Planetáris ködök

NGC1514-LRGB-20161104-0039-sx-bin2-360s-TTK

NGC1514 – planetáris köd a Bikában

2016-11-04, 2016-11-22 – Göd

24 x 360 sec L (Bin2), 10 x 360 sec R (Bin2), 10 x 360 sec G (Bin2), 10 x 360 sec B (Bin2)

300/1200 Newton távcső – Paracorr Type2 kóma korrektor – eredő fókusz 1380 mm

SkyWatcher EQ-6 Pro GoTo mechanika

SXVR-H18 CCD kamera, Hutech IDAS P2 LPS filter és Baader RGBL fotografikus szűrőszett

Ezekkel a szavakkal jellemezte anno William Herschel, a ζ Persei-től nem egészen 3.5 fokra található NGC1514 planetáris ködöt (fenti kép), ami valójában már a Bika csillagkép területén található:

„Egyedülálló jelenség! Egy nagyjából 8 magnitúdós csillag halványan fénylő légkörrel, melynek körkörös az alakja és 3 ívperc az átmérője. A csillag pontosan középen van és a ködösség körülötte nagyon halvány és olyannyira egyenletes, hogy úgy vélem nem is csillagok alkotják. Nem lehet kétséges a kapcsolat a csillag és a légkör között.”

Akkoriban általánosan elfogadott vélekedés volt, hogy minden köd csillagokra bontható, és ez csak távcső kérdése. Azonban Herschel-t pár planetáris köd megjelenése ebben elbizonytalanította, és közéjük tartozott az NGC1514 is. Szintén Herschel volt az a személy, aki először használta a planetáris köd kifejezést a Macskaszem-köd, hivatalos nevén az NGC6543 esetében, melynek megjelenése szerinte az Uránuszra hajazott. Az elnevezést aztán a többi csillagász is átvette. Annyira megragadt a szaknyelvben, hogy még akkor sem változtatták meg, amikor már biztosan tudható volt, hogy a planetáris ködök és a bolygók között semmiféle kapcsolat sincsen. A planetáris ködök létezése, az életük végéhez közelítő közepes tömegű csillagoknak köszönhető. Közepes tömeg alatt a 0.8 és 8 naptömeg közötti tartomány értendő. A továbbiakban csakis ezekkel foglalkozom majd, és nem térek ki sem a kisebb, sem a nagyobb tömegűekre.

Evolutionary_track_1m-5m

Közepes tömegű csillagok fejlődési útvonala a Hertzsprung-Russel diagramon. Main Sequence – Fősorozat, Subgiant Branch – Szubóriás ág, Giant Branch – Óriás ág, Horizontal Branch – Horizontális ág, Asymptotic Giant Branch – Aszimptotikus óriás ág, Instabilty Strip – Instabilitási sáv

Ábrák forrása: Wikipedia.org

A csillagok életük jelentős részét a Hertzsprung-Russel diagram úgynevezett fősorozatán töltik, miközben magjukban a hidrogén héliummá fúziónál. E folyamatban keletkező energiának köszönhetően képes dacolni a gravitációval. Leegyszerűsítve, a kifelé ható sugárnyomás akadályozza meg, hogy saját gravitációja összeroppantsa a csillagot. Ez a harc születésüktől fogva zajlik, s egészen halálukig, az energiatermelő termonukleáris folyamatok megszűnéséig tart. A hidrogénkészletek azonban nem tartanak örökké. Szerencséjükre a magban zajló hidrogén fúziója nem túlélésük egyetlen kulcsa. Sorsuk azonban így is beteljesül.

A Nap tömegének nagyságrendjébe eső, a fősorozatot elhagyó csillag esetén a hidrogén fúzió már régen nem a magban zajlik. Ekkora, a hidrogén héliummá történő átalakítása már a magot körülvevő külső héjba tevődik át, melynek következtében a csillag felfúvódik, és külső része lehűl, így jut el a vörös óriás fázisba. Majd miután a magban a hőmérséklet eléri a 100 millió fokos nagyságrendet, beindul a hélium fúziója. Ez a folyamat a kék szín irányába tolja a csillag fényét. Hogy mennyire, ez nagy részben a fémtartalomtól függ. (A csillagászok minden elemet a hidrogénen és a héliumon túl a periódusos rendszerben fémnek neveznek. Egy csillag fémtartalmát általában a Naphoz szokták hasonlítani a kutatók. A világegyetem története folyamán, a csillagoknak hála folyamatosan dúsult fémekkel. Az újabb és újabb csillaggenerációk egyre több fémet tartalmaztak, így minél alacsonyabb fémtartalmú egy csillag a Naphoz képest, annál ősibb objektum.) A horizontális ág tagjai a magjukban már héliumból szenet hoznak létre. Ennek az ágnak a csillagai kis fémtartalmú ősi, kisebb tömegű csillagok. A Naphoz hasonló fémtartalmú, 1-2 naptömegű csillagok nem „foglalják el” a horizontális ágat, csak némileg válnak forróbbá, miközben luminozitásuk csökken. Ezek alkotják az úgynevezett vörös kupac (Red Clump a fenti ábrán) csillagait a Hertzsprung-Russel diagramon. A 2-8 naptömegűek viszont kissé nagyobb kitérőt tesznek a kék szín irányába, felszíni hőmérsékletük is jobban megemelkedik. Ezek a kék hurok (Blue Loop a fenti ábrán) csillagai. Azonban, e csillagok életében ez mindössze egy rövidke epizód.

Miután a hélium is elfogy az addigra szénben és oxigénben gazdag magban, a fúzió az azt körülvevő külső héjba tevődik át. Az energia nagy része azonban nem itt keletkezik, hanem a külsőbb hidrogén héjban. A csillag külső rétegei ismét felfúvódnak és lehűlnek. Ennek köszönhetően a csillag fényessége ismét megnő, túlszárnyalva a korábbi vörös óriás fázist, színe pedig ismét a vörös felé tolódik. A csillag elfoglalja helyét az aszimptotikus óriás ágon (AGB fázis). Ugyan a valamivel nagyobb tömegű (2-8 naptömeg közötti) csillagok némiképp más utat járnak be, de nagy vonalakban hasonló folyamatok zajlanak le azoknál is.

Az AGB fázisban a csillagok jelentős mennyiségű tömeget veszítenek a magból a felszínre emelkedett szén, oxigén és egyéb nehéz elemeknek köszönhetően porban gazdag, 10-15 km/s sebességű, sűrű csillagszél révén. Ez évente mintegy 10-7 naptömeget jelent. Ezt egy rövid ideig tartó, hirtelen felgyorsuló, intenzív anyagkiáramlás, az úgynevezett szuperszél követi. Ennek a folyamatnak a végére már szinte csak a lecsupaszított, szénben és oxigénben feldúsult forró mag marad hátra. A csillagot körbevevő anyagfelhőt ebben az állapotban protoplanetáris ködnek nevezik, ugyanis még csak visszaveri szülőcsillagának fényét (nincs még gerjesztés, mint a későbbi planetáris köd fázisban).

A magot vékony hidrogénburok veszi körül, amiben még mindig zajlik a hidrogén fúziója héliummá. A csillag így egyre forróbb, és forróbb lesz. (Balra mozogva a Hertzsprung-Russel diagramon.) A tömegvesztés lelassul évi 10-8 naptömegre. A lassú és sűrű csillagszelet 200-2000 km/s-os gyors, de kis sűrűségű csillagszél váltja fel, mely beleütközik a korábban ledobott, főleg a szuperszél időszakából származó csillagkörüli anyagba. A gyors csillagszél mintegy maga előtt tolva azt, képes sűrű héjat formálni belőle.

Mikor a csillag felszíni hőmérséklete átlépi a 30000 K-t intenzív UV sugárzásával gerjeszteni kezdi a körülötte lévő gázt. A köd többé már nem a csillag fényét veri vissza, hanem „világítani” kezd. Színképét ettől fogva a hidrogén rekombinációs vonalai, és az úgynevezett ütközéssel gerjesztett tiltott vonalak uralják. (Eme utóbbiak csak roppant ritka csillagközi gázban jöhetnek létre, ezért hívják tiltott vonalaknak. Ilyen például az OIII színképvonala is.) Ettől a ponttól beszélünk planetáris ködről.

Alapvetően, az előbb említett különböző típusú anyagkiáramlások bonyolult kölcsönhatása az, mely meghatározza a planetáris köd felépítését, szerkezetét. Hihetetlen tűnik, de kezdeti tömegüknek akár több mint a felét is elveszíthetik a csillagok késői fejlődési fázisukban. Illetve, az esetenként akár 100000 K-nál is nagyobb felszíni hőmérsékletű központi csillag intenzív UV sugárzása teszi a ködöt „láthatóvá”.

Azt mindenképpen ki szeretném emelni, hogy az AGB fázisban történő anyag kibocsájtás, tömegvesztés pontos megértése még várat magára. Sok minden nem teljesen világos még a csillagászok előtt.

A planetáris ködök csillagászati időskálán mérve roppant gyorsan jönnek létre. Az AGB fázis végén ehhez elég mindössze néhány évszázad. Létezésük pedig alig pár tízezer év. A planetáris ködök szülőcsillagai nem elég nagytömegűek, hogy magjukban beinduljon a szén és az oxigén fúziója. Idővel a nukleáris fúzió a külső rétegekben is leáll. A csillagszél megszűnik, és lassan a fehér törpe állapotba jut a csillag. Mire ez a folyamat teljesen befejeződik, a planetáris köd elenyészik az űr sötétjében, láthatatlanná válik.

A fehér törpék esetében az úgynevezett elfajult elektrongáz nyomása dacol gravitációval. Ez a kvantummechanikai eredetű nyomás csakis a sűrűségtől függ, a hőmérséklettől egyáltalán nem – ellentétben az ideális gázokkal -, s egészen 1.44 naptömegig (Chandrasekhar-határ) képes egyensúlyban tartani a csillagot.

A fentebb ismertetett, úgynevezett kölcsönható csillagszél modellel tehát nagyszerűen megmagyarázható, hogy miként keletkeznek a sűrűbb héjak a lassan haldokló csillag körül. Azonban a legtöbb planetáris köd egyáltalán nem gömbszimmetrikus. Tekintélyes hányadukra például sokkal inkább jellemző valamiféle tengelyes szimmetria (bipolárisak, esetleg multipolárisak). Csak hogy két példát említsek azok közül, melyeket korábban már megörökítettem, sem az NGC6302, de még csak M57 sem gömbszimmetrikus.

ngc6302-lrgb-20140414-ttk-1

NGC6302 planetáris ködről már elsőre látszik, hogy sokkal inkább valamiféle tengelyes szimmetria jellemző rá, még ha az nem is oly tökéletes. Bíbor csápjait messzire nyújtja az űrben. A központi részen két fénykaréj fordít egymásnak hátat, így téve még hangsúlyosabbá a homokóraformáját az objektumnak. A bipoláris planetáris ködök gyönyörű példánya. (A szerző saját felvétele.)

M57-LRGB-20140505-TTK

Az M57 felépítése is valami mást takar. (A szerző saját felvétele.)

Hogyan értelmezhető e planetáris ködök szerkezete? Egyes elképzelések szerint, már az AGB fázisban, a forgó csillagról kiáramló lassú csillagszél sem gömbszimmetrikus, az a csillag egyenlítőjénél sűrűbb, míg a pólusok irányában ritkább. A csillag körül, annak egyenlítőjének a síkjában, tórusz alakú sűrűsödés alakul ki. A későbbi fejlődési állapotban meginduló gyors csillagszél, így könnyebben el tud szökni a pólusok irányába, és ott messzebbre jutva, létrehozza a bipoláris planetáris ködökre jellemző homokóraformát (pillangóformát). Az, hogy milyennek látjuk ezeket a ködöket, az nagyban függ attól, hogy milyen irányból tekintünk rájuk, ahogy ez a lenti ábra is szemlélteti.

planetaris-kodok-persp

Az, hogy a bipoláris planetáris köd megjelenése gyűrűre, vagy inkább homokórára emlékeztet, az attól függ, hogy milyen irányból tekintünk rá. Forrás: http://astro.u-szeged.hu/oktatas/galaktikus/34planetaris_nezet.html

Csakhogy, az elméleti megfontolások arra engednek következtetni, hogy az AGB fázisban a csillag forgása ahhoz nem elég gyors, és a mágneses mezeje sem elég erős, hogy működhessen a modell.  Ráadásul a planetáris ködök formavilága roppant változatos. Van, ami bár közel gömb alakú, de belsejében furcsa struktúrák figyelhetőek meg. Van ahol több héjból áll a köd. Egyeseknél jet-ek (kilövellések) láthatóak. Olyan planetáris ködök is vannak, ahol csak úgy értelmezhető a megfigyelhető látvány, hogy a csillag „imbolygott” (precesszió) az anyagkibocsájtás közben.

A világegyetemben a csillagok nagyjából fele nem magányos. Körülbelül 50 ± 10 % egyedüli, 38 ± 10 % kettős, 8 ± 3 % hármas, 3 ± 1 % többes rendszer tagja. A csillagászok joggal feltételezték, hogy a planetáris ködök szülőcsillagainál sincs ez másképpen.

The Frosty Leo Nebula

Az IRAS 09371+1212 planetáris köd (Frosty Leo Nebula) szerkezete arról árulkodik, hogy szülőcsillaga nem magányos. Forrás: ESA/Hubble – NASA

És valóban! Az esetek felében – ahol sikerült megfigyelni a központi csillagot -, azt találták a csillagászok, hogy az nem magányos. Alapvetően tehát szülőcsillaguk UV sugárzása a felelős e ködök fényéért, azonban a szerkezetük kialakításában kulcsszerep jutott a társcsillagnak. Hogyan?

Két mágnesezett és egymás körül keringő csillag egymásra gyakorolt hatását egyelőre nem lehet egzakt módon kiszámítani, mindössze kvalitatív képe van csak a csillagászoknak a dologról. Úgy látszik azonban, hogy a kísérőcsillag segít a mágneses mező fenntartásában. Továbbá, a keringésből származó perdület egy részét a gerjesztő csillagra juttatva felgyorsíthatja annak forgását. Mégis csak lehetséges tehát, amennyiben kettőscsillagról van szó, hogy már eleve az AGB fázisban sérül a gömbszimmetria. A kettősségnek köszönhetően mégiscsak működhet az elképzelés, miszerint a csillag egyenlítőjénél sűrűbb, míg a pólusok irányában ritkább a lassú csillagszél, illetve a szuperszél.

Másfelől, mivel a kettős rendszer tagjai a közös tömegközéppont körül keringenek, így a kiáramló csillagszél „megkavarodik”. A ledobott héjak összenyomódnak a keringés irányában, az anyag a vezető oldalon jobban összesűrűsödik, majd a köd tágulásával a „mintázat” felfúvódik. Ez a jelenség megmagyarázza, hogy miért látunk több planetáris ködben is spirális mintázatot.

R_Sculptoris_ALMA_data_visualisation

Az ALMA (Atacama Large Millimeter Array) milliméteres/szubmilliméteres tartományban működő rádiótávcsövek hálózatából álló rendszer felvétele az R Sculptoris félszabályos változócsillagról, mely egy AGB fázisban lévő vörös óriás csillag. A csillakörüli anyag különös mintázatát valószínűleg a „láthatatlan” kísérőjének köszönhető. Az R Sculptoris pályája különböző pontjain „pöfögte le” magáról külső rétegeket, miközben a kettős rendszer a közös tömegközéppont körül keringett.  Forrás: ALMA (ESO/NAOJ/NRAO)

Kettőscsillag alkotta rendszerekben más egyéb folyamatok is alakíthatják a planetáris köd szerkezetét. Talán a legkülönösebb mintázatokat az egymáshoz viszonylag közel keringő kölcsönható kettősök hozzák létre.

Mindkét tag esetén megvan az a térrész, amit az adott égitest gravitációja ural. Ezt Roche-térfogatnak nevezik. Ami azon kívül kerül az akár el is hagyhatja a rendszert, vagy a páros körüli pályára állhat. A belső (L1) Langrange-ponton keresztül azonban anyag áramolhat át az egyik Roche-térfogatból a másikba. Amennyiben az egyik csillag társa fejlődése során felfúvódik, és kitölti saját Roche-térfogatát, vagy csak intenzív csillagszele révén az AGB fázisban sok anyagot veszít, és ez tölti ki az említett térfogatot, akkor megindul az anyag átáramlása a társra.

Roche-lobes-corrected

Az ábra a Roche-térfogatot szemlélteti. Az L1 a szövegben is említett belső Langrange-pont. Az eredeti ábra forrása: Wikipedia.org (az eredeti ábra hibás volt, így módosítottam)

Bizonyos esetben azonban nem jut el az AGB társ összes anyaga a kísérőjére, hanem gázfelhő formájában veszi körül a párost. Közös gázburokkal körülvett kettőscsillagoknak (common envelope binary systems) nevezik az ilyen rendszereket. (Megjegyzés: A gázburok más ütemben rotál, mint a benne található kettőscsillagok. Ez különbözteti meg ezeket a kettősöket az érintkező kettős rendszerektől.)

Közös gázburok olyankor alakul ki kettőscsillagok körül, ha az egyik komponens valamilyen okból nagyon gyorsan fúvódik fel, vagy a két csillag közötti szeparáció nagyon gyorsan ütemben csökken. Ezeknél a párosoknál is, amikor a felfúvódó donor kitölti a Roche-térfogatot, megindul az anyagátadás. Tömege csökken, a Roche-térfogata zsugorodik. Így még jobban kitölti a térfogatot. Gyorsul az anyagátadás üteme, gyorsul a Roche-térfogat kitöltése (az folyamatosan megy össze), és így tovább. Egy megszaladó dinamikusan instabil anyagátadás valósul meg a kettős rendszerben. Adott esetben a „fogadó” oldali csillag már nem is tudja begyűjteni az összes gázt, és ezért közös gázburok alakul ki a páros körül. A gázburok fékező hatást fejt ki a kettős rendszerre. A csillagok energiát veszítenek, és közelebb kerülnek egymáshoz, ami szintén maga után vonja a Roche-térfogat zsugorodását, s így az anyagátadás fokozódását. A keringésből származó „lopott” energia felfűti és kitágítja a közös burkot. Idővel a donor felfúvódása abbamarad, a közös burok pedig tágulva elhagyja a rendszert. (Az is előfordulhat, hogy a kettős tagjai végül összeolvadnak, de e helyütt ezzel most nem foglalkozom.)

