Nyílthalmazok

A halmazok definíciója, hogy csillagaik gravitációsan kötődnek egymáshoz, de mint látni fogjuk, ez adott esetben nem feltétlenül tart addig, míg az utolsó csillagok is „kihunynak” benne. Alapvetően a csillaghalmazok két típusát különböztetjük meg: a nyílthalmazokat és a gömbhalmazokat. A gömbhalmazokról korábban már részletesen írtam. A továbbiakban, így kizárólag csak a nyílthalmazok témakörére fogok szorítkozni.

M45-Panik

Talán az égbolt egyik legismertebb nyílthalmaza az M45. Mi magyarok Fiastyúkként szoktunk emlegetni, mely a csibéivel a Bika csillagkép hátán ücsörög. A görögök Plejádoknak (Πλειάδες / Pleiades) nevezték, a mitológiai hét nővér után. A felkelő nap országában pedig Subaru-ként ismert ez a nyílthalmaz. Nincs olyan kultúra, ahol ne lenne valamilyen elnevezése, vagy ne kapcsolódna hozzá valamiféle történet. Az M45-ben a hosszú expozíciós felvételeken reflexiós ködök is megfigyelhetőek. Kezdetben azt gondolták, hogy ez még a csillagok keletkezése után maradt hátra. Azonban az újabb modellek alapján a halmaz túl idős ahhoz, hogy ezek a születés után hátra maradt ködfoszlányok még egyben maradhassanak. A kék forró csillagok sugárzása ezt már rég elfújta volna. Sokkal valószínűbb az a magyarázat, hogy a nyílthalmaz éppen egy sűrűbb csillagködön halad keresztül, mely visszaveri a tagok fényét, gyönyörködtetve ezáltal a szemlélőt. Fotó: Panik Zoltán Imre

A nyílthalmazok legfeljebb néhány ezer tagot számlálnak. A csillagászok becslése szerint a Tejútrendszerben a számuk akár a 100 ezret is elérheti. Ehhez a hatalmas számhoz képest azonban, mindössze alig néhány ezret ismerünk. Ennek legfőbb oka, hogy főként galaxisunk korongjának síkjához közel helyezkednek el. Jellemzően egyikük sincs 500-600 fényévnél távolabbra ettől.  Tejútrendszerük korongjában viszont igen erős az intersztelláris anyag fényelnyelő és vörösítő hatása. De azt is érdemes megemlíteni, hogy a csillagokkal zsúfolt korongban nem is olyan egyszerű felismerni őket. A felsorolt három hatás kimondottan a galaktikus centrum irányában nehezíti meg a csillagászok dolgát. Összességében elmondható, hogy a becsült teljes népességhez képest csak igen kevés van hozzánk kellően közel, illetve kedvező helyzetben ahhoz, hogy alaposabban is tanulmányozhassák őket a kutatók. Vagy hogy éppen mi amatőrcsillagászok megfigyelhessük, lerajzolhassuk, vagy akár fotografikus portrét készíthessünk róluk. Vagy éppen csak egyszerűen gyönyörködhessünk bennünk.

Hogy a galaxison belül miért egy viszonylag vékony síkban, és a centrumtól nagyjából 16-65 ezer fényév sugárú tartományon belül helyezkednek el? Erre csillagrendszerünk története, a nyílthalmazok születési körülményei, és későbbi fejlődésük ad magyarázatot.

A legtávolabbi, korai galaxisok megfigyelésével szerzett eddigi információink, illetve a modellek alapján feltételezhető, hogy azokhoz hasonlóan a Tejútrendszer története is törpe szferoidális és szabálytalan alakú ős-galaxisok ütközésével és egyesülésével indult, melyek már tartalmazhattak csillagokat. A kezdetben szabálytalan alakú és kaotikus gázfelhőben nem volt kitüntetett keringési iránya a születő csillagoknak. Az összeolvadások révén jelentős tömegűvé duzzadt, összehúzódó felhőben idővel kialakult egy kitüntetett forgási irány, a forgás üteme pedig egyre gyorsult az impulzus megmaradás törvénye értelmében. Körülbelül 9 milliárd (8.8 ± 1.7 milliárd) évvel ezelőtt ez az egész folyamat egy lapos forgó korongba terelte a gázt és a port. Az így létrejött molekuláris korong gázfelhőiben később keletkező csillagok pályája már ezt a kitüntetett irányt és síkot örökölte. (Csak a pontosság kedvéért megjegyzem, hogy a Tejútrendszer még későbbi története során is bekebelezett más törpe galaxisokat.)

Az egyes nyílthalmazok csillagai mind ugyanabban a hatalmas molekula felhőben keletkeztek, és koruk is nagyjából hasonló. A tagok gravitációsan ugyan kötődnek egymáshoz, de ez a kapocs gyenge, és nem tart örökké. A legtöbb nyílthalmaz elég „instabil”, ami arra vezethető vissza, hogy tömegük nem elég nagy ahhoz, hogy csillagaikat hosszú időn át megtartsák. Márpedig, ha a halmazra érvényes szökési sebesség kisebb, mint az őt alkotó csillagok átlagos sebessége, akkor azok belső és külső hatásokra viszonylag könnyedén elszöknek. De milyen hatások érik az egyes csillagokat?

Természetes belső folyamat a csillagok közötti közeli találkozás, melynek révén, az adott csillag elég sebességre tehet szert, hogy legyőzze a halmazon belüli szökési sebességet. A halmaz „párolgásában” fontos szerepet játszik továbbá a galaxis árapály hatása is, illetve közeli találkozások a galaxis többi csillagával, halmazaival. De ezzel még nincs vége a sornak, ugyanis a hatalmas molekula felhők megközelítése, vagy azokon való áthaladása is erodálja a halmazt.

Egyes becslések szerint a nyílthalmazok 90%-ka már addigra felbomlik, mire a csillagai egyáltalán elhagyhatnék azt a molekula felhőt, amiben születtek. Az ezt túlélő halmazokra is azonban idővel hasonló sors vár. Hogy mikor oszlanak fel? Ez nagyban függ a kiindulási tömegüktől. Csak az igazán népes és sűrű nyílthalmazok – amiből pedig igen keveset ismerünk – érik meg a több milliárd éves kort. Ettől a kevés kivételtől eltekintve, a „születési megpróbáltatásokat” átvészelő nyílthalmazok többség is általában néhány 100 millió éves időskálán szétesik.

A felbomlott nyílthalmazok tagjai továbbra is hasonló pályán mozognak, mozgó csoporttá (moving group) válnak. Ilyen mozgó csoporthoz tartozik például a Göncölszekér 5 fényes csillaga is (Ursa Major Moving Group). Mozgásuk, azonos kémiai összetételük, azonos koruk a bizonyítéka, hogy valaha, egy mára már felbomlott, nagyjából 300-500 millió éve született nyílthalmaz tagjai voltak.

UMA_Moving_Group_Goncol1-m1

A Nagy Medve (Ursa Major) csillagkép részét képező Göncölszekérnek, az Ursa Major Moving Group magjához tartozó csillagai. A mozgó csoport centruma tőlünk nagyjából 80 fényévre található. Kiterjedését tekintve, a tagok egy 30 fényév nagytengelyű és 18 fényév kistengelyű ellipszoid alakú térrészt töltenek ki. A jelölteket is beleszámolva, valamivel több, mint 4 tucat csillagról lehet szó, melyek az égboltunkon viszonylag nagy szeletén szétszórva láthatunk (a Cepheus-tól egészen „le” a Déli Háromszög csillagképig), s melyek látszólag a Nyilas csillagkép egy meghatározott pontja felé tartanak. Kiemelném, hogy egy csillagokban gazdag nyílthalmaz könnyen akár 200 csillagot is számlálhat ekkora területen.

Foglaljuk tehát össze!  Koruk a néhány millió, 10 millió, 100 millió éves nagyságrendtől körülbelül 10 milliárd évig tejed. A Tejútrendszer azon korszakának szülöttjei, amikor a csillagkeletkezés már a galaxis korongjában történt. Ezért itt koncentrálódnak, ennek síkjába. Azt a néhány, több milliárd éves nyílthalmazt leszámítva, melyek a többséghez képest jelentősen nagyobb tömeggel születtek, tagjaik a galaxisunk korához képest csak viszonylag rövid ideig maradnak együtt. A csillagok fémtartalma bennük magasabb, mint a Tejútrendszer ősi, öreg csillagjaié. A pályájuk mellett, így az is bizonyíték arra, hogy tagjaik inkább a Tejútrendszer fiatalabb csillaggenerációjának képviselői, I populációs csillagok. (Még az öregebb nyílthalmazok is gazdagabbak fémekben, mint a legősibb csillagok.)

De mi az a fémtartalom? Hogyan korrelál a csillag korával? Mi az az I populáció egyáltalán?

Walter Baade a II. világháborús elsötétítések miatt kiváló körülmények között dolgozhatott a világ akkor legjobb távcsövével. A Mount Wilson-on álló 100 hüvelykes távcsőre ma is legendaként tekintenek a csillagászok. Baade minden korábbinál nagyobb határfényességű képeket készített az Androméda-galaxisról, és igen meghatározó felismerést tett: a galaxis különböző területeire más-más típusú csillagok a jellemzők. Míg a karokban a kékes fényű csillagok domináltak a felvételein, addig a magvidéken a vörösebb, és halványabb csillagok. Bevezette a csillagpopulációk fogalmát. A fémekben gazdag csillagokat az I. populációba, míg a fémekben szegényeket II. populációba sorolta. A csillagászok minden elemet a hidrogénen és a héliumon túl a periódusos rendszerben fémnek neveznek. Az 1940-es évek igen termékenyek voltak a csillagászat terén. Nemcsak a megfigyelő csillagászat élte a forradalmát, de a kutatók addigra megértették a csillagok energiatermelési folyamatait. A csillagok belső felépítésével és fejlődésükkel kapcsolatos első számítások is ehhez az évtizedhez köthetők. Még ha csak a kezdetekről is beszélünk. Idővel világossá vált a csillagászok számára mi is okozza a kémiai összetétel különbségét a populációk között. Egy csillag fémtartalmát általában a Naphoz szokták hasonlítani a kutatók. A világegyetem története folyamán, a csillagoknak hála egyre dúsabb lett fémekben. Az újabb és újabb csillaggenerációk már egyre több fémet tartalmaztak, így minél alacsonyabb fémtartalmú egy csillag a Naphoz képest, vélhetőleg annál ősibb objektum. A Baade féle populációk tehát csillaggenerációk, ahol az I. populáció a fiatalabb, a II. populáció pedig az idősebb csillagok tartoznak. Igaz, hogy napjainkra ezt a csoportosítást már tovább finomították, és nem csak két populációról szoktak beszélni, de a felismerés jelentőségéből ez mit sem von le.

Az utóbbi évtizedek égboltfelmérő programjai világítottak rá arra, hogy fémtartalom a galaxisunkon belül igen változatos képet mutat. Nagyban függ attól is, hogy az adott csillagok a galaxis mely területén helyezkednek el. Kiderült, hogy a Tejútrendszer a korábbi elképzelésekkel ellentétben bonyolultabb felépítésű. Vagyis, sokkal több kémiai és dinamikai értelemben is elkülönülő alrendszerből áll össze. Az egyes vidékeken más és más volt ütemben folyat a csillagok „fémszennyező” tevékenysége. A nagyobb fémtartalom, tehát nem törvényszerűen jelent egyértelműen fiatalabb kort. A csillag származási helye is sokat nyom a latban.

De miként tudják meghatározni a kutatók egy nyílthalmaz korát? A 30 millió évnél idősebbek esetén a gömbhalmazoknál már ismertetett metódust alkalmazzák a csillagászok.

A módszer lényege, hogy fotometriai vizsgálatoknak vetik alá a nyílthalmaz csillagait, és felrajzolják annak szín-fényesség diagramját (Color Magnitude diagram – CMD), mely tulajdonképpen a Hertzsprung-Russel diagram (HRD) „gyakorlatias” változata. A vízszintes tengelyen két különböző szűrővel mért fényesség értékek különbsége kerül feltüntetésre a színképosztály helyett. (Ezt a csillag egyfajta színének lehet ezt tekinteni.) A függőleges tengelyen pedig ezek közül az egyik színszűrővel felvett fényességérték szerepel.

