grafikonon viszont világossá vált, hogy az észlelt zörej valójában periodikus pulzációk sorozata volt (P≈1.3 másodperc). Forrás: Jocelyn Bell Burnell és Antony Hewish.

Jocelyn Bell Burnell posztgraduális hallgató volt, akinek Antony Hewish volt a témavezetője. A felfedezést bejelentő cikken 5 szerző neve olvasható. Elsőként Hewish, másodikként Bell, és így tovább.  Antony Hewish 1974-ben megosztott Nobel-díjat kapott Martin Ryle-lal a rádió apertúra szintézis kidolgozásáért, és a pulzárok felfedezésében játszott szerepükért. Ez volt az első olyan fizikai Nobel-díj, melyet csillagászati kutatásért osztottak ki. Személy szerint én kifogásolhatónak tartom a döntést, hisz végső soron Jocelyn Bell Burnell volt, aki ráakadt a pulzárra, és aki annak alapos elemzésében szintén kulcsszerepet játszott.

Az első pulzárt, nagyon hamarosan újabbak felfedezése követte a rádiótartományban. Ezek közül a következő mérföldkövet a Vela csillagképben található hatalmas szupernóva-maradványban talált pulzár (PSR J0835-4510) jelentette. Ez volt az első kapocs az ilyen maradványok és a pulzárok között. Ekkortól szisztematikusan keresni kezdték a szupernóva-maradványokban a pulzárokat. Alig egy évvel később 1968. november 9-én sikeresen azonosították a Rák-köd pulzárját is, mint 33 milliszekundumos pulzárt. A milliszekundumos pulzárok felfedezése eldöntött egy fontos asztrofizikai kérdést is. Ugyan voltak már elméleti elképzelések a neutroncsillagokról, de kezdetben fehér törpék rezgésével próbálták magyarázni a pulzusokat. A milliszekundumos pulzárok esetében az elmélet azonban csődöt mondott, mert ilyen gyors rezgés már nem volt leírható a rezgési modellekkel. Maradtak a neutroncsillagok, mint lehetséges magyarázat. A mai definíció értelmében, a milliszekundumos pulzárok 1-10 milliszekundumonként bocsájtanak ki egy pulzust. Azonban, a Kis Róka (Vulpecula) csillagképben található PSR 1937+21 katalógusjelű pulzár felfedezéséig (1982) a Rák-köd pulzárja volt az ismert leggyorsabb.

A pulzárok rádiótartományban észlelhető lüktetését próbálták detektálni optikailag is, ami nem volt egyszerű feladat. Végül 1969-ben siker koronázta az erőfeszítéseket, és kimutatták a pulzusokat több független módszerrel is optikai tartományban. Igazolást nyert tehát, hogy a fotómon is kivehető, a köd szívében elhelyezkedő kettős délkeleti csillaga pislog, méghozzá ugyanabban az ütemben, mint a rádiótartományban.

M1-LRGB-20131029-cutlab

A pulzár a saját felvételemen.

M1-pulzar

A pulzár „lüktetése” az optikai tartományban.

Ugyancsak 1969-ben az MIT egy rakétát lőtt fel, mely repülése alatt egy órán keresztül vizsgálta a Rák-ködöt a röntgen tartományban, és ott is sikeresen kimutatták a pulzusokat.

A csillagászokat kezdetben nagyon meglepte a pulzusok pontossága. Elsőre úgy tűnt, hogy egy hihetetlen pontos órára leltek az égen. Azonban további megfigyelések felfedték, hogy a pulzár lassul, naponta 38 nanomásodperccel nő a periódusa. Mintha valami folyamatosan csapolná az égi óra energiáját. Ráadásul a periódusváltozás ütemében is találtak változást. Sőt nemcsak lassul az űrbe küldött pulzusok üteme, hanem néha egy időre fel is gyorsul. Ezt a jelenséget glitch-nek nevezték el. A pulzár idővel visszanyeri az eredeti ütemét, és folytatódik lassulás. Az elsőre atomórákkal vetekedő pulzárokról kiderült, hogy bizony az óra késik, és néha még rakoncátlankodik is.

Neutroncsillag a ködben

Ugorjunk egy kicsit vissza az időben. 1932-ben felfedezik a neutront. Az elméleti fizikusok azonnal rá is vetették magukat. Nem sokkal később (1934) Baade és Zwicky már neutroncsillagokról beszél. 1939-ben Zwicky azt állítja, hogy a neutroncsillagok szupernóva-robbanások eredményei. Szerinte a Rák-ködben is lennie kell egynek. Még fel sem fedezték az első igazán gyors pulzárokat, amikor Gold arról ír 1968-ban, hogy gyorsan forgó neutroncsillagok sugárzó nyalábjai küldik a jeleket az űrbe, hasonlatosan egy világítótoronyhoz. (Ugye még emlékszik arra az olvasó, hogy a nagy riválist, a rezgő fehér törpék elméletét éppen a nagyon gyorsan pulzáló pulzárok ütötték ki a nyeregből?) Ő már ekkor megjósolja, hogy a pulzusoknak folyamatosan lassulnia kell, ahogy a neutroncsillag energiát veszít, és a forgása lassul. Nem telt el sok év, és a szupernóva-maradványok, a pulzárok és az azt magyarázó lassulva forgó neutroncsillagok elmélete találkozott. De ez csak újabb hosszú út kezdetét jelentette csupán.

Mindmáig rengeteg a bizonytalanság a neutroncsillagok elméletét illetően, de néhány dolog azért elég biztosnak látszik. Mivel halott csillagról van szó, így a gravitációnak nem a sugárnyomás, hanem a degenerált „neutrongáz” nyomása áll ellen. Ez a kvantummechanikai eredetű nyomás nem függ a hőmérséklettől, mint az ideális gáz esetén, hanem csakis a sűrűségtől. Nagyjából 2.16 naptömegig tudja megakadályozni az égitest összeroppanását, amennyiben nem forgó neutroncsillagról van szó. Mivel forognak, ezért ennél kb. 20%-kal nagyobb lehet tömegük felső határa. A tömeg alsó határára pedig a Chandrasekhar határ, mely a fehér törpék elméletileg megengedett legnagyobb tömege, vagyis 1.4 naptömeg. A Messier 1 neutroncsillaga például 1.4 naptömegű. Külön érdekesség, hogy eddig még nem találtak 2 naptömegnél nagyobb tömegű neutroncsillagot, illetve 5 naptömegnél kisebb tömegű fekete lyukat. Ez utóbbiak akkor keletkeznek, amikor már semmilyen „kvantummechanikai nyomás” nem képes legyőzni a gravitációt. Miért nem találtak eddig 2 és az 5 nap tömeg közötti csillagmaradványokat? Pontosan ma sem tudja senki. A kutatók azonban lázasan dolgoznak azon, hogy fogást találjanak a problémán, és ezt az űrt mindenféle elképzelt egzotikus objektummal töltötték ki. Ilyen például a kvark csillagok gondolata. Teóriáik megerősítése azonban egyelőre még várat magára.

A neutroncsillagok átmérője mindössze 20 km körüli. A sűrűségük az előző adatok tükrében óriási. Az átlagsűrűségük 4 x 1017 kg/m3 és 6 x 1017 kg/m3 közé esik. Felszíni hőmérsékletük igen tág határok között változik. A Rák-köd fiatal neutroncsillaga 1.6 millió K felszíni hőmérsékletű, s éppen ezért intenzíven sugároz a röntgen tartományban. A centrumában azonban, még ennél is pokolibb a forróság, ott a számítások szerint 300 millió K uralkodik. A neutroncsillagok hőmérséklete idővel csökken. A középkorú, néhányszor 100 ezer éves példányok felszíni hőmérséklete már csak a fele a fiatalokénak. Nagyjából millió évvel a szupernóva-robbanás után a termális sugárzásukat már nem lehet detektálni a röntgen tartományban. Ekkora nagyjából már csak 100 ezer K uralkodik a felszínükön, mely aztán újabb néhány millió év elteltével néhányszor 10 ezer K-ra csökken.

De hogyan keletkeznek a pulzusok? Hogyan működteti a ködöt a Rák-köd belsejében lévő neutroncsillag? Az impulzus megmaradás törvényének értelmében a csillag forgása felgyorsul az összeroppanáskor. Innen származik az eszeveszett pörgés. Megmarad azonban a mágneses fluxus is. A mágneses tér így a csillag sugarának négyzetének inverzével arányosan fog erősödni. Így lehetséges az, hogy a 20 km-es kiterjedésű neutroncsillagoknak akár 108 Tesla erősségű mágneses terük is könnyedén lehet. Összehasonlításképpen ez az érték a Föld esetén 10-5 Tesla, míg a Nap esetén kb. 10-2 Tesla. Gondoljunk csak bele, hogy egy másodpercenként 30-szor körbeforduló roppan erős mágneses tér micsoda elektromos teret tud létrehozni. A Földön található részecskegyorsítókat üzemeltető kutatók biztosan irigykednek erre a kozmikus laboratóriumra. A neutroncsillag relativisztikus sebességre gyorsítja a töltött részecskéket, melyek energiájukkal táplálják a ködöt és biztosítják a fényét, létrehozva a szinkrotron sugárzást.

Moving heart of the Crab Nebula

A Rák-köd központi része a Hubble űrtávcső felvételén. A jobb oldali csillag az üregben a neutroncsillag, melyet a táguló gáz vöröses filamentjei, mint rostos cafatok vesznek körbe. A kékes derengés pedig az erős mágnese térben közel fénysebességgel spirálozó elektronok gerjesztette szinkrotron sugárzástól származik. Forrás: NASA és ESA

Changes_in_the_Crab_Nebula

A neutroncsillag a Rák-köd szíve. A Hubble űrtávcső felvételsorozatán jól látszik, ahogy az alakzatok nagyjából 4 hónap alatt megváltoznak a ködben. Forrás: a képen feltüntetve.

Egy másik, de szintén a mágneses térrel összefüggő mechanizmusnak köszönhetően – tudniillik a forgástengely és a mágnesen pólusok nem esnek egybe – a pólusoknál létrejövő sugárzási nyaláb minden egyes fordulatkor végigsöpör az űrön, és elérheti Földünket is. Ezért foghatjuk az elektromágneses sugárzás több tartományában is a pulzusokat. Alapvetően ez teszi a Rák-köd neutroncsillagát pulzárrá. Az, hogy a pólusoknál pontosan miként keletkeznek a sugárzó területek, illetve hogy a felszíntől milyen távolságra, az még mindig vita tárgyát képezi. Az egyik legelfogadottabb nézet szerint a pólusok környékén a mágneses mező roppant erős elektromos teret hoz létre, mely a neutroncsillag felszínéről is képes elszakítani elektronokat vagy éppen elektron és pozitron párokat képezni. Megindul az elektromos töltések áramlása, és az erővonalak mentén óriási kisülések keletkeznek. Tulajdonképpen a folyamatos villámlásszerű jelenség statikus elektromágneses zaja ér el minket a neutroncsillag minden egyes fordulatakor.

pulsar

A pulzár modellje: a mágnesen pólusok nem esnek egybe, a pólusoknál létrejövő sugárzási nyaláb minden egyes fordulatkor végigsöpör az űrön, és eléri Földünket. Forrás: NRAO

A neutroncsillagok belső felépítéséről inkább csak sejtéseink vannak. A különféle elképzelések részletezésére ehelyütt nincs lehetőség, ezért most csak vázlatos ismertetésre szorítkozom. Az erős gravitáció, a roppant sűrűségük és az erős mágneses tér bizarr szerkezetet eredményez. Ezen égitestek légköre az átmérőjéhez képest roppant vékony, esetleg néhány tucat centiméter, de legfeljebb pár méter lehet mindössze. Ugyan még „normális” anyagú gázok alkotják, de az egyes példányoknál más, és más összetételt sikerült detektálni. A nagyjából három évszázados, így viszonylag fiatal Cassiopeia A szupernóva-maradvány belsejében lévő neutroncsillag légköre például szénben gazdag, Míg más esetekben a neutroncsillag spektrumában inkább a hidrogén és a hélium a domináns. Ez talán a korbeli, hőmérsékletbeli, és kialakulásuk körülményeiből fakadó különbségekből is adódik. Ha létezne olyan cím, hogy a legsimább felületű égitest, akkor a neutroncsillagok jó eséllyel pályázhatnának rá. Az erős gravitáció a legkisebb egyenetlenségeket is kisimítja. A külső 1 km-en fémes tulajdonságú szilárd szerkezetre emlékeztető kérgük lehet. A kéreg felső részében, még egyáltalán nem a neutronok a dominánsak. „Hétköznapi” atommagok, talán éppen vas atommagok alkotnak rácsszerkezetet, melyet elektronok tengere jár át. A neutroncsillag belseje felé haladva, ahogy a sűrűség növekszik, egyre több és több neutron, melyek normál körülmények között amúgy elbomlanának (példának okáért a szabad neutron felezési ideje mindössze 611.0±1.0 másodperc). Először az atommagok dúsulnak fel neutronokban. Majd a nagy mennyiségben keletkező neutronok miatt a nukleáris kölcsönhatás már nem képes összetartani az atommagokat, és megkezdődik a neutroncsepegésnek nevezett folyamat. Ennek eredményeként már szabad neutronokkal is találkozhatunk. De a felszín alatti mélység növekedésével maguk az atommagok is eltorzulnak, pálcikaszerűvé válnak. A kéreg alatt, szupravezető és szuperfolyékony (nincs ellenállása a mozgással szemben) többségében neutronokból álló zóna található. Ez a „nukleáris kotyvalék” a szabad neutronok mellett, még mindig hozzávetőlegesen 5-10%-ban szabad elektronokból, protonokból és atommagokból is áll.  Még mélyebben, a belső magban, ahol már az atommagok sűrűségét is meghaladja a sűrűség, még ennél is furcsább körülmények uralkodhatnak. Itt talán már kvarkos állapotban van az anyag.

neutron_star_struct1

„Tipikus neutroncsillag” elméleti modellje. Jobb oldalon a sugár km-ben, bal oldalon pedig a sűrűség került feltüntetésre.

Mint minden modell, ez is megfigyelések alapján konstruált és megfigyelésekkel ellenőrizhető. A csillagmaradvány forgásának lassulása, a pulzusokban jelentkező apró szabálytalanságok, a neutroncsillagok lehűlésének üteme mind-mind árulkodik annak belső felépítéséről.

Persze ezek értelmezése nem egyszerű feladat. Hadd ragadjam ki a korábban említett glitch-eket példaként. A pulzációs periódus megugrása nagyon rövid idő alatt zajlik le, de nagyjából egy hónap is szükséges, míg visszaáll az eredeti ütem, és a lassulás folytatódik. Ez is arra enged következtetni, hogy a neutroncsillagnak szuperfolyékony a belseje. Érdekes, hogy öreg pulzároknál nem fordul elő glitch. Így talán azok belső felépítése már eltér a fiatalokétól, vagy csak már más állapotban vannak.

Régebbi elképzelések szerint, az apró felgyorsulások a neutroncsillagok kérgében keletkező repedések következményei. Mivel az apró égitest gyorsan forog így alakja nem gömbszimmetrikus. A szilárd kéregbe pedig „belefagy” a csillag alakja, vagyis a kidudorodás az egyenlítőjénél. Ahogy a forgás üteme lassul, úgy a csillag egyre kevésbé lesz lapult. A deformáció megrepeszti a kemény kérget, a dudor laposodni kezd. A kéreg sugara csökken, így az impulzus-megmaradás törvénye értelmében a kéreg forgása felgyorsul. A forgás üteme pedig azért áll lassan vissza, mert a neutroncsillag belseje szuperfolyékony, így a külső szilárd kéreg hosszú idő alatt tudja csak azonos sebességre hozni a belső részeket, hogy aztán a forgás lassulása folytatódjon. A megfigyelésből tehát modell alkotható a neutroncsillag felépítésére, illetve annak működésére. A baj csak az, hogy időközben kiderült (más neutroncsillagokkal kapcsolatos megfigyelések alapján is), hogy ez az elképzelés hibás. A gyorsulások alaposabb vizsgálata megmutatta, hogy ez a mechanizmus nem tud elég energiát átadni, és nem is írható le vele pontosan a jelenség karakterisztikája. (Ettől függetlenül manapság is még szembejön velem sok helyen ez az elképzelés ismeretterjesztő könyvekben, és internetes oldalakon.) Az újabb kifinomultabb modellek már abból indulnak ki, hogy a neutroncsillagok mágneses mezeje nem képes behatolni a szuperfolyékony anyagba. A mágneses mező viszont áthalad a neutroncsillagon, ami pedig csak úgy lehetséges, ha normál anyagú örvények haladnak keresztül a szuperfolyékony belsőn. Ezen örvények tengelye közelítőleg párhuzamos a forgástengellyel. Az örvények raktározzák az impulzusmomentumot, mintegy őrizve annak az időszaknak a forgási energiáját, amikor a neutroncsillag még gyorsabban forgott. Ezek a belső képződmények a külső rétegek anyagával is kapcsolatban állnak, mintegy hozzájuk kapcsolódnak. A külső rétegekről időnként örvények válnak le, és halnak el miközben a csillag az alacsonyabb impulzusú (lassabb forgású) állapotra „hangolódik”. Az örvények átrendeződése közben energia szabadul fel, ami, csak ha egy ideig is, de felpörgeti a külső részeket. Ez maga a glitch jelensége. Amint létrejön az új forgási egyensúly, az örvények ismét hozzákapcsolódnak a külső réteghez.

A példával csak azt szerettem volna megmutatni, hogy adott jelenség miként magyarázható, és abból milyen következtetéseket lehet levonni a neutroncsillag belső szerkezetére vonatkozóan. Arra is rá szerettem volna világítani, hogy nem minden modell állja ki az újabb megfigyelések (esetleg újabb elméleti megfontolások) próbáját. Az újabb, több paramétert figyelembevevő teória pedig már kissé más képet fest erről az objektum típusról és annak működéséről. Összességében elmondható, hogy még mindig nincs sziklaszilárd elképzelése a csillagászoknak arról, hogy egészen pontosan milyen is a Rák-köd neutroncsillaga, és hogyan is működik. Az viszont bizonyos, hogy forgó dinamóként hozza létre azt a csodát, melyet megfigyelhetünk, miközben energiát veszít, és amiért lassul a forgása.

Kétségtelenül akad még megválaszolatlan kérdés, de a Rák-köd és a benne található neutroncsillag tanulmányozásával rengeteg ismerethez jutottak a kutatók a szupernóva-maradványokkal kapcsolatban. A kínai császári udvar főcsillagásza biztosan nem sejtette 1054-ben, hogy az akkor megpillantott vendégcsillag sok évszázaddal később milyen fontos szerepet fog majd betölteni a világmindenség megismerésében. Jóslatai erről nem szóltak.

A polarizáció megfigyelése amatőrcsillagászati módszerekkel

A cikk írása közben ötlött fel bennem a gondolat, hogy milyen remek dolog lenne megismételni Walter Baade megfigyeléseit. Nem voltak nagyratörő terveim, csupán szerettem volna én is kimutatni a Rák-ködben a fény polarizációját, és így közvetve a szinkrotronsugárzást. Milyen nagyszerű is lenne, ha a polarizáció síkjának változása révén láthatnám a szupernóva-maradványban tekergőző mágneses teret! Vajon lehetséges ez? Baade mégis csak 5 méteres teleszkópot használt a vizsgálatok során.

A képrögzítési technológia nagyon sokat fejlődött az elmúlt évtizedekben. A mai DSLR gépek és CCD-k „érzékenysége” messze felülmúlják a régi fotólemezekét. Ebben bízva másnap este felhívtam Szeri László barátomat, és felvetettem neki az ötletet. Egyáltalán nem kellett győzködnöm, rögtön felcsigázta az észlelési terv. Annak tudatában raktuk le a telefont, hogy másnapig még több technikai problémát meg kell oldanunk, illetve megegyeztünk abban, hogy elfogadjuk, ha semmi használható eredménnyel nem jár a megfigyelés. Akkor is tegyünk próbát!

Mivel biztosra akartam menni, ezért hivatásos csillagász véleményét is szerettem volna kikérni. Azonnal felhívtam Kiss Lászlót, aki arra biztatott, hogy hajtsuk végre a tervet, és pár hasznos tanáccsal is ellátott.

Másnap munka után azonnal Kiskunfélegyháza felé vettem autóval az irányt. A csomagtartóban pihent más hasznos aprósággal a hétköznapi fotózásban használt Hoya gyártmányú polarizációs szűrőm. Volt bennem némi szkepticizmus a szűrővel kapcsolatban. Sok sikeres, és nekem tetsző felvételt köszönhettem ennek a szűrőnek, de eddig csak nappali fénynél kellett helytállnia. Egyre az járt a fejemben, hogy vajon csillagászati célokra is megfelel-e majd a minősége. Két előnye viszont volt Szeri László csillagászati célokra szánt szűrőjével szemben: a mérete, és az a képessége, hogy játszi könnyedséggel lehetett elforgatni, miután megfelelően rögzítettük.