Akár közös burok veszi körül a párost, akár sem, amikor a Roche-térfogat kitöltésekor az anyagátadás megvalósul, akkor a gáz nem közvetlenül zuhan a második csillagra, hanem úgynevezett akkréciós korongot formál körülötte, s így befelé spirálozva éri el a csillag felszínét. Az ilyen akkréciós korongok gyakori sajátossága a forgástengellyel párhuzamos kifújások (jet) a csillagnál. Amennyiben a korong még precessziós mozgást is végez (imbolyog), az epizodikus kifújások dugóhúzó, vagy S mintázatot rajzolnak a térben. Ennek a jelenségnek egy nagyszerű példája a Fleming 1 planetáris köd.

The planetary nebula Fleming 1 seen with ESO’s Very Large Telescope

A Fleming 1 planetáris köd közepén nem is egy, hanem két degenerált (post-AGB fázisú, ifjú fehér törpe) csillag is található. A kiinduláskor a két csillag tömege igen közel lehetett egymáshoz. Az árnyalatnyival nagyobb tömegű komponens, csillagászati értelemben csak alig valamivel hamarabb érte el a planetáris ködöt létrehozó fejlődési állapot. Nem sokkal később a társa is követte. A különös S mintázatot az AGB csillagról a fehér törpére átáramló anyag formálta akkréciós korong jet-jei alakították ki.  Forrás: ESO (VLT)

A Fleming 1 S alakú mintázatának kialakulását szemléltető video.

Egyre elfogadottabb tehát az a nézet, hogy a gömbszimmetriától való eltérés magyarázata, a központi csillag kettőssége.  A planetáris ködök központi csillagainak hatoda ráadásul nem is kettős, de hármas rendszer tagja. Ilyen esetekben még a tengelyes szimmetria sem teljesül. De mi a helyzet azokkal a ködökkel, amelyek középpontjában magányosnak tűnő csillag csücsül, és mégsem gömbszimmetrikusok? Az elméleti megfontolások szerint nincs szükség feltétlenül csillagkísérőre, hogy működjenek a fentebb vázolt mechanizmusok. Már egy barna törpe társ, vagy akár a csillag bolygórendszere is képes „tönkretenni” a szabályos gömbformát. Napjainkban már több ezer exobolygóról van tudomásunk, s azt is tudjuk, hogy a bolygórendszerek igen gyakoriak a csillagok körül. Mondhatni, szinte nincs is valójában magányos csillag, csupán olyan, melynek nincs csillagtársa.

Ezzel röviden áttekintettem a megfigyelések, következtetések, elméleti megfontolások azon láncolatát, melyek Herschel „planetáris köd definíciójától” a mai, modern képig elvezettek. Igaz, e helyütt csak kialakulásukkal, felépítésükkel foglalkoztam. Azzal is csak vázlatosan. Akit a téma részletesebben is érdekel, annak ajánlom figyelmébe a felhasznált irodalmak listájából Szabados László cikkét. Évtizedek óta nem jelent meg magyar nyelven ahhoz hasonló összefoglaló cikk a planetáris ködökről! Ráadásul (teljesen természetes módon), azokban a korábbi magyar nyelvű cikkekben sok információ mára el is avult.

Külön köszönettel tartozom Szabados Lászlónak a cikk írásakor nyújtott konzultációs lehetőségért!

Felhasznált irodalom:

C. Muthu, B. G. Anandarao: A Spatiokinematic Study of the Planetary Nebula NGC 1514

Michael E. Ressler, Martin Cohen, Stefanie Wachter, D. W. Hoard, Amy K. Mainzer, and Edward L. Wright: The Discovery of Infrared Rings in the Planetary Nebula NGC 1514 During the WISE All-Sky Survey

B. Aryal, C. Rajbahak, R. Weinberger: A giant dusty bipolar structure around the planetary nebula NGC 1514

Henri M. J. Boffin, Brent Miszalski, Thomas Rauch, David Jones, Romano L. M. Corradi, Ralf Napiwotzki, Avril C. Day-Jones, Joachim Koeppen: An Interacting Binary System Powers Precessing Outflows of an Evolved Star

A. Aller, B. Montesinos, L. F. Miranda, E. Solano, A. Ulla: Spectral analysis of BD+30°623, the peculiar binary central star of the planetary nebula NGC 1514

R.H. Mendez, R.P. Kudritzki, M.A. Urbaneja: The two central stars of NGC 1514: can they actually be related?

Szabados László: Planetáris ködök (Meteor csillagászati évkönyv 2017)

NGC2808 – Csillagok generációi a gömbhalmazokban

NGC2808-LRGB-20170220-T32-180s-TTK

Az NGC2808 gömbhalmaz

2017-02-20, 2017-02-21 – Siding Spring Observatory

21 x 180 sec L, 8 x 180 sec R, 8 x 180 sec G, 8 x 180 sec B

iTelescope.net T32 – Corrected Dall-Kirkham Astrograph Planewave 17″ – 43 cm, f/6.8 – FLI Proline 16803 CCD kamera

A képre kattintva, az nagyobb felbontásban is elérhető.

A gömbhalmazokról írt összefoglaló cikkem írásakor merült fel bennem először, hogy felvételt készítsek az NGC2808-ról. A déli Hajógerinc (Carina) csillagképben található, ezért nálunk sosem emelkedik a horizont fölé. A megfigyeléséhez vagy délre kell utazunk, vagy távcsőidőt kell bérelnünk ott. Én eme utóbbi megoldást választottam.

NGC2808-map1

Az NGC2808 a déli Hajógerinc (Carina) csillagképben.

Az NGC2808 a Tejútrendszer ősi csillaghalmazai között is igazi óriásnak számít. Ugyan van nála nagyobb, és masszívabb is akad, de 130 fényéves átmérője és tömege, ami 1.42 milliószorosa Napunkénak, így is messze kimagaslónak számít a gömbhalmazok mezőnyében. Csillagai extrém koncentrációt mutatnak a mag felé. A 12 fokozatú Shapley-Sawyer féle osztályozás szerint, mely a gömbhalmazok előbb említett tulajdonságon alapszik, az I. osztályba tartozik. Nem sok riválisa akad. Csak a hazánkból is megfigyelhető M75 (Nyilas csillagkép), és az NGC7006 (Delfin csillagkép) esetében tapasztalhatunk hasonlót. Ezek viszont fényességben és méretben is elmaradnak tőle. Megjegyzem, hogy talán éppen a csillagok koncentrációja, és a mag döbbenetes fényessége jelentette a legnagyobb nehézséget a kép kidolgozása során. Ennek részleteivel azonban nem untatnám az olvasót.

NGC2808-Tejutrendszer2

Az NGC2808 elhelyezkedése a Tejútrendszerben. Napunkat a kis sárga pöttyjelöli.

Talán már magában az NGC2808 impozáns paraméterei, illetve az ennek köszönhető látványa is izgalmassá tenné a 31300 fényévre (9.1 kpc) lévő, 6.2 magnitúdós gömbhalmazt. Én elsősorban mégsem ezért választottam ki. A gömbhalmazok megismerésében játszott kulcsfontosságú szerepe volt az, ami számomra különösen érdekessé tette.

Sokáig úgy gondolták a csillagászok, hogy a gömbhalmazok csillagjai egyszerre keletkeztek. Kémiai összetételük éppen ezért teljesen homogén. A gömbhalmazok korát, azok Hertzsprung-Russel diagramja (HRD) alapján határozták meg, élve az előbbi feltételezéssel. Az egyszerre született, azonos fémtartalmú csillagok megfigyelhető fejlődési állapota csak a kiindulási tömegtől függ.

A csillagászok minden elemet a hidrogénen és a héliumon túl a periódusos rendszerben fémnek neveznek. Egy csillag fémtartalmát általában a Naphoz szokták hasonlítani a kutatók. A világegyetem története folyamán, a csillagoknak hála folyamatosan dúsult fémekkel. Az újabb és újabb csillaggenerációk egyre több fémet tartalmaztak, így minél alacsonyabb fémtartalmú egy csillag a Naphoz képest, annál ősibb objektum. Kezdetben csak a vas és a hidrogén arányát vizsgálták, és ez alapján vontak le következtetéseket. Később azonban más elemek hidrogénhez viszonyított arányát is elkezdték vizsgálni, amikor arra voltak kíváncsiak, hogy eltérő-e két csillag kémiai összetétele. Mint ezt később látni fogjuk, csak a vas relatív mennyisége nem mindig árulkodó.

A nagyobb tömegű fényesebb és forróbb csillagok hamarabb elhasználják hidrogén készleteiket, és elhagyják a fősorozatot. Az idő előrehaladtával már csak a kisebb tömegű, és kevésbé fényes csillagok maradnak a fősorozaton.

M55HRD-label

Nincs „tipikus” gömbhalmaz, de az M55 Hertzsprung-Russel diagramja jól szemlélteti a szövegben foglaltakat. Main sequence – Fősorozat, Red giant branch – Vörös óriás ág, Horizontal Branch – Horizontális ág, AGB (Asymptotic Branch) – Aszimptotikus óriás ág, Blue stragglers – Kék vándorok, White dwarfs – Fehér törpék

Az ábra forrása: Australia Telescope National Facility (ATNF)

Megnézve egy gömbhalmaz Hertzsprung-Russel diagramját rögtön szembetűnő, hogy a valaha legfényesebb, a Nap tömegét több mint nyolcszorosan meghaladó csillagok mind hiányoznak a fősorozatról. Ezek réges-régen „kihunytak”, miután szupernóvaként lángoltak fel. De a közepes tömegűeket, vagyis a Nap tömegét nagyjából kétszeresen, de maximum nyolcszorosan meghaladó csillagokat sem találjuk már ott. Bennük is leálltak a fúziós energiatermelő folyamatok, ma a gömbhalmazok fehér törpe populációját gyarapítják, hogy aztán sok-sok évmilliárd év alatt nagyon lassan kihűljenek. 10 milliárd év után a gömbhalmazokban – márpedig a Tejútrendszer gömbhalmazai jellemzően ennél is idősebbek -, már csak a Nap tömegével összemérhető, illetve a Nap tömegénél kisebb tömegű csillagok belsejében folyik energiatermelés. Azonban, ezekből is a nagyobb tömegűek magjában már kifogytak a hidrogénkészletek, és így el is hagyták a fősorozatot. Miután a csillag fejlődése során a magban elfogy a hidrogén, ennek héliummá történő átalakítása a magot körülvevő külső héjba tevődik át, és a csillag felfúvódva a vörös óriás állapotba jut. A horizontális ág tagjai a magjukban már héliumból szenet hoznak létre. (Elméleti megfontolások szerint, ehhez legalább nagyjából 0.5 naptömeg szükséges.) Ennek az ágnak a csillagai kis fémtartalmú ősi, kisebb tömegű csillagok. A Naphoz hasonló, vagy csak valamivel kisebb fémtartalmú, és tömegű csillagok nem „foglalják el” a horizontális ágat, csak némileg válnak forróbbá, miközben luminozitásuk csökken. Ezek alkotják az úgynevezett vörös kupac (Red Clump) csillagait a Hertzsprung-Russel diagramon. Miután a hélium is elfogy az addigra szénben és oxigénben gazdag magban, a fúzió az azt körülvevő külső héjba tevődik át. Az energia nagy része azonban nem itt keletkezik, hanem a külsőbb hidrogén héjban. A csillag külső rétegei ismét felfúvódnak és lehűlnek. Ennek köszönhetően a csillag fényessége ismét megnő, túlszárnyalva a korábbi vörös óriás fázist, színe pedig ismét a vörös felé tolódik. A csillag elfoglalja helyét az aszimptotikus óriás ágon (AGB fázis). Innen, ezeknek a csillagoknak útja is a fehér törpe állapot felé vezet, ugyanis már a Napunk tömege is kevés ahhoz, hogy valaha is beinduljon a magjában a szén vagy az oxigén fúziója, nem is beszélve a nála kisebb tömegű csillagokról.

Evolutionary_track_1m.svg

Nagyjából 1 naptömegű csillag fejlődési útvonala a fősorozat után a Hertzsprung-Russel diagramon. A gömbhalmazok ma megfigyelhető, a fősorozatról korábban eltávozott csillagjai is nagyjából hasonló utat járnak be. Jelenleg, tömegüktől függően, a görbe valamelyik pontjának közelében tartózkodnak. A pontos útvonal azonban függ a csillag kémiai összetételétől is.

Ábra forrása: Wikipedia.org

Minél idősebb egy halmaz, annál lejjebb tolódik az a pont (Turn Off Point) a fősorozaton, ahol a csillagok „elkanyarodnak” a vörös óriás ág felé. Felrajzolva a HRD-t egy adott halmazra, az előbb említett pontnak a meghatározásával, továbbá felhasználva a csillagfejlődési elméleteket, izokron illesztésével megbecsülhető a halmaz kora. Az izokron a csillagfejlődésben használt kifejezés, mely a HRD-n az azonos korú csillagokat összekötő görbét jelöli. Évtizedeken keresztül alkalmazták a módszert a csillagászok, és végig egyetlen csillaggenerációt feltételezve, keresték azt „az egyetlen” görbét, mely a legjobban illeszkedik az adott halmaz Hertzsprung-Russel diagramjára. A gömbhalmazokat a csillagfejlődési elméletek tökéletesítésére, tesztelésére, kalibrálására használták, és természetesen használják még a mai napig is. De e halmazok révén a Tejútrendszer és más galaxisok kialakulásával, evolúciójával kapcsolatos elméletek is ellenőrizhetők. Fontos tehát, hogy a csillagászok alaposan ismerjék felépítésüket, tulajdonságaikat.

Mindig is volt azonban egy bizonyos probléma a gömbhalmazok Hertzsprung-Russel diagramjával kapcsolatban, ami nagyon zavarta a csillagászokat, és a múlt század hatvanas éveitől kezdve évtizedeken át nem lelték a megoldását.

Azt viszonylag hamar felismerték (ezt korábban már említettem is), hogy a csillagok „működése”, fejlődése nagyban függ a fémtartalomtól. Némileg más utat jár be a fémekben szegény csillag a HRD-n, mint a fémekben gazdagabb. A fémtartalom a csillag színhőmérsékletére is kihat. A fémekben szegények kékebbek, mint a fémekben gazdagabbak. Éppen ezért a fémekben gazdagabb gömbhalmazoknak általában vörösebbek a horizontális ágon tartózkodó csillagjai. Találtak tehát egy paramétert, amivel a horizontális ágak morfológiájának különbségét magyarázni lehetett. A halmazok horizontális ágán lévő csillagok színeloszlása azonban még így is furcsa devianciát mutatott bizonyos esetekben.

GC_masodik_parameter1-m

Az ábrán fémekben gazdagabb négy halmaz szín-fényesség diagramja (HRD) látható. A vízszintes tengelyen B és V szűrővel mért fényesség értékek különbsége van feltüntetve (ez tekinthető a csillagok színének) a színképosztály helyett. A függőleges tengelyen pedig V színszűrővel felvett fényességérték szerepel. Figyeljük meg, hogy míg a felső kettő horizontális ága csak egy „vörös csonkból” áll, vagyis vöröses árnyalatú csillagok alkotják, addig az alsó kettő horizontális ága, a vörös csillagokat követő résen túl (balra), kékes csillagokban is bővelkedik. Hasonló a fémtartalom, pontosabban a vas hidrogénhez viszonyított aránya, de mégis eltérő a horizontális ág morfológiája. Ábra forrása: C. Sosin és mások.

A csillagászok találtak olyan nagyjából hasonló fémtartalmú, hasonló vas/hidrogén arányú gömbhalmazokat, melyek horizontális ágai meglepően más képet mutattak. Egyeseké vörösebb, másoké inkább kékes árnyalatú volt, de akadtak a kettő között átmenetet képezők is. Mintha ezek nem akarták volna betartani az előbb felvázolt „szabályt”. A kutatók lázasan keresték, hogy a fémtartalom mellett a halmazok milyen más paramétere lehet hatással a horizontális brancs eloszlására. Innen származik a szakirodalomban használt elnevezés is: a második paraméter problémája.

Ennek egy példája látható a fenti ábrán is. A fémekben gazdagabb gömbhalmazok horizontális ágának vörös csillagait tökéletesen le lehetett írni a korabeli csillagfejlődési elméletekkel, melyek már a fémtartalommal is számoltak. A kékes csillagok előtt viszont némileg értetlenül álltak a csillagászok. Ezeknek nem kellett volna ott lenniük, csakis a fémszegény halmazokban tudták értelmezni a jelenlétüket.

A második paraméterre az idők folyamán több jelölt született. Ezek közül nagyon röviden megemlítenék néhányat. Volt, amelyik a fémtartalom mellett, a halmazok korkülönbségét nevezte meg második paraméterként. Sokáig talán ez volt a legnépszerűbb elképzelés. Mások lokális okokra hivatkoztak. Az egyik ilyen szerint a halmazokon belül a csillagok sűrűsége fontos tényező, ez ugyanis indirekt módon kihatással bír a csillagok késői fejlődési állapotában történő tömegvesztésre, amivel pedig megmagyarázható, hogy miért is különbözőek az azonos fémtartalmú halmazok horizontális ágai. Olyan elképzelés is akadt, mely az eltérő szén-nitrogén-oxigén (CNO) tartalmat tette felelőssé. A horizontális ág csillagainak magjában hélium fúzió zajlik, míg az azt körülvevő héjban pedig hidrogén fúzió. Eme utóbbira pedig nagy hatással van, hogy mekkora a szén-nitrogén-oxigén aránya a csillagban (CNO-ciklus). Mivel a szén-nitrogén-oxigén mennyisége a csillagban befolyásolja annak energiatermelését, így nagyban meghatározza, hogy az hol foglal helyet a Hertzsprung-Russel diagram horizontális ágán. Önmagában végül egyik elképzelés sem volt képes megoldani a problémát.

Az NGC2808 szintén a problémás esetek közé tartozott. Már a múlt század hetvenes éveiben ismert volt a tény, hogy horizontális ágát vörös és kék csillagok alkotják, melyeket tekintélyes rés választ el egymástól. A két csoport között teljesen hiányoztak a „köztes színű” csillagok.