A halmaz szín-fényesség diagramja sok mindent elárul annak koráról, ugyanis az egyszerre született és azonos fémtartalomú csillagok megfigyelhető fejlődési állapota csak a kiindulási tömegtől függ. A nagyobb tömegű fényesebb és forróbb csillagok hamarabb elhasználják hidrogén készleteiket, és hamarabb el is elhagyják a fősorozatot. Az idő előrehaladtával már csak a kisebb tömegű, és kevésbé fényes csillagok maradnak a fősorozaton. Minél idősebb egy halmaz, annál lejjebb tolódik az a pont (Turn Off Point) a fősorozaton, ahol a csillagok „elkanyarodnak” az óriás ág felé.

csillaghalmazok_kora

Ahogy idősödik az adott csillaggeneráció, annál lejjebb tolódik az a pont (Turn Off Point) a fősorozaton, ahol a csillagok „elkanyarodnak” az óriás ág felé, így az adott generáció kora meghatározható. Az Myr millió évet, a Gyr milliárd éveket jelent. Animáció forrása: http://astro.berkeley.edu/~dperley/univage/univage.html

A fotometria eredményeiből megalkotva a szín-fényesség diagramját egy adott halmaznak, az előbb említett pontnak a meghatározásával, illetve a csillagfejlődési elméletek jósolta izokron illesztésével megbecsülhető a halmaz kora. Az izokron a csillagfejlődésben használt kifejezés, mely a szín-fényesség diagramon az azonos korú csillagokat összekötő görbét jelöli.

nyilthalmaz-HRD1

Különböző korú nyílthalmazok szín-fényesség diagramja. Kép forrása: Australia Telescope Outreach and Education

NGC6791-CMD

Az NGC6791 nyílthalmaz szín-fényesség diagramja, és az azokra illesztett 3 különböző izokron. A vörös 7.7 milliárd évnek, a kék 8.2 milliárd évnek, a fekete 9 milliárd évnek felel meg. A diagram függőleges tengelyén a V szűrővel mért fényesség, még a vízszintes tengelyen a különböző szűrőkkel felvett fényességek különbségei láthatók. A B (kék), V (vizuális), I (közeli infravörös) fényességek különbségeit színeknek is tekinthetjük. Balra a „kékebb”, jobbra a „vörösebb” csillagok találhatók. Az ábrán jól látható, ahogy a fősorozat egyszer csak véget ér, és elkanyarodik az óriás ág felé. Adott kémiai összetétel és kor esetén, ezeknek a csillagfejlődési elméletekből számított görbéknek a mentén kell elhelyezkedniük a csillagoknak a szín-fényesség diagramon. Amennyiben a nyílthalmaz 7.7 milliárd, 8.2 milliárd, vagy éppen 9 milliárd éves lenne. Forrás: F. Grundahl és mások

Lehetőség szerint a nyílthalmaz csillagait spektroszkópiai elemzésnek is alávetik, vagyis információt nyernek a csillagok kémiai összetételéről (fémtartalmáról). Ne feledjük, ahogy fentebb már utaltam rá, az újabb csillaggenerációk már a korábbiak által legyártott elemekkel beszennyezett gázfelhőkből alakultak ki. A csillagok „működése”, fejlődése nagyban függ a fémtartalomtól. Némileg más utat jár be a szín-fényesség diagramon a fémekben szegény csillag, mint a fémekben gazdagabb az idő előrehaladtával. A fémtartalom a csillag színhőmérsékletére is kihat. A fémekben szegények kékebbek, mint a fémekben gazdagabbak. Más-más kémiai összetételekhez, más-más izokron tartozik.

A nagyon fiatal nyílthalmazok esetében kissé más módszer a célravezetőbb, bár ez is a halmaz szín-fényesség diagramján alapszik. Az azonos korú, azonban eltérő tömegű csillagok fejlődési sebességének különbsége már „embriókorukban” is megmutatkozik. A hideg molekuláris gázfelhőkben születő csillagoknak időre van szükségük, hogy kellően összesűrűsödve, magjukban beinduljon a hidrogén fúziója. Egy nagytömegű csillag esetén ehhez nagyjából 100 ezer év szükséges. A kisebb tömegűeknél viszont akár több 10 millió évig is eltarthat, míg elérik a fősorozatot. A nagyon fiatal halmazokban tehát a fősorozat előtti csillagokat keresnek a kutatók, majd a csillagfejlődési elméletek által szolgáltatott lehetséges izokronokat ezekre illesztik a diagramon. Végül ezekből próbálják megállapítani a halmaz korát.

A fiatal halmazoknál, mivel még tartalmaznak fősorozat előtti csillagokat, meghatározható az is, hogy milyen időintervallumban születtek a csillagok a gázfelhőből. Alapvetően ez a legidősebb és a legfiatalabb csillag korkülönbsége. A módszer lényege leegyszerűsítve az, hogy a halmaz legidősebb csillagának tekintjük azt a csillagot, amelyik éppen elhagyja a fősorozatot (turn-off age), továbbá megkeressük a legfiatalabb fősorozat előtti csillagot (turn-on age). A kettő különbsége pedig jó közelítéssel megadja, hogy mennyi ideig is folyt csillagkeletkezés a halmazban.

NGC6910-preMS-isoch

Az NGC6910 nyílthalmaz szín-fényesség diagramja a fősorozat előtti csillagokkal, melyre a csillagászok különböző izokronokat illesztettek. A fentebb említette vizsgálatokat kutatók több csoportja is elvégezte, és bár az értékek kissé eltérnek, mégis jól közelítenek egymáshoz. Az NGC6910 életkora nagyjából 7 millió év, a tagok jelentős része pedig az első 3 millió éves időintervallumban született. Bár a keletkezés üteme később lassult, de még fél millió évvel ezelőtt is keletkeztek csillagok. Forrás: Bhavya B. és mások

 

Felhasznált irodalom:

Charles J. Lada, Elizabeth A. Lada: Embedded Clusters in Molecular Clouds

L. R. Bedin, M. Salaris, G. Piotto, S. Cassisi, A. P. Milone, J. Anderson, and I. R. King: The Puzzling White Dwarf Cooling Sequence in NGC 6791: A Simple Solution

F. Grundahl, J. V. Clausen, S. Hardis, S. Frandsen: A new standard: Age and distance for the open cluster NGC 6791 from the eclipsing binary member V20

Luca Malavolta, Luca Borsato, Valentina Granata, Giampaolo Piotto, Eric Lopez, Andrew Vanderburg, Pedro Figueira, Annelies Mortier, Valerio Nascimbeni, Laura Affer, Aldo S. Bonomo, Francois Bouchy, Lars A. Buchhave, David Charbonneau, Andrew Collier Cameron, Rosario Cosentino, Courtney D. Dressing, Xavier Dumusque, Aldo F. M. Fiorenzano, Avet Harutyunyan, Raphaëlle D. Haywood, John Asher Johnson, David W. Latham, Mercedes Lopez-Morales, Christophe Lovis, Michel Mayor, Giusi Micela, Emilio Molinari, Fatemeh Motalebi, Francesco Pepe, David F. Phillips, Don Pollacco, Didier Queloz, Ken Rice, Dimitar Sasselov, Damien Ségransan, Alessandro Sozzetti, Stéphane Udry, Chris Watson: The Kepler-19 system: a thick-envelope super-Earth with two Neptune-mass companions characterized using Radial Velocities and Transit Timing Variations

Matthieu Portail, Christopher Wegg, Ortwin Gerhard, Melissa Ness: Chemodynamical Modelling of the Galactic Bulge and Bar

Luis A. Martinez-Medina, Mark Gieles, Barbara Pichardo, Antonio Peimbert: New insights in the origin and evolution of the old, metal-rich open cluster NGC 6791

NGC6791 – A maga nemében furcsa csillaghalmaz

NGC6791-LRGB-20180713-2306-sx-bin2-360s-TTK

NGC6791

2018-07-13, 2017-08-15 – Göd

23 x 360 sec L (Bin2), 8 x 360 sec R (Bin2), 8 x 360 sec G (Bin2), 8 x 360 sec B (Bin2)

300/1200 Newton távcső – Paracorr Type2 kóma korrektor – eredő fókusz 1380 mm

SkyWatcher EQ-6 Pro GoTo mechanika

SXVR-H18 CCD kamera, Hutech IDAS P2 LPS filter és Baader RGBL fotografikus szűrőszett

Az utolsó „égi felvétel” a régi gödi házunk udvaráról.

A nyílthalmazokról általában

A halmazok definíciója, hogy csillagaik gravitációsan kötődnek egymáshoz, de mint látni fogjuk, ez adott esetben nem feltétlenül tart addig, míg az utolsó csillagok is „kihunynak” benne. Alapvetően a csillaghalmazok két típusát különböztetjük meg: a nyílthalmazokat és a gömbhalmazokat. A gömbhalmazokról korábban már részletesen írtam. A továbbiakban, így kizárólag csak a nyílthalmazok témakörére fogok szorítkozni.

M45-Panik

Talán az égbolt egyik legismertebb nyílthalmaza az M45. Mi magyarok Fiastyúkként szoktunk emlegetni, mely a csibéivel a Bika csillagkép hátán ücsörög. A görögök Plejádoknak (Πλειάδες / Pleiades) nevezték, a mitológiai hét nővér után. A felkelő nap országában pedig Subaru-ként ismert ez a nyílthalmaz. Nincs olyan kultúra, ahol ne lenne valamilyen elnevezése, vagy ne kapcsolódna hozzá valamiféle történet. Az M45-ben a hosszú expozíciós felvételeken reflexiós ködök is megfigyelhetőek. Kezdetben azt gondolták, hogy ez még a csillagok keletkezése után maradt hátra. Azonban az újabb modellek alapján a halmaz túl idős ahhoz, hogy ezek a születés után hátra maradt ködfoszlányok még egyben maradhassanak. A kék forró csillagok sugárzása ezt már rég elfújta volna. Sokkal valószínűbb az a magyarázat, hogy a nyílthalmaz éppen egy sűrűbb csillagködön halad keresztül, mely visszaveri a tagok fényét, gyönyörködtetve ezáltal a szemlélőt. Fotó: Panik Zoltán Imre

A nyílthalmazok legfeljebb néhány ezer tagot számlálnak. A csillagászok becslése szerint a Tejútrendszerben a számuk akár a 100 ezret is elérheti. Ehhez a hatalmas számhoz képest azonban, mindössze alig néhány ezret ismerünk. Ennek legfőbb oka, hogy főként galaxisunk korongjának síkjához közel helyezkednek el. Jellemzően egyikük sincs 500-600 fényévnél távolabbra ettől.  Tejútrendszerük korongjában viszont igen erős az intersztelláris anyag fényelnyelő és vörösítő hatása. De azt is érdemes megemlíteni, hogy a csillagokkal zsúfolt korongban nem is olyan egyszerű felismerni őket. A felsorolt három hatás kimondottan a galaktikus centrum irányában nehezíti meg a csillagászok dolgát. Összességében elmondható, hogy a becsült teljes népességhez képest csak igen kevés van hozzánk kellően közel, illetve kedvező helyzetben ahhoz, hogy alaposabban is tanulmányozhassák őket a kutatók. Vagy hogy éppen mi amatőrcsillagászok megfigyelhessük, lerajzolhassuk, vagy akár fotografikus portrét készíthessünk róluk. Vagy éppen csak egyszerűen gyönyörködhessünk bennünk.

Hogy a galaxison belül miért egy viszonylag vékony síkban, és a centrumtól nagyjából 16-65 ezer fényév sugárú tartományon belül helyezkednek el? Erre csillagrendszerünk története, a nyílthalmazok születési körülményei, és későbbi fejlődésük ad magyarázatot.

A legtávolabbi, korai galaxisok megfigyelésével szerzett eddigi információink, illetve a modellek alapján feltételezhető, hogy azokhoz hasonlóan a Tejútrendszer története is törpe szferoidális és szabálytalan alakú ős-galaxisok ütközésével és egyesülésével indult, melyek már tartalmazhattak csillagokat. A kezdetben szabálytalan alakú és kaotikus gázfelhőben nem volt kitüntetett keringési iránya a születő csillagoknak. Az összeolvadások révén jelentős tömegűvé duzzadt, összehúzódó felhőben idővel kialakult egy kitüntetett forgási irány, a forgás üteme pedig egyre gyorsult az impulzus megmaradás törvénye értelmében. Körülbelül 9 milliárd (8.8 ± 1.7 milliárd) évvel ezelőtt ez az egész folyamat egy lapos forgó korongba terelte a gázt és a port. Az így létrejött molekuláris korong gázfelhőiben később keletkező csillagok pályája már ezt a kitüntetett irányt és síkot örökölte. (Csak a pontosság kedvéért megjegyzem, hogy a Tejútrendszer még későbbi története során is bekebelezett más törpe galaxisokat.)

Az egyes nyílthalmazok csillagai mind ugyanabban a hatalmas molekula felhőben keletkeztek, és koruk is nagyjából hasonló. A tagok gravitációsan ugyan kötődnek egymáshoz, de ez a kapocs gyenge, és nem tart örökké. A legtöbb nyílthalmaz elég „instabil”, ami arra vezethető vissza, hogy tömegük nem elég nagy ahhoz, hogy csillagaikat hosszú időn át megtartsák. Márpedig, ha a halmazra érvényes szökési sebesség kisebb, mint az őt alkotó csillagok átlagos sebessége, akkor azok belső és külső hatásokra viszonylag könnyedén elszöknek. De milyen hatások érik az egyes csillagokat?

Természetes belső folyamat a csillagok közötti közeli találkozás, melynek révén, az adott csillag elég sebességre tehet szert, hogy legyőzze a halmazon belüli szökési sebességet. A halmaz „párolgásában” fontos szerepet játszik továbbá a galaxis árapály hatása is, illetve közeli találkozások a galaxis többi csillagával, halmazaival. De ezzel még nincs vége a sornak, ugyanis a hatalmas molekula felhők megközelítése, vagy azokon való áthaladása is erodálja a halmazt.

Egyes becslések szerint a nyílthalmazok 90%-ka már addigra felbomlik, mire a csillagai egyáltalán elhagyhatnék azt a molekula felhőt, amiben születtek. Az ezt túlélő halmazokra is azonban idővel hasonló sors vár. Hogy mikor oszlanak fel? Ez nagyban függ a kiindulási tömegüktől. Csak az igazán népes és sűrű nyílthalmazok – amiből pedig igen keveset ismerünk – érik meg a több milliárd éves kort. Ettől a kevés kivételtől eltekintve, a „születési megpróbáltatásokat” átvészelő nyílthalmazok többség is általában néhány 100 millió éves időskálán szétesik.

A felbomlott nyílthalmazok tagjai továbbra is hasonló pályán mozognak, mozgó csoporttá (moving group) válnak. Ilyen mozgó csoporthoz tartozik például a Göncölszekér 5 fényes csillaga is (Ursa Major Moving Group). Mozgásuk, azonos kémiai összetételük, azonos koruk a bizonyítéka, hogy valaha, egy mára már felbomlott, nagyjából 300-500 millió éve született nyílthalmaz tagjai voltak.