A megbeszélt péntek 18 órai időpontban már ott toporogtam Laci barátom kapuja előtt. A csillagok szépen ragyogtak az égen, de a nyugodtság szemmel láthatóan nem volt a legjobb. Kísérletre jó lesz! Kicsit melegedtünk még a konyhában, míg elkészült a kávé, és amíg a gyerekek elmajszolták a kis csokoládét, amit „TTK bácsi” Mikulása idén kicsit korábban küldött. Majd irány a műhely.

Először meg kellett oldani a polarizációs szűrő elhelyezését a fényútban. Az idők folyamán gondosan felépítettet és precízen beállított optikai elrendezésén Laci nem igazán szerette volna változtatni. Szerencsére a „Nagy Newton” kihuzatában lévő „CCD-szűrőváltó-szűrőváltó-korrektor” felépítmény végén éppen volt megfelelő menet. Ide az a menetes sötét kupak szokott kerülni, mely a dark képek készítésekor megakadályozza a fény bejutását a CCD-be. Laci a kupakot kivágta, majd ebbe ragasztotta bele ügyesen a szűrőt. Ügyelnie kellett, hogy az a megfelelő síkban álljon, és a külső gyűrűjével továbbra is forgatható maradjon.

A szűrő kiindulási pozíciójának a Rák-köd hosszanti tengelyét választottuk, majd 45 fokonként kívántuk elforgatnia szűrőt. Igen ám, de a szűrő három méternél is magasabban lesz, a távcsőtubus belsejében. Még ha el is érjük, akkor is vakon kell majd forgatni. Laci ezt a problémát is megoldotta. Ragasztóból gumók kerültek 45 fokonként a forgatógyűrűre, a 0 fokot (a gyártó jelölése alapján) kis fémgyurmával „jelölte meg”. Majd behunyt szemmel következett a megoldás tesztelése. A „vakteszt” után kinyitottuk a kis csillagvizsgálót, amiben Laci főműszere türelmesen várakozott. A szokásos rutinok után, Laci beállította a Rák-ködöt. A szűrőt addig nem is szereltük be. Ez annak volt betudható, hogy előzőleg ugrattam Lacit. Vajon milyen hangja lehet a főtükrön koppanó szűrőnek? Ha már beesett, akkor hogyan szedjük ki majd belőle? Melyik fekete festék a legalkalmasabb a kipattant tükördarab javítására? Biztosra mentünk! Már ha lehet azt biztosnak nevezni, hogy a szűk helyen egy hosszú kitolható létrán állva a magasban, egyáltalán nem kapaszkodva sehová, benyúlva a tubusba, megpróbálja az ember vakon becsavarni a szűrőt. Laci pont ezt a bravúrt hajtotta végre. A nem éppen veszélytelen műveletet a polarizációs szűrő minden egyes elforgatáskor meg kellett ismételni.

Izgatottam vártuk az első nyers kép megszületését. Ezt a képet aztán elosztottuk a korábbi polarizációs szűrő nélkül készült nyerssel, és azonnal látszott a két kép közötti különbség. Nagy volt az öröm! Azért minden kétségünk még nem szállt el. Elindítottuk az első szekvenciát, és magára hagytuk a távcsövet a feladatával. Az időt főleg a műhelyben melegedve múlattuk, néha pedig ránéztünk a kertben felállított, Laci által csak „quadokli”-nak becézett 150 mm-es objektívekkel felszerelt 4 fényképezőgépre, mely szorgalmasan készítette a felvételeket az égbolt kiszemelt területéről.

Elkészült az első széria. Laci újra a magasba mászott a létrán, és 45 fokban elforgatta a szűrőt. Megint csak lélegzetvisszafojtva vártuk az első képet. A 45 fokos nyers képet elosztottuk a korábbi 0 fokos képpel, és azonnal láttuk, hogy érdemes folytatni a munkát. Első ránézésre látszott a polarizációs szűrő elforgatása után, hogy a köd bizonyos területeinek intenzitása megváltozott. Látva, hogy eredményes lesz a kis projektünk, folytattuk a munkát, rögzítettük a 45 fokban, a 90 fokban, és a 135 fokban elforgatott szűrővel is felvételeket.

Majdnem hajnali három óra volt, mire roppant fáradtan hazaértem Kiskunfélegyházáról, de másnap megegyeztünk abban Lacival, hogy nagyon is jó móka volt az észlelés. Kellene még több ehhez hasonló! Már csak a felvételek feldolgozása volt hátra, melynek eredménye lent látható.

M1-P_P

Először a Rák-köd hosszanti tengelyével párhuzamosan beállított polarizációs szűrővel felvett, úgynevezett 0 fokos összegzett képpel osztottuk el az ahhoz képest 45, 90, 135 fokban elforgatott szűrővel készített összegzett képet. A felső sorban a kétféle nyersanyagokból összegzett képek hányadosai, alattuk wavelet transzformációk segítségével kibontott belső részletek láthatóak. Ennek a módszernek köszönhetően, jól látszanak a szűrő elforgatásából származó különbségek. Mindez pedig annak a következménye, hogy a köd fénye polarizált, ráadásul az egyes területein eltérő szögű a polarizáció síkja.

A felvételek 458/1900 Newton-távcsővel, Atik 11000 CCD-vel készültek. Szekvenciánként: 10 x 3 perc (bin2).

M1-P_L

Ezen a verzión a Rák-köd polarizációs szűrő nélküli felvételeiből összegzett képpel osztottuk el a különböző irányokban elforgatott polarizációs szűrővel felvett nyersanyagból összegzett képeket. A felső sorban a kétféle nyersanyagokból összegzett képek hányadosai, alattuk wavelet transzformációk segítségével kibontott belső részletek láthatóak. Itt is jól látszanak a különbségek. Ez alapján is elmondható, hogy a köd fénye polarizált, ráadásul az egyes területein eltérő szögű a polarizáció síkja.

A felvételek 458/1900 Newton-távcsővel, Atik 11000 CCD-vel készültek. Szekvenciánként: 10 x 3 perc (bin2).

Összességében, amatőrcsillagászati módszerekkel mi is megállapítottuk, hogy a köd fénye tényleg polarizált! Saját szemünkkel láttuk a szinkrotron sugárzást akcióban, „megragadtuk” a mágneses erővonalakat! Olyan élmény volt ez nekem, mint mikor először szórtam vasport a mágnes köré fizika órán. Érdekes, és lenyűgöző volt megpillantani az amúgy szemünk számára láthatatlant, személyesen működésben látni a természetet.

 

Felhasznált irodalom:

Simon Mitton: A Rák-köd (ISBN 963 281 332 4)

Werner Becker: Neutron Stars and Pulsars (ISBN 978-3-540-76965-1)

J. Craig Wheeler: Kozmikus katasztrófák (ISBN 9633686822)

Wynn C.G. Ho, Craig O. Heinke: A Neutron Star with a Carbon Atmosphere in the Cassiopeia A Supernova Remnant

W. Becker, B. Aschenbach: ROSAT HRI Observations of the Crab Pulsar: An Improved Temperature upper limit for PSR 0531+21

C. M. Espinoza,A. G. Lyne, B. W. Stappers, M. Kramer: A study of 315 glitches in the rotation of 102 pulsars

NGC6910, IC1318 részlet (IC1318a, IC1318b), Sadr

NGC6910-IC1318-LRGB-20150710-2344-sx-600s-TTK

Sadr – NGC6910 – IC1318 részlet (IC1318a, IC1318b)

2015-07-10, 2015-07-17, 2015-07-20, 2015-07-21 – Göd

15 x 600 sec L, 10 x 600 sec R, 10 x 600 sec G, 15 x 600 sec B

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

SXVR-H18 CCD kamera, Hutech IDAS P2 LPS filter és Astronomik RGBL fotografikus szűrőszett

2015. július 9-én 19 óra körül lelkes amatőrcsillagászok kis csoportja gyűlt össze a Polaris Csillagvizsgálóban. Összejövetelük célja nem volt más, mint megmutatni az égbolt sok csodáját az odalátogatóknak. Így megy ez már hosszú évek óta, legyen szó az év bármelyik keddjéről, csütörtökjéről, vagy éppen szombatjáról. Jómagam, csak a közelmúltban csatlakoztam ismét ehhez a kis társasághoz. Nem egyszerű három gyermek mellől elszabadulni, így feleségemnek külön hálás vagyok azért, hogy alkalmanként mégis részt tudok venni egy-egy bemutatáson.

Aki tartott már bemutatót érdeklődőknek, bizonyosan osztja véleményemet, hogy látni, hallani a rácsodálkozás örömét felemelő érzés. Belsőnkből, hobbinkból ilyenkor átadunk egy darabot. Csak remélni merem, főleg az ifjak esetében (!), hogy az elültetett mag kihajt, és szárba szökken. A dolgok beépülnek gondolataikba, és így talán a világkép nevű „nagy kirakós játékhoz” én is hozzáadhattam egy keveset.

Ezen a nyári csütörtökön némi szél keretében hidegfront volt levonulóban. Tépett felhőzetét fürgén vonszolta maga után, így amikor elért „a riadólánc” 10 éves fiamat a hónom alá csaptam, és együtt indultunk Óbudára. Miközben a kupolában a nagytávcsőnél Kárpáti Ádám sürgölődött, én kicipeltem a teraszra a 20 cm-es Dobson távcsövet. A korán, sötétedés előtt érkezők jutalma, a fák lombjainak közelében bóklászó Jupiter és Vénusz volt. Ugyan már nem alkottak szoros párt, mint egy héttel korábban, de látványuk külön-külön is rabul ejtette a szemlélődőket. Sokszor vagyok úgy, hogy amit még nem próbáltam, azt elsőre valahogy varázslatnak, ördöngösségnek tartom. Így vannak ezzel a bemutatásokon résztvevők is. Hagytam hát, az alapvető játékszabályok lefektetése után, hogy a gyerekek maguk birkózzanak a nagy csővel, és beállítsák az alacsonyan járó Szaturnuszt, illetve pár fényesebb kettőscsillagot. Boldogság sugárzott arcukon, midőn megjelent a „személyes égitestük” az okulár látómezejében. Tényleg maguk fedezhették fel őket. Közben belegondoltam, hogy pont azt a szó szoros értelemben vett gyermeki örömöt élték át, amit én is szoktam, amikor a távcsővel egy-egy nehezebb objektumot sikerül végre becserkészni, megpillantani, lefotózni. Sosem növök fel!

Bár a bemutatott csillagászati objektumokat sokszor láttam már, mindig újra magukkal ragadnak. Az általam elmondottakat pedig gyakran továbbgondolom. Működik egyfajta visszacsatolás, engem is érnek inspirációk, melyek kihatnak amatőrcsillagász tevékenységemre. Ezen az estén sem volt ez másként. Amíg a vendégek a kupolában voltak, amatőrcsillagász társam, Török Tünde felvetette, hogy beállítanám-e azt a nyílthalmazt, amit múltkor a Hattyú csillagképben látott. A katalógus számára nem emlékezett, de nem is volt rá szükség. Olyan benyomást tett rá a korábbi látvány, úgy élt még emlékezetében, hogy szavai alapján szinte rögtön beugrott: ez bizony csak az NGC6910 lehet. Ennek az apró, nagyjából 7ˊ-10ˊ kiterjedésű nyílthalmaznak a beállítása egyáltalán nem nehéz, így pár pillanattal később már meg is lehetett csodálni a 20 cm-es Dobson-ban. Ha csak egyetlen mondattal lehetne jellemezni az első benyomást, akkor ezt mondanám: filigrán csillagív, melyet két sárgás színű csillag zárt le.

Ezen az estén határoztam el, hogy megörökítem a halmazt, illetve a környékét otthonról. Már akkor tudtam, hogy a fényképen egészen másként fest majd, hisz műszerem kisebb a Polaris teraszán használt Dobson-nál, egészen más lesz a látómező, a kamera érzékenységével pedig szemem nem veheti fel a versenyt. Eredetileg több időt szerettem volna szánni a felvételre, de a nyár nemcsak az enyém, hanem a családé is. Eddig 7.5 órát töltöttem a régió fotózásával, s mivel idén talán már nem tudom folytatni, így elérkezettnek láttam az időt, hogy feldolgozzam a nyersanyagot, és leüljek mesélni egy kicsit a képen látható régióról.

Amennyiben magunk szeretnénk felkeresni az NGC6910-et tudnunk kell, hogy merre is induljunk. Ígérem, ahogy fentebb is említettem, nem lesz nehéz a dolgunk. Júliusban, sötétedéskor már a Hattyú (Cygnus), a Lant (Lyra) és a Sas (Aquila) triumvirátusa uralja az égboltot a meridiántól keletre. Ezeket a csillagképeket az olvasó is könnyűszerrel azonosíthatja, még némileg fényszennyezett nyári égbolton is, ugyanis viszonylag fényes csillagokból állnak.

NGC6910-map1

A Hattyú (Cygnus), a Lant (Lyra) és a Sas (Aquila) csillagképek égi helyzete Gödről nézve 2015. július 10-én az első felvétel megkezdésének időpontjában (21:44 UT). (E: Kelet, S: Dél)

Amennyiben ráakadtunk a Hattyú jellegzetes keresztjére, a szárak metszéspontjában a γ Cygni nevű csillagot kell megcéloznunk.

NGC6910-map2

A Hattyú jellegzetes keresztje. A szárak metszéspontjában található a γ Cygni (Sadr).

Sikerült beállítani a távcsőben? Helyes! Itt álljunk is meg egy pillanatra.

A γ Cygni, vagy arab nevén a Sadr a felvételem bal alsó sarkában (délkeleti részén) látható fényes csillag. A Sadr távolsága, ugyan a Hipparcos űrszonda is megmérte azt, meglehetősen pontatlanul ismert: 1830±280 fényév.  Már a világűrben tartózkodik a Hipparcos utódja, a Gaia űrszonda, melyet 2013 decemberében bocsájtottak fel. Ennek az eszköznek 1 milliárd csillag pozíciójának a megmérése és elmozdulásának detektálása a feladata. A várt pontossága 0.000001 ívmásodperc. Ezerszer nagyobb, mint a Hipparcos szondáé volt. Remélhetőleg a Sadr távolságát illetően is pontosabb érték birtokában leszünk hamarosan. Annyi azonban már a Hipparcos mérései alapján is bizonyos, hogy a csillag közelebb van hozzánk, mint az NGC6910, illetve a felvételen vörösen derengő IC1318 ködössége. Bár gyakran emlegetik az égbolt eme területét Sadr régióként, a γ Cygni csupán előtércsillag.

Ez a csillag a maga nemében is roppant különös. Színképtípusa F8Iab, vagyis a szuperóriás csillagok egy viszonylag ritka, különleges osztályába tartozik. A legtöbb ismert szuperóriás csillag vagy vöröses árnyalatú, mint a Skorpió csillagkép legfényesebb csillaga az Antares, vagy az Orionban a Betelgeuse, vagy inkább kékes árnyalatú, mint az Orionban a Rigel, vagy a szintén a Hattyúban található Deneb. Felszíni hőmérsékletük így vagy a skála alján, 3000-3500 K körül (vörös árnyalat) található, vagy éppen annak tetején a 10000 K nagyságrend körül (kékes árnyalatúak).  Viszonylag kevés ismert szuperóriás sárgás-fehér színű, a Sadr pedig éppen ilyen, köszönhetően 5790 K felszíni hőmérsékletének. Sárgás-fehér árnyalatát azonban nemcsak egyedül ennek köszönheti. A Sadr fényét intersztelláris porfelhő(k) is vörösítik, illetve közel fél magnitúdóval tompítják látszólagos fényességét.

Ugyan felszíni hőmérséklete hasonló Napunkéhoz, azonban sugara 150±80-szorosa központi égitestünkének. Összehasonlításként: a Föld átlagos távolsága a Naptól csillagunk sugarának nagyjából 215-szöröse, a Vénusz átlagos távolsága a Naptól csillagunk sugarának nagyjából 155-szöröse, a Merkúr átlagos távolsága a Naptól csillagunk sugarának nagyjából 83-szorosa.

Nemcsak hatalmas, de tömege is igen tekintélyes, mely becslések szerint 14.5±1.1 naptömeg. A nagytömegű csillagokra jellemzően két végén égeti a gyertyát. Az ebbe a tömegtartományba eső csillagok gyorsan, 10 millió éves időnagyságrendben felhasználják magjukban a hidrogén készleteiket, és elhagyják a fősorozatot a Hertzsprung-Russell diagramon (HRD-n). A hidrogén fúziója külső héjba tevődik át, ahonnan folyamatosan lefelé, a mag irányába szivárog a hélium, így az ott egyre dúsul. A csillag elindul a HRD vörös oldala felé, felszíni hőmérséklete lecsökken és felfúvódva vörös szuperóriás csillaggá válik. Idővel beindul a magban a hélium fúziója, a hidrogén fúziója pedig a külső rétegben továbbfolytatódik. A hélium fúzióját a szén, az oxigén, és egyre nehezebb elemek váltják a magban egészen a vasig bezárólag. A csillag tömeget veszít az intenzív csillagszél révén, ledobja külső burkát. Ha kellően nagy a tömege, akkor mindeközben a HRD kék tartománya felé kezd mozogni. Adott esetben sárga szuperóriássá válik, sőt megfelelő nagy tömeg esetén elmozog egészen a kék szuperóriás állapotig. Minden egyes újabb fúziós ciklus egyre rövidebb ideig tart. A csillag belső szerkezet lassan egy hagymáéra kezd emlékeztetni. A héjakban befelé haladva a magig egyre nehezebb elemek fúziója zajlik. A vasnál nehezebb elemek azonban már nem jöhetnek létre fúzió révén, így a csillag összeomlik, és szupernóvaként fejezi be az életét szétszórva anyagát a világűrben. A központban pedig 10-20 Km átmérőjű, gyorsan pörgő, roppant sűrűségű neutron csillag marad hátra. (A fekete lyuk létrejöttéhez ennél nagyobb kiindulási tömeg szükséges.) Megoszlanak a vélemények arról, hogy a Sadr pontosan melyik fejlődési állapotot képviseli, pontosan hol is tart a fentebb vázolt folyamatban, milyen utat jár is be majd haláláig a HRD-n. A bizonytalanság ellenére a csillagfejlődési modellek szerint kora nagyjából 12 millió évre tehető. Az életét lezáró szupernóva robbanásig pedig valószínűleg már ennél is kevesebb ideje van hátra.

NGC6910-IC1318-LRGB-20150710-2344-sx-600s-TTK-cut1

A γ Cygni és az NGC6910.

Amennyiben korábban sikeresen beállítottuk a γ Cygni-t távcsövünkbe, és 1-2° körüli a látómezőnk, máris megpillanthatjuk az NGC6910-es nyílthalmazt, melynek távolsága az előbb említett csillagtól mindössze 33ˊ észak-északkeletre. Bár az égen közel látszanak egymáshoz, de ahogy korábban is említettem, az NGC6910 távolabb, durván 1500 pc-re, vagyis majdnem 5000 fényévre (1500 pc 4890 fényévnek felel meg) van tőlünk. Az Orion spirálkarban helyezkedik el, akárcsak Napunk, túl azokon a porban gazdag sötét molekuláris felhőkön, melyek hasadékot rajzolnak a Tejútba a Hattyú csillagkép farkától egészen a Nyilasig.

NGC6910-sadr-01

A Nap (Sun), a Sadr (távolsága nagyjából 1830 fényév) és az NGC6910 (távolsága nagyjából 4890 fényév) elhelyezkedése a Tejútrendszerben.

A halmaz ráadásul mélyen beágyazódott az IC1318-ba, tehát lokálisan is por és molekuláris felhők, valamint emissziós gázködök veszik körül. A felsorolt intersztelláris médiumok a halmaztagok fényét átlagosan 1 magnitúdóval csökkentik, színüket pedig jelentősen a vörös felé tolja. Ha nem lenne ez az effektus, akkor az NGC6910 olyan fényesen ragyogna, mint az Orion-köd híres Trapéziuma, vagy a Rák csillagképben található M44-es nyílthalmaz. A legnagyszerűbb, hogy a vörösödés jelenséget a figyelmes szemlélő saját maga is láthatja! Ugye még emlékszik a kedves olvasó, hogy az elején említettem, hogy pár fényesebb csillagnak feltűnően sárgás a színe a távcsőben? A vörösödés a legjobban a V2118 Cyg változócsillag (HD 194279, NGC 6910 2) esetén érhető tetten, melyet B1.5Ia színképtípusa alapján kékes színűnek kellene látnunk. Ez a szuperóriás mégis határozott sárgás árnyalatot mutat már egy 20-30 cm-es távcsőben is nagyobb nagyításon. Ez nem is csoda, mert B-V színindexe 0.85. Ráadásul az intersztelláris anyag hatása halmaztagról halmaztagra változik, játékot űzve velünk, akadályt gördítve a csillagászok elé megfigyeléseik feldolgozása közben. Természetesen ezek nem leküzdhetetlenek.

NGC6910-stars3-cut1

A cikkben külön megemlített csillagok a felvételemen.