A Hubble űrtávcső teljesen új fejezetet nyitott a csillagászatban, így a gömbhalmazok kutatásában is. A Hubble és kamrája (WPFC2 – Wide Field and Planetary Camera 2) olyan jellegű fotometriai vizsgálatokat tett lehetővé, amiről korábban a kutatók még csak nem is álmodhattak. A rendkívül zsúfolt gömbhalmazok fotometriája az akkori földi műszerekkel igencsak nehézkes volt. Pár példány esetében a Hubble-re volt ahhoz szükség, hogy egyáltalán azonosítani lehessen a horizontális ágon a csillagait. Nagy lendülettel vetették tehát bele magukat a csillagászok a munkába, mely az NGC2808 esetében is izgalmas új részleteket tárt fel. Kiderült, hogy a horizontális ág kék oldala kiterjedtebb, mint az korábban gondolták. Az kezdetben vízszintesen indult, majd hosszan lefelé hajlott a HRD-n. Első alkalommal sikerült nyomon követni a horizontális ág kék csillagait egészen 21 (V) magnitúdóig. Ráadásul, a Hubble ultraibolya szűrőjével (F218W, λeff = 2189Å) készült szín-fényesség diagramján a horizontális ág kék része csomósodásokat mutatott. Ebből kettő teljesen egyértelmű volt, míg egy harmadik jelenléte is gyanítható volt az extrém kék végén. Semmilyen mechanizmus nem volt ismert, mely megmagyarázhatta volna ezeknek a csomóknak a létét. Összefoglalva tehát, 1997-re világossá vált, hogy az NGC2808 horizontális ága három elkülöníthető, egy vörös és két kék csoportból áll. Azonban egy negyedik kék csoport létezése sem volt teljesen kizárt. Lassan gyűltek a jelei annak, hogy a gömbhalmazok talán mégsem egyetlen csillaggenerációból állnak. De az igazi áttörésre még várni kellett.

 NGC2808-HST-CMD-97Sosin-m

Balra az NGC2808 szín-fényesség diagramja (HRD) látható. A vízszintes tengelyen B és V szűrővel mért fényesség értékek különbsége van feltüntetve (ez tekinthető a csillagok színének) a színképosztály helyett. A függőleges tengelyen pedig V színszűrővel felvett fényességérték szerepel.

A jobb alsó ábrán külön kiemelésre került az NGC2808 horizontális ágának szín-fényesség diagramja (HRD). A vízszintes tengelyen FUV (ultraibolya) és B (kék) szűrővel mért fényesség értékek különbsége van feltüntetve. A függőleges tengelyen pedig B színszűrővel felvett fényességérték szerepel. A vörös része a horizontális ágnak itt nem látható, ugyanis azok a csillagok túlságosan halványak az FUV szűrős felvételeken. Jobb felső diagramon a horizontális ág kék csillagainak szín szerinti eloszlása látható. Figyeljük meg a csomósodásokat!

Ábra forrása: C. Sosin és mások.

A következő jelentős felfedezésre csak pár évet kellett várni. 2004-ben annak felismerése keltett nagy izgalmat, hogy az ω Centauri (NGC5139) gömbhalmaz fősorozatán, a Hubble űrtávcsőnek hála, sikerült elkülöníteni két különálló csillagcsoportot. Az ezt követő spektroszkópiai analízis is megerősítette azt a tényt, hogy ezek bizony különböző csillaggenerációk. A két csoport fémtartalma különböző volt. Egészen pontosan a második generációra csak olyan izokron illeszkedett, amiben a csillagok héliumban jelentősen gazdagabbak voltak a domináns öregebb populációhoz képest. Ehhez a bravúrhoz egyértelműen az űrtávcsőre volt szükség! Nemsokkal később már legalább három generáció jelenlétét sikerült igazolni a fősorozaton, mely a szubóriás ágon négy különböző brancsra bomlott kora és fémtartalma alapján. Ezek a felismerések megerősítették a gyanút, hogy az ω Centauri talán nem is gömbhalmaz, hanem egy törpe galaxis maradványa.

Kampány indult annak kiderítésére, hogy vajon a Tejútrendszer más gömbhalmazát is több csillaggeneráció alkotja-e. Éppen tíz évvel ezelőtt, 2007-ben jelent meg a tanulmány, aminek a szerzői (G. Piotto és mások) bejelentették, hogy elsőként az NGC2808 esetében siker koronázta próbálkozásukat. Már korábban, 2005-ben megszületett az a felismerés (D’Antona és mások), miszerint a halmaz fősorozata anomális kiterjedést mutat a kék szín irányába. Ebben a fősorozat csillagainak nagyjából 20%-ka volt érintett, így kimondottan ennek a jelenségnek a vizsgálata volt az egyik fő cél. A csillagászok biztosak szerettek volna lenni abban, hogy a vizsgálatuk tárgyát képező csillagok tényleg a halmazhoz tartoznak, és nem előtér vagy háttér csillagok csupán. Éppen ezért, a megfigyeléseiket 18 hónapra nyújtották el, és azt 3 különböző időpontban végezték el. Ez már elég volt ahhoz, hogy a csillagok sajátmozgását figyelembe vegyék. Az elmozdulásuk alapján így el lehetett dönteni, hogy a vizsgált csillag halmaztag-e, vagy sem. Megállapították, hogy az NGC2808 fősorozata egyértelműen 3 különböző csillagpopulációból áll. Ugyanakkor, ezek fémtartalma, pontosabban a vas és a hidrogén aránya nem tér el számottevően, ahogy ezt például az ω Centauri esetében megfigyelték. Jelentősen különbözik azonban az egyes csoportok hélium tartalma.

NGC2808-iso

Az NGC2808 gömbhalmaz fősorozata, amelyben 3 csillagpopuláció is elkülöníthető Piotto és kutatótársainak 2007-es tanulmánya szerint. Az ábrán látható, hogy a fősorozat több izokronnal írható csak le. Ezek az izokronok a csillagok kémiai összetételben (hélium tartalmában) térnek el egymástól. Ábra forrása: G. Piotto és mások

Pár évvel korábban más kutatók (E. Carretta és mások) spektroszkópiai vizsgálatoknak vetették alá az NGC2808 vörös óriás ágát. A nátrium/vas és oxigén/vas arányát vizsgálták és szignifikáns oxigén-nátrium antikorrelációt találtak. A vörös óriás csillagok túlnyomó többségének oxigéntartalma a galaktikus halóra jellemző értéket mutatott. Azonban, kimutatható volt még két másik csoport is: egy oxigénben szegény, és egy oxigénben kimondottan szegény. E mellett marginális eltérést is megállapítottak a vas és a hidrogén arányában az egyes csoportok között. Az oxigénben nagyon szegényekben némileg több volt a vas aránya a hidrogénhez képest, mint a normál mennyiségű oxigént tartalmazókban. Ezt az eltérő héliumtartalomra vezették vissza, ugyanis a héliumtöbblet, erősebbé teszi a fémek vonalait.

Végső konklúzióként az született 2007-ben (G. Piotto és mások), hogy a horizontális ág megfigyelt morfológiája, a fősorozat felépítése, a vörös óriás ág kémiai összetételében tapasztalható különbségek csakis egy módon értelmezhetők: az NGC2808 legalább három, különböző korú csillagok generációjából áll. Az első generációt követő újabbak, már az korábbiak által beszennyezett gázból formálódtak.

Az NGC2808 vizsgálata nem ért véget 10 évvel ezelőtt. A folytatáshoz nagyban hozzájárult a Hubble űrtávcső negyedik szervizmissziója 2009 májusában. Újra használhatóvá vált a WFC/ACS műszer (Wide Field Channel of the Advanced Camera for Surveys), továbbá ekkor helyezték üzembe az új UVIS/WFC3 (Ultraviolet and Visual Channel of the Wide Field Camera 3) eszközt. Az utóbbinak köszönhetően a kutatók nagyobb hangsúlyt fektetettek az NGC2808 csillaggenerációinak ultraibolya tartománybéli megfigyelésére (Hubble Space Telescope UV Legacy Survey of Galactic GCs). Az elektromágneses spektrum ultraibolya régiója kiváló lehetőségeket nyújt az eltérő kémiai összetételű csillagpopulációk tanulmányozására. Azoknak a molekuláknak a sávjai (OH, NH, CH, CN), amelyekből következtetni lehet a csillagok szén (C), nitrogén (N) és oxigén (O) tartalmára az ultraibolya tartományba esnek. A több hullámhosszon elvégzett fotometriai vizsgálatokra, eltérő kémiai összetételt feltételező szintetikus spektrumokra, és nagy felbontású spektroszkópiára épülő eredményeket taglaló cikk 2015-ben jelent meg (A. P. Milone és mások).

NGC2808-HST-CMD-15Milone-1

Az NGC2808 gömbhalmaz szín-fényesség diagramja (HRD). A belső ábrákon a vízszintes és függőleges tengelyeken, a nagy ábrától eltérő, az egyes vizsgálatok szempontjából „legpraktikusabb” hullámhosszokból konstruált szín-fényesség diagrammok láthatók. Balra alul: vörös óriás ág. Jobbra alul: fősorozat. Jobbra felül: szubóriás ág. Már szemmel is látható a többszörös szekvencia jelenléte. Az alapos analízis 5 csillaggeneráció jelenlétét mutatta ki.

Ábra források: A. P. Milone és mások

Kiderült, hogy az NGC2808 felépítése még komplexebb, mint azt korábban gondolták. A vörös óriás ágon 5 populációt sikerült elkülöníteni. Bár a fősorozaton már nem volt ennyire egyértelmű a helyzet, de végül ott is 5 külön populációt találtak. A 2007-es tanulmányban (G. Piotto és mások) kimutatott két kékebb csoport mellett, a fősorozat többséget alkotó vörös csoportot is három részre tudták bontani. Újra megerősítést nyert az is, hogy a horizontális ág kék része 3 populációból áll. Továbbá, konfirmálták más csillagászok 2014-ben publikált (Marino és mások) felismerését, hogy a horizontális ág vörös részét valójában két eltérő kémiai összetételű csillagcsoport lakja (nátriumban gazdag, és nátriumban szegény). De még az aszimptotikus óriás ágon is egyértelműen elkülöníthető volt három populáció.

Összességében tehát elmondható, hogy az NGC2808-ban ma 5 csillaggenerációról van tudomásunk, melyek kémiai összetétele eltérő, vagyis változik populációról, populációra. Azt, hogy az eltérések kimondottan diszkrétek, nem lehet figyelmen kívül hagyni. Az egyes generációk születése is diszkrét kellett, hogy legyen. Az adott generáció csillagai szinte tökéletesen egyszerre keletkeztek. A legelső az ősi gázfelhőből, így annak kémiai összetételét örökölte. Az azt követők pedig már a megelőzők által beszennyezett gázból. Az is tény, hogy a körülbelül 12.5 milliárd éves gömbhalmazban alig néhány 100 millió éve alatt le is játszódtak az epizodikus születési hullámok. Az NGC2808 példája is azt mutatja, hogy a masszív gömbhalmazokban mégis csak maradhat elég gáz az első heves csillagkeletkezés után ahhoz, hogy abból további nemzedékek születhessenek. És nem csak az NGC2808 az egyetlen példa erre.

Sőt, ma már ismerünk olyan gömbhalmazokat is, ahol több generáció él együtt, noha az nem is tartozik az igazán masszívak közé. Ilyen például az M4 és az NGC3201 is. Hogy miképpen lehetséges ez? Hogyan születnek egymást követően az egyes nemzedékek? Ez elég komplex probléma, és még ma is vita tárgyát képezi. Erről egy lehetséges „forgatókönyv” vázlatosan olvasható a gömbhalmazokról írt összefoglaló cikkemben.

Felhasznált irodalom:

Young-Wook Lee, Pierre Demarque, Robert Zinn: The horizontal-branch stars in globular clusters. 2: The second parameter phenomenon

C. Sosin, G. Piotto, S.G. Djorgovski, I.R. King, R.M. Rich, B. Dorman, S. Phinney, J. Liebert, A. Renzini: Globular Clusters Color-Magnitude Diagrams with HST

Craig Sosin, Ben Dorman, S. George Djorgovski, Giampaolo Piotto, R. Michael Rich, Ivan R. King, James Liebert, E. Sterl Phinney, Alvio Renzini: Peculiar Multimodality on the Horizontal Branch of the Globular Cluster NGC 2808

Alistair R. Walker: CCD Photometry of Galactic Globular Clusters V. NGC 2808

E. Carretta, A. Bragaglia, R.G. Gratton, F. Leone, A. Recio-Blanco, S. Lucatello: Na-O Anticorrelation And HB I. The Na-O anticorrelation in NGC 2808

G. Piotto, L. R. Bedin, J. Anderson, I. R. King, S. Cassisi, A. P. Milone, S. Villanova, A. Pietrinferni, A. Renzini: A Triple Main Sequence in the Globular Cluster NGC 2808

Jason Boyles, Duncan R. Lorimer, Phil J. Turk, Robert Mnatsakanov, Ryan S. Lynch, Scott M. Ransom, Paulo C. Freire, Khris Belczynski: Young Radio Pulsars in Galactic Globular Clusters

A. P. Milone, A. F. Marino, G. Piotto, A. Renzini, L. R. Bedin, J. Anderson, S. Cassisi, F. D’Antona, A. Bellini, H. Jerjen, A. Pietrinferni, P. Ventura: The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters. III. A quintuple stellar population in NGC2808

NGC1514 plantáris köd

NGC1514-LRGB-20161104-0039-sx-bin2-360s-TTK

NGC1514 – planetáris köd a Bikában

2016-11-04, 2016-11-22 – Göd

24 x 360 sec L (Bin2), 10 x 360 sec R (Bin2), 10 x 360 sec G (Bin2), 10 x 360 sec B (Bin2)

300/1200 Newton távcső – Paracorr Type2 kóma korrektor – eredő fókusz 1380 mm

SkyWatcher EQ-6 Pro GoTo mechanika

SXVR-H18 CCD kamera, Hutech IDAS P2 LPS filter és Baader RGBL fotografikus szűrőszett

Az NGC1514 is egy azon objektumok közül, melyet kisebb lencsés távcsővel, ASI 120mm kamerával korábban már lefényképeztem. Anno csak luminance felvételeket készítettem, vagyis monokróm fotó született. A dolog akkoron félbe is maradt, színeket már nem rögzítettem hozzá. Elraktam a dolgot későbbre. Végül sosem fejeztem be. A kis ködösség az égen arra várt, hogy nagyobb átmérőjű, hosszabb fókuszú műszerrel egyszer majd jobban „szétcincáljam”. 2016 őszén néhány vele kapcsolatos cikk került a kezembe, mely újra felé fordította a figyelmem.

A felvételek feldolgozása közben rá kellett döbbennem, hogy van még tartalék a célpontban és a környező látómezőben. Ezt azonban kisvárosi ég alól (LRGB technikával) már nehezen fogom tudni kiaknázni. A nagyon halvány részek a nyers felvételeken már csak alig-alig váltak el az égi háttértől. De sebaj! Az éppen felsejlő, az egész területen ólálkodó csillagközi anyagot, port, majd egy másik alkalommal leplezem le. Most csak ott bujkál, kissé fátyolossá téve a hátteret, a csillagok fényét tompítva, s narancsos árnyalatot kölcsönözve nekik. Mindez a fizika játéka. A por okozta extinkció effektívebb a rövidebb hullámhosszakon. S minthogy a rövidebb hullámhosszú fény intenzitása jobban csökken, a csillagok fénye a vörös felé mozdul (szín-excesszus). El lehetne még azon is mélázni, hogy jó pár nagyon távoli galaxis is megbújik a háttérben, de most még csak nem is róluk lesz szó. Mindössze a látómező nagyjából 3 ívperces központi területére fogok koncentrálni. Több ott a megfejtetlen titok, mintsem elsőre gondolnánk! Az NGC1514 pontos mibenléte fogós feladvány.

„Egyedülálló jelenség! Egy nagyjából 8 magnitúdós csillag halványan fénylő légkörrel, melynek körkörös az alakja és 3 ívperc az átmérője. A csillag pontosan középen van és a ködösség körülötte nagyon halvány és olyannyira egyenletes, hogy úgy vélem nem is csillagok alkotják. Nem lehet kétséges a kapcsolat a csillag és a légkör között.” Ezekkel a szavakkal jellemezte William Herschel, a ζ Persei-től nem egészen 3.5 fokra található planetáris ködöt, ami valójában már a Bika csillagkép területén található.

Akkoriban általánosan elfogadott vélekedés volt, hogy minden köd csillagokra bontható, és ez csak távcső kérdése. Azonban Herschel-t pár planetáris köd megjelenése ebben elbizonytalanította, és közéjük tartozott az NGC1514 is. Szintén Herschel volt az a személy, aki először használta a planetáris köd kifejezést a Macskaszem-köd, hivatalos nevén az NGC6543 esetében, melynek megjelenése szerinte az Uránuszra hajazott. Az elnevezést aztán a többi csillagász is átvette. Annyira megragadt a szaknyelvben, hogy még akkor sem változtatták meg, amikor már biztosan tudható volt, hogy a planetáris ködök és a bolygók között semmiféle kapcsolat sincsen. A planetáris ködök létezése, az életük végéhez közelítő közepes tömegű csillagoknak köszönhető. Közepes tömeg alatt a 0.8 és 8 naptömeg közötti tartomány értendő. A továbbiakban csakis ezekkel foglalkozom majd, és nem térek ki sem a kisebb, sem a nagyobb tömegűekre.

Evolutionary_track_1m-5m

Közepes tömegű csillagok fejlődési útvonala a Hertzsprung-Russel diagramon. Main Sequence – Fősorozat, Subgiant Branch – Szubóriás ág, Giant Branch – Óriás ág, Horizontal Branch – Horizontális ág, Asymptotic Giant Branch – Aszimptotikus óriás ág, Instabilty Strip – Instabilitási sáv

Ábrák forrása: Wikipedia.org

A csillagok életük jelentős részét a Hertzsprung-Russel diagram úgynevezett fősorozatán töltik, miközben magjukban a hidrogén héliummá fúziónál. E folyamatban keletkező energiának köszönhetően képes dacolni a gravitációval. Leegyszerűsítve, a kifelé ható sugárnyomás akadályozza meg, hogy saját gravitációja összeroppantsa a csillagot. Ez a harc születésüktől fogva zajlik, s egészen halálukig, az energiatermelő termonukleáris folyamatok megszűnéséig tart. A hidrogénkészletek azonban nem tartanak örökké. Szerencséjükre a magban zajló hidrogén fúziója nem túlélésük egyetlen kulcsa. Sorsuk azonban így is beteljesül.