UMA_Moving_Group_Goncol1-m1

A Nagy Medve (Ursa Major) csillagkép részét képező Göncölszekérnek, az Ursa Major Moving Group magjához tartozó csillagai. A mozgó csoport centruma tőlünk nagyjából 80 fényévre található. Kiterjedését tekintve, a tagok egy 30 fényév nagytengelyű és 18 fényév kistengelyű ellipszoid alakú térrészt töltenek ki. A jelölteket is beleszámolva, valamivel több, mint 4 tucat csillagról lehet szó, melyek az égboltunkon viszonylag nagy szeletén szétszórva láthatunk (a Cepheus-tól egészen „le” a Déli Háromszög csillagképig), s melyek látszólag a Nyilas csillagkép egy meghatározott pontja felé tartanak. Kiemelném, hogy egy csillagokban gazdag nyílthalmaz könnyen akár 200 csillagot is számlálhat ekkora területen.

Foglaljuk tehát össze!  Koruk a néhány millió, 10 millió, 100 millió éves nagyságrendtől körülbelül 10 milliárd évig tejed. A Tejútrendszer azon korszakának szülöttjei, amikor a csillagkeletkezés már a galaxis korongjában történt. Ezért itt koncentrálódnak, ennek síkjába. Azt a néhány, több milliárd éves nyílthalmazt leszámítva, melyek a többséghez képest jelentősen nagyobb tömeggel születtek, tagjaik a galaxisunk korához képest csak viszonylag rövid ideig maradnak együtt. A csillagok fémtartalma bennük magasabb, mint a Tejútrendszer ősi, öreg csillagjaié. A pályájuk mellett, így az is bizonyíték arra, hogy tagjaik inkább a Tejútrendszer fiatalabb csillaggenerációjának képviselői, I populációs csillagok. (Még az öregebb nyílthalmazok is gazdagabbak fémekben, mint a legősibb csillagok.)

De mi az a fémtartalom? Hogyan korrelál a csillag korával? Mi az az I populáció egyáltalán?

Walter Baade a II. világháborús elsötétítések miatt kiváló körülmények között dolgozhatott a világ akkor legjobb távcsövével. A Mount Wilson-on álló 100 hüvelykes távcsőre ma is legendaként tekintenek a csillagászok. Baade minden korábbinál nagyobb határfényességű képeket készített az Androméda-galaxisról, és igen meghatározó felismerést tett: a galaxis különböző területeire más-más típusú csillagok a jellemzők. Míg a karokban a kékes fényű csillagok domináltak a felvételein, addig a magvidéken a vörösebb, és halványabb csillagok. Bevezette a csillagpopulációk fogalmát. A fémekben gazdag csillagokat az I. populációba, míg a fémekben szegényeket II. populációba sorolta. A csillagászok minden elemet a hidrogénen és a héliumon túl a periódusos rendszerben fémnek neveznek. Az 1940-es évek igen termékenyek voltak a csillagászat terén. Nemcsak a megfigyelő csillagászat élte a forradalmát, de a kutatók addigra megértették a csillagok energiatermelési folyamatait. A csillagok belső felépítésével és fejlődésükkel kapcsolatos első számítások is ehhez az évtizedhez köthetők. Még ha csak a kezdetekről is beszélünk. Idővel világossá vált a csillagászok számára mi is okozza a kémiai összetétel különbségét a populációk között. Egy csillag fémtartalmát általában a Naphoz szokták hasonlítani a kutatók. A világegyetem története folyamán, a csillagoknak hála egyre dúsabb lett fémekben. Az újabb és újabb csillaggenerációk már egyre több fémet tartalmaztak, így minél alacsonyabb fémtartalmú egy csillag a Naphoz képest, vélhetőleg annál ősibb objektum. A Baade féle populációk tehát csillaggenerációk, ahol az I. populáció a fiatalabb, a II. populáció pedig az idősebb csillagok tartoznak. Igaz, hogy napjainkra ezt a csoportosítást már tovább finomították, és nem csak két populációról szoktak beszélni, de a felismerés jelentőségéből ez mit sem von le.

Az utóbbi évtizedek égboltfelmérő programjai világítottak rá arra, hogy fémtartalom a galaxisunkon belül igen változatos képet mutat. Nagyban függ attól is, hogy az adott csillagok a galaxis mely területén helyezkednek el. Kiderült, hogy a Tejútrendszer a korábbi elképzelésekkel ellentétben bonyolultabb felépítésű. Vagyis, sokkal több kémiai és dinamikai értelemben is elkülönülő alrendszerből áll össze. Az egyes vidékeken más és más volt ütemben folyat a csillagok „fémszennyező” tevékenysége. A nagyobb fémtartalom, tehát nem törvényszerűen jelent egyértelműen fiatalabb kort. A csillag származási helye is sokat nyom a latban.

De miként tudják meghatározni a kutatók egy nyílthalmaz korát? A 30 millió évnél idősebbek esetén a gömbhalmazoknál már ismertetett metódust alkalmazzák a csillagászok.

A módszer lényege, hogy fotometriai vizsgálatoknak vetik alá a nyílthalmaz csillagait, és felrajzolják annak szín-fényesség diagramját (Color Magnitude diagram – CMD), mely tulajdonképpen a Hertzsprung-Russel diagram (HRD) „gyakorlatias” változata. A vízszintes tengelyen két különböző szűrővel mért fényesség értékek különbsége kerül feltüntetésre a színképosztály helyett. (Ezt a csillag egyfajta színének lehet ezt tekinteni.) A függőleges tengelyen pedig ezek közül az egyik színszűrővel felvett fényességérték szerepel.

A halmaz szín-fényesség diagramja sok mindent elárul annak koráról, ugyanis az egyszerre született és azonos fémtartalomú csillagok megfigyelhető fejlődési állapota csak a kiindulási tömegtől függ. A nagyobb tömegű fényesebb és forróbb csillagok hamarabb elhasználják hidrogén készleteiket, és hamarabb el is elhagyják a fősorozatot. Az idő előrehaladtával már csak a kisebb tömegű, és kevésbé fényes csillagok maradnak a fősorozaton. Minél idősebb egy halmaz, annál lejjebb tolódik az a pont (Turn Off Point) a fősorozaton, ahol a csillagok „elkanyarodnak” az óriás ág felé.

csillaghalmazok_kora

Ahogy idősödik az adott csillaggeneráció, annál lejjebb tolódik az a pont (Turn Off Point) a fősorozaton, ahol a csillagok „elkanyarodnak” az óriás ág felé, így az adott generáció kora meghatározható. Az Myr millió évet, a Gyr milliárd éveket jelent. Animáció forrása: http://astro.berkeley.edu/~dperley/univage/univage.html

A fotometria eredményeiből megalkotva a szín-fényesség diagramját egy adott halmaznak, az előbb említett pontnak a meghatározásával, illetve a csillagfejlődési elméletek jósolta izokron illesztésével megbecsülhető a halmaz kora. Az izokron a csillagfejlődésben használt kifejezés, mely a szín-fényesség diagramon az azonos korú csillagokat összekötő görbét jelöli.

nyilthalmaz-HRD1

Különböző korú nyílthalmazok szín-fényesség diagramja. Kép forrása: Australia Telescope Outreach and Education

NGC6791-CMD

Az NGC6791 nyílthalmaz szín-fényesség diagramja, és az azokra illesztett 3 különböző izokron. A vörös 7.7 milliárd évnek, a kék 8.2 milliárd évnek, a fekete 9 milliárd évnek felel meg. A diagram függőleges tengelyén a V szűrővel mért fényesség, még a vízszintes tengelyen a különböző szűrőkkel felvett fényességek különbségei láthatók. A B (kék), V (vizuális), I (közeli infravörös) fényességek különbségeit színeknek is tekinthetjük. Balra a „kékebb”, jobbra a „vörösebb” csillagok találhatók. Az ábrán jól látható, ahogy a fősorozat egyszer csak véget ér, és elkanyarodik az óriás ág felé. Adott kémiai összetétel és kor esetén, ezeknek a csillagfejlődési elméletekből számított görbéknek a mentén kell elhelyezkedniük a csillagoknak a szín-fényesség diagramon. Amennyiben a nyílthalmaz 7.7 milliárd, 8.2 milliárd, vagy éppen 9 milliárd éves lenne. Forrás: F. Grundahl és mások

Lehetőség szerint a nyílthalmaz csillagait spektroszkópiai elemzésnek is alávetik, vagyis információt nyernek a csillagok kémiai összetételéről (fémtartalmáról). Ne feledjük, ahogy fentebb már utaltam rá, az újabb csillaggenerációk már a korábbiak által legyártott elemekkel beszennyezett gázfelhőkből alakultak ki. A csillagok „működése”, fejlődése nagyban függ a fémtartalomtól. Némileg más utat jár be a szín-fényesség diagramon a fémekben szegény csillag, mint a fémekben gazdagabb az idő előrehaladtával. A fémtartalom a csillag színhőmérsékletére is kihat. A fémekben szegények kékebbek, mint a fémekben gazdagabbak. Más-más kémiai összetételekhez, más-más izokron tartozik.

A nagyon fiatal nyílthalmazok esetében kissé más módszer a célravezetőbb, bár ez is a halmaz szín-fényesség diagramján alapszik. Az azonos korú, azonban eltérő tömegű csillagok fejlődési sebességének különbsége már „embriókorukban” is megmutatkozik. A hideg molekuláris gázfelhőkben születő csillagoknak időre van szükségük, hogy kellően összesűrűsödve, magjukban beinduljon a hidrogén fúziója. Egy nagytömegű csillag esetén ehhez nagyjából 100 ezer év szükséges. A kisebb tömegűeknél viszont akár több 10 millió évig is eltarthat, míg elérik a fősorozatot. A nagyon fiatal halmazokban tehát a fősorozat előtti csillagokat keresnek a kutatók, majd a csillagfejlődési elméletek által szolgáltatott lehetséges izokronokat ezekre illesztik a diagramon. Végül ezekből próbálják megállapítani a halmaz korát.

A fiatal halmazoknál, mivel még tartalmaznak fősorozat előtti csillagokat, meghatározható az is, hogy milyen időintervallumban születtek a csillagok a gázfelhőből. Alapvetően ez a legidősebb és a legfiatalabb csillag korkülönbsége. A módszer lényege leegyszerűsítve az, hogy a halmaz legidősebb csillagának tekintjük azt a csillagot, amelyik éppen elhagyja a fősorozatot (turn-off age), továbbá megkeressük a legfiatalabb fősorozat előtti csillagot (turn-on age). A kettő különbsége pedig jó közelítéssel megadja, hogy mennyi ideig is folyt csillagkeletkezés a halmazban.

NGC6910-preMS-isoch

Az NGC6910 nyílthalmaz szín-fényesség diagramja a fősorozat előtti csillagokkal, melyre a csillagászok különböző izokronokat illesztettek. A fentebb említette vizsgálatokat kutatók több csoportja is elvégezte, és bár az értékek kissé eltérnek, mégis jól közelítenek egymáshoz. Az NGC6910 életkora nagyjából 7 millió év, a tagok jelentős része pedig az első 3 millió éves időintervallumban született. Bár a keletkezés üteme később lassult, de még fél millió évvel ezelőtt is keletkeztek csillagok. Forrás: Bhavya B. és mások

 

Az NGC6791-ről

Még mindig élének él bennem az emlék, mikor életemben először láttam a halmazt. Annak a nyári éjszakának már idestova 30 éve. Tinédzserként, sámlin egyensúlyozva küszködtem, hogy beállítsam 150/1200-as Newton-távcsövem látómezöjébe. Az égbolton akkor már magasan állt a halmaz, így valamire fel kellett lépnem, hogy az okulárba pillanthassak.

Bevallom, nem találtam meg elsőre. Többször elindultam a Vegától. Az akkori mechanikám ekvatoriális szerelésű volt, és mivel a halmaz és a Vega deklinációja között nagyjából csak 1 fok a különbség, ezért elég lett volna csak egyetlen tengely mentén mozgatni a távcsövet a Hattyú csillagkép irányába. Ez volt az ötlet. Ha az ember kellő pontossággal pólusra állítja a távcsövét, akkor némi gyakorlattal tényleg nem is olyan nehéz megtalálni ezt a nyílthalmazt. A „némi rutin” azonban hiányzott még, a pólusra állás meg… Jobban jártam volna, ha csillagról csillagra ugrálva állítom be.

Végül csak sikerült felismernem a halvány, némiképp nyúlt fényfoltot a sűrű csillagmezőben. Talán 30x-os nagyítást használhattam. Már nem emlékszem pontosan az okulár fókusztávolságára. Arra viszont igen, hogy kissé lötyögött benne az egyik lencsetag. (Ezt később orvosoltam.)  Körülbelül 60x-os nagyításnál már nagyjából tucatnyi fényesebb csillag látszott benne, de a tagjainak többsége még mindig csak halovány ködösség volt csupán. Egyszerre volt meghökkentő és lenyűgöző. Őszintén? Nem pontosan erre a látványra számítottam. Sokkal inkább keltette kis felületi fényességű gömbhalmaz benyomását. A nem túl messze „szárnyaló” Hattyú csillagkép kezdőként megismert nyílthalmazai után, az NGC6791 valami egészen más volt. Akkor és ott még nem tudtam azt, hogy nemcsak a látványát tekintve egyedi ez a nyílthalmaz. Ezzel csak jóval később szembesültem. Nem is sokkal korábban, mint ahogy ez a felvétel készült. Ez pedig sok év után újra csak a halmaz felé terelte a figyelmemet.