NGC6910-vorosodes

A vörösödés mértékének változása az NGC6910 bizonyos területein. A sötétebb területeken erősebb az effektus. Forrás: Kolaczkowski és mások

Rengeteg a háttér és előtércsillag, így nem egyszerű feladat kiválogatni, hogy melyik égitest tartozik a halmazhoz. A nyílthalmazok csillagai születésük óta együtt mozognak a térben. Színképükben az egyes vonalak eltolódásából, melyet a Doppler-effektus okoz, meghatározható a radiális sebességük.  Hasonlóan megmérhető az IC1318 komplexum, a vizsgált csillag közelében elhelyezkedő részének radiális sebessége. Ezen információ birtokában már eldönthető, hogy ki a csapattag, és ki nem. Egy másik módszer, ami ebben az esetben használható, hogy a csillagok színképére „rárakódik” az intersztelláris anyag fényelnyelő hatása (Diffuse Interstellar Bands), miközben fényük eljut hozzánk. A halmaztagok színképében hasonlóak az abszorpciós vonalak mintázata és azok intenzitása. E két módszer alapján a korábban is említett V2118 Cyg változócsillag (HD 194279, NGC 6910 2) biztosan halmaztag, míg például a V1973 Cyg (HD 229189, NGC 6910 6) biztosan nem az NGC6910 része, csak egy előtércsillag. Van azonban jó pár fényesebb jelölt, aminek a státusza máig nem teljesen tisztázott. A V2245 Cyg (HD 229196, NGC 6910 4) halmaztagsága például nem teljesen bizonyos. Ez az O típusú spektroszkópikus kettőscsillag, melynek színét szinté erősen vörös irányba tolja a por és a gáz, talán csak háttércsillag. Az előzőekből következik, hogy nehéz megmondani pontosan az NGC6910 méretét, ezért is írtam a bevezetőmben, hogy az égen nagyjából 7ˊ-10ˊ a látszólagos mérete. Elfogadva a közel 5000 fényéves távolságot, valóságos kiterjedése durván 15 fényév lehet.

Egy nyílthalmaz kora több módszerrel is meghatározható. A 30 millió évnél idősebbek esetén használatos a gömbhalmazoknál már ismertetett módszer. A halmaz Hertzsprung-Russel diagramja (HRD) árulkodik annak koráról. Az egyszerre született (azonos fémtartalmú) csillagok megfigyelhető fejlődési állapota csak a kiindulási tömegtől függ. A nagyobb tömegű fényesebb és forróbb csillagok hamarabb elhasználják hidrogén készleteiket, és elhagyják a fősorozatot. Az idő előrehaladtával már csak a kisebb tömegű, és kevésbé fényes csillagok maradnak a fősorozaton. Minél idősebb egy halmaz, annál lejjebb tolódik az a pont (Turn Off Point) a fősorozaton, ahol a csillagok „elkanyarodnak” az óriás ág felé. Felrajzolva a HRD-t egy adott halmazra, az előbb említett pontnak a meghatározásával, továbbá felhasználva a csillagfejlődési elméleteket, izokron illesztésével megbecsülhető a halmaz kora. Az izokron a csillagfejlődésben használt kifejezés, mely a HRD-n az azonos korú csillagokat összekötő görbét jelöli.

nyilthalmaz-HRD1

Különböző korú nyílthalmazok Hertzsprung-Russel diagramja. Kép forrása: Australia Telescope Outreach and Education

Az NGC6910 azonban nagyon fiatal nyílthalmaz, így itt egy kissé más módszer a célravezetőbb, bár ez is a halmaz Hertzsprung-Russel diagramján alapszik, és az azonos korú, azonban eltérő tömegű csillagok fejlődési sebességén, mely már „csecsemőkorukban” is megmutatkozik. A hideg molekuláris gázfelhőkben születő csillagoknak időre van szüksége, hogy kellően összesűrűsödve, magjukban beinduljon a hidrogén fúziója. Egy nagytömegű csillag esetén ehhez nagyjából 100 ezer év szükséges, míg a kisebb tömegűeknél akár több 10 millió évig is eltarthat, míg elérik a fősorozatot. A nagyon fiatal halmazokban így úgynevezett fősorozat előtti csillagokat kell keresnünk. Majd felrajzolva a halmaz Hertzsprung-Russel diagramját, a csillagfejlődési elméletekből származó izokron illesztésével meghatározható a halmaz kora.

A fiatal halmazoknál, mivel még tartalmaznak fősorozat előtti csillagokat, meghatározható az is, hogy milyen időintervallumban születtek a csillagok a gázfelhőből. Alapvetően ez a legidősebb és a legfiatalabb csillag korkülönbsége. A módszer lényege leegyszerűsítve az, hogy a halmaz legidősebb csillagának tekintjük azt a csillagot, amelyik éppen elhagyja a fősorozatot (turn-off age), továbbá megkeressük a legfiatalabb fősorozat előtti csillagot (turn-on age). A kettő különbsége pedig jó közelítéssel megadja, hogy mennyi ideig folyt csillagkeletkezés a halmazban.

NGC6910-preMS-isoch

Az NGC6910 Hertzsprung-Russel diagramja, melyre a csillagászok különböző izokronokat illesztettek.

A fenti vizsgálatokat kutatók több csoportja is elvégezte, és bár az értékek kissé eltérnek, mégis jól közelítenek egymáshoz. A halmaz életkora nagyjából 7 millió év, a tagok jelentős része pedig az első 3 millió éves időintervallumban született. Bár a keletkezés üteme később lassult, de még fél millió évvel ezelőtt is keletkeztek csillagok.

De miért érdekli ennyire ez a nem túl népes nyílthalmaz a csillagászokat? Miért vizsgálják fiatal csillagait ekkora alapossággal? Miért érdekes kora, a csillagkeletkezés üteme? Az ok nagyon röviden: megismerni galaxisunk egyik legnagyobb csillaggyárát a durván 650 fényév kiterjedésű Cygnus X komplexumot, vagy más néven a Cygnus csillagkeletkezési régiót, amely mellett még az Orion komplexum (ennek része az Orion-köd) is eltörpül. Míg ez utóbbira viszonylag szabad rálátásunk van, addig a Cygnus X porfelhőkbe burkolódzik. Elég csak a fotóra tekinteni, hogy lássuk, az ehhez a csillagközi felhőhöz tartozó IC1318 (melynek csak egy részét örökítettem meg) is erősen porsávokkal szabdalt. Illetve emlékezzünk vissza a fentebb leírtakra a csillagok fényességével és vörösödésével kapcsolatban.

A misztikusnak tűnő Cygnus X elnevezés, még a múltszázad közepéről származik, amikor megkezdődött az égbolt feltérképezése a rádiótartományban. Ekkor derült ugyanis ki, hogy a Sadr irányába egy kiterjedt, diffúz rádióforrás található. A Cygnus X nem tévesztendő össze a Cygnus X-1-gyel, mely egy csillag és egy fekete-lyuk párosa, és egyben az egyik legintenzívebb röntgenforrás az égbolton.

Az itt található molekula felhő tömege óriási, 2-3 millió naptömeg. Területén legalább öt fiatal és igen népes O és B típusú csillagok alkotta, úgynevezett OB asszociáció található. Az asszociációk tagjai, a nyílthalmazokkal ellentétben, nem kötődnek egymáshoz gravitációsan. Gázfelhők közelében, vagy abba ágyazódva akadhatunk rájuk. Kiterjedésük pedig sokszorosa lehet a nyílthalmazokénak, elérheti akár 200-300 fényévet is. A Cygnus X-ben az egyik jelentősebb asszociáció, az OB9 magját az NGC6910 alkotja, így már talán érthető, miért övezi nagy érdeklődés ezt a nyílthalmazt. Az OB2, még az OB9-nél is masszívabb. Azért, hogy az előtérbe lévő intersztelláris médium extinkcióját redukálják, az asszociációt közeli infravörös tartományban vizsgálták meg a csillagászok. Kiderült, hogy az OB2 körülbelül 2600 O és B típusú fiatal csillagot foglal magában, melyből nagyságrendileg 100 különösen nagytömegű és forró O típusú csillag. Az OB2 teljes tömege becslések szerint 30000 naptömeg, de egyesek szerint akár 100000 naptömeget is elérheti, így egyike galaxisunk legnagyobb ismert csillagtársulásainak. Tömege majdnem felveszi a versenyt pár gömbhalmazéval. Éppen ezért akadt pár csillagász, aki tanulmányában születő félben lévő gömbhalmaznak aposztrofálta, azonban a szakemberek nagytöbbsége, a tagok közötti szoros gravitációs kapcsolat hiányában, továbbra is „csak” nagytömegű asszociációként tekint rá. Csillagainak kialakulása, hasonlóan az NGC6910 csillagaihoz, nagyságrendileg 10 millió évvel ezelőtt vette kezdetét, de a „Cygnus csillaggyár” még napjainkban is aktív. A nagytömegű O csillagok intenzív UV sugárzásukkal gerjesztik, ionizálják a körülöttük lévő intersztelláris anyagot. A közelükben lévő hidrogén felhők ennek köszönhetően „világítani” kezdenek. Az IC1318 is egy O9 típusú nagytömegű csillagnak köszönheti a fényét, melyet az optikai tartományban porfelhők fednek el a szemünk elől. Erős sugárzásuk nemcsak életet lehel ezekbe a felhőkbe, de azonnal erodálni is kezdi azokat. Ezek a forró, kék csillagok hatalmas, látványos üregeket fújnak azokba a ködökbe, melyben korábban megszülettek. A tovaterjedő ionizációs frontok pedig szemet gyönyörködtető formákat hoznak létre, miközben beleütköznek a nagyobb sűrűségű csillagközi anyagba, vagy éppen felgyorsulnak ott, ahol a sűrűség kisebb. A kibocsájtott nagyenergiájú fotonok mellett, a kisebb csillagokhoz képest erős csillagszelük, vagyis a belőlük kiáramló anyag is fontos szerepet játszik a környező világűr alakításában. Mindez azonban a Cygnus csillagkeletkezési régió esetén szinte teljesen rejtve marad előlünk az optikai tartományban. Igazi titkait csak a rádió, infravörös és gamma tartományban fedi fel.

cygnusX-infra

Ezen a 8nm-es hullámhosszon készült infravörös felvételen jól látszanak az O típusú csillagok által a por és gáz komplexumba fújt hatalmas üregek, melyeket forró és ritka gáz tölti ki, a taréjok pedig az üregek falai. A fényes fehér csomók és ívek (a taréjoknál) azok a területek, ahol jelenleg is csillagkeletkezés zajlik. Kép forrása: NASA/IPAC/MSX

A Cygnus X egy tökéletes laboratórium a csillagászoknak, ahol tanulmányozhatják azokat a folyamatokat, melyek a csillagok keletkezését kiváltják, tanúi lehetnek csillagok születésének, ráakadhatnak a különböző fejlődési fázisokra, hogy aztán az egészet egy láncba fűzzék. Megfigyelhetnek végnapjaikat élő gyorsan fejlődő nagytömegű csillagokat, és olyan titkok kulcsát is megtalálhatják itt, melyeket már régóta keresnek.

Az egyik ilyen titok, hogy pontosan honnan is származik a kozmikus sugárzás, mely javarészt (90%-ban) közel fénysebességgel, a galaxisunkon átszáguldó protonokból áll. Nem egyszerű azonban ezek forrását megtalálni, ugyanis a galaktikus mágneses tér eltéríti a töltött részecskéket. Lehetetlen visszakövetni őket forrásukig. Amennyiben azonban a kozmikus sugárzás intersztelláris gázzal ütközik, nagyenergiájú gammasugárzás jön létre. Ezek a fotonok pedig már egyenes úton jutnak el hozzánk, így felfedve a sugárzás születésének a helyét.

Az elméletek szerint a kozmikus sugárzás legjelentősebb forrásai azok a gyorsan táguló ionizált gázhéjak, illetve erős mágneses terek, melyek a szupernóvákhoz kapcsolódnak. A teóriákat azonban megfigyelésekkel is kell bizonytani. A Cygnus X és környezete több okból is megfelelőnek látszott az elmélet ellenőrzése céljából. Ahogy fentebb is írtam, itt viszonylag gyakoriak a különösen nagytömegű csillagok, melyek rövid 5-10 millió éves életük végén szupernóvaként robbannak fel, így a környéknek tartalmaznia kell természetes részecskegyorsítóként működő maradványokat. A rádiócsillagászati megfigyelésekből már eleve ismert volt a γ Cygni irányába, egy becslések szerint 7000 éves szupernóva-maradvány, mely 1000 fényévvel a Cygnus X mögött található.

A csillagászoknak sikerült is megfigyelni a Fermi űrtávcsővel, a masszív csillagok által vájt, forró gázzal telített üregekben a keresett gamma-sugárzást.

Gamma_Cyg_X_Fermi_LAT226

A Fermi űrtávcsővel detektált gamma-sugárzás a Cygnus X-ben. Kép forrása: NASA/DOE/Fermi LAT – I. A. Grenier és L. Tibaldo

Alapos vizsgálatok után a Fermi csapata arra a következtetésre jutott, hogy a megfigyelt gamma-sugárzásért nagy valószínűséggel valóban a szupernóva-maradvány(ok) által kibocsájtott kozmikus sugárzás és a Cygnus X anyagának kölcsönhatása a felelős. Az OB asszociációk nagytömegű szörnyetegeinek sugárzása okozta sokkhatás felkeveri a gázt, a környező mágneses teret pedig összekuszálja, így a frissen keletkezett kozmikus sugarak csapdába esnek, miközben megpróbálnak áthatolni a régión. Nem zárták ki azonban azt a lehetőséget sem, hogy a részecskéket helyi folyamatok, vagyis az intenzív csillagszél okozta lökéshullámok gyorsítják fel. Nagyon úgy néz ki, hogy akik a szupernóvákra fogadtak, mint a kozmikus sugárzás egyik lehetséges fő forrásaira, végre megfigyelési bizonyítékokkal is rendelkeznek.

Remélem, hogy ezzel a rövid cikkel sikerült kedvet csinálnom az olvasónak ahhoz, hogy egy kellemes nyári vagy kora őszi éjszakán maga is felkeresse a Tejút eme izgalmas és szép vidékét. És talán ahhoz is, hogy ezt másnak is megmutassa, és meséljen róla. Páratlan élmény lesz!

Felhasznált irodalom:

Leonid S. Lyubimkov, David L. Lambert, Sergey I. Rostopchin, Tamara M. Rachkovskaya, Dmitry B. Poklad: Accurate Fundamental Parameters or A, F, and G-type Supergiants in the Solar Neighbourhood

Markus M. Hohle, Ralph Neuhaeuser, Bernard F. Schutz: Masses and Luminosities of O and B – type stars and red super giants

L.E. Pasinetti Fracassini, L. Pastori, S. Covino, A. Pozzi: Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) – Third Edition – Comments and Statistics

David F. Gray: Photospheric variations of the supergiant γ Cyg

Bhavya B, Blesson Mathew, Annapurni Subramaniam: Pre-main sequence stars, emission stars and recent star formation in the Cygnus Region

Kolaczkowski, Z.; Pigulski, A.; Kopacki, G.; Michalska, G.: A CCD Search for Variable Stars of Spectral Type B in the Northern Hemisphere Open Clusters. VI. NGC 6910

J. Kubat, D. Korcakova, A. Kawka, A. Pigulski, M. Slechta, P. Skoda: The H-alpha stellar and interstellar emission in the open cluster NGC 6910

Science Journals: A Cocoon of Freshly Accelerated Cosmic Rays Detected by Fermi in the Cygnus Superbubble – (a szerzőket lásd az oldalon)

NGC5466

NGC5466-LRGB-20150511-2334-sx-480s-TTK

NGC5466

2015-05-11, 2015-05-18, 2015-06-12 – Göd

15 x 480 sec L, 10 x 480 sec R, 10 x 480 sec G, 10 x 480 sec B

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

SXVR-H18 CCD kamera, Hutech IDAS P2 LPS filter és Astronomik RGBL fotografikus szűrőszett

A legtöbbször a megfigyelést, a fotót követi egy-egy kisebb cikk megírása. Ebben az esetben ez egy kicsit másképp történt. Az elmúlt években többször is fotóztam gömbhalmazt, melyekhez adott esetben leírást is készítettem. Itt-ott, több cikkben szétszórva írtam már a gömbhalmazok általánosabb tulajdonságairól, de ahogy nőtt a gömbhalmaz felvételeimnek a száma, úgy érlelődött a gondolat, hogy egyszer egybe kellene fognom ezeket, és egy szál mentén végigvezetni az olvasót. Így attól is megmenekülnék a jövőben, hogy bizonyos ismerteket újra és újra leírjak. Egyszerűen hivatkozhatnék a már elkészült (terveim szerint alkalmanként frissülő) cikkre. Miközben a sorokat írtam, azon töprengtem, hogy mi is hiányzik igazán a gyűjteményemből. Egy ősi, messze a halóban keringő, laza szerkezetű gömbhalmazra esett a választásom. Természetesen peremfeltétel volt, hogy a kertemből is meg tudjam örökíteni.

Az Ökörhajcsár csillagkép (Bootes) irányába tekintve nagyszerű kilátás nyílik galaxisunk halójára, és az azon túl elterülő kozmoszra. Távcsövünkkel e csillagképet böngészve jóval a Tejútrendszerünk síkja fölött (északra) járunk. Messze, a galaxisunk porban és gázokban gazdag vidékeitől. Szinte semmi nem akadályozza a szabad kilátást. Ebben a csillagképben található az NGC5466.

Egyszer már jártam távcsövemmel és kamerámmal a környékén. Akkor azonban leragadtam a tőle nagyjából 5° távolságban lévő, sokkal fényesebb M3-nál. Óriási a különbség a két gömbhalmaz távcsőbeli megjelenésében. Az NGC5466 a tavaszi és nyári éjszakák ismertebb fényesen ragyogó gömbhalmazai után, mint például a korábban már lencsevégre kapott M13 vagy az előbb említett M3, könnyen csalódást kelthet. Persze csakis akkor, ha hasonló látványra számítunk. Kis felületi fényességű, 9.7 (V) magnitúdós 11ˊ látszólagos kiterjedésű az objektum. Ajánlom az olvasónak, hogy ha lehetősége van rá, akkor fényszennyezéstől mentes, kellően sötét égbolton vegye alaposan szemügyre távcsővel ezt a gömbhalmazt. Már az én kisebb, 10 cm-es lencsés távcsövemmel (UMA-GPU APO Triplet 102/635), 80x nagyításon is előbukkan pár darab halmaztag a legfényesebbek közül az NGC5466 halványan derengő foltjából. Bár ez nem azonnal nyilvánvaló. Nagyobb távcsövekkel még tovább lehet növelni a nagyítást anélkül, hogy a halmaz beleveszne az égi háttérbe. 25-30 cm átmérő esetén már csillagok tucatjait vehetjük szemügyre az okuláron keresztül. Az NGC5466 a maga nemében igen különleges. Kár lenne kihagyni az észlelési programból!

NGC5466-map2

Az NGC5466 az Ökörhajcsár csillagkép területén. Az M3-tól nagyjából csak 5° távolságra van az égbolton. Igen markáns a különbség a két gömbhalmaz vizuális (és fotografikus) megjelenésében. Arra biztatom az olvasót, hogy győződjön meg erről saját maga is.

NGC5466-M3-galaxy3

Az NGC5466 galaxisunkhoz képest elfoglalt pozíciója. Jelentősen távolabb van tőlünk és a galaxis síkjától, mint az M3.

A tőlünk 16.3 kpc (kb. 53000 fényév), a galaxisunk síkjától 15.3 kpc (kb. 50000 fényév) távolságra lévő NGC5466 még a gömbhalmazok között is roppant fémszegénynek számít. A fotometriai módszerekkel felvett Hertzsprung-Russel diagram és az erre illesztett matematikai modellek, az alacsony fémtartalom mellett, szintén igen idős koráról árulkodnak. Ahogy korábban is már említettem, megfelelő izokron illesztésével, mely azonos korú és fémtartalmú csillagoknak a csillagfejlődési elméletekből származó görbéje (Hertzsprung-Russel diagramja), meghatározható a gömbhalmaz kora. E kormeghatározási módszer alapján, a gömbhalmaz valamikor 12-13 milliárd évvel ezelőtt születhetett.

NGC5466-HRD2-m1

Az NGC5466 Hertzsprung-Russel diagramjára illesztett izokron-ok. A jelentősebb fényességű, a Nap tömegét jelentősen meghaladó nagytömegű csillagok már mind hiányoznak a fősorozatról, sőt már ki is hunytak. Mára csak a közepes tömegű (0.5-10 naptömeg) csillagok alsó tartományának képviselői maradtak meg a halmazban. Az öreg alacsony fémtartalmú gömbhalmazokra jellemzően, igen népes a horizontális ág kék oldala, melyet kék horizontális ágnak (blue horizontal-branch) is szokat nevezni. A HRD-n ezt a területet kék karikával jelöltem. A halmaz úgynevezett kék vándorokban is bővelkedik. A HRD-n ezt a területet zöld karikával jelöltem.