A Nap tömegének nagyságrendjébe eső, a fősorozatot elhagyó csillag esetén a hidrogén fúzió már régen nem a magban zajlik. Ekkora, a hidrogén héliummá történő átalakítása már a magot körülvevő külső héjba tevődik át, melynek következtében a csillag felfúvódik, és külső része lehűl, így jut el a vörös óriás fázisba. Majd miután a magban a hőmérséklet eléri a 100 millió fokos nagyságrendet, beindul a hélium fúziója. Ez a folyamat a kék szín irányába tolja a csillag fényét. Hogy mennyire, ez nagy részben a fémtartalomtól függ. (A csillagászok minden elemet a hidrogénen és a héliumon túl a periódusos rendszerben fémnek neveznek. Egy csillag fémtartalmát általában a Naphoz szokták hasonlítani a kutatók. A világegyetem története folyamán, a csillagoknak hála folyamatosan dúsult fémekkel. Az újabb és újabb csillaggenerációk egyre több fémet tartalmaztak, így minél alacsonyabb fémtartalmú egy csillag a Naphoz képest, annál ősibb objektum.) A horizontális ág tagjai a magjukban már héliumból szenet hoznak létre. Ennek az ágnak a csillagai kis fémtartalmú ősi, kisebb tömegű csillagok. A Naphoz hasonló fémtartalmú, 1-2 naptömegű csillagok nem „foglalják el” a horizontális ágat, csak némileg válnak forróbbá, miközben luminozitásuk csökken. Ezek alkotják az úgynevezett vörös kupac (Red Clump a fenti ábrán) csillagait a Hertzsprung-Russel diagramon. A 2-8 naptömegűek viszont kissé nagyobb kitérőt tesznek a kék szín irányába, felszíni hőmérsékletük is jobban megemelkedik. Ezek a kék hurok (Blue Loop a fenti ábrán) csillagai. Azonban, e csillagok életében ez mindössze egy rövidke epizód.

Miután a hélium is elfogy az addigra szénben és oxigénben gazdag magban, a fúzió az azt körülvevő külső héjba tevődik át. Az energia nagy része azonban nem itt keletkezik, hanem a külsőbb hidrogén héjban. A csillag külső rétegei ismét felfúvódnak és lehűlnek. Ennek köszönhetően a csillag fényessége ismét megnő, túlszárnyalva a korábbi vörös óriás fázist, színe pedig ismét a vörös felé tolódik. A csillag elfoglalja helyét az aszimptotikus óriás ágon (AGB fázis). Ugyan a valamivel nagyobb tömegű (2-8 naptömeg közötti) csillagok némiképp más utat járnak be, de nagy vonalakban hasonló folyamatok zajlanak le azoknál is.

Az AGB fázisban a csillagok jelentős mennyiségű tömeget veszítenek a magból a felszínre emelkedett szén, oxigén és egyéb nehéz elemeknek köszönhetően porban gazdag, 10-15 km/s sebességű, sűrű csillagszél révén. Ez évente mintegy 10-7 naptömeget jelent. Ezt egy rövid ideig tartó, hirtelen felgyorsuló, intenzív anyagkiáramlás, az úgynevezett szuperszél követi. Ennek a folyamatnak a végére már szinte csak a lecsupaszított, szénben és oxigénben feldúsult forró mag marad hátra. A csillagot körbevevő anyagfelhőt ebben az állapotban protoplanetáris ködnek nevezik, ugyanis még csak visszaveri szülőcsillagának fényét (nincs még gerjesztés, mint a későbbi planetáris köd fázisban).

A magot vékony hidrogénburok veszi körül, amiben még mindig zajlik a hidrogén fúziója héliummá. A csillag így egyre forróbb, és forróbb lesz. (Balra mozogva a Hertzsprung-Russel diagramon.) A tömegvesztés lelassul évi 10-8 naptömegre. A lassú és sűrű csillagszelet 200-2000 km/s-os gyors, de kis sűrűségű csillagszél váltja fel, mely beleütközik a korábban ledobott, főleg a szuperszél időszakából származó csillagkörüli anyagba. A gyors csillagszél mintegy maga előtt tolva azt, képes sűrű héjat formálni belőle.

Mikor a csillag felszíni hőmérséklete átlépi a 30000 K-t intenzív UV sugárzásával gerjeszteni kezdi a körülötte lévő gázt. A köd többé már nem a csillag fényét veri vissza, hanem „világítani” kezd. Színképét ettől fogva a hidrogén rekombinációs vonalai, és az úgynevezett ütközéssel gerjesztett tiltott vonalak uralják. (Eme utóbbiak csak roppant ritka csillagközi gázban jöhetnek létre, ezért hívják tiltott vonalaknak. Ilyen például az OIII színképvonala is.) Ettől a ponttól beszélünk planetáris ködről.

Alapvetően, az előbb említett különböző típusú anyagkiáramlások bonyolult kölcsönhatása az, mely meghatározza a planetáris köd felépítését, szerkezetét. Hihetetlen tűnik, de kezdeti tömegüknek akár több mint a felét is elveszíthetik a csillagok késői fejlődési fázisukban. Illetve, az esetenként akár 100000 K-nál is nagyobb felszíni hőmérsékletű központi csillag intenzív UV sugárzása teszi a ködöt „láthatóvá”.

Azt mindenképpen ki szeretném emelni, hogy az AGB fázisban történő anyag kibocsájtás, tömegvesztés pontos megértése még várat magára. Sok minden nem teljesen világos még a csillagászok előtt.

A planetáris ködök csillagászati időskálán mérve roppant gyorsan jönnek létre. Az AGB fázis végén ehhez elég mindössze néhány évszázad. Létezésük pedig alig pár tízezer év. A planetáris ködök szülőcsillagai nem elég nagytömegűek, hogy magjukban beinduljon a szén és az oxigén fúziója. Idővel a nukleáris fúzió a külső rétegekben is leáll. A csillagszél megszűnik, és lassan a fehér törpe állapotba jut a csillag. Mire ez a folyamat teljesen befejeződik, a planetáris köd elenyészik az űr sötétjében, láthatatlanná válik.

A fehér törpék esetében az úgynevezett elfajult elektrongáz nyomása dacol gravitációval. Ez a kvantummechanikai eredetű nyomás csakis a sűrűségtől függ, a hőmérséklettől egyáltalán nem – ellentétben az ideális gázokkal -, s egészen 1.44 naptömegig (Chandrasekhar-határ) képes egyensúlyban tartani a csillagot.

A fentebb ismertetett, úgynevezett kölcsönható csillagszél modellel tehát nagyszerűen megmagyarázható, hogy miként keletkeznek a sűrűbb héjak a lassan haldokló csillag körül. Azonban a legtöbb planetáris köd egyáltalán nem gömbszimmetrikus. Tekintélyes hányadukra például sokkal inkább jellemző valamiféle tengelyes szimmetria (bipolárisak, esetleg multipolárisak). Csak hogy két példát említsek azok közül, melyeket korábban már megörökítettem, sem az NGC6302, de még csak M57 sem gömbszimmetrikus.

ngc6302-lrgb-20140414-ttk-1

NGC6302 planetáris ködről már elsőre látszik, hogy sokkal inkább valamiféle tengelyes szimmetria jellemző rá, még ha az nem is oly tökéletes. Bíbor csápjait messzire nyújtja az űrben. A központi részen két fénykaréj fordít egymásnak hátat, így téve még hangsúlyosabbá a homokóraformáját az objektumnak. A bipoláris planetáris ködök gyönyörű példánya. (A szerző saját felvétele.)

M57-LRGB-20140505-TTK

Az M57 felépítése is valami mást takar. (A szerző saját felvétele.)

Hogyan értelmezhető e planetáris ködök szerkezete? Egyes elképzelések szerint, már az AGB fázisban, a forgó csillagról kiáramló lassú csillagszél sem gömbszimmetrikus, az a csillag egyenlítőjénél sűrűbb, míg a pólusok irányában ritkább. A csillag körül, annak egyenlítőjének a síkjában, tórusz alakú sűrűsödés alakul ki. A későbbi fejlődési állapotban meginduló gyors csillagszél, így könnyebben el tud szökni a pólusok irányába, és ott messzebbre jutva, létrehozza a bipoláris planetáris ködökre jellemző homokóraformát (pillangóformát). Az, hogy milyennek látjuk ezeket a ködöket, az nagyban függ attól, hogy milyen irányból tekintünk rájuk, ahogy ez a lenti ábra is szemlélteti.

planetaris-kodok-persp

Az, hogy a bipoláris planetáris köd megjelenése gyűrűre, vagy inkább homokórára emlékeztet, az attól függ, hogy milyen irányból tekintünk rá. Forrás: http://astro.u-szeged.hu/oktatas/galaktikus/34planetaris_nezet.html

Csakhogy, az elméleti megfontolások arra engednek következtetni, hogy az AGB fázisban a csillag forgása ahhoz nem elég gyors, és a mágneses mezeje sem elég erős, hogy működhessen a modell.  Ráadásul a planetáris ködök formavilága roppant változatos. Van, ami bár közel gömb alakú, de belsejében furcsa struktúrák figyelhetőek meg. Van ahol több héjból áll a köd. Egyeseknél jet-ek (kilövellések) láthatóak. Olyan planetáris ködök is vannak, ahol csak úgy értelmezhető a megfigyelhető látvány, hogy a csillag „imbolygott” (precesszió) az anyagkibocsájtás közben.

A világegyetemben a csillagok nagyjából fele nem magányos. Körülbelül 50 ± 10 % egyedüli, 38 ± 10 % kettős, 8 ± 3 % hármas, 3 ± 1 % többes rendszer tagja. A csillagászok joggal feltételezték, hogy a planetáris ködök szülőcsillagainál sincs ez másképpen.

The Frosty Leo Nebula

Az IRAS 09371+1212 planetáris köd (Frosty Leo Nebula) szerkezete arról árulkodik, hogy szülőcsillaga nem magányos. Forrás: ESA/Hubble – NASA

És valóban! Az esetek felében – ahol sikerült megfigyelni a központi csillagot -, azt találták a csillagászok, hogy az nem magányos. Alapvetően tehát szülőcsillaguk UV sugárzása a felelős e ködök fényéért, azonban a szerkezetük kialakításában kulcsszerep jutott a társcsillagnak. Hogyan?

Két mágnesezett és egymás körül keringő csillag egymásra gyakorolt hatását egyelőre nem lehet egzakt módon kiszámítani, mindössze kvalitatív képe van csak a csillagászoknak a dologról. Úgy látszik azonban, hogy a kísérőcsillag segít a mágneses mező fenntartásában. Továbbá, a keringésből származó perdület egy részét a gerjesztő csillagra juttatva felgyorsíthatja annak forgását. Mégis csak lehetséges tehát, amennyiben kettőscsillagról van szó, hogy már eleve az AGB fázisban sérül a gömbszimmetria. A kettősségnek köszönhetően mégiscsak működhet az elképzelés, miszerint a csillag egyenlítőjénél sűrűbb, míg a pólusok irányában ritkább a lassú csillagszél, illetve a szuperszél.

Másfelől, mivel a kettős rendszer tagjai a közös tömegközéppont körül keringenek, így a kiáramló csillagszél „megkavarodik”. A ledobott héjak összenyomódnak a keringés irányában, az anyag a vezető oldalon jobban összesűrűsödik, majd a köd tágulásával a „mintázat” felfúvódik. Ez a jelenség megmagyarázza, hogy miért látunk több planetáris ködben is spirális mintázatot.

R_Sculptoris_ALMA_data_visualisation

Az ALMA (Atacama Large Millimeter Array) milliméteres/szubmilliméteres tartományban működő rádiótávcsövek hálózatából álló rendszer felvétele az R Sculptoris félszabályos változócsillagról, mely egy AGB fázisban lévő vörös óriás csillag. A csillakörüli anyag különös mintázatát valószínűleg a „láthatatlan” kísérőjének köszönhető. Az R Sculptoris pályája különböző pontjain „pöfögte le” magáról külső rétegeket, miközben a kettős rendszer a közös tömegközéppont körül keringett.  Forrás: ALMA (ESO/NAOJ/NRAO)

Kettőscsillag alkotta rendszerekben más egyéb folyamatok is alakíthatják a planetáris köd szerkezetét. Talán a legkülönösebb mintázatokat az egymáshoz viszonylag közel keringő kölcsönható kettősök hozzák létre.

Mindkét tag esetén megvan az a térrész, amit az adott égitest gravitációja ural. Ezt Roche-térfogatnak nevezik. Ami azon kívül kerül az akár el is hagyhatja a rendszert, vagy a páros körüli pályára állhat. A belső (L1) Langrange-ponton keresztül azonban anyag áramolhat át az egyik Roche-térfogatból a másikba. Amennyiben az egyik csillag társa fejlődése során felfúvódik, és kitölti saját Roche-térfogatát, vagy csak intenzív csillagszele révén az AGB fázisban sok anyagot veszít, és ez tölti ki az említett térfogatot, akkor megindul az anyag átáramlása a társra.

Roche-lobes-corrected

Az ábra a Roche-térfogatot szemlélteti. Az L1 a szövegben is említett belső Langrange-pont. Az eredeti ábra forrása: Wikipedia.org (az eredeti ábra hibás volt, így módosítottam)

Bizonyos esetben azonban nem jut el az AGB társ összes anyaga a kísérőjére, hanem gázfelhő formájában veszi körül a párost. Közös gázburokkal körülvett kettőscsillagoknak (common envelope binary systems) nevezik az ilyen rendszereket. (Megjegyzés: A gázburok más ütemben rotál, mint a benne található kettőscsillagok. Ez különbözteti meg ezeket a kettősöket az érintkező kettős rendszerektől.)

Közös gázburok olyankor alakul ki kettőscsillagok körül, ha az egyik komponens valamilyen okból nagyon gyorsan fúvódik fel, vagy a két csillag közötti szeparáció nagyon gyorsan ütemben csökken. Ezeknél a párosoknál is, amikor a felfúvódó donor kitölti a Roche-térfogatot, megindul az anyagátadás. Tömege csökken, a Roche-térfogata zsugorodik. Így még jobban kitölti a térfogatot. Gyorsul az anyagátadás üteme, gyorsul a Roche-térfogat kitöltése (az folyamatosan megy össze), és így tovább. Egy megszaladó dinamikusan instabil anyagátadás valósul meg a kettős rendszerben. Adott esetben a „fogadó” oldali csillag már nem is tudja begyűjteni az összes gázt, és ezért közös gázburok alakul ki a páros körül. A gázburok fékező hatást fejt ki a kettős rendszerre. A csillagok energiát veszítenek, és közelebb kerülnek egymáshoz, ami szintén maga után vonja a Roche-térfogat zsugorodását, s így az anyagátadás fokozódását. A keringésből származó „lopott” energia felfűti és kitágítja a közös burkot. Idővel a donor felfúvódása abbamarad, a közös burok pedig tágulva elhagyja a rendszert. (Az is előfordulhat, hogy a kettős tagjai végül összeolvadnak, de e helyütt ezzel most nem foglalkozom.)

Akár közös burok veszi körül a párost, akár sem, amikor a Roche-térfogat kitöltésekor az anyagátadás megvalósul, akkor a gáz nem közvetlenül zuhan a második csillagra, hanem úgynevezett akkréciós korongot formál körülötte, s így befelé spirálozva éri el a csillag felszínét. Az ilyen akkréciós korongok gyakori sajátossága a forgástengellyel párhuzamos kifújások (jet) a csillagnál. Amennyiben a korong még precessziós mozgást is végez (imbolyog), az epizodikus kifújások dugóhúzó, vagy S mintázatot rajzolnak a térben. Ennek a jelenségnek egy nagyszerű példája a Fleming 1 planetáris köd.

The planetary nebula Fleming 1 seen with ESO’s Very Large Telescope

A Fleming 1 planetáris köd közepén nem is egy, hanem két degenerált (post-AGB fázisú, ifjú fehér törpe) csillag is található. A kiinduláskor a két csillag tömege igen közel lehetett egymáshoz. Az árnyalatnyival nagyobb tömegű komponens, csillagászati értelemben csak alig valamivel hamarabb érte el a planetáris ködöt létrehozó fejlődési állapot. Nem sokkal később a társa is követte. A különös S mintázatot az AGB csillagról a fehér törpére átáramló anyag formálta akkréciós korong jet-jei alakították ki.  Forrás: ESO (VLT)

A Fleming 1 S alakú mintázatának kialakulását szemléltető video.

Egyre elfogadottabb tehát az a nézet, hogy a gömbszimmetriától való eltérés magyarázata, a központi csillag kettőssége.  A planetáris ködök központi csillagainak hatoda ráadásul nem is kettős, de hármas rendszer tagja. Ilyen esetekben még a tengelyes szimmetria sem teljesül. De mi a helyzet azokkal a ködökkel, amelyek középpontjában magányosnak tűnő csillag csücsül, és mégsem gömbszimmetrikusok? Az elméleti megfontolások szerint nincs szükség feltétlenül csillagkísérőre, hogy működjenek a fentebb vázolt mechanizmusok. Már egy barna törpe társ, vagy akár a csillag bolygórendszere is képes „tönkretenni” a szabályos gömbformát. Napjainkban már több ezer exobolygóról van tudomásunk, s azt is tudjuk, hogy a bolygórendszerek igen gyakoriak a csillagok körül. Mondhatni, szinte nincs is valójában magányos csillag, csupán olyan, melynek nincs csillagtársa.

Röviden áttekintettem a megfigyelések, következtetések, elméleti megfontolások azon láncolatát, melyek Herschel „planetáris köd definíciójától” a mai, modern képig elvezettek. Igaz, e helyütt csak kialakulásukkal, felépítésükkel foglalkoztam. Azzal is csak vázlatosan. Akit a téma részletesebben is érdekel, annak ajánlom figyelmébe a felhasznált irodalmak listájából Szabados László cikkét. Évtizedek óta nem jelent meg magyar nyelven ahhoz hasonló összefoglaló cikk a planetáris ködökről! Ráadásul (teljesen természetes módon), azokban sok információ mára elavult.