Meg kell jegyeznem, hogy sem e felvétel elkészítésével, sem a kép kidolgozásával nem törődtem annyit, mint magának az objektumnak az „értelmezésével”. Amatőrcsillagászként nekem ez jelentette az igazi élményt. Amennyiben a kedves olvasó továbbra is velem tart, végig vezetem ezen az úton.

NGC6791-map1

Az NGC6791 a Lant (Lyra) és a Hattyú (Cygnus) csillagkép között helyezkedik el, de még a Lanthoz tartozik.

NGC6791-map4

Az NGC6791 az SDSS (The Sloan Digital Sky Survey) keretében készült felvételen. A látómező durván 3.75 x 3.75 fok körüli. A képpel csupán a vidék csillaggazdagságát, és a halmaz fényességét kívánom szemléltetni a környezethez képest.

A tőlünk körülbelül 13300 fényévre lévő NGC6791 talán az egyik legérdekesebb nyílthalmaz fizikai és orbitális paramétereinek köszönhetően. A szín-fényesség diagramja alapján korát úgy 8 milliárd évre teszik a csillagászok. A színképelemzések tanúsága szerint csillagjaiban a vas aránya a hidrogénhez képest kétszerese a Napunkéhoz képest. Tömege 5000 naptömeg körüli. Mindezek alapján a Tejútrendszer egyik legősibb, legnagyobb fémtartalmú nyílthalmaza. Ráadásul egyike a legmasszívabbaknak. Álljunk is itt meg egy pillanatra! Öregebb, mint a Napunk és mégis fémekben gazdagabb?

A galaxis centrumától nagyjából 26 ezer fényévnyi távolság választja el. Majdnem annyi, mint Naprendszerünket. Eme utóbbi 26.4 ± 1.0 ezer fényév (8.09 ± 0.31 kpc). Továbbá, 2600 fényévvel a Tejútrendszer síkja fölött található. Azonban, a Luis Martinez-Medina által vezetett kutatócsoport véleménye szerint a nyílthalmaz pályája igencsak más lehetett a múltban. Ez pedig szerintük mindent meg is magyaráz.

NGC6791-SUN-MW

Az NGC6791 helyzete a Tejútrendszerben. A sárga pötty a Nap pozícióját jelöli.

Kézenfekvő lehetőségnek tűnik, hogy a halmaz extragalaktikus eredetű. Vagyis, egy mostanra a Tejútrendszerbe olvadt törpegalaxis szülötte. Az ütközés során a csillagrendszerünk által gravitációsan erősen megtépázott halmaz csupán, mely tagjainak tetemes részét elveszítette. Tekintve, hogy a múltban a törpegalaxisnak a Tejútrendszerétől eltérő lehetett a kémiai evolúciója, így a halmaz öreg kora ellenére értelmezhető az, hogy miért is nagyobb csillagjaiban a vas aránya a hidrogénhez képest, mint a Napban. Csakhogy a Lokális Csoport törpegalaxisainak kémiai profilja eltér e halmazétól. Márpedig az esetlegesen felfalt törpegalaxisé sem lehetett a többiekétől nagyon különböző. Legalábbis ez nem túl valószínű. Ez pedig aláássa az „extragalaktikus forgatókönyvet”.

Elképzelhető-e az egyáltalán erről a halmazról, melynek ennyire speciálisak a tulajdonságai, hogy mégiscsak a Tejútrendszerben keletkezett?  Speciális tulajdonságok alatt értendő a kora, a fémtartalma, a galaxis síkjától és centrumtól való távolsága. Luis Martinez-Medina és szerzőtársai szerint ez egyáltalán nem kizárt. Sőt, ez igenis lehetséges.

Ahogy már az előző fejezetben is utaltam rá, a galaxisunkban a fémtartalom nemcsak egyszerűen a csillag korától függ, bár korrelál azzal. Meghatározó az is, hogy a csillag a galaxis mely vidékén született. A csillagkeletkezési ráta nemcsak időben, de helyileg is eltérő volt a Tejútrendszer múltjában. Márpedig, amennyiben a csillagok „fémszennyező” tevékenységének intenzitása között eltérés mutatkozik egy adott időpillanatban a galaxison belül, akkor két különböző régióban, de azonos pillanatban született csillagok fémtartalma is eltérő lesz. Leegyszerűsítve, annak lesz magasabb a fémtartalma, melynek keletkezését megelőző időszakban hevesebb volt a csillagkeletkezés. Hogy miért? A fokozott csillagkeletkezés, több nagyobb tömegű csillagot jelent, ez pedig több kollapszus-szupernóva eseményt. De ezt követően nagyobb lesz az összeolvadó neutroncsillagok, a felrobbanó fehér törpék (Ia típusú szupernóvák) gyakorisága is. Illetve, pusztán maga a nagyobb születési szám azt is eredményezi, hogy az öregedő csillagok a késői fejlődési fázisukban összességében még több anyagot juttattatnak vissza a környezetükbe. Mindezt pusztán a nagyobb számosságuk miatt. Összességében ezek azok legfőbb folyamatokat, amiként a csillagok képesek fémeket juttatni az intersztelláris anyagba. Az újabb generációk pedig már a fémekben gazdagabb gázfelhőkben születtek.

Alapvetően, ahogy a Tejútrendszer idővel öregedett, a korongban úgy haladt fokozatosan kifelé a csillagkeletkezési hullám. A centrumtól a peremrész irányába. A kép azonban ennél némileg összetettebb. Csillagrendszerünk más spirál galaxishoz hasonlóan kémiai és kinematikai szempontból is elkülönülő alrendszerekből áll.

A galaxis belső vidékén a fémekben gazdag (legalább a Naphoz hasonló vagy annál is nagyobb fémtartalmú) csillagok a csillagrendszerünk küllője mentén koncentrálódnak. Valójában kompozit csoportról van szó. Egyik felüket azok az öreg, de fémekben gazdag csillagok alkotják, amelyek még a Tejútrendszer fiatalabb korában, a korai korongban keletkeztek, és csak később „csatlakoztak” a küllőhöz. A másik felük már újabb csillagkeletkezési epizódok eredményei, jóval fiatalabbak is. Bizonyos elképzelés szerint ezek már az úgynevezett szupervékony küllőben (superthin bar) születtek. Ugyanakkor az sem kizárt, hogy ezek is csak a küllő csapdájába esett csillagok.

Az említett csillagok, egy a náluk, illetve Napunknál is valamivel fémszegényebb csoporttal együtt alkotják galaxisunk szögletes/földimogyoró alakú központi dudorját (boxy/peanut-shaped bulge, B/P bulge). Eme utóbbiak eredetileg a vékony korongból származnak, s még a küllő kialakulása előtt keletkeztek. Vertikálisan ez az alrendszer jóval kiterjedtebb, mint az előző. Kinematikájuk alapján azokkal ellentétben ezek eredetileg a centrumtól nagyobb távolságban alakultak ki.

A szakemberek többsége ma úgy véli, hogy a korong alakú galaxisokban, vagyis a spirálisokban és a lentikulárisokban idővel törvényszerű a küllő kialakulása. A küllős szerkezet megjelenése e galaxisok dinamikus fejlődésének egyik természetes állomása. Amennyiben, a küllős galaxis korongja az élével fordul felénk, és a küllőre a hosszanti tengelye mentén látunk rá, akkor szögletes alakúnak, amennyiben a hosszanti tengelye merőleges a látóirányunkra (a küllő keresztben áll), akkor földimogyoró alakúnak látjuk a galaktikus dudort. Akit a téma részletesebben is érdekel, az korábbi cikkemben részletesebben is olvashat erről.

A videó a küllő kialakulásának és fejlődésének folyamatát mutatja be. Várjunk türelmesen! 1 perc 20 másodperc környékén láthatóvá válik mindaz, amiről írtam. Szerzők: Fabian Lüghausen, Benoit Famaey, Pavel Kroupa

Az előbbieknél is fémszegényebb csillagok tulajdonságai már nem mutatnak szignifikáns kapcsolatot a küllővel. Eloszlásuk, mozgásuk, pályájuk alakja és orientációja alapján a vastag koronghoz tartoznak. Csak úgy, mint a fémekben igen szegény csillagok (ezek fémtartalma Napunkénak egytizede vagy annál is kevesebb). Megjegyzem, hogy ezen utóbbiak kémiai összetétele nagyon hasonlóak azokhoz az öreg csillagokéhoz, amelyek a Nap környéken is megfigyelhetők a vastag korongban. Végezetül egy teljesen külön osztály az extrém fémszegény csillagok csoportja a magvidéken. Ezek feltehetőleg vagy a Tejútrendszer kisméretű klasszikus dudorjának csillagai, vagy a galaxist körbevevő ősi haló belső részének csillagai.

Az NGC6791 csillagainak kémiai összetétele nagyon hasonló a fentebb említett fémekben gazdag öreg csillagokéhoz. Azokéhoz, melyek a Tejút belső vidékén, a galaktikus dudorban figyeltek meg a csillagászok, illetve amik a küllő mentén orientálódnak. Már a 2010-es évek elején felmerült az ötlet, hogy az NGC6791 talán éppen a galaxisunk e területről származik (Jílková és mások 2012, Bensby és mások 2013). Amennyiben ténylegesen ez a helyzet, az magyarázatot nyújt a nyílthalmazokhoz képest nagy tömegére is. A múltban ugyanis, a galaktikus dudorban, illetve a korong belső részén kellőképpen gyors és intenzív volt a csillagkeletkezés ahhoz, hogy egy ilyen paraméterű halmaz megszülethessen.  Van azonban egy nyugtalanítónak tűnő kérdés, mely választ követel. Mit keres jelenleg 26 ezer fényévnyi távolságra a centrumtól, és miért van 2600 fényévvel a Tejútrendszer síkja fölött? Luis Martinez-Medina és csapata erre a kérdésre próbált választ találni.

A Tejútrendszerben, a többi spirál galaxishoz hasonlóan, a spirálkarok és a küllő erőteljes gravitációs hatásának köszönhetően, a korongban a csillagok pályája folyamatosan kifelé tolódik a centrumtól. Ez az úgynevezett radiális migráció. Maga a jelenség már egy ideje ismert a csillagászok előtt. Például, a Nap a keletkezése óta, vagyis az elmúlt 4.6 milliárd évben körülbelül 2000 fényévet távolodott a centrumtól.

Martinez-Medina szerzőtársaival megalkotta a Tejútrendszer részletes  (az eddig legrealisztikusabb) számítógépes modelljét a ma rendelkezésre álló információk alapján. Korábban is voltak már ilyen próbálkozások, azonban azok jóval egyszerűbb modellek voltak. Arról se feledkezzünk meg, hogy a komputerek, pontosabban szuperkomputerek számítási kapacitása mekkorát növekedett az elmúlt években.

A kutatók fél millió lehetséges pálya analízisét végezték el. 8 milliárd évnyi mozgást szimuláltak, és olyan megoldást kerestek, melynek a végén a halmaz pontosan abba a pozícióba kerül, ahol manapság az NGC6791-et láthatjuk. Továbbá, sajátmozgása és radiális sebessége jó egyezést mutat a megfigyelésekkel. Ellentétben más csillagászok korábbi vizsgálataival, 240 olyan esetet is találtak, mely a kívánt eredményt produkálta.

A galaxison belüli gravitációs árapályerők (spirálkarok, küllő, más halmazok, csillagok, por és gázfelhők stb.) folyamatosan bomlasztják a halmazokat. Egyáltalán a halmaz túlélhet-e ilyen hosszú időszakot? Mekkora kiindulási tömeg szükséges ahhoz, hogy közel 8 milliárd évvel később még mindig 5 ezerszer nagyobb tömegű legyen, mint a Nap?

A számítások, szimulációk szerint az NGC6791 kiindulási tömege körülbelül tízszer nagyobb lehetett a mainál, vagyis születésekor olyan 50 ezer naptömegű lehetett. Az analízis azt is megmutatta, hogy 420 darab ilyen masszív halmazból, mely valamikor 7.5 és 8.5 milliárd évvel ezelőtt, a centrumtól 9780-16300 fényéves (3-5 kpc a tanulmányban) tartományon belül született, egy biztosan túlélhette a mai napig. De nemcsak túlélhette, hanem a megfigyelt távolságba juthatott a centrumtól, illetve megfelelő magasságba emelkedhet a galaktikus korong fölé. Ami pedig a legfontosabb: biztosan megfigyelhető a Földről.

A tanulmányt végül Martinez-Medina és kutatótársai azzal zárták, hogy igen is lehetséges, miszerint az NGC6791 8 milliárd évvel ezelőtt a korong belső vidékén keletkezett, és a radiális migráció sodorta messzebb onnan. Éppen a különös tulajdonságai tesznek bizonyságot arról, hogy ez a vándor Tejútrendszerünk „szülöttje”.

Kepler-19 – exobolygók a látómezőben

NGC6791-LRGB-20180713-2306-sx-bin2-360s-TTK-mark

A Kepler-19 az NGC6791-ről készült felvételemen.

A Kepler missziója, nemsokkal ezen sorok írása előtt ért véget (2018. november 15.). Az űrtávcső elsődleges feladata exobolygók keresése volt. Ahogy Thomas Zurbuchen fogalmazott: „A NASA első bolygóvadász missziójában a Kepler túlszárnyalta minden várakozásunkat, és egyben kitaposta az utat a földön kívüli élet keresése előtt, legyen szó akár a Naprendszerről, vagy az azon túli világokról.” Nemcsak megmutatta, hogy milyen sok csillagnak van saját bolygója (exobolygó), de szemünk előtt új kutatási terület is született. Nyugodtan állíthatjuk, hogy az exobolygók kutatása ma a csillagászat egyik legforrongóbb területe.