Az NGC5466 az egyike a Tejútrendszer legkisebb fényességű, leglazább felépítésű gömbhalmazainak. A csillagok koncentrációja a mag irányába rendkívül alacsony, így a Shapley–Sawyer osztályozásban a skála legvégére, a XII. osztályba sorolták. Gömbhalmazhoz mérten ráadásul „pehelysúlyú”, mindössze 50000 naptömegű.

A most elmondottak alapján nem is csoda, hogy megjelenése sokkal szerényebb az M3-hoz képest, mely közel félmillió csillagával könnyűszerrel túlragyogja. Az a tény sem elhanyagolható persze, hogy az M3 csillagai sokkal koncentráltabban helyezkednek el, és végső soron közelebb van hozzánk.

A csillagászok már régen megjósolták, hogy Tejútrendszerünk keltette árapályerők révén a gömbhalmazok csillagokat veszítenek. A nevükkel ellentétben, csillagaik nem egy tökéletes gömb alakú térrészben helyezkednek el. Valójában minden gömbhalmaz lapult kissé (forgási ellipszoid alakú), és mindezért galaxisunk előbb említett hatása tehető felelőssé. Az árapályerők akkor „dolgoznak” a legintenzívebben, amikor az áldozat elhaladt a mag közelében, vagy éppen keresztezi galaxisunk síkját. A galaxis centruma irányába leszakadó csillagok egy kissé megelőzik, míg az átellenes oldalon leszakadók lemaradnak a gömbhalmaz mögött. Idővel „csillagösvények” képződnek az égen.

Az első gömbhalmazokhoz tartozó árapály-csóvákat (tidal tails) még 1995-ben fedezték fel (Grillmair és mások) déli haló objektumok felmérése közben. 2000 környékén már több tucatnyira rúgott az ilyen képződménnyel rendelkező gömbhalmazok száma.

Felmerült az erős gyanú, hogy az NGC5466-nak is rendelkeznie kell árapály-csóvával. Ahogy fentebb is írtam, az NGC5466 kistömegű, és laza a felépítése. Egy 1991-es tanulmány szerint (Pryor és mások) e gömbhalmaz alacsony tömeg-fényesség arányára az egyik legkézenfekvőbb magyarázat az lehet, hogy kistömegű csillagainak jelentős részét elveszítette. De mikor és hogyan? Sajátmozgása révén kiszámolható, hogy egy gömbhalmaz milyen pályán kering a Tejútrendszer magja körül. Az NGC5466 retrográd keringési irányú, és igen elnyúlt pályán mozog. Akár 40 kpc távolságra is eltávolodik a galaxisunk magjától. Továbbá, és ez a fontosabb, nagyjából 50 millió éve a galaxis centrumától 8 kpc távolságban áthaladt annak korongján, így nem is olyan régen árapályerők keltette sokkon esett át. Mivel több tulajdonsága is ideális jelölté tette, így a csillagászok nekiláttak megkeresni a kiszakított halmaztagokat. Amit pedig végül találtak, az őket is nagyon meglepte.

NGC5466-orbit1

Az NGC5466 galaktikus pályája. A görbe ±100 millió éves időszakot fed le. A gömbhalmaz 50 millió éve keresztezte a Tejútrendszerünk síkját. – Forrás: M. Odenkirchen, E.K. Grebel

Az SDSS (The Sloan Digital Sky Survey) égbolt felmérő program mottója egyszerűen „a világegyetem feltérképezése”. Ambiciózus terv. Az viszont kétségtelen, hogy az elmúlt pár évtizedben, a különböző felmérések által összegyűjtött adathalmaz igazi aranybánya a csillagászoknak.

Bár az első „gyanús” csillagokat már 1997-ben megtalálták, majd 2004-ben az APM katalógus adatai alapján újabb eredményeket értek el, de az igazi áttörést az SDSS adatbázisának felhasználása jelentette.

2005-ben a gömbhalmaz 2 fokos környezetét vizsgálva, Belokurov és kutatótársai végül minden kétséget kizáróan ráakadtak az NGC5466 árapály-csóvájára. 2006-ban Grillmair és Johnson, továbbra is az SDSS-re támaszkodva, kiterjesztették a keresést az égbolt sokkal nagyobb szeletére.

Anélkül, hogy módszerüket pontosan ismertetném, nehéz elképzelni mennyi apró kis cselt kellett bevetniük, és mennyi mindent kellett figyelembe venniük, míg munkájukat siker koronázta. Ennek ismertetése azonban meghaladná e cikk keretei. A téma iránt érdeklődő olvasó megtalálja Grillmair és Johnson cikkét a szakirodalmak felsorolásánál.

Nagyságrendileg 9 millió csillag színét és fényességét vizsgálták meg. Mivel a keresett csillagok mind az NGC5466-ból származnak, így hordozniuk kell azokat a jegyeket, amivel a még mindig a halmazban lakó testvéreik rendelkeznek. Egy úgynevezett matched filtering eljárással minden egyes csillagról megállapították, hogy mekkora valószínűséggel tartozhatott az valaha a halmazhoz. Megvizsgálva a valószínűségek eloszlását kirajzolódott a keresett árapály-csóva a gömbhalmaz mindkét oldalán, mely összességében durván 45 fokban szeli át az égboltot. Elér egészen a Nagy Medve csillagképig. A csillagai túlságosan halványak, hogy szabad szemmel is láthassuk, de gondoljunk csak bele, milyen látvány lenne, ha felnézve az égre megpillanthatnánk őket! Egyensúlyozva a képzelet és a valóság határán, azért megjegyzem, hogy ekkor is nehezen tudnánk azonosítani őket Tejútrendszerünk halvány csillagai között, melyek szintén láthatóvá válnának számunkra.

illus_starry_river

Fantázia rajz az NGC5466, az eget 45 fokban átszelő árapály-csóvájáról a művész elképzelése szerint. – Forrás: photobucket.com

Felfedezése óta elnevezést is kapott ez a körülbelül 60000 fényév hosszú csillagív: 45 fokos csillagáramlatként, vagy az NGC5466 árapály-csóvájaként hivatkoznak rá a szakirodalomban. Az első áramlatokat még a 1970-es években fedezték fel a csillagászok. Egy részük bekebelezett galaxisokhoz köthető. Van, amelyik környező kisebb galaxis és a Tejútrendszer gravitációs kölcsönhatásának eredménye. De mint láthattuk, olyan is akad, melynek forrása galaxisunk saját gömbhalmaza. Összetételük igen változatos. A Magellán áramlat gázból áll, míg az NGC5466 árapály-csóvája öreg csillagokból.

De miért érdekli a csillagászokat ez az egész témakör annyira? Az áramlatok egy-egy történetet mesélnek el, illetve alakjukból, mozgásukból megismerhetjük galaxisunk gravitációs terét. Segítségével következtetéseket lehet levonni a Tejútrendszer felépítésével kapcsolatban. Jusson tehát eszünkbe, amikor az NGC5466-ra pillantunk a távcsövön keresztül, hogy neki is kulcsfontosságú szerepe volt abban, hogy válaszolni tudjunk egy egyszerű kérdésre: mekkora a Tejútrendszer tömege?

A pontosság kedvéért meg kell jegyeznem, hogy az előző kérdés megfejtéshez eddig nem az NGC5466, hanem a Palomar 5 gömbhalmaz árapály-csóvája révén jutottak a legközelebb a csillagászok. Egy igen friss tanulmány szerint a Tejútrendszerben 210±40 milliárd naptömegnyi anyag van 60000 fényév sugarú körön belül.

Felhasznált irodalom:

M. Odenkirchen, E.K. Grebel: The tidal perturbation of the low-mass globular cluster NGC 5466

M. Fellhauer, N.W. Evans, V. Belokurov, M.I. Wilkinson, G. Gilmore: The Tidal Tails of NGC 5466

C. J. Grillmair, R. Johnson: Detection of a 45 Degree Tidal Stream Associated with the Globular Cluster NGC 5466

ScienceDaily: How to weigh the Milky Way

NGC2903

NGC2903-LRGB-20150309-2026-sx-480s-TTK.JPG

NGC2903

2015-02-14, 2015-02-17, 2015-03-09, 2015-03-17 – Göd

39 x 480 sec L, 10 x 480 sec R, 10 x 480 sec G, 10 x 480 sec B

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

SXVR-H18 CCD kamera, Astronomik RGBL fotografikus szűrőszett

2015. február 14-én az alkonyat után arra várva, hogy a távcsövem felvegye a környezet hőmérsékletét, a Rák csillagképben járó Jupiterben és holdjaiban gyönyörködtem. Mind a négy Galilei-hold látszott, szépen egyvonalban sorakoztak fel a látómezőben. Ezek a holdak egy síkban keringenek a Jupiter körül, és ezekben a hónapokban Föld is éppen ebben a síkban helyezkedett el. A szigorú rendet a Ganymedes törte csak meg kissé azzal, hogy a többiekkel átellenes oldalt választotta. Lassan beállt a teljes sötétség, és eljött az idő, hogy a távcsövemet egy kicsit arrébb mozdítsam térben és időben. A Jupiter azon az éjszakán 4.36 CsE (1 Csillagászati Egység 149 597 870 700 m távolságnak és nagyjából 8.3 fénypercnek felel meg), vagyis nagyjából 36 fényperc távolságra volt a Földtől. A távcsövemben így 36 perccel korábbi állapotát vehettem szemügyre. Új célpontom azonban az Oroszlán csillagkép fejénél, sokkalta messzebb, 29 millió fényévnyi távolságban volt (Drozdovsky és mások 2000). Így a távcsövet bár alig mozdítottam arrébb, máris több tízmillió évet utaztam vissza az időben. Izgalmas dolog a csillagok világa.

Az NGC2903 küllős spirál galaxis. Fényessége 9.7 magnitúdó, míg mérete 12.6ˊ x 6ˊ. Ez az impozáns csillagváros 80000 fényéves átmérőjével alig kisebb Tejútrendszerünknél.

NGC2903-Leo1.PNG

Az NGC2903 spirál galaxis az Oroszlán csillagképben. A térkép a 2015. február 14/15. éjszaka állapotát mutatja, amikor a Jupiter is a közelben tartózkodott.

Szeretek magamnak megfigyelési programokat összeállítani. Nem kell komoly tudományos tevékenységre gondolni, csupán valami vezérelvet követve böngészem végig az eget, választom ki az egyes célpontokat. Ez a felvétel folytatása annak a sorozatnak, amit még az NGC7331-gyel kezdtem el. Az NGC2903 egy újabb tagja annak a mély-ég gyűjteményemnek, melyek valamely módon kimaradtak Messier katalógusából.

Charles Messier korának ismert üstökös vadásza volt. Ahogy G.M. Caglieris is rámutatott, és Messier eredeti észlelőnaplójából is kiderül, három üstökös is az NGC 2903 közelében haladt el az égen Messier pályafutása során. Hogyan lehetséges akkor, hogy egyszer sem vette észre a galaxist?

1760. második üstököse február 11/12. éjszaka, 1° 40ˊ-re közelítette meg a csillagvárost. Azonban a fényes üstökös csóvája épp a galaxis irányában látszott, ami minden bizonnyal megnehezíthette vagy meggátolhatta észrevételét.

De mi a helyzet az 1762-ben és 1771-ben feltűnt csóvás égi vándorokkal, melyek szintén nem voltak különösebben messze az NGC2903-tól? Alaposabban utánajárva kiderül, hogy Messier az 1762-es üstököst július első napjaiban látta utoljára az Oroszlán fejében, még elég messze a galaxistól. Utána már nem tudta megfigyelni. Ez az égterület a kora nyári időszakban már nagyon alacsonyan, 10-20 fok magasan van a sötétség beálltakor, így kizártnak tartom, hogy Messier észrevehette volna a galaxist.

Végül, bár az 1771-es kométa épp a galaxis mellett haladt el, Messier a közelítés idején, kb. 10 napig nem végzett megfigyelést – valószínűleg a borult ég miatt. Mivel az együttállás június közepén történt, így az 1762-es üstökösnél leírtak itt is helytállóak, Messier nem láthatta a galaxist.

Messier azért állította össze katalógusát, hogy kiszűrje azokat a távcsőben látható, általa még nem igazán értett objektumokat, melyek zavarták őt az üstökösök felfedezésében. Nem egyet közülük több éjszakán keresztül is megfigyelt, hátha elmozdul, és így bebizonyosodik róla, hogy valójában üstökös. Ő tehát inkább a buktatókat látta ezekben az égitestekben, és ez inspirálta őt a katalógus összeállítására. Gyakorta azt is szemére vetik, hogy nem volt igazán alapos és módszeres a „ködök” megfigyelésében. Azonban Messier minden más területen nagyon precíz észleléseket végzett, így miért épp az általa felfedezett vagy katalogizált égitestek lettek volna kivételek? Tudjuk, hogy számos ködöt évről évre többször szemügyre vett, méghozzá különféle távcsövekkel. Az elődei által felfedezett objektumok után addig kutatott kitartóan, akár évekig, míg létezésükről – vagy épp hiányukról – meg nem bizonyosodott. Leírásai minden szempontból korrekt mélyég-megfigyelések, amelyek az objektum pozícióján túl tartalmazzák pl. azt, hogy csillagokra bontható-e az égitest. Messier – magyar nyelven soha meg nem jelent – észlelőnaplójából kiderül, hogy nagyon is érdeklődött a ködök iránt, olyannyira, hogy őt túlszárnyaló követője, William Herschel is példaként tekintett munkájára. Ám az első valóban szisztematikus távcsöves égboltfelmérés a nagy német származású angol csillagász nevéhez köthető. A megfigyelési helyéről látható teljes égboltot végigpásztázta, és eközben akadt rá az NGC 2903-as spirál galaxisra 1784-ben, mely saját katalógusában a H I.56 jelölést kapta. Herschel egy fényesebb csomót a galaxison belül egyedi azonosítóval is ellátott. Kettős ködnek írta le ezt az objektumot. A H I.57, a New General Catalogue-ba (Új Általános Katalógus) is bekerült NGC2905 elnevezéssel. Ez a fényes HII régió, Lord Rosse (William Parsons), több mint fél évszázaddal később készült rajzán is felismerhető.

NGC2903-Lord_Rosse.jpg

Lord Rosse az NGC2903-ról készített rajzán is feltűnik a fényes HII terület, vagyis az NGC2905.

Lord Rosse ugyan örvényszerű ködként ábrázolja az NGC2903-at, de személy szerint én nehezen ismerem fel benne magát a galaxist. Bindon Stoney rajza, melyet szintén az 1800-as évek derekán készített, talán jobban visszatükrözi az okuláron keresztül látható főbb vonásokat.

NGC2903-Stoney.jpg

Bindon Stoney rajza az NGC2903-ról.

Megfelelően sötét égen, egy mai 10-15 cm-es távcsőben már részleteket mutat magából a galaxis. Példaként álljon itt két vizuális észlelés, melyek az MCSE észlelési adatbázisából származik.

NGC2903-Santa_Gabor.jpg

Sánta Gábor észlelése

Észlelés helye: Kisújszállás

Észlelés időpontja: 2007-04-14 00:00:00 (UT)

Objektum neve: NGC 2903 (LEO)

Objektumtípus: Galaxis;

Műszer típusa: reflektor

Műszer átmérő (mm): 114

Nagyítás: 83

Látómező (ívperc): 55

Leírás: Régóta kedvencem az oroszlán eme galaxisa. Az öttömösi messier marazon éjszakáján 83x-os nagyítással a kis Bresser távcsövemben is meglepően részletgazdagnak mutatkozik. Megfigyelhető egy középső rész, mely pár ívmásodperces, illetve látható a központi küllő, amely É-D-i irányú, és rengeteg inhomogenitást tartalmaz (rajzolhatatlanok). A déli oldal sokkal kiterjedtebb, és rögösebb. A két spirálkar a küllő északi végéből nyugarta, illetve a déliből keletre kanyarodik ki, a nyugatiban rögök is láthatók, ezzel szemben a keleti homogén megjelenésű. A galaxis északi peremén látható csillag fényessége 13,7 magnitúdó. A galaxis mérete 6×4ˊ.

NGC2903-Szel_Kristof.jpg

Szél Kristóf észlelése

Észlelés helye: Mezőkeresztes

Észlelés időpontja: 2014-03-21 21:34:00 (UT)

Észlelés vége: 22:01 (UT)

Objektum neve: NGC2903

Objektumtípus: Galaxis;

Műszer típusa: 150/1200 Sky-Watcher newton

Műszer átmérő (mm): 150

Műszer fókusz (mm): 1200

Fókusznyújtás: –

Eredő fókusz (mm): 1200

Okulár típusa: Planetary

Okulár fókusza (mm): 6

Nagyítás: 200

Nyugodtság: 6

Átlátszóság: 5

Látómező (ívperc): 18

Leírás: Gyönyörű galaxis! Nagyon parádés látványt nyújt már az én távcsövemben is. Spirálkarjai markánsak. Rövid szemszoktatás után minkét spirálkar és a galaxis magját átszelő küllő foltosnak mutatta magát. A látvány teljesen egyértelmű. Mérete 5X3′.

Mielőtt nekiálltam a fotózásnak, én is megcsodáltam az okuláron keresztül. A csillagkörnyezet mintázata is annyira megragadott, hogy a kamerát is úgy állítottam be, hogy ez valahogy a képemen is megjelenhessen. Természetesen más hatást kelt egy kör alakú látómezőben a látvány, mint a kamerám szögletes keretében.

Viszonylag fényes galaxisról van szó, azonban nemcsak az optikai tartományban ragyog. Szinte „üvölt” a rádiótartományban, de az infravörös, az ultraibolya és röntgen tartományban is tekintélyes mennyiségű sugárzást bocsájt ki. Hamarosan látni fogjuk, hogy a különböző hullámhosszakon végzet megfigyelések, hogyan tárták fel az NGC2903 újabb, és újabb titkát.

A Hubble Űrtávcső 2000 galaxist magában foglaló felmérése, a Cosmic Evolution Survey (COSMOS) eredményei szerint a múltban kisebb volt a küllős galaxisok aránya a spirális galaxisok között. A mai univerzumban a spirál galaxisok körülbelül 65% rendelkezik küllős szerkezettel, míg a múltban ez az arány, mindössze 20% volt. 7 milliárd év alatt megháromszorozódott a számuk. Az is kiderült, hogy a galaxis tömege is fontos szerepet játszik abban, hogy mikor válik egy spirális galaxis küllőssé, vagyis mikor éri el a fejlettség/érettség eme szintjét. A nagytömegűek gyorsan legyártják csillagaikat, miközben felélik intersztelláris gázkészletük jelentős részét. A rövidéletű forró kék csillagok kihalásával, az újabb populációk utánpótlásának hiányában, vörös korongokká válnak az űrben. A kisebb tömegű galaxisok azonban nem fejlődnek olyan gyorsan. Náluk később alakul ki a küllős struktúra. A csillagászok ma úgy vélik, hogy a küllős szerkezet létrejötte a spirál galaxisok fejlődésének egyik állomása.

A masszív és hatalmas küllő gravitációs hatásának köszönhetően a gáz összegyűlik és összenyomódik az NGC2903 bizonyos pontjain, így indukálva intenzív csillagkeletkezést. A küllő mentén, és környékén aktív csillagkeletkezés zajlik. Még az én, viszonylag kis távcsővel készült felvételemen is láthatóak aktív csillagkeletkezési régiók, illetve fiatal fényes csillaghalmazok a karokban és a küllő közelében. Igaz, csak apró pöttyök, vagy elmosódott apró foltok gyanánt. Van azonban még ezeknél is sokkal aktívabb terület a galaxison belül. A saját felvételemen azonban ez már messze nem kivehető.

NGC2903hst.jpg

Aktív csillagkeletkezési régiók az NGC2903-ban a Hubble űrtávcső felvételén. – A kép forrás: ESA/NASA/William Sparks (Space Telescope Science Institute)

A küllő a mag irányába is nagy mennyiségű gázt és port juttat el, így ott számtalan fényes csillag ragyogott fel az elmúlt pár millió évben. A közeli infravörös tartományban elvégzett vizsgálatok tanulsága szerint, a heves csillagkeletkezés a magot körbevevő 2000 fényév átmérőjű gyűrűben éri el a csúcsát. Ez a struktúra egyáltalán nem egyedi, és nemcsak az NGC2903-ra jellemző. A küllős spirál galaxisok számottevő része rendelkezik mag körüli gyűrűvel (nuclear ring), melyben aktív csillagkeletkezés zajlik.