Lépjünk tovább, és vegyük alaposabban szemügyre az NGC1514-et! A planetáris ködöt William Herschel fedezte fel 1790-ben, és tőle származik az objektum első vizuális jellemzés is. Elmondható, hogy a következő fontos lépést Kohoutek teszi meg 1968-ban az NGC1514 morfológiájának értelmezése felé. Tanulmányában megemlíti, hogy a köd kettős szerkezetet mutat. Az, egy ∼136ʺ méretű belső héjból, és egy ∼206ʺ szferikus, homogén külső héjból áll. A belső héj tengelyes szimmetriájára is felhívja a figyelmet (P. A. 35°), de ő még azt toroid alakú kondenzációként értelmezi. A múlt század katalógusaiban tipikusan kör alakúként, vagy kissé elnyúlt, elliptikus planetárisként írták le. Napjainkban sincs ez jelentősen másként. Az egyik legutóbbi osztályozási rendszerben, amit Quentin Parker és munkatársai publikáltak (2006), és amelyet David Frew egészített ki (2008), az „Es” címkét kapta meg. Az E jelentése: elliptikus. Az s jelentése: kivehető a belső szerkezete (s: structure).

Ugyan a századforduló előtti két évtizedben többen is alaposan elemezték a ködöt, és lassan világossá kezdett válni annak felépítése, azonban az egyik máig legpontosabb vizsgálatnak Muthu és Anandarao vetette alá 2003-ban. Legalábbis az optikai tartományban. Bár korábban már készültek nagy mélységű, részletes fotók az 5007 Å (OIII) hullámhosszon, azonban ők a ködön belüli mozgásokat is alaposan feltérképezték. Az általuk használt Fabry-Pérot spektrométernek, és a kutatók kitartó munkájának köszönhetően, addig soha nem látott részletességű és pontosságú (relatív) sebességtérkép készült az NGC1514-ről. Modelleket illesztve a különböző pontokban kapott sebességprofilokra, konklúzió született a köd felépítését illetően.

NGC1514-felepitese-cut1Az NGC1514 alapvetően 3 fő komponensből épül fel. Egyrészt a halvány külső héjból. Másodrészt a nézőpontunkhoz képest dőlt tengelyű ellipszoid alakú belső héjból. Harmadrészt pedig, a belső héjban elhelyezkedő fényes anyagbuborékokból (blobs). Ezek majdnem teljesen szimmetrikusak, és az általuk kijelölt tengely, nagyjából párhuzamos az égbolt síkjával. De csak nagyjából. A délkeleti buborék enyhe kék, míg az északnyugati enyhe vörös eltolódást mutat. Vagyis, míg az elsőben az anyag közelít, a másodikban távolodik tőlünk. Azonban az NGC1514 mégsem „tipikus” esete a bipolaritást mutató planetáris ködöknek. Ezek a buborékok bár ellentétes irányba mutatnak, de jelentős bennük a sebesség diszperzió (velocity dispersion). Vagyis, a buborékokban az áramlás nem elég kollimált, nem egy jól összefogott nyaláb mentén történik. Ahogy ezt már korábban is említettem, a bipolaritás egyik feltételezett oka a központi csillag kettőssége, illetve a planetáris köd szülőcsillagát körülvevő, annak egyenlítői síkjában elhelyezkedő tórusz, vagy korong alakú sűrű anyagfelhő. Ez az, ami a csillag pólusainak iránya mentén, az AGB fázist követően meginduló gyors csillagszelet nyalábba tereli. Az NGC1514 központi csillaga esetében – Muthu és Anandarao vélekedése szerint -, az említett anyagfelhő vagy túlságosan nagy kiterjedésű, vagy egyáltalán nem is létezik, így nincs ami effektíven kollimálja a kiáramlást. A két csillagász diszkussziója szerint, mely a planetáris köd kinematikája mellett annak kémiai összetételére is erősen épít, a közös gázburokkal körülvett kettőscsillag (common envelope binary systems) modell, és az akkréciós korongoknál keletkező epizodikus kifúvások (jet-ek) adják a legkézenfekvőbb magyarázatot az NGC1514 felépítésre.

Már az optikai tartományban is magával ragadó az NGC1514 szerkezete, de 2010-ben a NASA WISE (Wide-field Infrared Survey Explorer) nevű űrtávcsöve bebizonyította, hogy 220 évvel felfedezése után még mindig meg tud hökkenteni minket az NGC1514. Az infravörös tartományban készült felvételen a köd új arca tárult fel a csillagászok előtt.

ngc1514-infra

Az NGC1514 a WISE infravörös felvételén. Forrás: NASA/JPL-Caltech/UCLA

Az NGC1514-et tengelyesen szimmetrikus, porban gazdag gyűrűk ölelik körül. Más kutatókhoz hasonlóan Ressler és munkatársai is megpróbálták értelmezni a látottakat.  Mivel az infravörös megfigyelésekhez nem álltak rendelkezésükre kinematikai eredmények, így akárcsak e planetáris köd első optikai felméréseinél, a struktúrák elemzésével és hasonló esetek tanulmányozásával próbálták a következtetéseket levonni.

Szerencsére az NGC1514 a gyűrűivel nincs egyedül, más planetáris ködöknél is megfigyelhetőek hasonló struktúrák. Ennek egyik legszebb példája a MyCn18 (Homokóra-köd), melyről a Hubble űrtávcső készített anno egy mára ikonikussá vált felvételt. A többi csillagász korábban már behatóan foglalkozott az NGC1514 „testvéreinek” modellezésével, és azok homokórára emlékeztető alakját, de legfőképpen a gyűrűiket sikerült is megmagyarázniuk a kettőscsillag rendszerekben munkáló kölcsönható csillagszél modellel. Ressler és munkatársai elővéve ezeket a munkákat, rámutattak, hogy részben az NGC1514 gyűrűi is leírhatóak ezekkel, amennyiben azok különösen nagy tömegvesztés keretében születtek. Sőt, kimondottan ennek kellett a legnagyobb anyagkidobódásnak lennie a központi csillag életében, mely még valószínűleg az AGB fázis legelején történhetett. Ezzel a feltételezéssel azért kellett élniük, mert az NGC1514 hasonszőrű társai esetében több gyűrű helyezkedik el egy tengely mentén, míg ennél a planetáris ködnél csak egy-egy gyűrűt sikerült kimutatni. Elképzelhető persze, hogy nagyobb érzékenységgel felvett felvételeken a köd kiterjedtebb lenne, és több, halványabb gyűrűt is sikerülne kimutatni, de ez a jövőbeni infravörös megfigyelésekre vár.

hourglass-1996-07

MyCn18 (Homokóra-köd) a Hubble űrtávcső felvételén.

A többi homokóra alakú köd esetében azonban az optikai tartományban is remekül látszanak a gyűrűk, míg az NGC1514-nél ezeknek semmi nyoma nincs a látható fényben. Ennek egyik oka lehet, hogy anyaga ehhez nem elég meleg. Az infravörös megfigyelések szerint ∼160 K a por hőmérséklete. Az is elképzelhető azonban, hogy fénye egyszerűen csak belevész a halvány külső halóéba.

A WISE felvételei, és a ráépülő kutatásoknak köszönhetően addig ismeretlen struktúrák létezésére derült fény, így a szülőcsillag tömegvesztésének hosszabb időszakáról van ma már lenyomatunk. Ez is megerősítni látszik azt a tényt, hogy az NGC1514 belsejében kettőscsillag lakik.

Közvetve, a planetáris köd szerkezetének tárgyalásakor már többször hivatkoztam az NGC1514 központi kettőscsillagára. Vizsgáljuk meg alaposabban, hogy mit sikerült kideríteni róla a csillagászoknak!

A felvételemen köd középpontjában ragyogó fehéres, kékes-fehér színű különös csillag (BD+30°623) furcsaságai nagyon régóta ismertek voltak a csillagászok előtt. A különös szót nem véletlenül használtam, bár írhattam volna sajátost, ha úgy tetszik. A BD+30°623 csillag a planetáris ködök központi csillagainak speciális csoportját képviseli, melyre az angol szakirodalomban a „peculiar central stars” kifejezést használják. Azokat sorolják ide, melyek nem elég forróak ahhoz, hogy ionizálják az őket körülvevő planetáris ködöket. Több olyan példa is akad, ahol A-K színképosztályú csillag látható a planetáris köd középpontjában. Az NGC1514 is ilyen eset. Még Lutz (1977) vetette fel az ötletet, miszerint ezeknek kell, hogy legyen egy halvány, de forró társuk. Valójában ez a gerjesztő csillag, és nem a hűvösebb, de fényesebb komponens.

Amennyiben ez tényleg így van, bár egyetlen csillagot látunk, de két színkép rakódik egymásra. Így, bár nem kevés munkával, de különválasztható a két csillag, és külön-külön meghatározhatóak a paramétereik. Hogy ez mennyire nem is egyszerű feladat, az bizonyítja, hogy az évtizedek alatt többször is nekifutottak a különböző szakemberek a problémának. Bár Kohoutek (1967) elsőként hívta fel a figyelmet a színképelemzés alapján a BD+30°623 kettősségére, e cikkben most csak a legutolsó, és (talán) a legpontosabb eredményekre hivatkoznék.

Aller és kutatótársai egyfelől az optikai tartományban, földi távcsővel (Calar Alto obszervatórium, 2.2 méteres távcső, Calar Alto Faint Object Spectrograph) felvett színkép elemzésével próbáltak fogást találni a problémán. Másfelől pedig az IUE (International Ultraviolet Explorer) űrtávcső, az ultraibolya tartományban, 1978-1989 között a csillagról rögzített archív spektrumait használták fel. Eme utóbbiak azért voltak roppant fontosak, mivel az NGC1514 He II emissziós vonalai alapján a forró társ hőmérsékletére legalább 60000 K fokot feltételeztek. Az ilyen forró csillagok sugárzásuk jelentős részét már az ultraibolya tartományban bocsájtják ki, így itt a legkönnyebb karakterizálni őket.

A valós színképeket szintetikus színképekkel modellezték. Alapvetően olyan felszíni hőmérsékletű, felszíni gravitációs gyorsulású, fémtartalmú (kémiai összetételű) modellcsillagokat kerestek, melyek szintetikus spektruma a legjobban illeszkedett az igazi spektrumhoz. A lehetséges megoldásokhoz több iterációval jutottak el.

Az elméleti csillagfejlődési modellek szerint, adott fémtartalmú (kémiai összetételű), és adott tömegű csillaghoz, meghatározott fejlődési görbe tartozik a Hertzsprung-Russel diagramon, amennyiben a diagram vízszintes tengelyén az effektív hőmérséklet, függőleges tengelyén pedig a felszíni gravitációs gyorsulás logaritmusát ábrázoljuk. A kutatók a színképelemzésből kapott lehetséges felszíni hőmérséklettel és a lehetséges felszíni gyorsulással a kezükben, az elméleti csillagfejlődési modelleket felhasználva, megkeresték a csillagokra legjobban illeszkedő fejlődési útvonalat, így meghatározva a csillagok tömegét. Mivel a fejlődési modellek azt is megmondják, hogy milyen fejlődési görbe tartozik a választott tömeghez a Hertzsprung-Russel diagramon, amikor annak vízszintes tengelyén az effektív hőmérséklet, függőleges tengelyén pedig a csillag a Naphoz viszonyított luminozitásának logaritmusát ábrázoljuk, így a csillagok további paraméterei is meghatározhatóak. Végső soron levezethető a csillag tömege, sugara, luminozitása, és távolsága. A távolság meghatározásához igyekeztek megbecsülni, és figyelembe venni, az intersztelláris anyag okozta, az NGC1514 irányában igen számottevő extinkciót (fényelnyelést), és szín-excesszust (vörösítő hatást).

Több kritériumnak is meg kellett felelnie azonban az egyes levezetett csillagparamétereknek. Az abszolút és a megfigyelt látszólagos fényességből kiszámított távolságnak elég jól kellett egyeznie a két csillagra, hiszen kettőscsillagról van szó, egymás közelében vannak. A távolságadatoknak ráadásul összhangban kellett lennie az egyéb független módszerekkel kapott mérésekkel. Bár a köd távolsága elég pontatlanul ismert, 200-300 pc távolság tűnik a legelfogadhatóbbnak. A csillagok korának is megfelelő egyezést kellett mutatnia. De nemcsak egymással, hanem a fejlődési modellekkel is.

Ennek fényében döntöttek úgy, hogy a hűvös, fényesebb komponensre illeszkedő két lehetséges megoldás közül csak az egyik lehetőséget tartják meg. Azt az a megoldást elvetették a kettősségi kritérium alapján, hogy a hűvösebb társ egy nagyobb tömegű, a fősorozatról elfejlődő csillag lenne. Ebben az esetben ugyanis jóval fiatalabb lenne a gerjesztő csillagnál. Ráadásul, akkor jóval távolabb is lenne, így semmiképpen sem alkothatna a két csillag egyetlen párt. Az a megoldás illett csak a képbe, hogy a hűvös társ alacsony fémtartalmú és éppen a horizontális ágon tartózkodik.

NGC1514-bs-evotrack

Fejlődési útvonalak a csillagfejlődési elméletek alapján.

Balra a halvány, forró komponens fejlődési útvonalai. Kékkel jelölve a lehetséges paraméterű területet.

Jobbra a fényes, hűvös komponens fejlődési útvonalai. Szürkével az óriás ági fejlődési útvonalak, melyek elvetésre kerültek az ezekből származtatott kor és távolság miatt. Ezek a „megoldások” túl fiatal kort, és túl nagy távolságot eredményeztek a forró csillaghoz képest. Kékkel jelölve a lehetséges paraméterű pont, vörössel a hozzá tartozó horizontális ági fejlődési útvonal.

Részletek a szövegben. Forrás: A. Aller és mások

Mindezek után, Aller és szerzőtársai megalkották a diszkussziót. (Az összes adat a felhasznált irodalomnál megjelölt cikkben érhető el). A fényesebb, hideg komponens 9850±150 K felszíni hőmérsékletű, a HRD horizontális ágán tartózkodó, A0 színképosztályú óriáscsillag. A Napnál nagyjából kétszer nagyobb sugarú (2.1±0.6 R), és fele akkora tömegű (0.55 ± 0.02 M). A fejlődési modellek szerint, fémtartalomtól függően kezdetben 0.8-0.9 naptömegű lehetett. A forró, halvány gerjesztő csillag nagy valószínűséggel O színképosztályú szubtörpe csillag (sdO), de ezt egészen biztosan csak nagyobb felbontású UV spektrum elkészítése, és elemzése után lehetne kijelenteni. Felszíni hőmérséklete 80000-95000 K közötti. Sugara a Napénak mindössze kéttizede (0.22±0.03 R), és körülbelül hasonló, vagy talán alig valamivel nagyobb tömegű (0.56 ± 0.03 M), mint a társa. Viszont kezdetben Napunkhoz nagyon hasonló lehetett a tömege. A páros tagjai 8-12 milliárd évesek. Távolságukra pedig a hűvösebb csillag paraméterei alapján 294±69 pc, a forró komponens paraméterei alapján pedig 253±88 pc adódott.

A diszkussziójukban a kutatók helyt adtak egy „apró”, de mégiscsak fontos megjegyzésnek. Tény, hogy a megfigyeléseikből kikövetkeztették a páros paramétereit. Továbbá a kettősség mellett szól az NGC1514 komplex, buborékos, tengelyszimmetrikus felépítése, amit magányos szülőcsillaggal nem lehet megmagyarázni. Azonban, a duó nem mutatja a kettőscsillagok egyéb jellegzetességeit. Mindmáig nem sikerült változásokat kimutatni a BD+30°623 radiális (látóiránybeli) sebességében. Egy kettőscsillag tagjainak mutatni kellene némi „előre-hátra” irányuló mozgást, miközben a közös tömegközéppont körül keringenek. Ez pedig a Doppler-effektusnak köszönhetően detektálható, kimérhető lenne a színképből. A megfigyelt színképe ilyen jellegű változásokat azonban hosszú időskálán sem mutatott. A BD+30°623 egyszerűen „nem akar” tipikus spektroszkópiai kettőscsillagként viselkedni. A csillag fényességbeli változásokat sem produkál. Tagjai tehát keringés közben nem fedik el egymást. A BD+30°623 nem fedési kettőscsillag. Miért nem látjuk az említett jelenségeket? A szerzők ezt azzal magyarázzák, hogy valószínűleg nagyon szorosan helyezkedik el a két csillag. Talán közös gázburok öleli őket körül. Vagy éppen a pólusaik felől látunk rá a kettősre. Ez az elképzelés egybevág a vonalak keskenységével a hűvös komponens színképében, amit a csillag forgásának ki kellene szélesítenie amúgy (Doppler-effektus). Az is lehet magyarázat, hogy tág rendszerről van szó. Akkor viszont a csillagpályáknak speciálisaknak kell lenniük, amely egyéb problémákat vet fel. Hosszú periódusú, elnyúlt pályával ugyan megmagyarázható lenne az említett jegyek hiánya, de ez nagyban megnehezíteni a köd komplex struktúrájának értelmezését. Nem kizárható, hogy a hűvös, fényes csillag, csak a véletlennek köszönhetően látszik a köd középpontjában.

Ezt a kérdést feszegette Méndez és Kudritzki is. Vajon a két csillag tényleg összetartozó, ahogy ezt mindig is feltételezték a különös színkép alapján? Radiális sebesség vizsgálatuk, melyet a CHFT-vel (France-Hawaii Telescope – Mauna Kea), és az Espandos nagy felbontású spektrográffal végeztek el, ezt erősen megkérdőjelezi. A két csillag radiális sebességében 13±2 km/s sebesség eltérést találtak, de ami még ennél is fontosabb, ez nem mutatott változást a közel 500 nap alatt.