10-15 By the numbers - mission stats

A Kepler misszió eredményei számszerűsítve. 9.6 év a világűrben. 530503 megfigyelt csillag. 2662 megerősített exobolygó. Csak, hogy a fontosabbakat említsem. Ábra forrása: NASA/Ames/Wendy Stenzel

A K1 misszióban (ahogy eredetileg is tervezték) a Hattyú és a Lant csillagképek határán lévő égterülete fürkészte éveken keresztül. A csillagászok parányi fényváltozásokat kerestek a csillagok fényében. Olyanokat, melyeket a csillag előtt elhaladó exobolygók fedései okoznak (tranzit módszer). Ebbe a látómezőbe az NGC6791 is beleesett.

NGC6791-Kepler_329161main_fullFFIHot300

Az NGC6791 nyílthalmaz a Kepler látómezőjében (K1 misszió). Forrás: NASA/Ames/JPL-Caltech

Az NGC6791-től nem is olyan messze látható a Kepler-19 katalógusjelű csillag, mely körül mai ismereteink szerint három exobolygó is kering. Ez a közelség azonban mindössze látszólagos, mert a csillag 717 ± 3 fényévre van, vagyis a valóságban sokkal közelebb, mint az NGC6791.

A legbelső exobolygót, a Kepler-19b-t tranzit metódussal fedezték fel. A Kepler-19b okozta elhalványodások alapos elemzése arra is rávilágított, hogy léteznie kell még egy bolygónak a rendszerben, ami azonban nem halad el a csillag korongja előtt. A csillagok körül keringő bolygók gravitációsan egymásra is hatnak, vagyis befolyásolják egymás mozgását. Ennek eredményeképpen pedig adott esetben periodikusan változó eltérések figyelhetők meg a fedésekben (transit-timing variation method). A Kepler19-b esetében ez kb. 300 napos periódussal változó, 5 perces amplitúdójú eltérést jelentett. Ez a felismerés vezetett végül a Kepler-19c felfedezéséhez, mely a csillagtól számított második bolygó a rendszerben. A Kepler-19d-t, ami szintén nem halad el a Kepler-19 korongja előtt, a csillag radiális sebességében mutatkozó apró változásokból sikerült kimutatni. Amennyiben a csillagnak elég nagy tömegű a bolygója, akkor az a keringése során kimutathatóan „megrángatja” magát a csillagot. Precízebben fogalmazva, a csillag is kering a közös tömegközéppontjuk körül. Tehát periodikusan hol közeledik, hol távolodik hozzánk képest. A Doppler-effektus miatt pedig a csillag színképében a vonalak hol a kék, hol pedig a vörös felé tolódnak el. Tekintve, hogy még a nagyobb bolygók tömege is jóval kisebb a csillagjához képest, így igen kis effektusról van szó. Nagyon precíz mérésekre van szükség. A mai műszerekkel, azonban már 1 m/s sebességváltozás is kimutatható akár. Ez nagyjából egy kényelmesen sétáló ember sebessége. (Hosszabb, sok éves adatsorokból a HARPS műszerrel nem lehetetlen a 30 cm/s sebességváltozás detektálása sem!)

Bár csak egy fénypötty a fotón a Kepler-19, de mégis érdekes belegondolni, hogy három bolygó biztosan kering körülötte. Vajon van-e élet rajtuk? Kifejlődhetett-e a mienkéhez hasonló intelligens faj? Persze, hogy ezek a kérdések foglalkoztatja leginkább az embert. Talán elszomorítom az olvasót, de ez valószínűtlen. A három bolygó tömegét tekintve bizonyosan nem kőzetbolygó. Sokkal inkább a Neptunuszhoz hasonló világok ezek. Nekem azonban ez a tény csöppet sem szegi kedvem. Az Univerzum hatalmas, és ha nem itt, talán majd máshol rálelünk a válaszra. Egyedül vagyunk?

Bolygók a csillagtól való távolságuk sorrendjében Tömeg Földhöz viszonyítva Keringési periódus napokban Excentricitás Inklináció Sugár a Földhöz viszonyítva
b 8.4 +1.6 / −1.5 M 9.28716 +0.00004 / −0.00006 0.12 ±0.02 89.94° 2.209 ±0.048 R
c 13.1 ±2.7 M 28.731 +0.012 / −0.005 0.21 +0.05 / −0.07
d 22.5 +1.2 / −5.6 M 62.95 +0.04 / −0.30 0.05 +0.16 / −0.01

 

Felhasznált irodalom:

Charles J. Lada, Elizabeth A. Lada: Embedded Clusters in Molecular Clouds

L. R. Bedin, M. Salaris, G. Piotto, S. Cassisi, A. P. Milone, J. Anderson, and I. R. King: The Puzzling White Dwarf Cooling Sequence in NGC 6791: A Simple Solution

F. Grundahl, J. V. Clausen, S. Hardis, S. Frandsen: A new standard: Age and distance for the open cluster NGC 6791 from the eclipsing binary member V20

Luca Malavolta, Luca Borsato, Valentina Granata, Giampaolo Piotto, Eric Lopez, Andrew Vanderburg, Pedro Figueira, Annelies Mortier, Valerio Nascimbeni, Laura Affer, Aldo S. Bonomo, Francois Bouchy, Lars A. Buchhave, David Charbonneau, Andrew Collier Cameron, Rosario Cosentino, Courtney D. Dressing, Xavier Dumusque, Aldo F. M. Fiorenzano, Avet Harutyunyan, Raphaëlle D. Haywood, John Asher Johnson, David W. Latham, Mercedes Lopez-Morales, Christophe Lovis, Michel Mayor, Giusi Micela, Emilio Molinari, Fatemeh Motalebi, Francesco Pepe, David F. Phillips, Don Pollacco, Didier Queloz, Ken Rice, Dimitar Sasselov, Damien Ségransan, Alessandro Sozzetti, Stéphane Udry, Chris Watson: The Kepler-19 system: a thick-envelope super-Earth with two Neptune-mass companions characterized using Radial Velocities and Transit Timing Variations

Matthieu Portail, Christopher Wegg, Ortwin Gerhard, Melissa Ness: Chemodynamical Modelling of the Galactic Bulge and Bar

Luis A. Martinez-Medina, Mark Gieles, Barbara Pichardo, Antonio Peimbert: New insights in the origin and evolution of the old, metal-rich open cluster NGC 6791

NGC6910, IC1318 részlet (IC1318a, IC1318b), Sadr

NGC6910-IC1318-LRGB-20150710-2344-sx-600s-TTK

Sadr – NGC6910 – IC1318 részlet (IC1318a, IC1318b)

2015-07-10, 2015-07-17, 2015-07-20, 2015-07-21 – Göd

15 x 600 sec L, 10 x 600 sec R, 10 x 600 sec G, 15 x 600 sec B

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

SXVR-H18 CCD kamera, Hutech IDAS P2 LPS filter és Astronomik RGBL fotografikus szűrőszett

2015. július 9-én 19 óra körül lelkes amatőrcsillagászok kis csoportja gyűlt össze a Polaris Csillagvizsgálóban. Összejövetelük célja nem volt más, mint megmutatni az égbolt sok csodáját az odalátogatóknak. Így megy ez már hosszú évek óta, legyen szó az év bármelyik keddjéről, csütörtökjéről, vagy éppen szombatjáról. Jómagam, csak a közelmúltban csatlakoztam ismét ehhez a kis társasághoz. Nem egyszerű három gyermek mellől elszabadulni, így feleségemnek külön hálás vagyok azért, hogy alkalmanként mégis részt tudok venni egy-egy bemutatáson.

Aki tartott már bemutatót érdeklődőknek, bizonyosan osztja véleményemet, hogy látni, hallani a rácsodálkozás örömét felemelő érzés. Belsőnkből, hobbinkból ilyenkor átadunk egy darabot. Csak remélni merem, főleg az ifjak esetében (!), hogy az elültetett mag kihajt, és szárba szökken. A dolgok beépülnek gondolataikba, és így talán a világkép nevű „nagy kirakós játékhoz” én is hozzáadhattam egy keveset.

Ezen a nyári csütörtökön némi szél keretében hidegfront volt levonulóban. Tépett felhőzetét fürgén vonszolta maga után, így amikor elért „a riadólánc” 10 éves fiamat a hónom alá csaptam, és együtt indultunk Óbudára. Miközben a kupolában a nagytávcsőnél Kárpáti Ádám sürgölődött, én kicipeltem a teraszra a 20 cm-es Dobson távcsövet. A korán, sötétedés előtt érkezők jutalma, a fák lombjainak közelében bóklászó Jupiter és Vénusz volt. Ugyan már nem alkottak szoros párt, mint egy héttel korábban, de látványuk külön-külön is rabul ejtette a szemlélődőket. Sokszor vagyok úgy, hogy amit még nem próbáltam, azt elsőre valahogy varázslatnak, ördöngösségnek tartom. Így vannak ezzel a bemutatásokon résztvevők is. Hagytam hát, az alapvető játékszabályok lefektetése után, hogy a gyerekek maguk birkózzanak a nagy csővel, és beállítsák az alacsonyan járó Szaturnuszt, illetve pár fényesebb kettőscsillagot. Boldogság sugárzott arcukon, midőn megjelent a „személyes égitestük” az okulár látómezejében. Tényleg maguk fedezhették fel őket. Közben belegondoltam, hogy pont azt a szó szoros értelemben vett gyermeki örömöt élték át, amit én is szoktam, amikor a távcsővel egy-egy nehezebb objektumot sikerül végre becserkészni, megpillantani, lefotózni. Sosem növök fel!

Bár a bemutatott csillagászati objektumokat sokszor láttam már, mindig újra magukkal ragadnak. Az általam elmondottakat pedig gyakran továbbgondolom. Működik egyfajta visszacsatolás, engem is érnek inspirációk, melyek kihatnak amatőrcsillagász tevékenységemre. Ezen az estén sem volt ez másként. Amíg a vendégek a kupolában voltak, amatőrcsillagász társam, Török Tünde felvetette, hogy beállítanám-e azt a nyílthalmazt, amit múltkor a Hattyú csillagképben látott. A katalógus számára nem emlékezett, de nem is volt rá szükség. Olyan benyomást tett rá a korábbi látvány, úgy élt még emlékezetében, hogy szavai alapján szinte rögtön beugrott: ez bizony csak az NGC6910 lehet. Ennek az apró, nagyjából 7ˊ-10ˊ kiterjedésű nyílthalmaznak a beállítása egyáltalán nem nehéz, így pár pillanattal később már meg is lehetett csodálni a 20 cm-es Dobson-ban. Ha csak egyetlen mondattal lehetne jellemezni az első benyomást, akkor ezt mondanám: filigrán csillagív, melyet két sárgás színű csillag zárt le.

Ezen az estén határoztam el, hogy megörökítem a halmazt, illetve a környékét otthonról. Már akkor tudtam, hogy a fényképen egészen másként fest majd, hisz műszerem kisebb a Polaris teraszán használt Dobson-nál, egészen más lesz a látómező, a kamera érzékenységével pedig szemem nem veheti fel a versenyt. Eredetileg több időt szerettem volna szánni a felvételre, de a nyár nemcsak az enyém, hanem a családé is. Eddig 7.5 órát töltöttem a régió fotózásával, s mivel idén talán már nem tudom folytatni, így elérkezettnek láttam az időt, hogy feldolgozzam a nyersanyagot, és leüljek mesélni egy kicsit a képen látható régióról.

Amennyiben magunk szeretnénk felkeresni az NGC6910-et tudnunk kell, hogy merre is induljunk. Ígérem, ahogy fentebb is említettem, nem lesz nehéz a dolgunk. Júliusban, sötétedéskor már a Hattyú (Cygnus), a Lant (Lyra) és a Sas (Aquila) triumvirátusa uralja az égboltot a meridiántól keletre. Ezeket a csillagképeket az olvasó is könnyűszerrel azonosíthatja, még némileg fényszennyezett nyári égbolton is, ugyanis viszonylag fényes csillagokból állnak.

NGC6910-map1

A Hattyú (Cygnus), a Lant (Lyra) és a Sas (Aquila) csillagképek égi helyzete Gödről nézve 2015. július 10-én az első felvétel megkezdésének időpontjában (21:44 UT). (E: Kelet, S: Dél)

Amennyiben ráakadtunk a Hattyú jellegzetes keresztjére, a szárak metszéspontjában a γ Cygni nevű csillagot kell megcéloznunk.

NGC6910-map2

A Hattyú jellegzetes keresztje. A szárak metszéspontjában található a γ Cygni (Sadr).

Sikerült beállítani a távcsőben? Helyes! Itt álljunk is meg egy pillanatra.

A γ Cygni, vagy arab nevén a Sadr a felvételem bal alsó sarkában (délkeleti részén) látható fényes csillag. A Sadr távolsága, ugyan a Hipparcos űrszonda is megmérte azt, meglehetősen pontatlanul ismert: 1830±280 fényév.  Már a világűrben tartózkodik a Hipparcos utódja, a Gaia űrszonda, melyet 2013 decemberében bocsájtottak fel. Ennek az eszköznek 1 milliárd csillag pozíciójának a megmérése és elmozdulásának detektálása a feladata. A várt pontossága 0.000001 ívmásodperc. Ezerszer nagyobb, mint a Hipparcos szondáé volt. Remélhetőleg a Sadr távolságát illetően is pontosabb érték birtokában leszünk hamarosan. Annyi azonban már a Hipparcos mérései alapján is bizonyos, hogy a csillag közelebb van hozzánk, mint az NGC6910, illetve a felvételen vörösen derengő IC1318 ködössége. Bár gyakran emlegetik az égbolt eme területét Sadr régióként, a γ Cygni csupán előtércsillag.