A Hubble űrtávcső közeli infravörös tartományban készült felvételén jól látszik a mag körüli gyűrű. A fényes fehér csomók a fiatal csillaghalmazok. A vöröses területek az ionizált hidrogént tartalmazó (HII) területek.  – A kép forrás: ESA/NASA/William Sparks (Space Telescope Science Institute)

Az NGC2903 esetében a gyűrűben található fiatal csillagok jelentős része egy viszonylag rövid, 4-7 millió éves időintervallumban született. Szinte robbanásszerű volt a folyamat. Koruk mindössze 6.5-9.5 millió év. Ezen  fiatal csillagok populációja a mag körüli 2000 fényéves régió tömegének számottevő, 7-12 %-os részét teszi ki. A csillagok hatalmas halmazokat alkotnak, melyek tömege több tízezer naptömeg. A mag körüli gyűrű fontos építőkövei a nagyszámban előforduló fényes HII régiók (ionizált hidrogént tartalmazó csillagközi gázfelhők), melyekben valószínűleg hamarosan újabb csillaggenerációk születnek majd. Ezeket a környező fényes, fiatal, kék csillagok által kibocsátott nagyenergiájú fotonok gerjesztik, ionizálják. A HII területek luminozitása összemérhető a Nagy Magellán-felhőben található Tarantula-köd 30 Dorado körüli tartományaival.

Tarantula-hst-2012-01-a-xlarge_web.jpg

Az NGC2309 centruma körüli gyűrűben található HII régiók fényessége összemérhető a Nagy Magellán-felhőben található Tarantula-ködével. Valahogy ekképpen festhetnek az NGC2903 mag körüli gyűrűjének csillabölcsői is. – A kép forrása: NASA, ESA, D. Lennon and E. Sabbi (ESA/STScI), J. Anderson, S. E. de Mink, R. van der Marel, T. Sohn, and N. Walborn (STScI), N. Bastian (Excellence Cluster, Munich), L. Bedin (INAF, Padua), E. Bressert (ESO), P. Crowther (University of Sheffield), A. de Koter (University of Amsterdam), C. Evans (UKATC/STFC, Edinburgh), A. Herrero (IAC, Tenerife), N. Langer (AifA, Bonn), I. Platais (JHU), and H. Sana (University of Amsterdam)

Mégis mekkora ütemben gyártja a csillagokat ez a galaxis? A válasz nagyban függ attól, hogy milyen módszereket, illetve összefüggéseket (modelleket) használtak fel a csillagászok kutatásaik során. A csillagkeletkezési ütem egyrészt meghatározható a HII területek luminozitásából. Ebben az esetben 2.2 naptömeg/év értéket kaptak a kutatók az egész galaxisra. Összehasonlításként a Tejútrendszerben nagyjából 1 naptömeg/év ez az érték. Másrészt a távoli infravörös luminozitás (LFIR) és a csillagkeletkezési ráta is összefügg, ez alapján 5.7 naptömeg/év lett az eredmény. Ennek a másodikként említett vizsgálatnak egyik érdekes részeredménye, hogy egyedül a mag körüli régió 2.6 naptömeg/évet képvisel. Ez igen kiugró érték, ha a gyűrű 2000 fényéves átmérőjének és a galaxis 80000 fényéves átmérőjének arányait nézzük. Végül a galaxis röntgen tartománybeli luminozitásából is meghatározható az ütem nagysága, így 1.4-2 naptömeg/évet kaptak eredményül. Bár a három különböző módszert alkalmazva végül más-más értéket kaptak a csillagászok, az látszik, hogy az NGC2309-ban a csillagkeletkezés üteme túlszárnyalja a Tejútrendszerünkét. A mag környéke pedig a galaxis egészéhez viszonyítva kiemelkedően aktív ebből a szempontból.

A heves csillagkeletkezés a röntgen tartományban is otthagyta nyomát a galaxison. Az NGC2903-at forró gázokból álló, úgynevezett röntgen haló (X-ray halo) veszi körül, mely tipikus jellemzője a magjukban heves csillakeletkezést produkáló galaxisoknak. De hogyan jönnek létre ezek a több kpc méretű kiáramlások?

Az egyik mozgatórúgó az intenzív csillagkeletkezésben születő fényes, forró és nagytömegű csillagok erős csillagszele, mely hatalmas intenzitással fújja ki az anyagot a csillag környezetéből. A másik hatás éppen az ilyen nagytömegű és éppen ezért gyorsan fejlődő csillagok tragikus halálát követő szupernóvák fellángolásának köszönhető. Ezek a hatalmas erejű robbanások szintén hozzájárulnak az anyag kilökődéséhez, továbbá fel is hevítik a csillagközi anyagot. A gáz hőmérséklete eléri a 107–108 K-t, így sugározni kezd a röntgen tartományban. A kiáramlás iránya jellemzően merőleges a korongra, sebessége pedig az 1000 Km/s nagyságrendbe esik. Az NGC2903-hoz hasonló, azonban élével felénk forduló galaxisok megfigyeléséből tudják a csillagászok, hogy ezek a kiáramlások bipoláris szerkezetűek. Az NGC2903 esetében azonban csak az egyik oldalon sikerült megfigyelni ilyen struktúrát. A probléma azonban csak látszólagos, ugyanis az NGC2903-at nem az éléről látjuk. A velünk ellentétes oldalon keletkező sugárzásnak a teljes galaxis korongon kellene keresztülutaznia, hogy hozzánk eljusson. Ahogy a gáz távolodik a csillagváros síkjától, lehűl, így a röntgensugárzás is lágyabbá válik. Ezt pedig a galaxis korongja blokkolja.

Van azonban más is, ami az optikai tartományban készült felvételeken rejtve marad. A csillagászokat nagy meglepetés érte, amikor a 21 cm-es hullámhosszon rádiótávcsővel feltérképezték az NGC2903 HI régióit, vagyis a főleg atomos hidrogént tartalmazó gázfelhőit.

Korábbi cikkemből rövid emlékeztetőül:

A HI régiók olyan intersztelláris felhők, melyeket javarészt atomos hidrogén alkot (a területek ionizációs foka jellemzően igen alacsony: 1:10000) némi héliummal, és a héliumnál nehezebb elemekkel szennyezve. A HI területek 21 cm-es rádió tartományban sugároznak, a hidrogén hiperfinom szerkezetében nagyon kis spontán valószínűséggel (A=2.88×10−15 s−1 ≈ 1/107 év) végbemenő átmenetnek köszönhetően. Mivel ez a jelenség roppant kisvalószínűséggel következik csak be, így jelentős mennyiségű atomos hidrogéngáznak kell jelen lennie ahhoz, hogy ezen a hullámhosszon a csillagászok megfigyelhessék sugárzásukat, és így felmérés készülhessen a HI régiókról.

Judith A. Irwin és kollégái az Arecibo rádiótávcsővel végzett megfigyelésekből kiderítették, hogy az NGC2903 az optikai tartományban megfigyelhető méreteinél háromszor nagyobb kiterjedésű atomos hidrogénfelhőbe burkolódzik. Ez a felhő elnyúlik egészen az UGC5086 (PGC 027115) kísérő galaxisig. A 16.3 magnitúdós UGC5086 halvány, szinte tökéletesen kör alakú foltja az én felvételemen is látható, az NGC2903 közelében. Az UGC5086 törpe galaxis a megfigyelések alapján nem tartalmaz detektálható mennyiségű atomos hidrogént. Ennek a legvalószínűbb oka az, hogy túl közel van az NGC2903-hoz.

NGC2903-HI-map-cut.PNG

Az NGC2903 rádiótérképe a 21 cm-es hullámhosszon. Látható, hogy a galaxis optikai méretét nagyjából háromszorosan meghaladó hatalmas atomos hidrogénfelhő veszi körül. A csillag az UGC5086 kísérő galaxist jelöli. A jobb felső sarokban az N2903-HI-1 rádiókontúrja fedezhető fel, mely az NGC2903 halójával ütközve folyamatosan veszít a gázkészleteiből. – A kép forrása: Judith A. Irwin és mások: ΛCDM SATELLITES AND H I COMPANIONS – THE ARECIBO ALFA SURVEY OF NGC 2903

A Lokális Csoportban található törpe galaxisok vizsgálata során a csillagászok észrevettek egy érdekes összefüggést. Amennyiben egy törpe galaxis bizonyos távolságnál közelebb van egy nagyobb galaxishoz, akkor nem tartalmaz gázt, és nem folyik benne csillagkeletkezés. Míg ezen a távolságon túl egyértelműen detektálhatóak bennük HI régiók. A „vízválasztó távolság” nagyjából 270 kpc a Tejútrendszerünkhöz hasonló galaxisok esetén. Ez a szabályszerűség nemcsak saját galaxisunk körül figyelhető meg a Lokális Csoportban, de az M31 esetén is. A pontosság kedvéért meg kell jegyeznem, hogy bár a legtöbb törpe galaxisra igaz ez, de természetesen pár renitens mindig akad. A tapasztalt jelenség oka pedig az, hogy a nagy spirál galaxisok kiterjedt halóval rendelkeznek, mely gázt is tartalmaz. Ha egy törpe galaxis megfelelő közelségbe kerül, akkor beleütközik ebbe a gázba, és a fellépő torlónyomásnak köszönhetően elveszíti a csillagközi anyagát (Ram Pressure Stripping). Hasonlóan ahhoz, ahogy a menetszél kerékpározás közben lefújja az ember fejéről a sapkát. Az NGC2903 HI környezetének megfigyelése közben a Lokális Csoporton kívül is sikerült tetten érni ezt a jelenséget. Judith A. Irwin és csapata talált egy új HI régiót az NGC2903-on kívül, mely a kutatóktól a N2903-HI-1 jelölést kapta. Később az optikai tartományban ezt a rádióforrást az SDSS J093039.96+214324.7 törpe galaxissal azonosítottak, melyről megállapították, hogy ez is az NGC2903 egyik kísérő galaxisa.  A N2903-HI-1 külön érdekessége, hogy üstökös szerű struktúrát mutat a 21 cm-es hullámhosszon, vagyis éppen azt figyelhetjük meg, ahogy az NGC2903 halójával ütközik. A torlónyomás „kifújja” a gázt a kis galaxisból. Miközben az NGC2903 újabb csillagpopulációkhoz gyűjt készleteket, a csillagközi anyagától megfosztott törpe galaxisokban leáll a csillagok keletkezése. Igen valószínű, hogy ez a sors vár az SDSS J093039.96+214324.7 galaxisra is.

NGC2903-LRGB-20150309-2026-sx-480s-TTK-label.JPG

Az NGC2309 felvételemen is látható kísérő törpe galaxisai. Felső jelölés: UGC5086 (PGC 027115). Alsó jelölés: SDSS J093039.96+214324.7

Herschel hitt abban, hogy az általa ködöknek nevezett objektumok (a planetáris ködöket leszámítva) csillagokra bonthatóak. Mindez csak a távcső teljesítőképességének a kérdése. Nos, ha a ködjei esetében nem is lett teljesen igaza, az kétségtelen, hogy a mai műszerekkel képesek vagyunk sokkal „mélyebben” belelátni a kozmoszba, és mindezt az elektromágneses sugárzás különböző tartományában. A csillagászok az elmúlt több mint 200 évben messzire jutottak attól az éjszakától, amikor is Herschel felfedezte az NGC2903-at. A motiváció azonban mit sem változott ez idő alatt: megismerni, megérteni a környező világot. Végtére is ebben élünk.

Felhasznált irodalom:

Wolfgang Steinicke: The M51 Mystery: Lord Rosse, Robinson, South and The Discovery of spiral Structure in 1845

Alonso-Herrero, S. D. Ryder, J. H. Knapen: Nuclear star formation in the hotspot galaxy NGC 2903

Tschöke, G. Hensler, N. Junkes: An X-ray halo in the „hot-spot” galaxy NGC 2903

A. Irwin, G. L. Hoffman, K. Spekkens, M. P. Haynes, R. Giovanelli, S. M. Linder, B. Catinella, E. Momjian, B. S. Koribalski, J. Davies, E. Brinks, W. J. G. de Blok, M. E. Putman, W. van Driel: LCDM Satellites and HI Companions – The Arecibo ALFA Survey of NGC 2903

Jana Grcevich, Mary E Putman: HI in Local Group Dwarf Galaxies and Stripping by the Galactic Halo

 

Köszönöm Sánta Gábornak Messier üstökös megfigyeléseivel kapcsolatos lektori munkáját.

 

IC443

IC443-20150220-2001-TTK.JPG

IC443

2015-01-13 – Göd – 14 x 600 sec L

2015-02-20 – Szilváskő – 10 x 600 sec L

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

SXVR-H18 CCD kamera

(A keleti irány felül, az északi jobbra van)

Az η Geminorum (a roppant fényes csillag a képen) az Ikrek csillagkép egyik félszabályos változócsillaga, mely fényességét nagyjából 233 napos periódussal változtatja 3.15 és 3.9 magnitúdó között a katalógusok szerint. A 350 fényéves távolságban lévő M3 spektroszkópiai típusú vörös óriás csillag többszörös rendszer tagja. A fő komponens sugara körülbelül 130-szorosa a Napunkénak, így ha azt központi égitestünk helyébe képzeljük, felszíne elérne egészen a Vénusz pályájáig. Tömege három naptömeg, így a vörös óriás fázis előtt valószínűleg B színképtípusú forró csillag lehetett.  Pillanatnyilag a Hertzsprung-Russel diagramon a korai aszimptotikus óriás ágon helyezkedik el, és talán éppen úton van afelé, hogy Mira típusú pulzáló változócsillaggá váljon. Az η Gem egyszerre vizuális és spektroszkópiai kettőscsillag is. A távolabbi, vizuálisan is megfigyelhető tagtól 1.6˝ távolság választja el az égen. Igazán szép feladat a 6 magnitúdós társ megfigyelése, mely több mint 700 éves keringési periódussal rója útját az η Gem körül. A másik tag létezésére két jel utal. Egyfelől a főkomponens spektrumára rárakódik, a valószínűleg B típusú, második tag színképe. Vagyis valójában nem egy, hanem két csillag spektrumát látjuk. Éppen ezért használják ezekre a kettős rendszerekre a spektroszkópiai kettőscsillag kifejezést. Másfelől az η Gem fénygörbéje az, ami árulkodik. A kisebb távolságra lévő társ pályája ugyanis pont úgy helyezkedik el, hogy 8 évente (kb. 2984 naponta) fedési jelenség következik be, és ilyenkor az η Gem fényessége lecsökken. Vagy azért, mert a másod komponens fedésbe kerül, vagy azért, mert az kitakarja a főkomponens felszínének egy részét. Az η Gem már önmaga is izgalmas célpont, de talán még érdekesebb az a kozmikus csoda, ami (látszólagosan) a közelében rejtőzik: a Medúza-ködként is ismert szupernóva-maradvány, vagy másként az IC443.

IC443-Gemini

Az IC443 szupernóva-maradvány az Ikrek csillagképben, az η Gem szomszédságában található.

Az IC443 távolsága nem ismert pontosan, a különböző módszerekkel kapott eredmények széles tartományban szórnak. A publikációkban 3000 és 30000 fényév közötti értékek lelhetőek fel. A halovány Medúza-köd látszólagos mérete 50°, mely közel kétszerese a Holdénak. A valóságban a világűr 70 fényéves szeletét tölti ki.

Az IC443 létrejötte gigászi tűzijátékkal kezdődött, miután a Napnál jóval nagyobb tömegű csillag elfogyasztotta „az üzemanyagkészletét”. Bár élete folyamán sikeresen dacolt a gravitációval, egészen azóta, hogy egy csillagközi felhőben megszületett, és beindult magjában a hidrogén fúziója, a sors őt is utolérte. A hidrogén készletek felélése után, ahogy ez az ilyen nagytömegű csillagokra jellemző, az egyre nehezebb elemek fúziója következett. A hidrogén fúzióját a hélium követte, és szépen így tovább egészen a vasig. Ennél nehezebb elemek már nem jöhetnek létre magfúzióban. Így a sugárnyomás, ami révén eddig ellenállt a saját gravitációjának, nem védte meg többé az összeomlástól. Az összeroskadás hihetetlen ütembe felgyorsult. Egy pillanattal később vakító ragyogás töltötte be az űrt az elektromágneses spektrum minden tartományában, ahogy a gigászi energiákat felszabadító szupernóva robbanás bekövetkezett. A csillag anyagának jelentős része szétszóródik, miközben a korábbi energiatermelő folyamataiban született elemeket juttat a környezetébe. Olyanokat, melyek nélkül nem létezhetne élet, de eme kis kékes színű kőzetbolygó, a Föld sem. Maga a szupernóva-robbanás olyan extrém magas hőmérséklettel és nyomással járó körülményeket hozott létre, hogy az úgynevezett neutronbefogásos folyamatokban a vasnál nehezebb elemek is létrejöttek, s melyek egy része szintén szétterült az űrben. Régebbi elképzelések szerint az ilyen kataklizmák voltak azok, melyek beszennyezték a kozmoszt a vasnál nehezebb elemekkel. Azonban manapság már más a csillagászok álláspontja.  Az újabb elméleti megfontolások a neutroncsillagokat tekintik ezek egyik fő forrásnak. Ami még ennél is fontosabb, a megfigyelések is ezt támasztják alá. (A neutroncsillagokról később még szó lesz.)

Az ember ösztönösen azt gondolná, hogy a robbanás jellemzően gömbszimmetrikus. A NuSTAR-ral (Nuclear Spectroscopic Telescope Array) folytatott vizsgálatokban a kutatók feltérképezték a radioaktív anyagok eloszlását a Cassiopeia A szupernóva maradványban. Az eredmények azt mutatták, hogy egy szupernóva robbanás egyáltalán nem szimmetrikus módon történik. A csillag a robbanás előtt „lötyögni kezd”.

Egy szupernóva robbanás szimulációja. A csillag „lötyögni kezd” a robbanás előtt. (A számláló felül milliszekundumban számol!)

Akik többet szeretnének tudni a szupernóvákról, azoknak Vinkó József: Rejtélyes csillagrobbanások cikkét ajánlom indulásként. Illetve a szupernóvákról szóló egyik előadását, melyet az MCSE 2013-as változócsillag észlelők találkozóján tartott.

Valószínűsíthető, hogy maga az IC443 szülőcsillaga által elszenvedett explózió sem volt pontosan szimmetrikus. Azt azonban, hogy ma milyennek látjuk, más folyamatok is alakították, de erről majd egy kicsit később.

Az IC443 szülőcsillaga által produkált robbanás után egy neutroncsillag maradt hátra. Bár a mai napig rengeteg a bizonytalanság ezen objektumok elméletét illetően, pár dolog azért elég biztosnak látszik. Mivel halott csillagról van szó, így a gravitációnak nem a sugárnyomás, hanem a degenerált „neutrongáz” nyomása tart ellen. Nagyjából 2.16 naptömegig tudja megakadályozni az égitest összeroppanását, amennyiben nem forgó neutroncsillagról van szó. Mivel forognak, ezért ennél kb. 20%-kal nagyobb lehet tömegük felső határa. E tömeg felett a mag összeomlik, és fekete lyuk jön létre. A tömegük alsó határa az úgynevezett Chandrasekhar határ, mely egyben a fehér törpék lehetséges legnagyobb tömege, vagyis 1.4 naptömeg. Külön érdekesség, hogy eddig még nem találtak 2 naptömegnél nagyobb tömegű neutroncsillagot, illetve 5 naptömegnél kisebb tömegű fekete lyukat. Vajon mi ennek az oka? Pontosan ma sem tudja senki. A kutatók azonban lázasan dolgoznak azon, hogy fogást találjanak a problémán, és ezt az űrt mindenféle elképzelt egzotikus objektummal töltötték ki. Ilyen például a kvark csillagok gondolata. Teóriáik megerősítése azonban egyelőre még várat magára.

A neutroncsillagok mérete 10 Km és 20 Km körüli. Az átlagsűrűségük az előző adatok tükrében óriási, 4 x 1017 Kg/m3 és 6 x 1017 Kg/m3 között van. Szerkezetük réteges és roppant különös. Külső kérgük nagyságrendileg 1 Km vastag, és fémes, szilárd szerkezetre emlékeztető tulajdonságai vannak. Ez alatt szupravezető és szuperfolyékony (nincs ellenállása a mozgással szemben), többségében neutronokból álló anyag található. Az atommagoknál is sűrűbb magban még ennél is furcsább lehet a helyzet. Erre vonatkozóan azonban még az elméleti szakemberek körében is csak találgatások vannak. Bizonyos elképzelések szerint, az anyag itt már kvarkos állapotú.

A IC433 neutroncsillagára három diák (Nik Williams, Chuck Olbert, Chris Clearfield) akadt rá. Feldolgozva a Chandra röntgen műhold által készített felvételeket, egy pontszerű röntgenforrást azonosítottak beágyazódva az IC443-ba. Az objektum a CXOU J061705.3+222127 elnevezést kapta. A pontszerű forrást üstökösre emlékeztető képződmény veszi körül.

High School Students Discover Neutron Star Using Chandra and VLA

Az IC443 neutroncsillaga a Chnadra felvételén – Forrás: NASA/NCSSM/C.Olbert

A diákok a Chandra eredményeit kombinálták a National Science Foundation VLA (Very Large Array) rádiótávcső rendszerével történt megfigyelésekkel. Az eredményeiket pedig 2001-ben publikálták: C.M. Olbert, C.R. Clearfield, N.E. Williams, J.W. Keohane, D.A. Frail – A Bow Shock Nebula Around a Compact X-Ray Source in the Supernova Remnant IC443.