Továbbá meghatározták a hűvös, fényes csillag fémtartalmát is, amire nagyobb értéket kaptak annál, mint ami a horizontális ág tagjaira jellemző. Az A0 színképosztályú csillag tehát jóval fiatalabb a forróbb gerjesztő csillagnál. A csillagfejlődési modellek szerint inkább 3 naptömegű, és fényesebb is, tehát legalább 400 pc a távolsága. Így a két csillag nem lehet egymás társa (253±88 pc a legalább 400 pc ellenében). Aller-nek és társainak korábbi két alternatívája közül Méndez és Kudritzki megfigyeléseinek eredménye, mégiscsak a fősorozatot elhagyó, nagyobb tömegű csillag elképzelést támasztják alá. Ne feledjük el, hogy Aller-ék ezt csak a kettősségen alapuló előfeltevés miatt dobták el!

De térjünk vissza a radiális sebességekre! A forró csillagnál 57±1 km/s, míg a hűvös csillagnál 44±2 km/s sebességet kaptak átlagosan, mely szignifikánsan nem változott a mérés hosszú időtartama alatt. Ha mégis csak feltesszük, hogy összetartozik a két csillag, akkor a sebességek különbsége kizárja azt, hogy a pólusok felől lássuk a közös tömegközéppont körüli keringésüket. Illetve, a radiális sebességek állandósága, hosszú periódust feltételez a keringésre. Akkor viszont, ahogy erre már korábban is utaltam, a hűvös csillagnak nem sok szerepe lehetett a köd struktúrájának felépítésében.

Harmadik érvként az hozható a fel a kettősség ellen, hogy magának az NGC1514-nek a radiális sebessége csak a forró csillag radiális sebességével kompatibilis. Vagyis csak a forró gerjesztő csillag lehet a köd középpontjában. Természetesen nem zárható ki, hogy a planetáris köd eddigi radiális sebességének meghatározására irányuló mérések egytől-egyig szisztematikus hibát tartalmaznak. Amennyiben ez még sincs így, illetve Méndez és Kudritzki mérései sem hibákkal terheltek, akkor a fényes csillag nem a planetáris ködben található.

Összességében tehát Méndez és Kudritzki tanulmánya elveti azt a feltevést, amiből sok korábbi tanulmány kiindult. Vagyis, hogy fizikailag is összetartozó az a két csillag, amit egynek látunk, ha az NGC1514 középpontjára tekintünk. A csillagok a köd közepén talán csak a szerencsés véletlennek köszönhetően látszanak azonos irányba. Ennek a valószínűsége bár nem kizárható, de mindenképpen kicsi. Kimondottan annak tükrében, hogy a Hubble űrtávcsővel sem sikerült felbontani a BD+30°623-at két csillagra (Ciardullo és mások – 1999). Nem vethető el az a lehetőség sem a tanulmányuk alapján, hogy valamiféle kis amplitúdójú sebességváltozás mégiscsak jelen van a csillagok mozgásában. Mind a két csillagnak lehet bolygórendszere, vagy kicsiny tömegű társa. Ezt viszont már csak a jövőbeli pontosabb mérések dönthetik el.

Pár éve, a több mint 3000 ismert galaktikus planetáris köd központi csillagainak csak durván 13%-ról volt spektroszkópiai információnk. Illetve, körülbelül háromtucatnyi alaposan vizsgált központi csillagot katalogizáltak kettőscsillagként. Ezek a számok a cikk írásáig sem emelkedtek meredeken. Továbbiak megfigyelésekre van szükség! Mindenesetre, ha valami végső konklúziót szeretnék levonni az NGC1514-gyel, és úgy általában a planetáris ködökkel kapcsolatban, akkor talán az az lenne, hogy a gömbtől eltérők, változatos alakjának kulcsa a rendszerek kettősségében rejlik. Legyen a társ másik csillag, vagy kisebb tömegű égitest, mint például egy barna törpe, vagy bolygórendszer.

Ahogy az elején is mondtam: az NGC1514 több titkot rejt, mintsem elsőre azt az olvasó sejtené. Még akkor is, ha néhányra időközben már fényderült.

Külön köszönettel tartozom Szabados Lászlónak az általános rész írásakor nyújtott konzultációs lehetőségért!

Felhasznált irodalom:

C. Muthu, B. G. Anandarao: A Spatiokinematic Study of the Planetary Nebula NGC 1514

Michael E. Ressler, Martin Cohen, Stefanie Wachter, D. W. Hoard, Amy K. Mainzer, and Edward L. Wright: The Discovery of Infrared Rings in the Planetary Nebula NGC 1514 During the WISE All-Sky Survey

B. Aryal, C. Rajbahak, R. Weinberger: A giant dusty bipolar structure around the planetary nebula NGC 1514

Henri M. J. Boffin, Brent Miszalski, Thomas Rauch, David Jones, Romano L. M. Corradi, Ralf Napiwotzki, Avril C. Day-Jones, Joachim Koeppen: An Interacting Binary System Powers Precessing Outflows of an Evolved Star

A. Aller, B. Montesinos, L. F. Miranda, E. Solano, A. Ulla: Spectral analysis of BD+30°623, the peculiar binary central star of the planetary nebula NGC 1514

R.H. Mendez, R.P. Kudritzki, M.A. Urbaneja: The two central stars of NGC 1514: can they actually be related?

Szabados László: Planetáris ködök (Meteor csillagászati évkönyv 2017)

 

Gömbhalmazok

gombhalmazok4-TTK-cut1

Négy gömbhalmaz fotóm: NGC2808 (jobb felső), M71 (bal felső), NGC3201 (jobb alsó), NGC5466 (bal alsó)

A Tejútrendszer halója

Had invitáljam meg az olvasót, hogy tartson velem egy rövid utazásra galaxisunk halójába. A csillagászok eredetileg a haló kifejezést a Tejútrendszer korongját körbevevő, csillagok alkotta szferoidális (forgási ellipszoid) alakú galaktikus alrendszer megnevezésére használták. Mint később látni fogjuk, az ismeretek bővülésével a kifejezés új tartalommal bővült.

Ahogyan galaxisunk nagyjából 100-120 ezer fényév átmérőjű, és pár ezer fényév vastagságú, jellemzően fiatalabb csillagok lakta vékony korongjának (thin disk), így a halónak sincs éles határa. Csillagainak 90%-a Tejútrendszerünk magjától 100 ezer fényévéves távolságon belül található, ugyanakkor pár objektum távolsága a 200 ezer fényévet is meghaladja.

Öreg, sok milliárd éves csillagok birodalma ez, melyek egy része népes gömbhalmazokba tömörülve rója útját galaxisunk magja körül. A haló objektumai elnyúlt pályákon keringenek, igen változatos hajlásszöggel a galaxis síkjához képest. Jelentős azon objektumok száma, melyek keringési iránya retrográd, vagyis a korong csillagainak keringési irányával ellentétes.

Annak köszönhetően, hogy a halóban a csillagok keletkezése már réges-rég leállt, a csillagok eloszlása, pályája, összetétele (fémtartalma) megőrizte a Tejútrendszer ősi korszakainak emlékét. Ezeket az égitesteket inkább mondhatjuk matuzsálemeknek, mint fosszíliáknak, ugyanis még mindig „élnek”, fejlődnek, változóban vannak.

A haló legősibb ma is létező csillagai mintegy 13 milliárd évvel ezelőtt keletkeztek, szintén ekkortájt alakultak ki az első gömbhalmazok. Talán korábban, mint maga a Tejútrendszer, melynek története egyes elképzelések szerint kicsit később, törpe szferoidális és szabálytalan alakú ős-galaxisok ütközésével és egyesülésével indult. A „galaktikus kannibalizmus” már a kezdetektől fogva fontos szerepet játszott a Tejútrendszer fejlődésében.

A belső haló csillagai pár milliárd évvel fiatalabbak. 11.4 milliárd éve (11.4±0.7 milliárd éve) születtek a fokozatosan összehúzódó hatalmas gázfelhő csomóiból, mely egyre laposabb forgási ellipszoid alakú térrészt töltött ki, ahogy galaxisunk formálódott. Több milliárd évre volt szükség, hogy a Tejútrendszer elnyerje a ma megfigyelhetőhöz hasonlatos formáját. A csillagok, por és gázfelhők alkotta lapos korong körülbelül 9 milliárd éve (8.8 ± 1.7 milliárd éve) létezik mindössze. Az összehúzódó gázt az impulzus megmaradás törvénye szinte tökéletesen kilapította. Ekkora alakult ki egy kitüntetett keringési irány, és rendeződtek egy síkba az égitestek pályái. Miközben az intersztelláris médium, vagyis a por és gázködök, és a belőlük születő csillagok megformálták a korongot, csillagvárosunk elkezdte bekebelezni a környező megmaradt ősi törpe galaxisokat. Így a külső haló tovább dúsult olyan öreg csillagokkal, melyek kevesebb, mint 2 milliárd évvel az ősrobbanás után alakultak ki. A befogott, majd szétszaggatott galaxisok csillagai szétszóródtak, beleolvadtak Tejútrendszerünkbe. Azonban a nagyobb, kompakt struktúrák, mint például a gömbhalmazok, vagy az elnyelt galaxisok magjainak csillagai jó eséllyel együtt maradhattak.

Halo-story2

Galaxisunk kialakulását szemléltető ábra – a: A Tejútrendszer története valószínűleg törpe szferoidális és szabálytalan alakú ős-galaxisok ütközésével és egyesülésével indult, melyek már tartalmazhattak csillagokat. b: Kezdetben a szabálytalan alakú és kaotikus gázfelhőben nem voltak kitüntetett keringési iránya a születő csillagoknak. c: A jelentős tömegűvé duzzadt, összehúzódó felhőben idővel kialakult egy kitüntetett forgási irány, a forgás üteme pedig egyre gyorsult az impulzus megmaradás törvénye értelmében. Az egész folyamat egy lapos forgó korongba terelte a gázt és a port. A később itt keletkező csillagok pályája így már síkban rendeződött, és kis excentricitású (közel kör alakú). Az ábra hiányossága, hogy nem tesz említést a kialakulás közben elnyelt környező törpe galaxisokról. Kép forrása: http://lifeng.lamost.org/

A haló tehát maga is több alrendszerből áll. Csillagaik más korokban, adott esetben különböző eseményeknek köszönhetően jöttek létre. Egy részük pedig eredetileg idegen galaxisokban született. A haló kialakulásának története megmagyarázza, hogy miért nincs kitüntetett keringési iránya, keringési síkja csillagainak és gömbhalmazainak, ellentétben galaxisunk korongjának csillagaival. A retrográd keringési irány kérdése sem okoz különösebb fejfájást, amennyibe ezek az égitestek Tejútrendszerünkön kívül keletkeztek. Bár ez utóbbi tulajdonság, a több részből összeálló kezdeti gázfelhőn belül uralkodó kaotikus állapotok következménye is lehet.

Milkywayhalo

A Tejútrendszer halójának felépítését ábrázoló rajz. – A külső haló (Outer halo) idősebb csillagai kevésbé lapult szferoid térrészt töltenek ki, mint a belső halóé (Inner Halo). A vékony korong (thin disk) geometriája leginkább egy hanglemezre emlékeztet. Átmérője 100-120 ezer fényév, míg az ide tartozó, a haló csillagaihoz képest fiatal csillagok 85%-a egy mindössze 3000 fényév vastagságú térrészben helyezkedik el. Forrás: NASA, ESA, és A. Feild (STScI)

Annak felismerése után, hogy a korongot öreg csillagok és gömbhalmazok veszik körül, még sokáig tartotta magát az a nézet, hogy a haló egyáltalán nem található intersztelláris anyag.

Ez a kép akkor indult gyökeres változásnak, amikor a csillagászok elkezdték feltérképezni a Tejútrendszer és más galaxisok halóját az optikai tartományon túl. A rádiótávcsövekkel a 21 cm-es hullámhosszon vizsgálódva felfedezték, hogy egyes spirál galaxisokban a korongtól több kpc (1pc ≈ 3.26 fényév) távolságban is található gáz. Ezt javarészt atomos hidrogén alkotja (a területek ionizációs foka igen alacsony: 1:10000) némi héliummal, és a héliumnál nehezebb elemekkel szennyezve. Az ilyen gázfelhőket HI régióknak nevezi a szakirodalom, és jellemzően a spirál galaxisok korongjában találhatóak nagy mennyiségben, alapanyagot szolgáltatva a csillagok keletkezéséhez. Mivel a HI területek „igazi” otthona a galaxis vékony korongja (thin disk), így ennek analógiájára megalkották a HI vastag korong (HI Thick disk) fogalmát. A HI vastag korong általában 5-10%-át tartalmazza a csillagváros teljes HI készletének. De előfordulnak igen extrém esetek is. Az NGC891 esetén a HI vastag korong több mint 10 kpc távolságig terjed ki a vékony korongon túlra és az atomos hidrogén 30%-át tartalmazza. A megfigyelések szerint Tejútrendszerünk is rendelkezik HI vastag koronggal, melynek legtávolabbi gázfelhői vertikálisan nagyjából 6-7 kpc távolságra helyezkednek el vékony korongtól.

De honnan származik ez a gáz? Az egyik lehetséges forrás maga a korong. Az úgynevezett galaktikus szökőkút jelenség során por és gáz hagyja el ezt a régiót a galaxis halójába áramolva. A ma széleskörűen elfogadott elképzelések szerint, ez a „párolgás” két mechanizmusnak köszönhető, mely a csillagok születésével és halálával kapcsolatos. Az egyik mozgatórúgó az aktív csillagkeletkezésben születő fényes, forró és nagytömegű csillagok szele, mely hatalmas erővel fújja ki az anyagot. A másik hatás éppen az ilyen nagytömegű és éppen ezért gyorsan fejlődő csillagok tragikus halálát követő szupernóvák fellángolásának köszönhető. Ezek a hatalmas erejű robbanások szintén hozzájárulnak a korongból történő anyag kilökődéséhez. Idővel ezek a hidrogén tartalmú felhők visszahullnak a vékony korongba.

De nemcsak a korong az egyetlen forrása az azon kívül detektált hidrogénfelhőknek. A csillagászokat már régen foglalkoztatta az a probléma, hogy miként képesek fenntartani a spirál galaxisok hosszú időn keresztül a bennük megfigyelhető csillagkeletkezési ütemet. A Tejútrendszerben évente 1-3 naptömegnyi csillag keletkezik. Ha figyelembe vesszük, hogy galaxisunk gázkészlete körülbelül 5.3 x 109 naptömeg, akkor csak a jelenlegi ütemmel számolva is már rég ki kellett volna merülnie a csillagok legyártásához szükséges forrásoknak. Valójában azonban az elmúlt 10 milliárd évben 2-3 faktorral még csökkent is a csillagok születési üteme. A csillagászok elkezdték hát keresni az utánpótlás lehetséges forrásait.

A gyanú először azokra a HI nagy sebességű felhőkre (High-Velocity Clouds: HVC) terelődött, melyeket a 21 cm-es hullámhosszon találtak a galaxis halójában a 1950-es évek közepén. Felfedezésükkor még nem volt pontosan ismert a galaxison belüli elhelyezkedésük, csupán az a furcsaság tűnt fel a kutatóknak, hogy ezek nem vesznek részt a korong rotációjában, továbbá radiális sebességük több mint 90 Km/s-mal eltért a korong rotációjában résztvevő interszteláris anyagétól. Eme utóbbi tulajdonságuk végett kapták a nevüket.

Fémtartalmuk jóval alacsonyabb, mint a Napé. A csillagászok minden elemet a hidrogénen és a héliumon túl a periódusos rendszerben fémnek neveznek. Egy csillag fémtartalmát általában a Naphoz szokták hasonlítani a kutatók. A világegyetem története folyamán, a csillagoknak hála folyamatosan dúsult fémekkel. Az újabb és újabb csillaggenerációk egyre több fémet tartalmaztak, így minél alacsonyabb fémtartalmú egy csillag a Naphoz képest, vélhetőleg annál ősibb objektum. Mivel a korong a haló és a központi dudor után keletkezett, így a galaxison belüli objektumok fémtartalma a korongban a legmagasabb. A HI nagy sebességű a Napnál alacsonyabb fémtartalmából így arra lehet következtetni, hogy ezek a felhők nem a korongból származnak. Úgy tűnt a kutatók tetten érték a hideg gáz beáramlását a Tejútrendszerbe. A felhők tömege azonban túl kevésnek bizonyult, ugyanis évente mindössze 0.1-0.2 naptömegnyi anyagutánpótlás érkezik a korongba, ha csak ezekkel számoltak.

Elméleti megfontolások és távoli galaxisok megfigyelései alapján született meg azaz elképzelés, miszerint nem hideg gáz formájában áramlik be az anyag a Tejútrendszerbe, hanem meleg vagy éppen forró ionizált gázként. Ez a halóba érkezve lefékeződik, lehűl, és „leülepedik” a galaxis korongjában. Először a meleg fázisát sikerült megfigyelni ezeknek a „láthatatlan” felhőknek közvetett módon. A csillagászok megvizsgálták a haló távoli csillagainak színképét az ultraibolya tartományban, és árulkodó abszorpciós vonalakat találtak bennük. Olyan elnyelési vonalak voltak ezek, melyet köztünk és a haló távoli csillaga között lévő 105-106 K hőmérsékletű gáz többszörösen ionizált elemei (Si II, Si III, Si IV, C III, C IV, O VI) hoztak létre.

Halo-gas-opo1126a

Az illusztráció a halóban található gázok viselkedését és azok származását szemlélteti.

A gázok egy része szökőkút szerűen „tör a magasba” a fiatal csillagoknak, és a szupernóváknak köszönhetően a Tejútrendszer korongjából. Ez a gáz később újrahasznosul. – Recycled galactic gas from supernovae

Az intergalaktikus térből nagysebességgel gáz áramlik be, mely lefékeződve, lehűlve a korongba jut. – Very fast clouds from intergalactic space, Decelerating Clouds.

Illusztráció forrása: NASA, ESA, and A. Feild (STScI)

A halóban lévő gáz forró fázisát, annak igen magas hőmérséklete miatt, már nem az ultraibolya, hanem a röntgentartományban kellett keresni. A Chandra, XMM-Newton és a Suzaku röntgen űrtávcsövekkel folytatott kutatások alapján bizonyossá vált, hogy a Tejútrendszer több százezer fényév sugarú, 1-2.5 x 106 K hőmérsékletű, ritka gázfelhőbe burkolódzik. Ennek tömege pedig eléri a 10 milliárd naptömeget, de egyes kutatók a 60 milliárd naptömeget sem tartják kizártnak.