Ez a csillag a maga nemében is roppant különös. Színképtípusa F8Iab, vagyis a szuperóriás csillagok egy viszonylag ritka, különleges osztályába tartozik. A legtöbb ismert szuperóriás csillag vagy vöröses árnyalatú, mint a Skorpió csillagkép legfényesebb csillaga az Antares, vagy az Orionban a Betelgeuse, vagy inkább kékes árnyalatú, mint az Orionban a Rigel, vagy a szintén a Hattyúban található Deneb. Felszíni hőmérsékletük így vagy a skála alján, 3000-3500 K körül (vörös árnyalat) található, vagy éppen annak tetején a 10000 K nagyságrend körül (kékes árnyalatúak).  Viszonylag kevés ismert szuperóriás sárgás-fehér színű, a Sadr pedig éppen ilyen, köszönhetően 5790 K felszíni hőmérsékletének. Sárgás-fehér árnyalatát azonban nemcsak egyedül ennek köszönheti. A Sadr fényét intersztelláris porfelhő(k) is vörösítik, illetve közel fél magnitúdóval tompítják látszólagos fényességét.

Ugyan felszíni hőmérséklete hasonló Napunkéhoz, azonban sugara 150±80-szorosa központi égitestünkének. Összehasonlításként: a Föld átlagos távolsága a Naptól csillagunk sugarának nagyjából 215-szöröse, a Vénusz átlagos távolsága a Naptól csillagunk sugarának nagyjából 155-szöröse, a Merkúr átlagos távolsága a Naptól csillagunk sugarának nagyjából 83-szorosa.

Nemcsak hatalmas, de tömege is igen tekintélyes, mely becslések szerint 14.5±1.1 naptömeg. A nagytömegű csillagokra jellemzően két végén égeti a gyertyát. Az ebbe a tömegtartományba eső csillagok gyorsan, 10 millió éves időnagyságrendben felhasználják magjukban a hidrogén készleteiket, és elhagyják a fősorozatot a Hertzsprung-Russell diagramon (HRD-n). A hidrogén fúziója külső héjba tevődik át, ahonnan folyamatosan lefelé, a mag irányába szivárog a hélium, így az ott egyre dúsul. A csillag elindul a HRD vörös oldala felé, felszíni hőmérséklete lecsökken és felfúvódva vörös szuperóriás csillaggá válik. Idővel beindul a magban a hélium fúziója, a hidrogén fúziója pedig a külső rétegben továbbfolytatódik. A hélium fúzióját a szén, az oxigén, és egyre nehezebb elemek váltják a magban egészen a vasig bezárólag. A csillag tömeget veszít az intenzív csillagszél révén, ledobja külső burkát. Ha kellően nagy a tömege, akkor mindeközben a HRD kék tartománya felé kezd mozogni. Adott esetben sárga szuperóriássá válik, sőt megfelelő nagy tömeg esetén elmozog egészen a kék szuperóriás állapotig. Minden egyes újabb fúziós ciklus egyre rövidebb ideig tart. A csillag belső szerkezet lassan egy hagymáéra kezd emlékeztetni. A héjakban befelé haladva a magig egyre nehezebb elemek fúziója zajlik. A vasnál nehezebb elemek azonban már nem jöhetnek létre fúzió révén, így a csillag összeomlik, és szupernóvaként fejezi be az életét szétszórva anyagát a világűrben. A központban pedig 10-20 Km átmérőjű, gyorsan pörgő, roppant sűrűségű neutron csillag marad hátra. (A fekete lyuk létrejöttéhez ennél nagyobb kiindulási tömeg szükséges.) Megoszlanak a vélemények arról, hogy a Sadr pontosan melyik fejlődési állapotot képviseli, pontosan hol is tart a fentebb vázolt folyamatban, milyen utat jár is be majd haláláig a HRD-n. A bizonytalanság ellenére a csillagfejlődési modellek szerint kora nagyjából 12 millió évre tehető. Az életét lezáró szupernóva robbanásig pedig valószínűleg már ennél is kevesebb ideje van hátra.

NGC6910-IC1318-LRGB-20150710-2344-sx-600s-TTK-cut1

A γ Cygni és az NGC6910.

Amennyiben korábban sikeresen beállítottuk a γ Cygni-t távcsövünkbe, és 1-2° körüli a látómezőnk, máris megpillanthatjuk az NGC6910-es nyílthalmazt, melynek távolsága az előbb említett csillagtól mindössze 33ˊ észak-északkeletre. Bár az égen közel látszanak egymáshoz, de ahogy korábban is említettem, az NGC6910 távolabb, durván 1500 pc-re, vagyis majdnem 5000 fényévre (1500 pc 4890 fényévnek felel meg) van tőlünk. Az Orion spirálkarban helyezkedik el, akárcsak Napunk, túl azokon a porban gazdag sötét molekuláris felhőkön, melyek hasadékot rajzolnak a Tejútba a Hattyú csillagkép farkától egészen a Nyilasig.

NGC6910-sadr-01

A Nap (Sun), a Sadr (távolsága nagyjából 1830 fényév) és az NGC6910 (távolsága nagyjából 4890 fényév) elhelyezkedése a Tejútrendszerben.

A halmaz ráadásul mélyen beágyazódott az IC1318-ba, tehát lokálisan is por és molekuláris felhők, valamint emissziós gázködök veszik körül. A felsorolt intersztelláris médiumok a halmaztagok fényét átlagosan 1 magnitúdóval csökkentik, színüket pedig jelentősen a vörös felé tolja. Ha nem lenne ez az effektus, akkor az NGC6910 olyan fényesen ragyogna, mint az Orion-köd híres Trapéziuma, vagy a Rák csillagképben található M44-es nyílthalmaz. A legnagyszerűbb, hogy a vörösödés jelenséget a figyelmes szemlélő saját maga is láthatja! Ugye még emlékszik a kedves olvasó, hogy az elején említettem, hogy pár fényesebb csillagnak feltűnően sárgás a színe a távcsőben? A vörösödés a legjobban a V2118 Cyg változócsillag (HD 194279, NGC 6910 2) esetén érhető tetten, melyet B1.5Ia színképtípusa alapján kékes színűnek kellene látnunk. Ez a szuperóriás mégis határozott sárgás árnyalatot mutat már egy 20-30 cm-es távcsőben is nagyobb nagyításon. Ez nem is csoda, mert B-V színindexe 0.85. Ráadásul az intersztelláris anyag hatása halmaztagról halmaztagra változik, játékot űzve velünk, akadályt gördítve a csillagászok elé megfigyeléseik feldolgozása közben. Természetesen ezek nem leküzdhetetlenek.

NGC6910-stars3-cut1

A cikkben külön megemlített csillagok a felvételemen.

NGC6910-vorosodes

A vörösödés mértékének változása az NGC6910 bizonyos területein. A sötétebb területeken erősebb az effektus. Forrás: Kolaczkowski és mások

Rengeteg a háttér és előtércsillag, így nem egyszerű feladat kiválogatni, hogy melyik égitest tartozik a halmazhoz. A nyílthalmazok csillagai születésük óta együtt mozognak a térben. Színképükben az egyes vonalak eltolódásából, melyet a Doppler-effektus okoz, meghatározható a radiális sebességük.  Hasonlóan megmérhető az IC1318 komplexum, a vizsgált csillag közelében elhelyezkedő részének radiális sebessége. Ezen információ birtokában már eldönthető, hogy ki a csapattag, és ki nem. Egy másik módszer, ami ebben az esetben használható, hogy a csillagok színképére „rárakódik” az intersztelláris anyag fényelnyelő hatása (Diffuse Interstellar Bands), miközben fényük eljut hozzánk. A halmaztagok színképében hasonlóak az abszorpciós vonalak mintázata és azok intenzitása. E két módszer alapján a korábban is említett V2118 Cyg változócsillag (HD 194279, NGC 6910 2) biztosan halmaztag, míg például a V1973 Cyg (HD 229189, NGC 6910 6) biztosan nem az NGC6910 része, csak egy előtércsillag. Van azonban jó pár fényesebb jelölt, aminek a státusza máig nem teljesen tisztázott. A V2245 Cyg (HD 229196, NGC 6910 4) halmaztagsága például nem teljesen bizonyos. Ez az O típusú spektroszkópikus kettőscsillag, melynek színét szinté erősen vörös irányba tolja a por és a gáz, talán csak háttércsillag. Az előzőekből következik, hogy nehéz megmondani pontosan az NGC6910 méretét, ezért is írtam a bevezetőmben, hogy az égen nagyjából 7ˊ-10ˊ a látszólagos mérete. Elfogadva a közel 5000 fényéves távolságot, valóságos kiterjedése durván 15 fényév lehet.

Egy nyílthalmaz kora több módszerrel is meghatározható. A 30 millió évnél idősebbek esetén használatos a gömbhalmazoknál már ismertetett módszer. A halmaz Hertzsprung-Russel diagramja (HRD) árulkodik annak koráról. Az egyszerre született (azonos fémtartalmú) csillagok megfigyelhető fejlődési állapota csak a kiindulási tömegtől függ. A nagyobb tömegű fényesebb és forróbb csillagok hamarabb elhasználják hidrogén készleteiket, és elhagyják a fősorozatot. Az idő előrehaladtával már csak a kisebb tömegű, és kevésbé fényes csillagok maradnak a fősorozaton. Minél idősebb egy halmaz, annál lejjebb tolódik az a pont (Turn Off Point) a fősorozaton, ahol a csillagok „elkanyarodnak” az óriás ág felé. Felrajzolva a HRD-t egy adott halmazra, az előbb említett pontnak a meghatározásával, továbbá felhasználva a csillagfejlődési elméleteket, izokron illesztésével megbecsülhető a halmaz kora. Az izokron a csillagfejlődésben használt kifejezés, mely a HRD-n az azonos korú csillagokat összekötő görbét jelöli.

nyilthalmaz-HRD1

Különböző korú nyílthalmazok Hertzsprung-Russel diagramja. Kép forrása: Australia Telescope Outreach and Education

Az NGC6910 azonban nagyon fiatal nyílthalmaz, így itt egy kissé más módszer a célravezetőbb, bár ez is a halmaz Hertzsprung-Russel diagramján alapszik, és az azonos korú, azonban eltérő tömegű csillagok fejlődési sebességén, mely már „csecsemőkorukban” is megmutatkozik. A hideg molekuláris gázfelhőkben születő csillagoknak időre van szüksége, hogy kellően összesűrűsödve, magjukban beinduljon a hidrogén fúziója. Egy nagytömegű csillag esetén ehhez nagyjából 100 ezer év szükséges, míg a kisebb tömegűeknél akár több 10 millió évig is eltarthat, míg elérik a fősorozatot. A nagyon fiatal halmazokban így úgynevezett fősorozat előtti csillagokat kell keresnünk. Majd felrajzolva a halmaz Hertzsprung-Russel diagramját, a csillagfejlődési elméletekből származó izokron illesztésével meghatározható a halmaz kora.

A fiatal halmazoknál, mivel még tartalmaznak fősorozat előtti csillagokat, meghatározható az is, hogy milyen időintervallumban születtek a csillagok a gázfelhőből. Alapvetően ez a legidősebb és a legfiatalabb csillag korkülönbsége. A módszer lényege leegyszerűsítve az, hogy a halmaz legidősebb csillagának tekintjük azt a csillagot, amelyik éppen elhagyja a fősorozatot (turn-off age), továbbá megkeressük a legfiatalabb fősorozat előtti csillagot (turn-on age). A kettő különbsége pedig jó közelítéssel megadja, hogy mennyi ideig folyt csillagkeletkezés a halmazban.

NGC6910-preMS-isoch

Az NGC6910 Hertzsprung-Russel diagramja, melyre a csillagászok különböző izokronokat illesztettek.

A fenti vizsgálatokat kutatók több csoportja is elvégezte, és bár az értékek kissé eltérnek, mégis jól közelítenek egymáshoz. A halmaz életkora nagyjából 7 millió év, a tagok jelentős része pedig az első 3 millió éves időintervallumban született. Bár a keletkezés üteme később lassult, de még fél millió évvel ezelőtt is keletkeztek csillagok.

De miért érdekli ennyire ez a nem túl népes nyílthalmaz a csillagászokat? Miért vizsgálják fiatal csillagait ekkora alapossággal? Miért érdekes kora, a csillagkeletkezés üteme? Az ok nagyon röviden: megismerni galaxisunk egyik legnagyobb csillaggyárát a durván 650 fényév kiterjedésű Cygnus X komplexumot, vagy más néven a Cygnus csillagkeletkezési régiót, amely mellett még az Orion komplexum (ennek része az Orion-köd) is eltörpül. Míg ez utóbbira viszonylag szabad rálátásunk van, addig a Cygnus X porfelhőkbe burkolódzik. Elég csak a fotóra tekinteni, hogy lássuk, az ehhez a csillagközi felhőhöz tartozó IC1318 (melynek csak egy részét örökítettem meg) is erősen porsávokkal szabdalt. Illetve emlékezzünk vissza a fentebb leírtakra a csillagok fényességével és vörösödésével kapcsolatban.

A misztikusnak tűnő Cygnus X elnevezés, még a múltszázad közepéről származik, amikor megkezdődött az égbolt feltérképezése a rádiótartományban. Ekkor derült ugyanis ki, hogy a Sadr irányába egy kiterjedt, diffúz rádióforrás található. A Cygnus X nem tévesztendő össze a Cygnus X-1-gyel, mely egy csillag és egy fekete-lyuk párosa, és egyben az egyik legintenzívebb röntgenforrás az égbolton.