Kiderítették, hogy a fenti képen is látható pontszerű röntgensugárzás forrása termális eredetű, és magához a neutroncsillaghoz köthető. De miként jön létre „a csóva”?

Az impulzus megmaradás törvényének értelmében a csillag forgása felgyorsul az összeroppanáskor. Innen származik a neutroncsillagok eszeveszett pörgése. Megmarad azonban a mágneses fluxus is. A mágneses tér így a csillag sugarának négyzetének inverzével arányosan fog erősödni. Így lehetséges az, hogy a 10-20 Km méretű neutroncsillagok mágneses tere akár 108 Tesla is lehet. Összehasonlításképpen ez a Föld esetén 10-5 Tesla, míg a Nap esetén kb. 10-2 Tesla. Gondoljunk csak bele, hogy a másodpercenként húszszor, harmincszor, vagy akár ezerszer is körbeforduló roppant erős mágneses tér micsoda elektromos teret tud létrehozni. A Földön található részecskegyorsítókat üzemeltető kutatók biztosan irigykednek erre a kozmikus laboratóriumra. A neutroncsillag hatalmas sebességre gyorsítja a töltött részecskéket. Az erővonalak körül mozgó nagysebességű elektronok pedig úgynevezett szinkrotron sugárzást bocsájtanak ki, mely energiával táplálja a ködöt és a fényét biztosítja. Különös alakját pedig annak köszönheti, hogy a neutroncsillag, a diákok tanulmánya szerint, 250±50 km/s sebességgel száguld keresztül az őt körülvevő gázon. A CXOU J061705.3+222127 a ködben érvényes szuperszonikus sebességgel mozog, ezért a szinkrotron sugárzása „megáll” az általa keltett lökéshullámban, míg mögötte csóvaként „lemarad”, megrajzolva a neutroncsillag útvonalát.

Miután a diákok meghatározták azt a sebességet, mellyel a neutroncsillag a robbanás központjától távolodik, az IC443 távolságának ismeretében arra a következtetésre jutottak, hogy a szupernóva fénye, valamikor 30000 évvel ezelőtt érhette el a Földet.

A megjelent tanulmány után mások tovább folytatták a vizsgálatokat az IC443 neutroncsillaga és környezete ügyében. Tovább boncolgatták a már a 2001-es publikációban is felvetett kérdéseket.

The Case of the Neutron Star With a Wayward Wake

IC443 különböző elektromágneses tartományokban felvett kompozit képe. A felvételen jól látható az üstökös csóvájára emlékeztető képződmény. – Röntgen: Chandra (NASA/CXC/B.Gaensler) és ROSAT (NASA/ROSAT/Asaoka és Aschenbach), Rádió: NRC/DRAO (D.Leahy) és NRAO/VLA, Látható fény (vörös): DSS (Digital Sky Survey) – Forrás: Chandra X-Ray Center (2006)

A CXOU J061705.3+222127 majdnem éppen a külső peremén helyezkedik el a táguló gázbuboréknak. Az igen valószínű, hogy a neutroncsillag és az IC443 kapcsolatban állnak, ugyanis a koruk hasonló nagyságrendbe esik. Ezt támasztja alá a neutroncsillag felszíni hőmérsékletének, és magának a ködnek a vizsgálata is. Vannak más ismert neutroncsillagok is, melyek nem a szupernóva-maradványaik középpontjában helyezkednek el, időközben elvándoroltak onnan.

A hosszú csóvaszerű képződményt is még alaposabb vizsgálatnak vetették alá. Kiderült, hogy az majdnem merőlegesen helyezkedik el arra az egyenesre nézve, mely a neutroncsillagot és az IC443 középpontját köti össze.

Mi lehet ezeknek a furcsaságoknak a magyarázata? Elképzelhető, hogy a progenitor eleve nagy sebességgel mozgott már a szupernóvává válás előtt, így a robbanás helye nem esik egybe a megfigyelhető központtal. Szintén lehetséges, hogy a ködben gyorsan mozgó gázok egyszerűen kibillentették a neutroncsillag nyomvonalát az eredeti helyzetéből. Az igazat megvallva ezek nem többek, mint spekulációk. A pontos és megnyugtató válaszokhoz bizonyosan további, többéves megfigyeléseken keresztül vezet majd az út.

Az IC443 felépítése két táguló héjjal modellezhető (two-shells model). Az objektumot főként molekuláris felhők veszik körül, melybe mintegy belerohan a szupernóva táguló maradványa, lökéshullámot keltve. Az így felgyülemlett energia sugárzássá alakul. Ez a sugárzás gerjeszti, ionizálja a köd anyagát, mely így világítani kezd.

IC443-X-ray-shells-07-s

Az IC443 modellje (Forrás: E. Troja, F. Bocchino, F. Reale: XMM-Newton observations of the supernova remnant ic443: i. soft x-ray emission from shocked interstellar medium)

A délkeleti részen kimondottan sűrű, csomós molekula felhő található. Ez az IC443 ottani szerkezetén is nagyszerűen visszatükröződik. Északkeleten, ahol az optikai tartományban a legfényesebb az objektum, a lökéshullám főként atomos hidrogént tartalmazó területre tör be éppen. Ennek, a molekuláris felhőknél kisebb sűrűségű régiónak és a táguló lökéshullámnak a kölcsönhatása felelős azért, hogy az IC443 gyönyörű szálas szerkezetű ezen a frontvonalon. A nyugati oldalán a köd sokkal simább, és kevesebb részlet figyelhető meg benne. Itt az IC443-at körülvevő anyag is sokkal homogénebb, így kevesebb a markáns struktúra az optikai tartományban.

Csak remélni merem, hogy a fenti rövid ismertetőből megtudhatta az olvasó, hogy a természet milyen eszközökkel festette az égboltra a medúzát, és talán egyetért egyik első kijelentésemmel: a Medúza-köd tényleg egy kozmikus csoda.

M97

M97-M108-20141224-0046-TTK

M97 és M108

2014-12-24 – Göd – 30 x 300 sec L

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

SXVR-H18 CCD kamera

M97-M108-LRGB-20150212-2124-TTK

M97 és M108

2014-12-24 – Göd – 30 x 300 sec L

2015-02-12 – Göd – 10 x 300 sec R, 10 x 300 sec G, 10 x 300 sec B

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

SXVR-H18 CCD kamera

Charles Messier katalógusa összesen négy planetáris ködöt tartalmaz, melyből az M97 az egyik. Csak szupernóva maradványból van kevesebb, melyet a Rák-köd (M1) egyedül képvisel. Az M97 felfedezője azonban nem maga Messier, hanem barátja, és egyben asszisztense: Pierre Méchain.

William Parsons, ismertebb nevén Lord Rosse az 1840-es években készített megfigyelést erről a planetáris ködről. Az általa készített rajzon az objektum egy bagoly fejére emlékeztetett. Bár egy soha többé nem észlelt, mások által meg nem erősített csillag is szerepel a rajzon (az egyik szem), az M97-en rajta ragadt a Bagoly-köd elnevezés. Olyannyira, hogy szakcsillagászok tudományos publikációkban még manapság is használják azt néha.

M97_Lord_Rosse

Lord Rosse rajza az M97-ről.

Az M97 a Nagy Medve (Ursa Major) csillagkép Marek (β UMa) nevű csillagától alig több mint 2° távolságra van. A távcsőbe pillantva több fényesebb csillag kalauzol minket egészen a 9.9 magnitúdós és 3ˊ átmérőjű planetáris ködig. Az odavezető úton szembetalálkozunk a majdnem az élével felénk forduló M108-as küllős spirál galaxissal, amely keleti-nyugati irányba megnyúlt 8.6ˊ hosszúságú „fényszivarként” dereng a távcsőben.

M97-map3

A Nagy Medve csillagkép 7 fényes csillaga alkotja a Göncölszekeret. A szekér „alatt” akadhatunk rá az M97-re.

M97-map4

A Marek-től (β UMa) alig több mint 2° távolságra található az M97, közelében pedig ott az M108.

A két Messier objektum gyönyörű párost alkot egy látómezőben. Miközben szemléljük a látványt, érdemes azon eltöprengeni, hogy valójában milyen hatalmas távolság választja el egymástól a planetáris ködöt, és a galaxist. Míg az M97 körülbelül 2600 fényévre van tőlünk (távolsága igen pontatlanul ismert), addig az M108 45 millió fényévre. A felvételen vannak ennél is nagyobb messzeségben lévő egzotikus objektumok. Amennyiben az olvasó még távolabbra szeretne utazni a térben is időben, akkor javaslom, olvassa el az M108-ról írt korábbi bejegyzésem „Kvazárok és távoli aktív galaxis magok” alcímet viselő részét.

De hogyan is jönnek létre a planetáris ködök? Miután a 0.8 és 8 naptömeg közötti csillagok magjukban felhasználták hidrogén készleteiket, felfúvódnak, és vörös óriás csillagokká válnak. Beindul a hélium fúziója, miközben a külső héjakba tevődik át a hidrogén fúzió. A csillag tehát eljut az AGB fázisba (asymptotic giant branch – aszimptotikus óriás ág a Hertzsprung–Russell diagramon). Ebben a fázisban a csillagok instabilak, és jellemző rájuk a helium flash nevű jelenség. Mire ez bekövetkezik, addigra a csillag magja javarészt már szénből és oxigénből áll. A héliumnál nehezebb elemek fúziója azonban már nem tud beindulni, mert ehhez nem elég nagy a tömegük, így a magjukban nem alakulnak ki az ehhez szükséges feltételek (nyomás, hőmérséklet). A belső, a termonukleáris fúzió szempontjából inaktív magot, egy hélium, azt pedig egy hidrogén héj veszik körbe. A fúzió javarészt a hidrogén héjban történik, miközben hélium jön létre, mely lefelé „szivárog” a hélium héj felé. Így ebben az alsó héjban a nyomás egyre nő. A hélium fúzió roppantmód nyomás és hőmérséklet érzékeny folyamat. Egyszer csak megteremtődnek a feltételek, és robbanásszerűen beindul a hélium fúziója. A kifelé irányuló erő kitágítja a hidrogén héjat, az kevésbé lesz sűrű, és leáll benne a hidrogén fúzió. Egy darabig még folyik a hélium héjban a fúzió, majd az is leáll. A hidrogén héj összehúzódik, elég sűrűvé válik, és kezdődik az egész ciklus elölről.

A helium flash jelenség többször is bekövetkezik, és minden egyes ilyen alkalommal megindul a viszonylag kis sebességű, de a magból a felszínre emelkedett szén és egyéb nehéz elemeknek köszönhetően porban gazdag, sűrű csillagszél. E nehezebb elemek alkotta por magával sodorja a felfúvódott csillag külső rétegeiből a gázt. Elsőre hihetetlennek hangzik, de ez a csillagszél elviheti a csillag tömegének 50-90%-át is. Miközben a csillag tömeget veszít, lassan teljesen leállnak a fúziós folyamatok, és fehér törpévé válik. Gyakorlatilag csak a lecsupaszított, szénben és oxigénben gazdag roppant forró mag marad hátra. Ennek felszíni hőmérséklete a 100000 K-t is meghaladhatja. A fehér törpévé válás folyamán a lassú és sűrű csillagszelet, gyors, de kis sűrűségű csillagszél váltja fel. Alapvetően a két különböző típusú anyagkiáramlás bonyolult kölcsönhatása és a központi csillag intenzív UV sugárzása az, mely meghatározza a planetáris köd felépítését, illetve láthatóvá teszi azt.

A planetáris ködök csillagászati időskálán mérve roppant gyorsan jönnek létre. Az AGB fázis végén ehhez elég mindössze néhány évszázad. Létezésük pedig alig pár tízezer év. Nukleáris fúzió hiányában a csillagszél megszűnik, miközben lassan a fehér törpe állapotba jut a csillag. Mire ez a folyamat teljesen befejeződik, a planetáris köd elenyészik az űr sötétjében, láthatatlanná válik.

Biztosan emlékszik még az olvasó, hogy azzal kezdtem, hogy Messier katalógus 110 objektumából mindössze 4 csak a planetáris köd. Valószínű, hogy ennek egyik oka éppen ezen objektumok rövid élettartama.

Nézzük, hogy a fenti általános ismertető után milyen jellemzőkkel is bír maga az M97. A központi csillag a megfigyelések szerint roppant forró, effektív hőmérséklete 123000 K. Jelenleg 0.7 naptömegű, azonban a külső burok ledobása előtt még 1.5-2 naptömegű lehetett. Érdekes azonban, hogy a köd tömegének meghatározásakor, mindössze csak 0.15 naptömeget kaptak eredményül a kutatók.

Az M97 látszólagos méretének és távolságának ismeretében (mint azt fentebb is írtam, ez utóbbi elég pontatlanul ismert), a planetáris köd átmérője 2-3 fényévnek adódik. Ezen eredményt és tágulási sebességét felhasználva, az úgynevezett dinamikus kora 6000 év körülinek mondható.

M97-M108-LRGB-20150212-2124-M97_cut-TTK

A planetáris ködök roppant változatos morfológiájúak. Foglalkozzunk most konkrétan csak az M97-tel, ahogy ezt több kutató is tette az elmúlt évtizedekben. Egy jó modell a planetáris köd morfológiáját és dinamikáját is leírja. Azonban előtte ezeket fel kell térképezni. Ezt a munkát végezte el Martin A. Guerrero, You-Hua Chu, Arturo Manchado, Karen B. Kwitter. Eredményeikről 2003-as publikációjukban számoltak be. Ismertették mérésük metodológiáját, és modelljüket, mely minden korábbinál jobban adta vissza a műszerekkel megfigyelhető tulajdonságait ennek a planetáris ködnek.

M97-morfologia

Az M97 felépítése – A külső héj (Outer Shell) körszimmetrikus. A köd belseje (Inner Shell) pedig ellipszoid (1:1.1 az elnyúltság) alakú régió. Ebbe a belső részbe két bipoláris üreg (Central Cavity) helyezkedik el. (Forrás: Martin A. Guerrero, You-Hua Chu, Arturo Manchado, Karen B. Kwitter – Physical Structure of Planetary Nebulae. I. The Owl Nebula)

A köd külső héja körszimmetrikus. Ezen belül foglal helyet az ellipszoid alakú belső terület, melyben két nagy bipoláris üreg található. Ezeknek az üregeknek a hossztengelye 30 fokos szöget zár be a látóirányunkkal. Az üreget, az AGB fázis végén, a nagymennyiségű anyag kidobását követő gyors csillagszél vájta ki. Megnézve a felvételemet, azon is látszik, hogy a bagoly egyik szeme sötétebb. Ez az üreg néz ugyanis nagyjából a mi látóirányunkba. A központi csillag gyors szele napjainkra már rég lecsendesedett, és megkezdődött a lassú feltöltődése az üregeknek.

2014 december 23/24. éjszaka

Az M97 érdekes planetáris köde a tavaszi égboltnak. Ilyenkor, napnyugta után, a Nagy Medve (Ursa Major) csillagkép már magasan a fejünk fölött tartózkodik, így kitűnő lehetőség nyílik a megfigyelésére. Én mégsem tavasszal láttam neki a felvételem elkészítésének, hanem egy decemberi éjszakán éjfél után.

Megnézve a meteorológiai előrejelzéseket, és a műholdas képeket, 2014. december 23/24. éjszakája végre igazán derültnek ígérkezett. Miután a gyermekek lefeküdtek, kipakoltam a kertbe a távcsövet. Erősen fújt a szél, és a felhőzet is csak lassan indult oszlásnak. Egészen éjfélig reménytelennek látszott a helyzet. Ekkor a felhők eltűntek, a szél azonban megmaradt. Addigra az előre kiválasztott objektum már kedvezőtlen helyzetbe került, így más célpont után kellett néznem. Ekkor eszembe jutott régi vágyam, hogy az M97-et és az M108-at együtt örökítsem meg. Aznap el is készült 30 Luminance szűrős felvétel, melyből végül összeraktam az első monokróm verziót.

A felvételt nem tekintem befejezettnek, folytatni szeretném majd. Talán éppen egy kellemes tavaszi éjszakán.

M56

M56-20140724-TTK

M56

2014-07-24 – Göd – 51 x 55 sec Light és 15 x 55 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera

„Csillagok nélküli köd, mely halvány.” Így írt az M56-ról Charles Messier. Valójában, az M4 kivételével a 29 általa katalogizált gömbhalmaza közül egyet sem tudott csillagokra bontani, mivel távcsöveinek teljesítménye messze elmaradt a mai műszerek mögött.

Az M56 a Lant csillagképben található, nagyjából félúton a Hattyú Albireo (β Cygni) és a Lant Sulafat (γ Lyrae) nevű csillagait összekötő egyenes mentén.

M56-map1-label

Az M56 az Albireo (β Cygni) és a Sulafat (γ Lyrae) nevű csillagokat összekötő egyenes mentén található.

Távcsövünkben állítsuk be a fényes Albireo-t (β Cygni), majd miután megcsodáltuk a megunhatatlan aranysárga és kék komponensekkel rendelkező kettőscsillagot, induljunk is tovább a Sulafat (γ Lyrae) irányába. Az M56 felé vezető úton először a 2 Cygni 4.95 magnitúdós csillag mellet haladunk el, majd a látómezőben feltűnik az 5.85 magnitúdós vöröses fényű HIP 94630 katalógusjelű csillag. Ettől egy kicsit vissza, az Albireo felé, alig félfoknyira található maga az M56.

M56-map2

Az M56-ra ráakadhatunk a HIP 94630 katalógusjelű csillagtól alig félfoknyira az Albireo irányába.

Az M56 látszólagos mérete az égen, az általam korábban fotózott gömbhalmazokhoz (M3, M13, M15, M92, NGC104 – 47 Tuc) képest viszonylag kicsi, mindössze 7ˊ 6˝. De nemcsak látszólagos méretben, fényességében is elmarad mögöttük. A halványabb Messier katalógusbeli gömbhalmazok közé tartozik, fényesség mindössze 8.3 (V) magnitúdó. Kicsiny felületi fényessége ellenére megigéző a látvány, ami az okuláron keresztül fogadja a megfigyelőt, ugyanis a Naprendszer és az M56 térbeli elhelyezkedésének köszönhetően, a Tejút megannyi csillaga mögött láthatjuk. A halmaz mindössze 4800 fényévvel helyezkedik el a galaxis síkja fölött, míg tőlünk mért távolsága 32900 fényév. Vagyis valamivel éppen a galaxis síkja fölött, és messzebbre helyezkedik el tőlünk, mint a Tejút centruma.

M56-Tejut-C

Az M56 tőlünk 32900 fényévnyi távolságra van. A galaxis fősíkjától 4800 fényévre, északra helyezkedik el. A galaxis centrumától mért távolsága 31500 fényév.

Ez a 84 fényév átmérőjű és 230000 naptömegű gömbhalmaz azonban sokkal különlegesebb, mint azt az okuláron keresztül megpillantva elsőre gondolnánk.

Pörgessük vissza az idő kerekét egészen az ősrobbanást követő első pár másodpercig. Ekkor vette kezdetét az úgynevezett ősi nukleonszintézis (primordial nucleosynthesis, Big Bang nucleosynthesis), melyben összeálltak a legkönnyebb atommagok. Ebben a folyamatban a hidrogén atommagjából kiindulva, mely tulajdonképpen egyetlen proton, a következő elemek atommagjai jöttek létre: deutérium (H-2 kis mennyiségben), hélium (főleg He-4 és kis mennyiségben He-3), és a lítium (Li-7 nagyon kis mennyiségben). Létrejött még két radioaktív izotóp atommagja is, vagyis a tríciumé (H-3) és berilliumé (Be-7), de ezek instabilak lévén héliummá (He-4) és lítiummá (Li-7) bomlottak el. Az egész folyamat az ősrobbanást követő 10 másodperc és 20 perc között történt a ma elfogadott modellek szerint. Innentől kezdve egészen az első csillagok megszületéséig állandó volt a világegyetem kémiai összetétele. A csillagok energiatermelését biztosító fúziós folyamatok azonban ezt megváltoztatták, illetve ezek hozták létre az előbb felsoroltaknál nehezebb elemeket egészen a vasig bezárólag. Az ennél nehezebb elemek szupernóva robbanások termékei. A haldokló csillagok csillagszelükkel, a nagytömegű csillagok a szupernóva robbanások révén pedig igen hatékonyan szennyezték be az univerzumot. A földi élet nélkülözhetetlen eleme, a szén is a csillagokban keletkezett. Az általunk belélegzett oxigén szintén. Az esküvők egyik elmaradhatatlan kelléke, a karikagyűrű aranya pedig szupernóva robbanás terméke.

A csillagászok minden elemet a hidrogénen és a héliumon túl a periódusos rendszerben fémnek neveznek. Egy csillag fémtartalmát általában a Naphoz szokták hasonlítani a kutatók. A világegyetem története folyamán, a csillagoknak hála folyamatosan dúsult fémekkel. Az újabb és újabb csillaggenerációk egyre több fémet tartalmaztak, így minél alacsonyabb fémtartalmú egy csillag a Naphoz képest, annál ősibb objektum.