Bár még sok részlet nem teljesen tisztázott, például pontosan miként, milyen mechanizmusok révén jut el a galaxis korongjába a gáz, de nagyon úgy tűnik, hogy a csillagászok meglelték azokat a forrásokat, ahonnan a Tejútrendszer folyamatosan újratölti a korong gázkészletét.

MilkyWayGaseoushalo

Fantáziarajz a galaxisunkat nagyjából 300 ezer fényév sugarú tartományban körülvevő gázról. Látható, hogy az a Nagy Magellán-felhőt (LMC) és a Kis Magellán-felhőt (LMC), vagyis a két legnagyobb kísérő galaxisunkat is beborítja. Forrás: NASA/CXC/M.Weiss, NASA/CXC/Ohio State/A.Gupta és mások.

Miután nagyon röviden áttekintettük a Tejútrendszer halójának kialakulását és felépítését, ideje, hogy a fentieken túl egy kicsit alaposabban megismerkedjünk a gömbhalmazokkal.

Gömbhalmazok

A gömbhalmazok több tízezernyi, több százezernyi, de akár milliónyi csillag (nagyjából) szférikus halmaza. A legnagyobbak átmérője, vagyis az a térrész, ahol a gömbhalmaz gravitációja uralja a teret, akár a 200 fényévet is elérheti.

Bár objektumonként jelentősen eltérhet, de általánosságban elmondható, hogy a csillagok távolsága a gömbhalmazokban nagyságrendileg 1 fényév. A magban azonban ennél is extrémebb a helyzet. Ott két csillag közé éppen beférne a Naprendszerünk. Százszor vagy akár ezerszer közelebb vannak egymáshoz a tagok, mint a Nap közelében a csillagok.

A Tejútrendszer valamivel több, mint 150 ismert gömbhalmazzal rendelkezik, de a valódi számuk 180 körül lehet. Ez sok, vagy kevés? Szomszédunk az Androméda galaxis 500 körüli számmal büszkélkedhet. De ezek a számok meg sem közelítik a hatalmas elliptikus galaxisok gömbhalmaz arzenálját. Maga az M87 13000 ilyen objektummal rendelkezik.

Az első gömbhalmazok felfedezése a XVII. század második feléhez köthető. A legelsőre, ami ma M22-ként ismert, Abraham Ihle (egyes vélemények szerint Hevelius) akadt rá a Nyilas csillagképben. A második Halley nevéhez köthető, aki Szent Ilona-szigetére tett utazása közben ismerte fel, hogy az ω Centauri valójában nem is egy csillag. Ez a gömbhalmaz lett később az NGC5139. Ők még nem ismerték fel ezen halmazok mivoltát. Messier-nek ugyan sikerült az M4-et csillagokra bontani, és ezzel ő volt az első, aki egy gömbhalmaz csillagait nemcsak egybeolvadó foltként láthatta, ennek ellenére a katalógusában szereplő gömbhalmazokat még ő is kör alakú ködökként írta le. William Herschel a távcsöveivel szinte egytől-egyig felbontotta a korábban mások, és az általa felfedezett gömbhalmazokat. A gömbhalmaz kifejezést is ő honosította meg.

Alapos kutatásuk csak a XX. század elején vette kezdetét. Harlow Shapley 1914-től kezdve igen intenzíven foglalkozott a Tejútrendszer gömbhalmazaival. A témában több tucat publikációja jelent meg. Shapley kutatásainak egyik segítője Helen Battles Sawyer volt. A hölgy maga is úttörő szerepet játszott a változócsillagok és a gömbhalmazok kutatásában. 1927 és 1929 között Shapley-vel közösen láttak neki a gömbhalmazok osztályozásának a csillagok koncentrációja alapján. Megalkották a később róluk elnevezett 12 fokozatú Shapley–Sawyer osztályozást (Shapley–Sawyer Concentration Class). A skálán római számokkal jelölik a koncentráció mértékét. Az I. osztályúak a legkoncentráltabbak, míg a XII. osztályba tartoznak a leglazább halmazok.

Az osztályozást hosszú évtizedek során használták és még használják ma is a csillagászok. Nem is olyan régen azonban a gömbhalmazok egy új típusát fedezték fel a csillagászok az NGC5128-ban (Centaurus A), melyeket sötét gömbhalmazoknak neveztek el. Alapvetően érvényes szabály a gömbhalmazokra, hogy a fényesebbek egyben nagyobb tömegűek is, mivel több csillagot tartalmaznak. A sötét gömbhalmazok azonban kilógnak a sorból, ugyanis tömegük jóval nagyobb, mint amit fényességük alapján várhatnánk. A felfedezés viszonylag friss, és egyelőre nincs elfogadható pontos magyarázat a rejtélyre. Természetesen elméletek már most is akadnak, melyek a láthatatlan tömeget igyekeznek megmagyarázni. Elképzelhető, hogy e gömbhalmazok magjai fekete lyukakat, vagy más sötét csillagmaradványokat rejtenek magukban, melyek felelősek lehetnek a tömegtöbbletért. Úgy tűnik azonban, hogy ezzel csak részben lehet megoldani a problémát. Egy másik elképzelése szerint a különös gömbhalmazok a ma még nem igazán értett sötét anyagból tartalmaznak tekintélyes mennyiséget. Ez viszont ellentmond pár ma elfogadott elméletnek, melyek szerint a gömbhalmazokban egyáltalán nincs sötét anyag. A lehetséges magyarázatok egyelőre nem többek, mint spekulációk. A kutatók mindenesetre a jövőben megvizsgálják, hogy más galaxisok is tartalmaznak-e ilyen különös gömbhalmazokat. Mindenesetre javaslat született új osztály bevezetésére. Könnyen lehet, hogy a lassan egy évszázados Shapley-Sawyer osztályozás új kategóriával bővül.

Shapley azonban nemcsak a gömbhalmazok osztályozásával érdemelte ki, hogy megemlékezzünk róla. Ő volt az, aki elsőként megpróbálta meghatározni a gömbhalmazok térbeli eloszlását a galaxisban azok távolságának meghatározásával. A gömbhalmazok bővelkednek RR Lyrae változócsillagokban. Ezen halmazváltozóknak is nevezett csillagok pulzációs periódusa és abszolút fényessége között reláció áll fenn, így tökéletesek távolság meghatározására, akár csak a Cepheida változók. Elég megmérni a periódusukat, amiből meghatározható abszolút fényességük, vagyis milyen fényesek lennének, ha 10 pc távolságba lennének tőlünk. Az látszó fényesség és a számított abszolút fényességből a távolság már meghatározható. Shapley Cepheida változócsillagoknak hitte az RR Lyrae változócsillagokat, melyekről csak később derült ki, hogy valójában halványabbak az előzőknél. Így bár Shapley túlbecsülte a gömbhalmazok távolságát, mégis képet alkotott azok valós térbeli eloszlásáról. Megállapította, hogy a Tejúttól északra és délre azonos a gömbhalmazok eloszlása, azonban az egész égboltra nézve aszimmetrikus. A halmazok erős koncentrációt mutattak a Nyilas csillagkép irányába.

ShapleyGCsm

Shapley vizsgálatai alapján a gömbhalmazok eloszlása. Az origóban a Nap látható, míg a vörös X a Tejútrendszer centrumát jelöli. – Forrás: Prof. Richard Pogge

A kapott távolságadatokból, az eloszlásból meghatározta Tejútrendszerünk dimenzióit, mely nagyobbnak bizonyult, mint előtte gondolták. Feltételezte, hogy a gömbhalmazok nagyjából szférikus eloszlást mutatnak a galaxis centruma körül. Erre alapozva pozíciójuk és távolságuk alapján a Nap galaxis centrumához viszonyított pozícióját is sikerült meghatároznia. Ahogy fentebb is említettem, a távolság adatokat már eleve hiba terhelte, továbbá nem vette figyelembe az intersztelláris por fényelnyelő hatását, ennek ellenére korszakalkotó felismeréseket tett. Kutatásai közelebb vittek minket galaxisunk és benne elfoglalt helyünk megismeréséhez.

Az előző szekcióból megtudhattuk, hogy a gömbhalmazok igen ősi objektumok. A legfiatalabb is legalább 8-10 milliárd éves. A Tejútrendszeren belül gömbhalmazok generációiról lehet beszélni, melyek más időben, különböző eseményeknek köszönhetően jöttek létre. De honnan tudják mindezt a csillagászok?

A gömbhalmazok korát, azok Hertzsprung-Russel diagramja (HRD) alapján határozzák meg. A halmaz tagjai jó közelítéssel egyszerre keletkeztek. Arról, hogy mit is jelent a „jó közelítés”, egy kicsit később még szó lesz. Az egyszerre született (azonos fémtartalmú) csillagok megfigyelhető fejlődési állapota csak a kiindulási tömegtől függ. A nagyobb tömegű fényesebb és forróbb csillagok hamarabb elhasználják hidrogén készleteiket, és elhagyják a fősorozatot. Az idő előrehaladtával már csak a kisebb tömegű, és kevésbé fényes csillagok maradnak a fősorozaton.

Megnézve egy gömbhalmaz Hertzsprung-Russel diagramját rögtön szembetűnő, hogy a valaha legfényesebb, a Nap tömegét több mint nyolcszorosan meghaladó csillagok mind hiányoznak a fősorozatról. Ezek réges-régen „kihunytak”, miután szupernóvaként lángoltak fel. De a közepes tömegűeket, vagyis a Nap tömegét nagyjából kétszeresen, de maximum nyolcszorosan meghaladó csillagokat sem találjuk már ott. Bennük is leálltak a fúziós energiatermelő folyamatok, ma a gömbhalmazok fehér törpe populációját gyarapítják, hogy aztán sok-sok évmilliárd év alatt nagyon lassan kihűljenek. 10 milliárd év után a gömbhalmazokban – márpedig a Tejútrendszer gömbhalmazai jellemzően ennél is idősebbek -, már csak a Nap tömegével összemérhető, illetve a Nap tömegénél kisebb tömegű csillagok belsejében folyik energiatermelés.

NGC5466-HRD1

Az NGC5466 Hertzsprung-Russel diagramja. Main Sequence – Fősorozat, Giant Branch – Óriás ág, Horizontal Branch – Horizontális ág, Asymptotic Branch – Aszimptotikus óriás ág

Az ábra forrása: Alberto Barolo, Mattia Dal Bo, Elisa Naibo

A Nap tömegének nagyságrendjébe eső, a fősorozatot elhagyó csillag esetén a hidrogén fúzió már régen nem a magban zajlik. Ekkora, a hidrogén héliummá történő átalakítása már a magot körülvevő külső héjba tevődik át, melynek következtében a csillag felfúvódik, és külső része lehűl, így jut el a vörös óriás fázisba. A horizontális ág tagjai pedig a magjukban már héliumból szenet hoznak létre. Ez a folyamat a kék szín irányába tolja a csillag fényét. Az óriások és a horizontális ág közötti rés baloldalán találhatóak a már korábban említett RR Lyrae csillagok. Azért van ott a rés, mert csillagászati értelemben, a két fejlődési állapot közötti utat a csillagok hamar bejárják. Ahogy pedig erre az előbb is rámutattam, az RR Lyrae váltózó csillagok magjában már javában folyik a hélium szénné alakítása. Miután a hélium is elfogy, az addigra szénben és oxigénben gazdag magban, a fúzió az azt körülvevő külső héjba tevődik át. Az energia nagy része azonban nem itt keletkezik, hanem a külsőbb hidrogén héjban. A csillag külső rétegei ismét felfúvódnak és lehűlnek. Ennek köszönhetően a csillag fényessége ismét megnő túlszárnyalva a korábbi vörös óriás fázist, színe pedig ismét a vörös felé tolódik. A csillag elfoglalja helyét az aszimptotikus óriás ágon. A gömbhalmazokról készült felvételeken ezek és a korábban említett vörös óriások láthatóak, mint fényes narancs és vörös színű domináns csillagok, meghatározva a halmaz látványát. Ezen csillagok tömege már nem elég nagy, hogy a héliumnál nehezebb elemek fúziója beinduljon. A héjakban is idővel elfogynak a tartalékok, leáll a fúzió. A csillag külső rétegeit a világűrbe pöfékelve megindulnak a fehér törpévé válás útján.

Minél idősebb egy halmaz, annál lejjebb tolódik az a pont (Turn Off Point) a fősorozaton, ahol a csillagok „elkanyarodnak” az óriás ág felé. Felrajzolva a HRD-t egy adott halmazra, az előbb említett pontnak a meghatározásával, továbbá felhasználva a csillagfejlődési elméleteket, megbecsülhető a halmaz kora.

Amennyiben a kedves olvasó még egyszer alaposan megnézi a fenti ábrán a HRD-t feltűnhet neki valami furcsaság, hacsak eddig nem tűnt már fel. A fősorozatot meghosszabbítva ott, ahol az az óriás ág felé elkanyarodik (Turn Off Point), csillagokkal találkozunk a diagramon. (A piros szaggatott vonallal határolt területről van szó). Ezek a csillagok nagyon nem illenek bele abba a képbe, amit éppen az imént vázoltam fel. A fősorozat közelében abban a tartományban találhatóak, ahonnan korábban a nagytömegű kékes csillagok már régen elfejlődtek. Mit keresnek mégis ott, ezek a kék vándoroknak nevezett égitestek?

Létezésükre a ma elfogadott egyik magyarázat, hogy halmaztagok összeolvadásával jönnek létre. Az így keletkező csillag potenciálisan nagyobb tömegű, mint a fősorozaton tartózkodó társaik. A nagyobb tömegű csillagok pedig forróbbak és így kékebbek is. Az ellentmondás ezek fényében mindössze csak látszólagos. Az összeolvadást látszik megerősíteni, hogy jellemzően a gömbhalmaz sűrűbb régiói környékén fordulnak elő. Illetve, sokuk igen gyorsan forog. A leggyorsabban forgók pedig a centrum körül figyelhetőek meg, melyek közül ráadásul néhány igen gyorsan, hiperbola pályán mozog. Ezek sorsa már megpecsételődött, úton vannak, hogy végleg elhagyják a halmazt. A másik favorizált elmélet szerint e csillagokat a kezdetben nagyobb tömegű párjuk hizlalta fel. Mivel a társ nagyobb tömegű volt, így gyorsabban fejlődött. A fősorozatot elhagyva felfúvódott és kitöltötte a Roche-térfogatát, így a ma a kék vándorok jellegzetességeit mutató komponens megszerezhette annak anyagát. Ezt az elméletet látszik alátámasztani, hogy bizonyos kék vándorok felszínének szén és oxigén tartalma jóval kevesebb, mint az szokásos. Ez pedig anyagátadásra utal.

Egyes kutatások arra engednek következtetni, hogy a két mechanizmus akár egyszerre is jelen lehet a gömbhalmazokban. Míg az anyagátadásos „megfiatalodás” inkább a külső régiókra, addig az ütközéses/összeolvadásos keletkezés inkább a halmaz magja környékén lehet jellemző. Az igazság az, hogy nehéz eldönteni, hogy melyik elmélet a helyes. Könnyen lehet, hogy ez a kérdés nem is a gömbhalmazokban dől majd el.

Kék vándorok nyílthalmazokban is előfordulnak. Csillagászok a Hubble Űrteleszkóppal megvizsgálták az NGC188 21 kék vándorát. Miért éppen nyílthalmaz volt a célpont? Mert a gömbhalmazokkal ellentétben nem zsúfolt csillagkörnyezetben kellett elvégezni a megfigyeléseket. Azért választották ezt a nyílthalmazt, mert 7 milliárd éves korával az egyik legöregebb a Tejútrendszerben, s így a kék vándoraik sem annyira „kékek”, megkönnyítve a kísérők kimutatását. Több jelöltről már eleve tudható volt, hogy kettős rendszer része. Az egymáskörül „táncoló” tagok vagy közelednek felénk, vagy távolodnak tőlünk. A spektrumukban pedig mindez megmutatkozik (Doppler-effektus). A kettősség másik jele, hogy a főkomponens spektrumára rárakódik a második tag színképe. Vagyis valójában nem egy, hanem két csillag spektrumát látjuk. Ezek a spektroszkópiai kettőscsillagok. Az izgalmas kérdés a kísérő mibenléte volt. A kék vándorok emissziójában kerestek olyan UV többletet, melyet csak egy fehér törpe társ okozhat, és 7 csillag esetében találtak is ilyet.

A közvetett bizonyítékok mellett, így közvetlen bizonyíték is van már arra, hogy a kék vándoroknak a fejlődésben előrehaladott kísérőik vannak. Ezek a fehér törpék a Nap tömegével nagyjából megegyező, illetve nem sokkal nagyobb tömegű csillagoknak a felfúvódást követő végstádiumai. A fúziós folyamatok már megszűntek bennük, így szép lassan kihűlnek. 7 csillag esetén meglett tehát a társ, akitől korábban a ma kék vándorok „gúnyáját” viselő csillagok anyagot szereztek. A vizsgálati módszer limitációjának köszönhetően az öregebb, 11000 K alá hűlt fehér törpék már nem ragyognak elég fényesen az UV tartományban, így a Hubble-el azokat már nem lehet detektálni. Vagyis, csak az utóbbi 250 millió évben kialakult fehér törpék megfigyelésére volt csupán mód. Mindazonáltal további 7 csillag színképe, és kísérőjének kikövetkeztetett tömege alapján arra gyanakodnak a kutatók, hogy azok körül is fehér törpe kísérő keringhet. Nagyon óvatosan fogalmazva, a következő a konklúziója a publikációnak: a tömegátadásos folyamatok alsó limitje 33% körüli, vagyis legalább a kék vándorok egyharmada köszönheti ennek a létét. Jóval kisebb valószínűséggel ugyan, de ez a limit akár 67% is lehet. Mindenesetre az NGC 188 21 csillagának kutatását még nem zárta le a csapat, és tervezik folytatni a munkát.

Fentebb, elejtettem egy fontos megjegyzést, mely mindenképpen magyarázatra szorul. A gömbhalmazokat sokáig úgy kezelték, amiben minden csillag egyszerre keletkezett. A kutatók azonban felfedezték, hogy bizonyos gömbhalmazok nem is egy nemzedék csillagaiból állnak. Van olyan példánya ezen objektumoknak, melyeknél az első nemzedék után 100 millió évvel alakult ki a következő. De olyan is akad, ahol 3 különböző generációt sikerült kimutatni. Minderre a gömbhalmazok utóbbi időben elvégzett spektroszkópiai és fotometriai elemzése világított rá.