Az itt található molekula felhő tömege óriási, 2-3 millió naptömeg. Területén legalább öt fiatal és igen népes O és B típusú csillagok alkotta, úgynevezett OB asszociáció található. Az asszociációk tagjai, a nyílthalmazokkal ellentétben, nem kötődnek egymáshoz gravitációsan. Gázfelhők közelében, vagy abba ágyazódva akadhatunk rájuk. Kiterjedésük pedig sokszorosa lehet a nyílthalmazokénak, elérheti akár 200-300 fényévet is. A Cygnus X-ben az egyik jelentősebb asszociáció, az OB9 magját az NGC6910 alkotja, így már talán érthető, miért övezi nagy érdeklődés ezt a nyílthalmazt. Az OB2, még az OB9-nél is masszívabb. Azért, hogy az előtérbe lévő intersztelláris médium extinkcióját redukálják, az asszociációt közeli infravörös tartományban vizsgálták meg a csillagászok. Kiderült, hogy az OB2 körülbelül 2600 O és B típusú fiatal csillagot foglal magában, melyből nagyságrendileg 100 különösen nagytömegű és forró O típusú csillag. Az OB2 teljes tömege becslések szerint 30000 naptömeg, de egyesek szerint akár 100000 naptömeget is elérheti, így egyike galaxisunk legnagyobb ismert csillagtársulásainak. Tömege majdnem felveszi a versenyt pár gömbhalmazéval. Éppen ezért akadt pár csillagász, aki tanulmányában születő félben lévő gömbhalmaznak aposztrofálta, azonban a szakemberek nagytöbbsége, a tagok közötti szoros gravitációs kapcsolat hiányában, továbbra is „csak” nagytömegű asszociációként tekint rá. Csillagainak kialakulása, hasonlóan az NGC6910 csillagaihoz, nagyságrendileg 10 millió évvel ezelőtt vette kezdetét, de a „Cygnus csillaggyár” még napjainkban is aktív. A nagytömegű O csillagok intenzív UV sugárzásukkal gerjesztik, ionizálják a körülöttük lévő intersztelláris anyagot. A közelükben lévő hidrogén felhők ennek köszönhetően „világítani” kezdenek. Az IC1318 is egy O9 típusú nagytömegű csillagnak köszönheti a fényét, melyet az optikai tartományban porfelhők fednek el a szemünk elől. Erős sugárzásuk nemcsak életet lehel ezekbe a felhőkbe, de azonnal erodálni is kezdi azokat. Ezek a forró, kék csillagok hatalmas, látványos üregeket fújnak azokba a ködökbe, melyben korábban megszülettek. A tovaterjedő ionizációs frontok pedig szemet gyönyörködtető formákat hoznak létre, miközben beleütköznek a nagyobb sűrűségű csillagközi anyagba, vagy éppen felgyorsulnak ott, ahol a sűrűség kisebb. A kibocsájtott nagyenergiájú fotonok mellett, a kisebb csillagokhoz képest erős csillagszelük, vagyis a belőlük kiáramló anyag is fontos szerepet játszik a környező világűr alakításában. Mindez azonban a Cygnus csillagkeletkezési régió esetén szinte teljesen rejtve marad előlünk az optikai tartományban. Igazi titkait csak a rádió, infravörös és gamma tartományban fedi fel.

cygnusX-infra

Ezen a 8nm-es hullámhosszon készült infravörös felvételen jól látszanak az O típusú csillagok által a por és gáz komplexumba fújt hatalmas üregek, melyeket forró és ritka gáz tölti ki, a taréjok pedig az üregek falai. A fényes fehér csomók és ívek (a taréjoknál) azok a területek, ahol jelenleg is csillagkeletkezés zajlik. Kép forrása: NASA/IPAC/MSX

A Cygnus X egy tökéletes laboratórium a csillagászoknak, ahol tanulmányozhatják azokat a folyamatokat, melyek a csillagok keletkezését kiváltják, tanúi lehetnek csillagok születésének, ráakadhatnak a különböző fejlődési fázisokra, hogy aztán az egészet egy láncba fűzzék. Megfigyelhetnek végnapjaikat élő gyorsan fejlődő nagytömegű csillagokat, és olyan titkok kulcsát is megtalálhatják itt, melyeket már régóta keresnek.

Az egyik ilyen titok, hogy pontosan honnan is származik a kozmikus sugárzás, mely javarészt (90%-ban) közel fénysebességgel, a galaxisunkon átszáguldó protonokból áll. Nem egyszerű azonban ezek forrását megtalálni, ugyanis a galaktikus mágneses tér eltéríti a töltött részecskéket. Lehetetlen visszakövetni őket forrásukig. Amennyiben azonban a kozmikus sugárzás intersztelláris gázzal ütközik, nagyenergiájú gammasugárzás jön létre. Ezek a fotonok pedig már egyenes úton jutnak el hozzánk, így felfedve a sugárzás születésének a helyét.

Az elméletek szerint a kozmikus sugárzás legjelentősebb forrásai azok a gyorsan táguló ionizált gázhéjak, illetve erős mágneses terek, melyek a szupernóvákhoz kapcsolódnak. A teóriákat azonban megfigyelésekkel is kell bizonytani. A Cygnus X és környezete több okból is megfelelőnek látszott az elmélet ellenőrzése céljából. Ahogy fentebb is írtam, itt viszonylag gyakoriak a különösen nagytömegű csillagok, melyek rövid 5-10 millió éves életük végén szupernóvaként robbannak fel, így a környéknek tartalmaznia kell természetes részecskegyorsítóként működő maradványokat. A rádiócsillagászati megfigyelésekből már eleve ismert volt a γ Cygni irányába, egy becslések szerint 7000 éves szupernóva-maradvány, mely 1000 fényévvel a Cygnus X mögött található.

A csillagászoknak sikerült is megfigyelni a Fermi űrtávcsővel, a masszív csillagok által vájt, forró gázzal telített üregekben a keresett gamma-sugárzást.

Gamma_Cyg_X_Fermi_LAT226

A Fermi űrtávcsővel detektált gamma-sugárzás a Cygnus X-ben. Kép forrása: NASA/DOE/Fermi LAT – I. A. Grenier és L. Tibaldo

Alapos vizsgálatok után a Fermi csapata arra a következtetésre jutott, hogy a megfigyelt gamma-sugárzásért nagy valószínűséggel valóban a szupernóva-maradvány(ok) által kibocsájtott kozmikus sugárzás és a Cygnus X anyagának kölcsönhatása a felelős. Az OB asszociációk nagytömegű szörnyetegeinek sugárzása okozta sokkhatás felkeveri a gázt, a környező mágneses teret pedig összekuszálja, így a frissen keletkezett kozmikus sugarak csapdába esnek, miközben megpróbálnak áthatolni a régión. Nem zárták ki azonban azt a lehetőséget sem, hogy a részecskéket helyi folyamatok, vagyis az intenzív csillagszél okozta lökéshullámok gyorsítják fel. Nagyon úgy néz ki, hogy akik a szupernóvákra fogadtak, mint a kozmikus sugárzás egyik lehetséges fő forrásaira, végre megfigyelési bizonyítékokkal is rendelkeznek.

Remélem, hogy ezzel a rövid cikkel sikerült kedvet csinálnom az olvasónak ahhoz, hogy egy kellemes nyári vagy kora őszi éjszakán maga is felkeresse a Tejút eme izgalmas és szép vidékét. És talán ahhoz is, hogy ezt másnak is megmutassa, és meséljen róla. Páratlan élmény lesz!

Felhasznált irodalom:

Leonid S. Lyubimkov, David L. Lambert, Sergey I. Rostopchin, Tamara M. Rachkovskaya, Dmitry B. Poklad: Accurate Fundamental Parameters or A, F, and G-type Supergiants in the Solar Neighbourhood

Markus M. Hohle, Ralph Neuhaeuser, Bernard F. Schutz: Masses and Luminosities of O and B – type stars and red super giants

L.E. Pasinetti Fracassini, L. Pastori, S. Covino, A. Pozzi: Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) – Third Edition – Comments and Statistics

David F. Gray: Photospheric variations of the supergiant γ Cyg

Bhavya B, Blesson Mathew, Annapurni Subramaniam: Pre-main sequence stars, emission stars and recent star formation in the Cygnus Region

Kolaczkowski, Z.; Pigulski, A.; Kopacki, G.; Michalska, G.: A CCD Search for Variable Stars of Spectral Type B in the Northern Hemisphere Open Clusters. VI. NGC 6910

J. Kubat, D. Korcakova, A. Kawka, A. Pigulski, M. Slechta, P. Skoda: The H-alpha stellar and interstellar emission in the open cluster NGC 6910

Science Journals: A Cocoon of Freshly Accelerated Cosmic Rays Detected by Fermi in the Cygnus Superbubble – (a szerzőket lásd az oldalon)

M16 – a teremtés oszlopai

m16-sas-kod-20130907-ttk

2013-09-07 – Felsőpakony – 70 x 44 sec light és 15 x 44 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera

Az M16 és környezete a gyönyörűségét egy fiatal nyílthalmaz és a környéken található gáz és por kölcsönhatásának köszönheti. Már viszonylag kis távcsövekkel is kitűnő célpont. Ismert még Sas-ködként is. Távolsága kb. 7000 fényév, míg az objektum méretét 70 x 55 fényévnek becslik. Ebből maga a halmaz 15 fényév. A vizuális fényességre 6 magnitúdót szoktak megadni, míg látszólagos mérete 35 ívperc. Ez az én látómezőmnek már egy kissé nagy volt, így igyekeztem „a teremtés oszlopai” néven is ismert elefántormányokra és a nyílthalmazra koncentrálni, amikor a kompozíciót beállítottam. A kidolgozásnál a köd finomságát próbáltam megtartani úgy, hogy a csillagkeletkezési régiók és a globulák mégis jól látszanak a csillagok sziporkázás közepette. A köd szerkezete mindig lenyűgöz. Az egyik személyes kedvencem a sötét területek előtt felfénylő gerjesztett ütközési zónák. Olyanok, mint valami sötét hajók orránál keletkező hullámok a csillagszél óceánján.

A 90 fokos elforgatás direkt van, mert így nekem jobban tetszett.

M45, Merope – NGC1435, Maia – NGC1432

M45-20141212-1901-sx-300s-TTK

M45 (középső tartomány)

2014-12-12 – Göd – 8 x 300 sec L

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

SXVR-H18 CCD kamera

NGC1435-Merope-20130915-TTK.JPG

Merope – NGC1435

2013-09-15 – Göd – 28 x 44 sec light és 15 x 44 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera

ngc1432-maia-20131128-ttk

Maia – NGC1432

2013-11-27 – Isaszeg környéke – 73 x 55 sec light és 15 x 55 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera

Az M45-öt mi magyarok Fiastyúkként szoktunk emlegetni, mely a csibéivel a Bika csillagkép hátán csücsül. A görögök Plejádoknak (Πλειάδες / Pleiades) nevezték, a mitológiai hét nővér után. Homérosz Odüsszeia és Iliász művében is említést tesznek a halmazról, de még a Bibliában is. A felkelő nap országában Subaru-ként ismert ez a nyílthalmaz. Igen, az a japán gépkocsi márka is innen kapta a nevét. De nemcsak az. A Japán Nemzeti Obszervatórium 8.2 méteres, az optikai és infravörös tartományban is működő távcsövét is Subaru-nak hívják. Nincs olyan kultúra, ahol ne lenne valamilyen elnevezése, vagy ne kapcsolódna hozzá valamiféle történet. Ez nem is csoda, hisz az M45 az egyik legközelebbi nyílthalmaz, és fényes csillagai már a régi időkben is magára vonták az emberek tekintetét. Nem is beszélve arról, hogy őseink fényszennyezéstől mentes égen csodálhatták a ragyogó gyémántokat.

Apropó Messier 45. Messier katalógusában ez az egyik legfurcsább objektum, hisz a katalógus célja az volt, hogy felsorolja az üstökös szerű objektumokat. A többi Messier katalógusbeli objektum azért ennél sokkal halványabb, és talán tényleg könnyebben összekeverhető volt akkoriban egy üstökössel.

Szabad szemmel látható tagjai forró, kékes fényű, nagytömegű csillagok. Színképtípusuk B2-B6. Maga az M45 nyílthalmaz körülbelül 150 millió éves, és a modellek szerint a csillagok a következő 250 millió évet még együtt fogják eltölteni, majd a környezet hatására a halmaz felbomlik. A halmaz öregebb tehát, mint civilizációnk, és remélhetőleg mi fogjuk túlélni a létezését, és nem pedig fordítva.

Az M45-ben a hosszú expozíciós felvételeken reflexiós ködök is megfigyelhetőek. Kezdetben azt gondolták, hogy ez még a csillagok keletkezése után maradt hátra. Azonban az újabb modellek alapján a halmaz túl idős ahhoz, hogy ezek a születés után hátra maradt ködfoszlányok még egyben maradhassanak. A kék forró csillagok sugárzása ezt már rég elfújta volna. Sokkal valószínűbb az a magyarázat, hogy a nyílthalmaz éppen egy ködös területen halad keresztül, mely visszaveri a tagok fényét így gyönyörködtetve az észlelőt.

A halmazban kicsit több mint ezer csillagot azonosítottak tagként sztellárstatisztikai módszerekkel, a halmaz tagjai ugyanis egy irányba mozognak. Persze az azonosított tagok között bőven akadhatnak még fel nem bontott kettősök is. A tömegét 800 naptömegre, míg méretét körülbelül 45 fényévre becsülik a jelenleg elfogadott távolság alapján. Bár éppen a távolság tekintetében pár hónapja izgalmas új eredmények láttak napvilágot. Hogy miért is érdekes ez annyira? Röviden hadd meséljek most erről.