A Tejútrendszer 150 ismert gömbhalmazzal rendelkezik, de a valódi szám 180 körül lehet. A gömbhalmazok igen ősi objektumok. A legfiatalabb is legalább 8-10 milliárd éves. A gömbhalmazok fémtartalom vizsgálata rámutatott egy érdekességre. A kutatók megállapították, hogy a gömbhalmazok kora sem teljesen egységes galaxisunkban, vagyis meghatározott korcsoportokról lehet beszélni. Bizonyos elképzelések szerint egyes halmazokat a Tejútrendszer bekebelezett azok szülő galaxisával együtt. Ebben a galaxisban máskor és másképpen történt a gömbhalmazok kialakulása, ez pedig magyarázhatja a koruk közötti eltérést.

Az M56 fémtartalma még a gömbhalmazok között is igen alacsonynak számít. Már ez is arra utal, hogy igen idős. De nem ez az egyetlen kézzelfogható bizonyíték a korát illetően.

A gömbhalmazok korát a HRD (Hertzsprung-Russel Diagram) alapján becsülik meg a csillagászok. A halmaz tagjai jó közelítéssel egyszerre keletkeztek. A nagyobb tömegű fényesebb és forróbb csillagok hamarabb elhasználják hidrogén készleteiket, és elhagyják a fősorozatot. Az idő előrehaladtával már csak a kisebb tömegű, és kevésbé fényes csillagok maradnak a fősorozaton. Minél idősebb egy halmaz, annál lejjebb tolódik az a pont (Turnoff point) a fősorozaton, ahol a csillagok „elkanyarodnak” az óriás ág felé. Felrajzolva a HRD-t egy adott halmazra, az előbb említett pontnak a meghatározásával, továbbá felhasználva a csillagfejlődési elméleteket, megbecsülhető a halmaz kora.

turnoff_point

Egy hipotetikus gömbhalmaz Hertzsprung-Russel diagramja. Rajta azzal a ponttal (turnoff point), ahol a csillagok „elkanyarodnak” az óriás ág felé.

Több kutató csoport is végzett kormeghatározási vizsgálatot az M56 esetében. Az egyes csapatok más-más eredményeket publikáltak, melyek alapján azt lehet mondani, hogy a gömbhalmaz kora 13 és 13.7 milliárd év közé tehető. Összehasonlításképpen a világegyetem korát 13.8 milliárd évre becslik a kozmológusok. Az M56 egy döbbenetesen öreg, a központja felé csak mérsékelten sűrűsödő, kis fémtartalmú gömbhalmaz. A közös csillagbölcsőben született csillagmatuzsálemek itt vannak viszonylag közel, így nem is kell nagyon messzire pillantanunk ahhoz, hogy következtetéseket vonjunk le az univerzum fejlődésével kapcsolatban. Egészen pontosan, a nagyon távoli, és éppen ezért fiatalnak látszó objektumok vizsgálata mellett, a közeli igen idős objektumok is rengeteg információt hordoznak a világegyetem fejlődésével kapcsolatban.

Ezzel azonban még nem merült ki az M56 érdekességeinek sora. A gömbhalmaz a galaxis centruma körül retrográd pályán mozog, vagyis keringési iránya ellentétes a galaxis korongjában található csillagok keringési irányával. Alaposan megvizsgálva pályájának tulajdonságait, a csillagászok arra a következtetésre jutottak, hogy az M56 nem is a Tejútrendszerben született. Csillagászati értelemben nem sokkal az ősrobbanás után, egy másik galaxisban sűrűsödött össze az a hatalmas méretű gázköd, melynek folyományként megszülettek csillagai. Később ez a galaxis kölcsönhatásba került a Tejútrendszerrel, és galaxisunk egyszerűen felfalta, magába olvasztotta.

Mi vett arra rá, hogy éppen az M56-ről készítsek felvételt 2014. július 23/24. éjszakáján, már jóval éjfélen túl? Az, hogy az M56 Messier katalógusának talán az egyik legöregebb objektuma, továbbá valószínűleg valaha egy másik galaxisban született, roppant izgalmassá tette számomra ezt a gömbhalmazt. Ezen túl nekem esztétikai élményt is jelentett az, ami a hivatásos csillagászoknak nehézséget okoz, miszerint az előtércsillagok sokaságától nem könnyű megkülönböztetni a halmaztagokat. Nekem azonban nem kellett megkülönböztetni, elég volt csak gyönyörködni a látványban.

Az M56 megragadott, így még 24 óra sem telt el, és az idei Meteor Távcsöves Találkozó (MTT2014) első estéjén, újra távcsővégre került. Mennyivel pompásabb volt Tarján ege alatt a látvány, mint az otthoni fényszennyezett égen! Távcsövemet, mintha kicserélték volna. Ilyenkor mindig elszomorít, hogy a fényszennyezés mennyi élménytől fosztja meg az égbolt csodái iránt érdeklődő embert. Ebbe pedig nem szabad beletörődni. Igenis tenni kell, hogy ezek a csodák (is) megmaradjak gyermekeinknek.

NGC6781

NGC6781-20140626-TTK

NGC6781

2014-06-26 – Göd – 100 x 55 sec light és 15 x 55 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera

NGC6781-LRGB-20140828-TTK

NGC6781 – LRGB változat

2014-06-26 – Göd – 100 x 55 sec light és 15 x 55 sec dark

2014-07-26 – Tarján (MTT2014) – 41 x 55 sec R

2014-08-28 – Göd – 42 x 55 sec G, B

Ahogy az év telik, és egyre jobban belehaladunk a nyárba, a tavasszal magasan látható csillagképeket lassan letaszítja trónjáról a Hattyú (Cygnus), a Lant (Lyra) és a Sas (Aquila) triumvirátusa. Június végén az udvaromról belátható vastagszárú T alakú égbolt részt a meridiántól keletre ezek a csillagképek uralják.

A Hattyún és a Sason hömpölyög keresztül a nyári Tejút ezüstös sávja. Sötét fényszennyezéstől mentes égbolton, már maga ez a látvány is megkapó. Az embert arra készteti, hogy távcsövet ragadjon és felkeresse a sok csodás objektumot, melyet a galaxisunk síkja ebbe az irányba rejt. Csillaghalmazok, ködösségek, szupernóva maradványok, planetáris ködök, kettőscsillagok, változócsillagok.

2014. június 26-án azonban egészen mást forgattam a fejemben. Nem indultam hosszú éjszakai túrára az égen, hogy egyenként felkeressem az érdekes látnivalókat. Napnyugta után egy átvonuló hidegfrontot követő éjszaka vette kezdetét, és immáron harmadjára próbáltam szerencsét ebben az évben egy hőn áhított planetáris köd megörökítésével. Korábbi próbálkozásaimat az időjárás sorra meghiúsította. Mire érdemleges mennyiségű felvételt készíthettem volna, addigra mindig beborult. A hidegfront elvonult, maga mögött derült eget, de nyugtalan légkört hagyott hátra. Ezen körülmények között rögzítettem az első 100 darab 55 másodperces expozíciót Luminance szűrőn keresztül, melyből elkészítettem a fentebb látható monokróm képet.

A NGC6781 planetáris köd a Sas (Aquila) csillagképben található. Az amatőrcsillagászok által viszonylag ritkán észlelt és meglepő módon kevésbé ismert planetáris köd. Már akkor felvettem észlelési listámra, amikor elkezdtem saját kis projektemet, melyben a Gyűrűs-köd (M57) alteregóit kívántam lencsevégre kapni. Eddig csak egyetlen objektumot teljesítettem, a Déli Gyűrű-köd néven is ismert NGC3132-t. Ez a felvétel nem saját felszerelésemmel készült, hanem az Ausztráliában található Siding Spring Observatory 32 cm-es Ritchey-Chretien tükrös távcsövével, távészleléssel. A projektet mindenképpen szerettem volna folytatni, azonban most a saját távcsövemen és az északi égbolton volt a sor. Fontos megemlíteni, hogy az alteregók kiválasztásánál csak ahhoz ragaszkodtam, hogy a planetáris ködök megjelenése hasonlatos legyen az M57-hez a fényképeken. Az nem volt kizáró ok, ha a hasonlóság csak látszólagos, és a ködök szerkezete a valóságban eltérő.

Az NGC6781 otthonunktól valahol 2300 és 2900 fényév közötti távolságra van, és a galaxis centrumához közelebb helyezkedik el. Újabb vizsgálatok eredményei a 2600-2700 fényéves távolságot valószínűsítik.

NGC6781-galaxis-m2

Az NGC6781 elhelyezkedése a galaxisban. Napunkat a sárga pötty jelöli, míg a bekarikázott kék pötty az NGC6781 planetáris köd helyét jelöli.

Az NGC6781 látszólagos mérete az égen 1.8 ívperc. Alig valamivel nagyobb, mint ismertebb rokona, a Gyűrűs-köd (M57). 11.4 magnitúdós vizuális fényességével azonban elmarad mögötte.

Rátalálni nem túlságosan bonyolult. Kiindulásnak használhatjuk a δ Aquilae nevű csillagot. Innen kell még megtennünk nagyjából 3.5 fokot. Ez nem is nagy távolság.

NGC6781-map1-a

A Sas csillagképben található NGC6781-hez a δ Aquilae-től 3.5 fokra található.

A csillagtérképen az ember könnyen alkothat mindenféle alakzatot, melyeket felhasználva eljuthat a célhoz. Én is így tettem, megalkottam a saját egyszerű négyszögekből és ívekből álló mintázataimat, és végignavigáltam az NGC6781-hez a δ Aquilae-től.

NGC6781-map2-a3

Az általam konstruált alakzatok, és a lépések a δ Aql-tól az NGC6781-ig

NGC6781-map3

Az NGC6781 közvetlen környezete. Ezen a térképen is könnyen felfedezhető az előző térképen berajzolt kis négyszög alakzat.

Miért kézzel állítottam be, amikor távcsövem mechanikája GoTo megoldással felszerelt, és elég lett volna az objektum nevét megadni? Akkor éppen ehhez volt kedvem. Ma már én is ritkán állok rá manuálisan egy célpontra a fényképezésre használt műszeremmel. A gyakorlatból azonban nem jöttem ki. Az egyedül töltött éjszakáknak mindig elmaradhatatlan része, hogy 20×60-as binokulárommal pásztázzam az eget, miközben a felvételek készülnek. Nem tudok csak ott ülni magányomban, és nem törődni a felém boruló csillagos éggel. Egyszóval rendszeresen végzek „gépesítés” nélküli csillagtúrákat. Aznap este arra éreztem késztetést, hogy a régi klasszikus utat válasszam, és saját kezűleg cserkésszem be az NGC6781-et.

Amikor egy planetáris ködre pillantunk távcsövön keresztül, valójában Napunk távoli jövőjét is tanulmányozzuk. A körülbelül 0.8 és 8 kiindulási naptömeggel rendelkező csillagok életük javarészében a magfúzió révén hidrogénből héliumot hoznak létre. A Nap esetében ez a szakasz a modellek szerint körülbelül 10 milliárd év. A felszabaduló energia biztosította sugárnyomás az, ami ellensúlyozza a gravitációt. Ezen csillagok több milliárd évig ebben az egyensúlyi, stabil állapotban léteznek. Miután elfogy a hidrogén készlet, az összehúzódó magban a hőmérséklet a korábbi 15 millió fokról 100-200 millió fokra emelkedik. A hidrogén fúziója a magot körülvevő külső héjakba tevődik át, míg a magban beindul a hélium fúziója. Mindeközben a csillag felfúvódik, külső rétegei lehűlnek. Napunkból is így lesz majdan vörös óriás csillag nagyjából 5 milliárd év múlva. A csillagok életük vége felé a vörös óriás fázisában (pontosabban az AGB fázisban) a csillagszél révén történő anyagvesztés, majd a külső rétegek ledobásával hozzák létre a planetáris ködöket. A táguló gázt a hátramaradó kompakt és forró akár 100000 K felszíni hőmérsékletű központi csillag UV sugárzása gerjeszti, miközben lassan a fehér törpe állapotba jut a csillag, mivel nem elég nagy a tömege a szén és oxigén fúziójához. A fehér törpék még több 10 milliárd évig sugározzák elraktározott energiájukat az űrbe. Energiát már nem termelő Föld méretű lassan hűlő csillagtetemek. Ehhez képest a planetáris ködök kérészéletűek és mindössze pár 10000 évig létező képződmények a haldokló csillagok körül. Ez lesz hát Napunk sorsa is. Érthető hát, hogy a csillagászok nagy figyelmet szentelnek ennek az objektum csoportnak. Az NGC6781 és társai nagyszerű lehetőséget biztosítanak arra, hogy a csillagászok ellenőrizzék és pontosítsák a csillagfejlődés eme késői szakaszával kapcsolatos modelleket.

A fenti életpályát futotta be az NGC6781 központi csillaga is, melynek kiindulási tömege 1.5±0.5 naptömeg volt, mielőtt vörös óriássá fújódott volna fel, és elvesztette volna külső rétegeit. Mostani tömege 0.6±0.03 naptömeg. A központi csillag roppant forró, effektív felszíni hőmérséklete 110000 Kelvin fok. A planetáris köd kialakulása 20000-40000 éve vehette kezdetét. Valamikor akkor, amikor őseink elindultak világhódító útjukra Afrikából.

A planetáris ködök az elektromágneses spektrum széles tartományában sugároznak. A felvételemen azonban ennek csak egy kis szeletét láthatjuk, az optikai tartományt. A csillag UV sugárzása által gerjesztett régiók optikai tartományban történő megfigyelése közel sem tárja fel a köd összes titkát. Az objektumok bizonyos területei láthatatlanok maradnak. Az űrtávcsövek felbocsájtásával azonban szélesre tárult az az ablak, amin keresztül megfigyelhetjük őket. Elérhetővé vált a röntgen, és a távoli infravörös tartomány. Tanulmányok új generációja jelent meg az elmúlt évtizedben, melyek nagyban építenek az űrtávcsövekkel végzett megfigyelésekre, és melyek elvezettek a köd igazi szerkezetének megértéséhez.

A felvételemet megnézve első pillantásra az látszik, hogy egy halvány viszonylag egységes felszínű gyűrű alakú ködről van szó. Ez a megjelenése annak is köszönhető, hogy az NGC6781 egy koros planetáris köd. Alaposabban megnézve azonban feltűnik, hogy valójában nem egy gyűrűről van szó. Helyenként az ugyanis kettős. A morfo-kinematikus vizsgálatok, melyek a molekulák színképvonalainak elemzésén alapszik, továbbá a foto-ionizációs modellek mind arra mutatnak, hogy a köd alakja egy középen összeszűkölő hengerre hasonlít.

NGC6781-3D

Az NGC6781 3D-s modellje

Ennek a formának a hosszanti tengelye 23 fokos szöget zár be a látóirányunkkal. Az NGC6781 a bipoláris planetáris ködök családjába tartozik, fényes központi tórusz (fánk alakú) régióval.

Az NGC6781-gyel egy újabb taggal bővült a Gyűrűs-köd alteregó gyűjteményem. Hogy mennyire tökéletes a hasonlóság? Ennek eldöntését az olvasóra bízom. De talán nem is ez az igazán fontos, hanem inkább az, hogy az ember amatőrcsillagászként, a saját szórakoztatására, valamiféle észlelőprogramot rak össze, és e mentén végzi megfigyeléseit.

M57-alteregok05

Az M57 és alteregói. Balról jobbra: M57 (Gyűrűs-köd), NGC3132 (Déli Gyűrűs-köd), NGC6781

M3

M3-LRGB-20140604-TTK

M3 – LRGB változat

2014-06-04 – Göd – 84 x 14 sec Luminance, 20 x 14 sec R, 20 x 14 sec G, 20 x 14 sec B és 15 x 14 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera, Astronomik RGBL fotografikus szűrőszett

Az M3 gömbhalmazt 1764. május 3-án fedezte fel Charles Messier a Vadász Ebek (Canes Venatici) csillagképben. Arra készültem, hogy napra pontosan 250 évvel később készítek is egy felvételt erről a csodás halmazról. Az ember hiába tervez azonban, az időjárás a nagyobb úr. A felhők fölött nincs hatalmam, így belenyugodtam abba, hogy ebből már nem lesz kerek évfordulós felvétel.

Az M3 felfedezése után Messier életében is jelentős fordulat állt be. Még 1758. szeptember 12-én fedezte fel az M1-et (Rák-köd), majd két év telt el a második objektumig, mely a Vízöntő (Aquarius) csillagképben található M2 gömbhalmaz volt. Ezután újabb évek teltek el, mire az M3-at felfedezte. Ez volt az első olyan objektuma, melyet valóban ő pillantott meg először és nem újrafelfedezésről volt szó. Innentől kezdve felgyorsultak az események, és a következő 7 hónapban feljegyzésre került még 37 objektum. Mi lehetett ennek az oka? Miért fedezett fel az első 6 évben csak hármat? Miért volt annyira termékeny az ezt következő 7 hónap? A lehetséges válaszok megfogalmazásához fontos tudni, hogy 1758 és 1764 között 5 üstököst is felfedezett. Valószínű, hogy ezekkel az általa kezdetben üstökösnek vélt objektumokkal már mind találkozott ebben a roppant aktív megfigyelői periódusában. Később pedig visszatérhetett azokhoz, melyeket első megpillantáskor még üstökösnek vélt, hogy feljegyezze pozíciójukat, leírást készítsen, és katalógusba foglalja azokat. Az is hozzátartozik az igazsághoz, hogy amikor egyre másra akadt rá olyan dolgokra az égen, melyekről kiderült, hogy mégsem üstökösök, elhatározta, átnézi mások korábban összeállított katalógusait is. Így próbálta elkerülni, hogy valami megtévessze a Naprendszer csóvás vándorainak keresése közben. Átnézte Hevelius, Halley, Maraldi, de Cheseaux, LeGentil, és Lacaille katalógusait. Ezeket az objektumokat is szerepeltette saját katalógusában, ha az megfelelt annak a kritériumnak, hogy ködös volt a megjelenése. Természetesen arról is készített feljegyzést, ha nem találta meg valamelyik objektumát az előbb felsorolt katalógusoknak. Talán tudományos karrierjének emelkedése is nagy szerepet játszott abban, hogy 7 hónap alatt háromtagúról negyvenesre hízott a katalógusa. 1764-ben a Tudományos Akadémia tagságára jelölték, 1765-ben Királyi Természettudományos Társaság tagjának választották. 1769-ben megtalálta a C/1769 P1 fényes periodikus üstököst.  Még ebben az évben a Svéd Akadémiának is tagja lett. Viszonylag rövid idő alatt az akkori csillagászati élet ismert szereplőjévé vált. Az a tény, hogy elismert csillagász lett, minden bizonnyal újabb felfedezésekre és publikációkra buzdította. Így került kiadásra katalógusának első fele 1770-ben, mely az 1764-ig katalogizált 40 objektumát tartalmazta, és még plusz öt könnyen láthatót, melyet mások fedeztek fel.

Messier még ködös objektumként írta le a gömbhalmazt:

„A ködöt a Bootes és Hevelius egyik Vadász Ebe között fedeztem fel. Nem tartalmaz csillagokat. Közepe ragyogó, fénye fokozatosan csökken, kör alakú.”

Az írások tanúsága szerint 1784 környéke volt azaz év, amikor William Herschel először csillagokra bontotta. Így ő látta először a halmazt saját mivoltában, vagyis a központja felé sűrűsödő csillagok sokaságaként.

Távcsőben az M3 véleményem szerint az M13 után a második leglátványosabb gömbhalmaza az északi égboltnak. Talán csak azért keresik fel kevesebben, mert egy árnyalattal nehezebb rátalálni az M13-hoz képest. Pedig valójában nem is ördöngösség. A gömbhalmaz 6.2 magnitúdós és 18 ívperces méretet szoktak rá megadni, ebből a fényes mag úgy 5-6 ívperc körüli. Amatőr műszerekkel körülbelül 12 ívmásodpercesnek látszik. Ezen tulajdonságainak köszönhetően biztosan felismeri az ember, amikor távcsövével célhoz ér. A legegyszerűbb, ha az Arcturus-tól (α Boo) egy képzeletbeli egyenes mentén elindulunk a Cor Caroli (α CVn) felé. Már majdnem félúton ráakadunk erre a feltűnő gömbhalmazra. Akár egy binokulárral is megpróbálkozhatunk a megkeresésével. Saját tapasztalatom szerint, egy 10×50-es, vagy 20×60-as binokulárral kicsiny ködös csillag benyomását kelti. Saját távcsövem keresőjében szintén ilyen a megjelenése. Eltéveszthetetlen.

M3-id

Az M3 az Arcturus-tól (α Boo) egy képzeletbeli egyenes mentén a Cor Caroli (α CVn) felé majdnem félúton található.

Tejútrendszerünkben, a galaxis síkjától 31600 fényévnyire, északra helyezkedik el, míg annak magjától durván 38800 fényév választja el. Mi, amikor távcsővel szemléljük, akkor 33900 fényévnyi távolságba tekintünk, és egyben ugyanennyi évet vissza a múltba.