Az első árulkodó jelre a halmaztagok kémiai összetételének vizsgálatakor bukkantak a csillagászok. Egyes gömbhalmazokban különböző hélium és fémtartalmú csoportok jelenlétét sikerül kimutatni, mely nagy valószínűséggel azok különböző életkorából fakad. Ugyanis, a később született csillagok már tartalmazták a korábbi generációk által legyártott elemeket, melyeket azok késői fejlődési fázisukban kibocsájtott csillagszél, illetve a nagyobb tömegűek halálakor bekövetkező szupernóva-robbanások révén juttattak, az akkor még a gömbhalmazokban jelenlévő intersztelláris gázba. Éppen ezért, az ebből a szennyezett gázból születő újabb populációk már héliumban és fémekben jóval gazdagabbak lettek.

Alig pár bekezdéssel feljebb írtam, hogy a gömbhalmazok HRD-je elárulja annak korát. Bár bizonyos kételyek már korábban felmerültek, de szinte egészen a XX. sz. végéig úgy tűnt, hogy a csillagokra egyetlen izokron illeszkedik, vagyis ebből következően csillagai mind egyszerre keletkeztek. Az izokron pedig elárulja, hogy mikor. Az izokron a csillagfejlődésben használt kifejezés, mely a HRD-n az azonos korú csillagokat összekötő görbét jelöli. Főként a műszerek fejlődésének köszönhetően, azonban alaposabb vizsgálatok kimutatták, hogy több esetben a horizontális ág vagy a fősorozat nem reprodukálható csak egyetlen csillagpopulációval, vagyis több izokron fedi csak le a halmazt.  Az izokron elhelyezkedése a HRD-n, illetve az alakja függ a csillagok kémiai összetételétől, ugyanis a más-más összetételű csillagok némileg eltérő utat járnak be fejlődésük során. A halmaz szín-fényesség diagramja, és a spektroszkópiai vizsgálatok együttesen tehát igazolták azt a tényt, hogy pár gömbhalmazban valóban különböző összetételű, ebből következően pedig különböző korú csillagpopulációk élnek együtt.

Bár eddig a gömbhalmazoknak csak egy részekről derült ki, de a kutatók egyre inkább hajlanak arra, hogy szinte minden halmaz tartalmaz kémiai inhomogenitást, csak éppen még nem akadtunk a nyomára. A jövőbeli megfigyelések reményeik szerint el fogják dönteni ezt a kérdést.

NGC2808-3pop

NGC2808-iso

Az NGC2808 gömbhalmaz fősorozatának részlete, amelyben 3 csillagpopuláció is elkülöníthető Piotto és kutatótársainak 2007-es tanulmánya szerint. (A jelölés egy-egy populáció alaposabb vizsgálatnak alávetett csillagát jelöli.) Az alsó ábrán látható, hogy több izokronnal írható csak le a gömbhalmaz fősorozata. Ezek az izokronok a csillagok kémiai összetételben (hélium tartalmában) térnek el egymástól. – Forrás: Piotto és mások, Bragaglia és mások

Az idők során sok titkát feltárták a csillagászok a gömbhalmazoknak. Pontos kialakulásuk azonban a mai napig nem pontosan tisztázott. Az elméletek a megfigyelések mögött kullognak, mivel a gömbhalmazok nem egy jellemzőjére több magyarázat is létezik. A versengő teóriák között pedig adott esetben nem könnyű választani a megfigyelések alapján.

A legtöbb elmélet igyekszik megmagyarázni, hogy miként keletkeztek a különböző csillagpopulációk, illetve próbálják kezelni azt a tényt, hogy miért más és más egy-egy gömbhalmaz felépítése. A megfigyelések folyamatosan egyre finomodnak. A kémiai összetétel vizsgálata a korai modellekben gyakran arra korlátozódott, hogy a fémességet a hidrogén és vas arányaként kezelték. A mai elméletek már a hélium tartalommal, az egyes fémek egymáshoz viszonyított arányával, vagyis a nátrium/vas és oxigén/vas arány alapján az oxigén-nátrium antikorrelációval is számolnak. Természetesen az a tény sem elhanyagolható, hogy a modellek erősen építenek a csillagfejlődési elméletekre, melyek sokat csiszolódtak mára.

A. A. R. Valcarce és M. Catelan modellje arra alapoz, hogy egy gömbhalmaz ma megfigyelhető összetétele nagyban függ attól, hogy mekkora volt a gömbhalmaz progenitorának tömege. Megkülönböztet kis, közepes, és nagytömegűt. A hasonló, csak a kiindulási tömegben eltérő kezdetek után három lehetséges kimenetet írnak le, mely magyarázatot ad a megfigyelhető populációk eloszlására és kémiai összetételére.

Mind a három történet teljesen hasonlóan kezdődik. Az ősi hatalmas gázfelhő gravitációs kollapszusát követően, a ködbe ágyazódva kialakul a csillagok első generációja. A csillagok eloszlása és a kémiai összetételük ekkor még teljesen homogén. Az ősi felhő anyagának 60-80%-a megmarad, nem alakul csillagokká, ugyanis annak tömeg nagy területen oszlik el, így csak újabb lökés, sokk hatására tud benne kialakulni lokális csomósodás. A gáz továbbzuhan a halmaz gravitációs központja felé. Az előbb említett lökés meg is érkezik, amikor az első generáció masszív csillagai elkezdik gyors csillagszél formájában ledobni anyagukat, mely beleütközik a befelé hulló gázba. Egy idő után ez a kidobódó anyag, a csillag tömegétől függően, szinte csak héliumból áll olyan elemekkel szennyezve, melyek részt vettek a csillagban zajló fúzióban, egészen pontosan a CNO, NeNa és MgAl ciklusban. Minden más tekintetben a masszív csillagokból kiáramló csillagszél összetétele megegyezik az ősi gázfelhőjével. Innen a történet háromfelé ágazik.

A kistömegű progentitor nem képes a halmazban tartani az első generáció masszív csillagai által kidobott gázt, a befelé hulló anyag sebessége pedig viszonylag alacsony. Egyszerűen nem jut be az ősi felhőből elég anyag, nem teremtődnek meg a feltételek csillagok keletkezéséhez a mag környékén. Az első generáció nagytömegű csillagainak halálakor fellángoló szupernóvák teljesen kisöprik az ősi gázt, és ezzel együtt a szupernóva-robbanásban a csillagról lelökődött anyag is távozik a halmazból. A második generáció annak a gáznak az összesűrűsödéséből születik meg, melyet korábban a nagytömegű csillagok ledobtak magukról, mikor fejlődésük során az aszimptotikus szuperóriás, illetve aszimptotikus óriás ágon tartózkodtak. A második generáció kémiai összetételét nagyban az első generáció produktumai határozták meg.

progenitor-kicsi

Kistömegű progenitor esetén a gömbhalmaz fejlődése. A vörös pöttyök az első, míg a narancs a második generációt jelöli. A pöttyök mérete a tömegre utal. A nyilak a gáz mozgási irányát jelölik, mérete a sebességre utal, a szín pedig az eredetére. Az ábrán az egyes fázisok időpontja is szerepel. a) Az első generáció keletkezése. b) A lassan befelé áramló gáz gyakorlatilag nem jut el a központig, a masszív első generációs csillagok csillagszele ebben megakadályozza. c) az első generáció szupernóvái által kidobott gáz elszökik a halmazból. d) A gáz összegyűlik az első generáció masszív csillagainak csillagszeléből, melynek intenzív szakasza arra az időre esett, amikor azok az aszimptotikus szuperóriás, illetve aszimptotikus óriás ágon tartózkodtak. e) Kialakul a második generáció. f) Fellobbannak a második generáció szupernóvái, melyek ismét tisztára söprik a halmazt.  g) A napjainkban megfigyelhető kémiai összetétele a halmaznak.

Közepes tömegű progenitor esetén a halmaz mélyebb gravitációs potenciál gödörrel rendelkezik, így a beáramló ősi gáz nagyobb sebességre tud gyorsulni. A masszív csillagok kidobott anyaga bár a külső részeken megpróbál elszökni, addig a halmazban marad, míg az útját álló befelé áramló gázzal együtt a szupernóvák ki nem takarítják. Mindeközben a mag környékén a csillagszél összeütközik az összegyűlő ősi gázzal, és a kinetikus energiából termikus energia lesz. A gáz felfűtődése pedig megakadályozza a csillagok keletkezését.  Később, az első szupernóva-robbanások végül összepréselik a központban lévő gázt, melyből újabb csillagok születnek. A megfigyelések szerint a második generáció héliumban már dúsabb a masszív csillagok ledobott anyagának köszönhetően, azonban fémekben nem annyira gazdag. Mi ennek a második jellemzőnek az oka? Feltételezve, hogy a szupernóva-robbanások majdnem szimmetrikusan történnek, és a maghoz nem túlságosan közel, a halmaz központjában a gáz csak kevéssé dúsul fel fémekben. A szupernóvák anyagának csak kis része keveredik el a magban található gázban. A robbanások emellett ki is söprik a külső részen korábban összekeveredett gázt a halmazból. A közepes tömegű progenitorral rendelkező halmazok még mindig nem elég nagytömegűek ahhoz, hogy képesek legyenek megtartani a szupernóvák kidobott anyagát. A gravitációs potenciálgödör nem elég mély, és kintről befelé áramló gáz sem elég nagytömegű, hogy visszatartsa a robbanások kifelé törő gázait.

Ennek köszönhetően, a később születő harmadik generáció sem lesz túlságosan gazdag fémekben. A modellek szerint nemcsak a szupernóvák anyagát, de a második generáció nagytömegű csillagainak csillagszelét sem képes megtartani a halmaz, az szinte akadálytalanul távozik a környező világűrbe. Az első generáció szupernóváinak hulláma után a centrum felé hulló gáz egyedüli utánpótlása éppen ennek a generációnak a közepes tömegű csillagai. Ezek a csillagok kis sebességű kiáramlás révén veszítenek tömeget. Azonban ezt is hamarosan kisöprik a második generáció szupernóvái. A második nagytakarítás után új gázfelhő kezd kialakulni a centrumban, az első és a második generációs közepes tömegű csillagok által kidobott anyagból. Az ebből keletkező harmadik generáció kémiai összetétele éppen ezért az első és a második generációé közé esik. Amíg van gáztartalék újabb és újabb bár egyre kevésbé népes populációk születhetnek, melyek összetétele egyre jobban hasonlít az első populációéra.

progenitor-kozepes

Közepes tömegű progenitor esetén a gömbhalmaz fejlődése. A jelölések az előző ábra logikáját követik. A vörös pöttyök az első, a kék a második, míg a zöld a harmadik generációt jelöli. a) Megszületik az első generáció. b) A gáz összegyűlik az első generáció csillagainak csillagszeléből és a befelé áramló ősi gázból. c) Az első generáció szupernóvái felrobbannak, mely kiváltja a második generáció születését, és egyben kisöpri azt a gázt, ami nem érte el a magot. d) Az első generációs és második generációs csillagok szupernóva-robbanásai. e) A gáz összegyűlik az első és második generációs az aszimptotikus szuperóriás, illetve aszimptotikus óriás ág csillagainak csillagszeléből. f) A harmadik generáció születése. g) A napjainkban megfigyelhető kémiai összetétele a halmaznak.

A nagyon nagytömegű progenitor esetében a halmaz fejlődése hasonlóan indul, mint a közepes tömegűeknél. A befelé áramló ősi ködből megszületik az első generáció. Mivel ebben az esetben a halmaz még mélyebb gravitációs potenciál gödörrel rendelkezik, mint az előző esetben, így a beáramló ősi gáz még nagyobb tömegben áramlik be és nagyobb sebességre gyorsul. Ez előzőeknek köszönhetően a masszív csillagok kidobott anyaga nem képes eltávozni a rendszerből, így idővel héliumban sokkal dúsabb lesz a környezet, mint az előző esetben. Végül a mag környékén összegyűlő gázban az első generáció szupernóvái indítják be a csillagkeletkezést. A megszülető második generáció csillagai tehát héliumban igen dúsak lesznek, de fémtartalmuk alig haladja meg az első generációét (az előző szekcióban már részletezett okból). Ezekből a halmazokból már a szupernóvák anyaga sem tud eltávozni. Összeütközve a befelé áramló gázzal, elkeveredik vele, miközben késlelteti annak magba áramlását. Kis idő elteltével a fémekben feldúsult gáz, mely a második generáció keletkezése után megmaradt, összegyűlik a mag környékén. A kialakuló felhőbe belekeveredik a második generáció masszív csillagai, és az első generáció masszív és közepes tömegű csillagai által kidobott anyag. Ez a három tényező határozza meg a harmadik generáció kémiai összetételét. Megjegyzem, hogy a megfigyelhető harmadik generáció összetételét a legnehezebb összeegyeztetni az elméletekkel, mert viszonylag sok forrásból származik a kialakulásukban szerepet játszó gázfelhő. A harmadik generáció megszületése után az előzőekhez hasonló újabb ciklus kezdődik. A ciklusok között az egyik jelentős különbség, hogy egyre kisebb tömegűek a csillagok az aszimptotikus szuperóriás, illetve aszimptotikus óriás ágon, melyek kidobott anyaga hozzájárul a következő generáció kialakulásához. A befelé áramló gáz egyre kevésbé szennyezett, mert a kisebb tömegű csillagok által kibocsájtott csillagszél összetétele kevésbé tér el attól, mint amiből kialakultak. A kisebb tömegű csillagok másként „működnek”, mint „fajsúlyosabb” társaik. Ennek következtében, minden egyes új generáció összetétele egyre jobban hasonlít az első generációéhoz.

progenitor-nagy

Masszív progenitor esetén a gömbhalmaz fejlődése. A jelölések az előző ábra logikáját követik. A bordó pöttyök az első, a kék a második, a sárga a harmadik, míg a piros a negyedik generációt jelöli. a)  Megszületik az első generáció. b) A gáz összegyűlik az első generáció csillagainak csillagszeléből és a befelé áramló ősi gázból. c) Az első generáció szupernóvái felrobbannak, mely kiváltja a második generáció születését. d) Összegyűlik az a kevert összetételű gáz, mely az első generációs szupernóvák, az első és második generáció masszív csillagainak csillagszeléből, és a második generáció kialakulása után megmaradt gázból áll. e)  A harmadik generáció születése, miután a szupernóva-robbanások korszaka véget ér. f) Az előző generációk az aszimptotikus szuperóriás, illetve aszimptotikus óriás ágon kibocsájtott csillagszeléből származó anyag összegyűlik. g) A negyedik generáció születése. h) A napjainkban megfigyelhető kémiai összetétele a halmaznak.

A most bemutatott elmélet viszonylag jól leírja, hogy miként alakultak ki a csillagok egyes generációi a gömbhalmazokban. Illetve megmagyarázza a halmazok közötti különbségeket. Természetesen ezzel nem tekinthető lezártnak a gömbhalmazok kialakulásának kérdése. Ennek a modellnek az ellenőrzésével kapcsolatban az egyik felmerülő probléma, hogy nehéz megmondani a gömbhalmazok kiindulási tömeget. Igaz, hogy mostani tömegük elég jól ismert, de a gömbhalmazok tömege a múltban nagyobb volt. Egyrészt a szupernóvák tekintélyes mennyiségű gázt fújtak ki a halmazból. Másrészt az idők során a csillagok egy része kölcsön hatva társaival szert tett a gömbhalmazban érvényes szökési sebességre, így ezek egyszerűen elillantak a halmazból. Harmadrészt a Tejútrendszer gravitációja keltette árapályerők is tekintélyes számú halmaztagot szakítottak ki a gömbhalmazból, miközben az elhaladt a mag közelében, vagy éppen keresztezte a galaxisunk síkját. Milyen jó lenne, ha ismernénk a gömbhalmazok teljes dinamikai történetét! A nehézségek ellenére a szerzőknek végül sikerült becslést adni a kiindulási tömeg alsó határára, a ma megfigyelhető első generációs csillagok, és az azt követő generációk aránya alapján, megvizsgálva azt különböző gömbhalmazokra. Ugyan így lehetségessé vált a modelljük tesztelése, de további kutatásokra lesz majd még szükség, hogy durva becsléseken túl pontosabb kiindulási tömeg birtokában lehessen ellenőrizni ezt az elképzelést.

Remélem, hogy a fenti rövid áttekintésnek köszönhetően sikerült képet alkotnia az olvasónak a gömbhalmazokról és azok lakóhelyéről, és a jövőben újra velem tart majd egy-egy rövid ismertetés erejéig. A csillagos ég bővelkedik a látnivalókban.

Felhasznált irodalom:

E.F. del Peloso, L. da Silva, G.F. Porto de Mello, L.I. Arany-Prado: The age of the Galactic thin disk from Th/Eu nucleocosmochronology III. Extended sample

Jason Kalirai: The Age of the Milky Way Inner Halo

Antonino Marasco: The Gaseous Halo of The Milky Way

A. Gupta, S. Mathur, Y. Krongold, F. Nicastro, M. Galeazzi: A huge reservoir of ionized gas around the Milky Way: Accounting for the Missing Mass?

Matthew A. Taylor, Thomas H. Puzia, Matias Gomez, Kristin A. Woodley: Observational evidence for a dark side to NGC 5128’s globular cluster system

Alberto Barolo, Mattia Dal Bo, Elisa Naibo: Photometric analysis of the globular cluster NGC5466

G. Piotto, L. R. Bedin, J. Anderson, I. R. King, S. Cassisi, A. P. Milone, S. Villanova, A. Pietrinferni, A. Renzini: A Triple Main Sequence in the Globular Cluster NGC 2808

Raffaele Gratton, Eugenio Carretta, Angela Bragaglia: Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters

A. A. R. Valcarce, M. Catelan: Formation of Multiple Populations in Globular Clusters: Another Possible Scenario

Natalie M. Gosnell, Robert D. Mathieu, Aaron M. Geller, Alison Sills, Nathan Leigh, Christian Knigge: Implications for the Formation of Blue Straggler Stars from HST Ultraviolet Observations of NGC 188