M3-mw

Az M3 elhelyezkedés a galaxisban. A kis sárga pötty a Napunkat, a kékkel bekarikázott sárga folt az M3-at jelöli.

Az M3 a Tejútrendszer nagyjából 150 ismert gömbhalmaza közül az egyik legnagyobb tömegű és egyben az egyik legfényesebb is. Gondoljunk csak bele, hogy ilyen távolságból is 6.2 magnitúdósnak látszik. Ebből kiszámolható, hogy -8.93 magnitúdós az abszolút fényessége. Olyan, mintha 300000 Nap fényével ragyogna. A kutatók szerint nagyjából félmillió csillagból áll.

Az M3 mérete körülbelül 180-220 fényév. A méretét több módszerrel is megpróbálták meghatározni. Ez egyfelől a távolság és az égen látszó méret ismeretében számolható ki. Nézzük először is a látszólagos méret kérdését. Elsőre fel sem merül az emberben, hogy ez egyáltalán tényleg kérdés lehet. Pedig nem is olyan egyszerű meghatározni mekkora is a kiterjedése egy gömbhalmaznak az égen. Csak nézzünk rá a felvételemre. Hol a pereme? Fontos megemlítenem, hogy ezen a teljes gömbhalmaznak csak egy része látszik, az valójában ennél nagyobb. A külső csillagok már beleolvadnak nálam a háttérbe. De a jelenség fellép nagy távcsövek esetén is, csak ott a magtól távolabb vesznek bele a halmaztagok az égi háttérbe. Ennek az a magyarázata, hogy a halmaz külső részén a csillagok sűrűsége már extrém módon lecsökken a belsőbb régióhoz képest. Ahhoz, hogy a halmaz külső leghalványabb tagjait is azonosítani lehessen, profi távcsövek, hosszú expozíciós idő és kifinomult módszerek kellenek. A különböző vizsgálatok alapján valahol 18 ívperc körül lehet az M3 látszólagos mérete, de van olyan kutató, aki 20 ívpercet mond a saját megfigyelései és mérései alapján. A méretet tekintve azért a különböző eredmények jó egyezéseket mutatnak. Nézzük a távolság kérdését. Az M3 is, akár a többi gömbhalmaz, bővelkedik RR Lyrae változócsillagokban. Ezen halmazváltozóknak is nevezett csillagok pulzációs periódusa és abszolút fényességük között pedig reláció áll fent, így tökéletesek távolság meghatározására, akár csak a Cepheida változók. Amennyiben e változócsillagok segítségével meghatároztuk a távolságot, már csak egyszerű matematika a látszó méretből a valódi méret kiszámítása.

A másik módszer a méret meghatározására azon alapszik, hogy a kutatók megpróbálják megmondani, mekkora régióban uralkodik a gömbhalmaz gravitációs tere. Az ezen kívül eső csillagok már meg tudnak szökni a halmazból. Pontosabban, a galaxis árapály keltő hatása révén ezt le tudja szakítani a halmazról. Az M3 igen elnyúlt pályán (e=0.55) kering a galaxis centruma körül annak a halójában. Keringése folyamán, a legtávolabbi pontján 66000 fényévre kerül a galaxis magjától és 49000 fényévre is eltávolodik a galaxis síkjától. Pályájának legközelebbi pontja a galaxis magjához pedig 22000 fényév. E közelség esetén a legkisebb az a térfogat, ami felett a gömbhalmaz gravitációja uralkodik, vagyis amiben még képes megtartani a csillagait. Ennek a területnek az átmérője számítások szerint ilyenkor valamivel kevesebb, mint 200 fényév. Ebből az következik, hogy az M3 mérete valamivel 200 fényév alatt lehet.

Az 500000 csillag tehát közel 200 fényéves területen oszlik el. A csillagok sűrűsége pedig folyamatosan csökken a gömbhalmaz magjától távolodva, ahogy ezt már fentebb is írtam. A halmaz magja roppant sűrű és viszonylag kicsi. Mérések szerint az átmérője 10-20 fényév nagyságrendbe esik. A halmaz tömegének viszont közel a fele ezen a területen összpontosul. Irdatlan zsúfoltság van a halmaz belsejében. A gömbhalmazokat éppen e tulajdonságuk alapján is osztályozzák. Van, amelyiknek iszonyúan sűrű magja és diffúz a halója, míg másoknak egyáltalán nincs is diszkrét, sűrű magja. A 12 fokozatú Shapley–Sawyer osztályozásban, mely a halmaz csillagainak koncentrációján alapszik, az M3 középen helyezkedik el. Besorolása: VI.

Az M3 egy igen idős objektum, kora becslések szerint 8-10 milliárd év. A gömbhalmazok korát a HRD (Hertzsprung-Russel Diagram) alapján becsülik meg. A halmaz tagjai jó közelítéssel egyszerre keletkeztek. Arról, hogy mit is jelent a „jó közelítés”, egy kicsit később még szó lesz. A nagyobb tömegű fényesebb és forróbb csillagok hamarabb elhasználják hidrogén készleteiket, és elhagyják a fősorozatot. Az idő előrehaladtával már csak a kisebb tömegű, és kevésbé fényes csillagok maradnak a fősorozaton. Minél idősebb egy halmaz, annál lejjebb tolódik az a pont a fősorozaton, ahol a csillagok „elkanyarodnak” az óriás ág felé. Felrajzolva az M3 esetén a HRD-t rögtön szembetűnő, hogy a jelentősebb fényességű nagytömegű csillagok már mind elfejlődtek a fősorozatról. Ezeknél, a csillag energia ellátását már rég nem a magban zajló hidrogén héliummá történő átalakítása szolgálja. Azoknál az óriásoknál és szuperóriásoknál, ahol még mindig hidrogénből héliumot gyárt a csillag, az már nem a magban, hanem külsőbb héjakban történik, melynek következtében a csillag felfúvódik, és külső része lehűl. Ezek a képen a fényes narancs és vörös színű domináns csillagok. A horizontális ág tagjai pedig a magjukban már héliumból szenet hoznak létre. Ez a folyamat a kék szín irányába tolja a csillag fényét. Az óriások és a horizontális ág között van egy rés, ahol a már korábban megemlített RR Lyrae csillagok találhatóak. A rés azért van, mert a két állapot között csillagászati értelemben a csillagok hamar keresztüljutnak. Az RR Lyrae váltózó csillagok magjában már javában folyik a hélium szénné alakítása.

M3_HRD-label-cut

Az M3 Hertzsprung-Russel diagramja. A fősorozat, az óriás ág, a horizontális ág, és a kék vándorok régióját nyíllal jelölve. Az RR Lyrae változókat a kék pöttyök jelölik.

Az M3-ban összesen mintegy 200 darab változócsillagot azonosítottak. Ez a szám több mint akármelyik másik gömbhalmazban azonosítottak száma. Az M3 a nagy gömbhalmazok közé tartozik, de ebben egyértelmű rekorder. Számomra ez a téma különösen érdekes, mert amatőrcsillagászként évekig követtem csillagok fényének a változását. Vagy, ahogy az amatőr szleng említi: változóztam. Bár RR Lyrae típusúakkal nem foglalkoztam, mert azok megfigyelése inkább a hivatásos kutatók profiljába vág.

M3-variables

Az M3 változócsillagai – az animációt egy éjszaka 4 különböző időpontjában készült felvételeiből rakták össze. Minden időpontban 3 szűrőn keresztül (BVI) rögzítettek felvételeket, és ebből készült a színes kép (Krzysztof Stanek, Andrew Szentgyorgyi – Publikáció: Joel Hartman)

De nemcsak ezzel tart rekordot. A halmaz igen érdekes objektumai a kék vándorok. Ezek a csillagok nagyon nem illenek bele abba a képbe, amit a halmaz esetén a felrajzolt HRD-t tanulmányozva a csillagok fejlődéséről megállapítottak korábban. Ezek a fősorozat közelében abban a tartományban találhatóak, ahonnan korábban a nagytömegű kékes csillagok már régen elfejlődtek. Létezésükre a ma elfogadott egyik magyarázat, hogy ezek halmaztagok összeolvadásával jönnek létre. Így lehetséges csak, hogy sokkal nagyobb a felszíni hőmérsékletük (kékebbek), mint az azonos fényességgel rendelkező halmaztagoké. Életpályájuk egészen más lett ennek köszönhetően, mint a halmaz kialakulásakor létrejött fősorozatbelieké.

Pontosan nem ismeretes még ma sem, hogy a galaxisok fejlődésében milyen szerepet is töltenek be a gömbhalmazok és kialakulásuk pontos körülményét is homály fedi. Egyelőre nem ismerünk olyan gömbhalmazt, amiben ma is aktív csillakeletkezés zajlik. Régebben úgy kezelték őket, amiben minden csillag egyszerre keletkezett. Közben a kutatók felfedezték, hogy bizonyos gömbhalmazok nem is egy nemzedék csillagaiból állnak. Van olyan példánya ezen objektumoknak, melyeknél az első nemzedék után 100 millió évvel alakult ki a következő. Ezt a csillagok fémtartalmának vizsgálatával állapították meg. A később létrejöttek már tartalmazzák a korábbi generációk halálakor szétszóródó anyagot, így az azok által legyártott fémeket is, tehát nagyobb a fémtartalmuk. Ráadásul jellemzően külsőbb és elliptikusabb pályán mozognak a gömbhalmazon belül a kissé fiatalabb csillagok (aki azért így is elég idősnek számítanak).

A fémtartalom vizsgálata egy másik érdekességre is rámutatott. A fémtartalom alapján azt is megállapították a kutatók, hogy a gömbhalmazok kora sem teljesen egységes galaxisunkban. Itt jól meghatározott korcsoportokról lehet beszélni. Bizonyos elképzelések szerint egyes halmazokat a Tejút bekebelezett azok szülő galaxisával együtt. Ebben a galaxisban máskor és máképpen történt a gömbhalmazok kialakulása, ez pedig magyarázhatja a koruk közötti eltérést. Az M3 ebben is különleges, ugyanis a magasabb fémtartalmú gömbhalmazokhoz tartozik.

Remélem, hogy ezzel a rövid ismertetővel sikerült felkeltenem az olvasó érdeklődését a gömbhalmazok iránt. Amellett, hogy impozáns megjelenésűek, asztrofizikájuk is roppant érdekes. Már több évszázada figyeljük őket, de bőven akad még rejtély körülüttök. Ráadásul az M3 abba a mély-ég kategóriába tartozik, hogy az általam készített kép megtekintése után sem okoz majd csalódást egy közepes amatőrcsillagász műszer okulárjába pillantva. Ugyan a teljesen kerek 250 éves évfordulóról lemaradtam, továbbá 2014. június 4-én lehetett volna nyugodtabb és átlátszóbb a légkör, mégsem bánom, hogy aznap este a távcsövemet az M3 felé fordítottam. Jó volt a felvételek készítése közben elmélkedni egy kicsit a gömbhalmaz „viselt dolgairól”.

M3-20140604-TTK

M3 – monokróm változat

2013-06-04 – Göd – 84 x 14 sec Luminance és 15 x 14 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera

NGC5907

NGC5907-20140519-TTK

NGC5907

2014-05-19 – Göd – 42 x 86 sec light és 15 x 86 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera

NGC5907-LRGB-20140702-TTK

NGC5907

2014-05-19 – Göd – 42 x 86 sec light és 15 x 86 sec dark

2014-07-02 – Göd – 37 x 86 sec R és 15 x 86 sec dark

2014-07-04 – Göd  – 38 x 86 sec G, 39 x 86 sec B és 15 x 86 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera, Astronomik RGBL fotografikus szűrőszett

2014. május 19-én, miután leszállt az éjszaka, vizuális távcsöves túrába kezdtem a Sárkány (Draco) csillagképben. Már hónapok óta nem barangoltam az égnek ezen a területén. A hatalmas kígyószerű sárkány mitológiai alakja hosszasan tekeredett az égbolton. Szépen ragyogott a 14 fő csillaga. Igaz, hogy mindössze két csillaga fényesebb 3 magnitúdónál, de ettől függetlenül nem mondanám, hogy egy jellegtelen halvány csillagkép. Sőt! Cirkumpoláris csillagkép, így mivel sosem nyugszik le, egész évben tanulmányozható. Azonban az égen való elhelyezkedése miatt, miszerint egy félkörívben öleli körbe a Kis Medve csillagképet, és így a pólust, inkább a tavaszi, nyári és őszi hónapokban szoktam felkeresni. Mindez attól is függ, hogy melyik részén helyezkedik el a kiszemelt objektum, és az a rész mikor áll magasan a horizont fölött. A csillagkép bővelkedik látnivalókban. Legyen szó galaxisról, planetáris ködről, kettős csillagról és ne feledkezzünk meg a változócsillagokról sem.

Egymás után kerestem fel a galaxisokat, és azon töprengtem, hogy melyikről is készítsek felvételt. Több izgalmas jelölt is akadt. Végül az NGC5907 került kiválasztásra. Ezen az éjszakán L szűrőn keresztül készült felvételekből raktam össze a fent is látható monokróm változatot. Július elején újra visszatértem a galaxishoz. 2014. július 1/2. éjszakáján R szűrőn, majd 2014. július 3/4. éjszakáján G és B szűrőn keresztül rögzítettem felvételeket. A fent látható színes (LRGB) változat a három éjszaka felvételeinek felhasználásával készült.

Halvány, 11 magnitúdós galaxisról van szó. A katalógusok szerint 12.3 x 1.8 ívperc a látszólagos mérete az égen. Majdnem pontosan az élével fordul felénk. Megjelenése miatt, nagyon találóan, gyakran hasonlítják egy késpengéhez vagy egy szilánkhoz. A spirál galaxisok általában már csak ilyenek. A korongjuk vastagsága kicsi a galaxis átmérőjéhez képest. Ez alól nem kivétel Tejútrendszerünk sem. Véleményem szerint egy spirál galaxis porsávok szabdalta oldalnézete legalább olyan impozáns tud lenni, mint amikor nagyjából merőleges látunk rá egyre, és spirálkarjaiban gyönyörködhetünk.

Első ránézésre tipikusnak mondhatnánk ezt a 40 millió fényévre lévő csillagvárost. De csak első ránézésre. Már vizuálisan is látszott, hogy a legtöbb spirál galaxistól eltérően az NGC5907 egyáltalán nem rendelkezik markáns központi dudorral. Jegyezzük meg az NGC5907-nek ezt a tulajdonságát, mert egy kicsit később még előkerül majd. Arra, hogy milyen is oldalnézetből egy jellegzetes központi dudor egy spirál galaxis estén jó példa a szintén a majdnem pontosan az élével felénk forduló NGC891.

Az éléről látszó NGC891, mely a legtöbb spirál galaxishoz hasonlóan, markáns dudorral rendelkezik.

2013-08-30 – Göd – 72 x 86 sec light és 15 x 86 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera

De a legmeglepőbb tulajdonságára csak akkor derül fény, ha roppant hosszú expozíciós idők keretében tekintünk az űr mélységeibe, és nem foglalkozunk azzal, hogy közben a galaxis fénye beleég a végső felvételbe. Ha ezt megtesszük, akkor valami igazán meglepőt láthatunk a galaxis körül: hurkokat.

bbro_ngc5907

Az NGC5907 és a galaxist körülölelő hurkok David Martınez-Delgado felvételén (BlackBird Remote Observatory)

Ezek a hurkok (loops) csillagfolyamok, vagyis olyan csillagok áradata, melyek ezeken a különös pályákon járják táncukat a galaxis magja körül és nem a galaxis korongjában, magja környékén, vagy éppen a halóban. Létezésük egy újabb bizonyítéka annak, hogy a galaxisok világa nem statikus, ahogyan egy évszázada még gondolták, hanem igen csak viharos, mely ütközésekkel és összeolvadásokkal tarkított. A hurkok létrejötte galaxisok kölcsönhatásnak köszönhető. Rögtön két magyarázat is kínálkozik a hogyanra.

Az egyikben egy kisebb tömegű galaxis ütközik oly módon a nagyobb társával, ebben az esetben az NGC5907-tel, hogy annak korongján többször keresztülhatol, miközben a nagyobb megkopasztja azt. A pályája metszi a nagyobb galaxis korongját, újra és újra keresztülhatol ezen a síkon. Pályáján gázt és port veszít, illetve csillagainak egy részét. Amennyiben ez a magyarázat a helyes, akkor a jóslatok szerint a végén csak egy mag marad hátra a kisebbikből. Ezen csillagok ugyanis gravitációsan sokkal kötöttebbek, így nehezebb ennek a formációnak a szétszakítása.

A másik esetben a két ütköző galaxis tömege hasonló. Miközben a két galaxis egy nagyobbá olvad össze, csillagok dobódhatnak ki, melyek létrehozzák ezeket a hurkokat.

Az első esetben találnunk kellene egy lecsupaszított galaxis magot. Ilyet egyelőre nem találtak. A másik esetben pedig sokkal nagyobb felfordulást kellene látnunk, ha az NGC5907-re tekintünk. Nehéz eldönteni, hogy mennyire lehetett egyenlőtlen a küzdelem, pedig fontos kérdés ez. Miért? Ma úgy gondolják a kutatók, hogy a nagyobb galaxisok mind ütközések, és kannibalizmus révén jöttek létre. Igen, még a Tejútrendszer is. Egyre több nyomát találják ezeknek a folyamatoknak, ahogy műszerek, illetve a kutatási módszerek egyre kifinomultabbá válnak. A mi galaxisunk esetén is sikerült azonosítani ilyen csillagáramlatokat. Az egyik ilyen annak a folyománya, hogy a Tejút éppen elfogyasztja a Sagittarius törpe galaxist.  Összefoglalva, fontos ezen a galaxisok fejlődése szempontjából kulcsszerepet játszó folyamatoknak a megértése.

Mit lehet azonban tenni, ha nem találjuk a Szent Grált? Tovább kell keresni, és ehhez segítségül hívhatóak a számítógépek. Egészen pontosan a szuperszámítógépek, melyek nagy számítási teljesítménye elegendő, bonyolult és sokparaméteres feladatok megoldására. Fel kell hát állítani a megfelelő szereplőket a színpadra, kezdő paramétereket választani és indulhat a tánc. A végén a kapott eredményt össze kell vetni a megfigyelhetővel. Leegyszerűsítve így végeztek szimulációkat az NGC5907 esetén is.

A kutatók három csoportba osztották az ütközéseket aszerint, hogy milyen volt a kiindulási tömegarány. Nagyobb ütközésnek nevezték el a 3:1-5:1, míg közepesnek az 5:1-12:1, és kisebbnek a 12:1-nél kezdődő tartományt. Majd megnézték, hogy a szimuláció eredménye megfelel-e annak, amit tapasztalunk. Kijön a hurok alakja, mérete, excentricitása, láthatósága, az anyag eloszlása? Az ütközés után meddig észlelhető még a hurok? Milyen gázeloszlást kapunk eredményül? A galaxis korongjának, halójának, magjának és a központi dudornak a kapott paraméterei leírják, vagy legalább közelítenek az észlelthez? Ezután összegezték az eredményt, és megpróbálták kiválasztani a legvalószínűbbet. Egyik modell sem fedte le ugyanis tökéletesen a valóságot. A legjobban a 3:1-5:1 tartomány illeszkedett gázban gazdag kiinduló galaxisokat választva. Azonban nem igazán sikerült reprodukálni egy vékony galaktikus diszk által uralt, és központi dudortól mentes galaxist a végeredményben. Emlékszik az olvasó? Említettem, hogy ez még fontos lesz. A hurokok egészen pontos geometriája sem jött ki. Azért azt el kell mondanom, hogy ezek csak egyfelől fakadnak a felhasznált modellből. Úgy igazságos, ha azt is kihangsúlyozom, hogy rengeteg a bizonytalanság az NGC5907 alapvető paraméterei között is. Csak egyet kiragadva, ilyen például a galaxis távolságának 30%-os bizonytalansága. Ennek következtében a barionos tömeg is bizonytalanul ismert. Ez pedig a modell pontatlanságához vezet, és így tovább. Említést érdemel még az is, hogy az elektromágneses spektrum különböző tartományaiban más és más képet fest a galaxis. Az egyikben vékonyabb, a másikban vastagabb a korong. Valljuk be, nemcsak a modell felállítása és a szimuláció jelentett kihívást, de a kapott eredmény összevetése a valósággal is. A kérdés nincs lezárva, mindössze kiválasztottak egy igen valószínű forgatókönyvet. Ez azonban már önmagában is egy fontos eredmény. Természetesen a kutatások folynak tovább.

Végezetül, érdemes megnézni egy kis videót a szimulációról:

Mindig lenyűgöz, hogy miféle események zajlanak a kozmoszban, és párért csillagászati értelemben elég csak a szomszédba tekinteni, vagy körülnézni házunk táján. Az pedig külön öröm, ha az előadás egy jelenetét vagy annak egy mutatós részletét saját távcsövemmel is elcsíphetem.