A Hertzsprung-Russell diagramját (szín-fényesség diagram) felrajzolva egy csillaghalmaznak, annak kora megbecsülhető. Egy nyílthalmaz csillagai, mind egyszerre keletkeznek a galaxis por és gázok alkotta ködjeiben. Azonban tömegük különböző, és éppen emiatt eltérő életpályát futnak be. A harmincszoros vagy annál nagyobb tömegűek gyorsan elhasználják hidrogén készletüket, mindössze pár millió évet töltenek csak a fősorozaton, majd elhagyják azt. Az ezeknél valamivel kisebb tömegű, vagyis a tízszeres naptömeg körüli csillagok esetében, a fősorozaton töltött idő már tízmillió években mérhető. A Napnál háromszor nagyobb tömegű esetén több százmillió évről, a kétszer nagyobb tömegűek esetében pedig már pár milliárd évről van szó. Egy, a Naphoz hasonló csillag nagyjából 10 milliárd évet tölt a fősorozaton.  Vagyis, ahogy a halmaz egyre idősebb lesz, már csak a kisebb tömegű, és kevésbé fényes csillagok maradnak a fősorozaton. Minél idősebb egy halmaz, annál lejjebb tolódik az elkanyarodási pont (Turnoff point) a fősorozaton, ahol a csillagok elvándorolnak az óriás ág felé.

csillaghalmazok_kora

Felrajzolva a HRD-t, a lefordulási pontnak (turnoff point) a meghatározásával, felhasználva a csillagfejlődési elméleteket, megbecsülhető a halmaz kora. Az animáción látszik, ahogy a halmaz öregszik, a csillagok sorra elhagyják a fősorozatot.  Az Myr millió évet, a Gyr milliárd éveket jelent. (Forrás: http://astro.berkeley.edu/~dperley/univage/univage.html)

A  nyílthalmazok kitűnő terepet szolgáltatnak a csillagfejlődési elméletek kidolgozásának és ellenőrzésének, amennyiben távolságuk pontosan ismert. A távolság roppant fontos, hogy a Hertzsprung-Russell diagramon a luminozitás értékét (függőleges tengely) pontosan megadhassuk.

Több módszer is létezik a távolság meghatározására, azonban a csillagászatban egyik legalapvetőbb távolságmérési módszer a trigonometrikus parallaxis. Többször megmérve egy viszonylag közeli csillag pozícióját egy év folyamán azt tapasztaljuk, hogy az megváltozik. A csillag elmozdulni látszik a távolikhoz képest. Az elmozdulás ciklusa pedig pontosan egy év, ami alatt a Föld egyszer megkerüli a Napot. A Föld ugyanis egy nagyjából 300 millió kilométeres nagytengelyű ellipszis pályán mozog, és kissé más irányból nézünk a csillagot a pálya különböző pontjain. Az égi látszólagos elmozdulás szögét megmérve, a Nap és Föld távolságot ismerve, kiszámolható a csillag távolsága trigonometrikus alapismeretek birtokában.

parallaxis

Az évi parallaxis jelensége. Az ábra csak szemléltetés, ugyanis a valóságban mivel maguk a csillagok is mozognak a látóirányunkra merőlegesen (sajátmozgás) egy év alatt, így nem pontosan magába záródó ellipszisgörbén látjuk elmozdulni a csillagot.

A csillagászatban a fényév helyett éppen ezért vezették be a parszek (pc) távolsági egységet. 1 parszek 3.26 fényév. Egy parszek (pc) távolságra van tőlünk az az objektum, melyből merőleges rálátás esetén a földpálya sugara éppen 1 ívmásodperc szög alatt látszik.

A módszernek az szab határt, hogy mekkora a legkisebb szög, amit még ki tudunk mérni. A Földön a légkör is akadályt gördít elénk, így 1989-ben pályára állították a Hipparcos űreszközt mely 120000 csillag parallaxisát mérte meg nagy pontossággal, és még további egymillió csillagról gyűjtött adatokat. A Hipparcos 0.001 ívmásodperc pontossággal tudott mérni. A program keretében az M45 távolságának meghatározására is sorkerült. A műhold első parallaxis mérései hibákkal voltak terhelve, így később felülvizsgálták a kapott eredményeket. Hosszas viták és elemzések után 120.2 pc, azaz 392 fényéves eredményt kaptak a távolságra 1% hibahatáron belül. Ez azonban egyáltalán nem volt összhangban a különböző földi módszerekkel meghatározott távolságokkal, melyek inkább a 133 pc, vagyis 435 fényéves távolságot valószínűsítették.

A két érték között durván 10% a különbség. Amennyiben a halmaz közelebb van a korábban feltételezettnél, akkor a csillagok abszolút fényességére (luminozitására) kisebb érték adódik. Kisebb annál, melyet a csillagfejlődési modellek megjósolnak. Vagy a 435 fényév körüli távolság, és a csillagfejlődési elméletek a helyesek, vagy a Hipprcos mérései alapján kapott 392 fényév. Ez utóbbi esetben, a modellek felülvizsgálatra szorulnak. Ezt az ellentmondást nevezik a csillagászatban Plejádok távolság problémának. A vita hosszú ideje dúl már, és egészen a közelmúltig nem történt igazi előrelépés az ügyben.

2014 augusztusának végén megjelent egy publikáció, melyben Carl Melis és munkatársai VLBI alapú méréseikkel, állításuk szerint, feloldották a problémát. A VLBI (Very-long-baseline interferometry), egy hosszú bázisvonalú interferometrikus módszer, mely a rádiócsillagászatban használatos. A módszer lényege, hogy a Föld távoli pontjain elhelyezkedő rádióteleszkópokat használnak fel. Az egyes teleszkópokra különböző időkben esik be egyazon rádióforrás jele. A teleszkópok távolságát és az időbeli differenciát felhasználva a rendszer úgy működik, mintha a megfigyeléseket egy akkora rádiótávcsővel végeznék, melynek mérete megegyezik a komponensek közötti legnagyobb távolsággal. Ezzel a felbontás megsokszorozódik. Melis csapata alapvetően másféléves programjuk során szintén a parallaxis jelenség segítségével határozták meg az M45 távolságát, melyre 444 fényév (136.2 pc) adódott 1% pontosságon belül.

Úgy tűnik a csillagfejlődési modellek mégis helytállóak. Nem ez azonban az egyetlen érdekessége ennek a tanulmánynak. Pár fontos kérdést jó lenne még tisztázni. Vajon mi okozta a Hipprcos megfigyelési hibáit? A mérések milyen hibákkal terheltek? Mit nem vettek figyelembe a kutatók? Szisztematikus hibáról van-e szó?

Miért fontos kérdések ezek? Egyfelől lehet, hogy ez a Hipprcos összes mérése érintett. Másfelől, már a világűrben tartózkodik a Hipparcos utódja, a Gaia űrszonda, melyet 2013 decemberében bocsájtottak fel. Ennek az eszköznek 1 milliárd csillag pozíciójának a megmérése és elmozdulásának detektálása lesz a feladata. A pontossága 0.000001 ívmásodperc. Ezerszer nagyobb, mint a Hipparcos szondáé volt. Pár éven belül rengeteg pontos távolság adat birtokában lehetünk a Tejútrendszerben található csillagok esetében. A Gaia tervezése nagyon hasonló elődjéhez, így már csak ezért is megnyugtató lenne tisztázni a fentebb feltett kérdéseket.

A felvételek

2013. szeptember 15. – Merope NGC1435 – ASI 120MM kamera

NGC1435-Merope - 20130915 - ttkAz M45 az ASI 120MM kamerám biztosított látómezőhöz képest túlságosan nagy objektum. Mégis ezek a fentebb említett reflexiós ködök valahogy vonzottak. A tervem az volt, hogy elkészítem a magam monokróm felvételeit a Merope és a Maia környékéről. Első célpontnak a Merope-t választottam és az azt körülvevő reflexiós ködöt, az NGC1435-öt. Ezt az NGC objektumot gyakran szokták emlegetni Merope ködként. Ismert még Tempel ködeként is, felfedezője, Wilhelm Tempel után, aki 1859-ben akadt rá.

Az éjszaka első felében az M33-ról készítettem felvételeket B szűrőn keresztül. Miután ezzel végeztem, még nem akartam összepakolni, és lefeküdni. Ekkora a körülmények már egyáltalán nem voltak ideálisnak mondhatóak, ugyanis átúszó felhők jelentek meg, és a párásodás is egyre jelentősebbé vált. Ennek ellenére a Merope (23 Tau) körüli területről készítettem pár próba expozíciót. Tudtam, hogy sok felvételt már nem tudok majd rögzíteni, de érdekelt „élesben” milyen értékekkel kellene dolgoznom majd. Végül teljesen befelhősödött, így nekiálltam a dark-ok készítésnek, és a pakolásnak. Az észlelő asztalomon addigra már szinte vízben állt a notebook. Nem is gondoltam, hogy egyszer még hasonlóan mostoha körülmények között ismét fotózni fogom ezt a területet, igaz akkor teljesen más célból.

Napokig nem vettem elő a nyersanyagot, mert sok jóra nem számítottam. Miután kidobtam a felhős képeket összesen 28 kockám maradt, melyből végül elkészítettem a felvételt. A monokróm felvétel majdnem olyan lett, amilyet szerettem volna.

2013. november 27/28. éjszaka – Maia és az NGC1432 – ASI 120MM kamera

NGC1432-maia-20131128-ttkHosszú borult és észlelésre alkalmatlan novemberi időszak után 2013. november 27/28. éjszakára végre derült eget jósoltak. Nem hagyhattam ki a lehetőséget. Nagy Tibivel egész nap arra készültünk, hogy végre észlelünk majd este. Még mielőtt a Nap a horizont alá bukott volna, már autóban ültünk, felszerelésünk pedig a csomagtartóban pihenve várta a bevetést. A napközbeni hosszas tanakodás után egy Isaszeg környéki dombocskára esett a választásunk. Az autóból kiszállva barátságtalan 0 fok várt minket, melyből később -6 lett. A valószínűleg nemrég megművelt föld kemény rögein egyensúlyozva megkezdtük a kipakolást. A délnyugati horizonton a Vénusz vakítóan ragyogott a csupasz erdősáv fáinak ágai között, míg az égen a fényesebb csillagok már feltűntek. Valamikor 18 óra környékén már halkan zümmögtek az óragépek, miközben rövid pihenő gyanánt megpróbálkoztunk a C2013/R1 Lovejoy megpillantásával. Sajnos a horizont közelében valamiféle furcsa páraréteg helyezkedett el, így szabad szemmel hiába próbáltuk megpillantani. Binokulárral és távcsővel azonban könnyű volt ráakadni. A Göncöl rúdja pontosan megmutatta az irányt az égi vándor felé. Ez után a kis vizuális élmény után nekiláttam felszerelni a kamerát és egy kellemeset birkóztam a vezetéssel is. A guider nem akarta az igazságot, és nem vett tudomást arról, hogy őt bizony már a kamerához kapcsoltam. Végül a technika ördögén sikerült felülkerekedni, miután az eloxidálódott UTP kábel csatlakozóját egy kissé megcsiszoltam. A kitelepülésnek mindig van egy apró mellékzöngéje, valamivel mindig meg kell küzdeni, mielőtt elmerülhetne az ember az égbolt csodáiban. Van, hogy a terep gördít akadályt az ember elé, néha a zord idő tesz próbára, míg máskor a felszerelésünk tréfál meg minket. De utólag az ég alatt szerzett élmények, ezt mind feledtetik, és csak a későbbi anekdotázásokban emlékezünk meg ezekről. Az eset óta mindig van nálam tartalék kábel (is).

Az egyik előre kiszemelt célpont a Maia (20 Tau) és az NGC1432 volt az NGC1514 planetáris köd mellett. A Fiastyúk ezen területe az, amit még feltétlenül meg szerettem volna örökíteni. Mivel a Merope környékéről már korábban készítettem felvételt, így annak tapasztalatai alapján állítottam be a távcsövet és az expozíciós időket.

Máig nem tudom eldönteni, hogy az M45 Merope vagy Maia körüli régiója tetszik-e jobban. A maga nemében mind a kettő lenyűgöző, és itt nem a saját felvételemről beszélek, mely csak másolata az égiek/természet alkotta festménynek.

2014. december 12/13. éjszaka – M45 teszt fotó – SXVR-H18 kamera

M45-20141212-1901-sx-300s-TTKMár több mint egy éve nézegettem az internetes áruházak kirakatait, keresve az ASI kamerám utódját. Mindenképpen CCD irányba szerettem volna továbblépni. Az igazat megvallva már az ASI megvásárlásakor CCD-t szerettem volna, de akkor még nem tudtam, hogy mennyire fog érdekelni az asztrofotózás. Egy kisebb kóstoló után azonban már kétségtelen volt a számomra, hogy szórakoztat ez a hobbi, és hosszabb távon is leköt. Sok jelöltet végignéztem, sokat olvastam, és rengeteget konzultáltam Szeri Lászlóval a témában. A CCD utáni vágyamat csak erősített az iTelescope.net hálózatának használata.

Egyszer aztán szembejött egy kihagyhatatlan lehetőség, és szert tettem egy SXVR-H18-as kamerára. Gyermeki izgalommal vártam a futár érkezését a csomaggal. Amíg a kamera utazott, elolvastam a kézikönyvét, más tulajdonosok leírásait böngészgettem az interneten. Később kiderült, hogy vár rám még egy ennél is hosszabb várakozás.

Valahogy mindig úgy járok egy csillagászati kütyü beszerzésekor, hogy az ég csak azért sem akar kiderülni.  Most sem volt másképp. Heteken át figyeltem az időjárás jelentést, és bíztam benne, hogy csak elmennek a felhők, vagy végre egyszer a javamra tévednek a meteorológusok. Végül egy pénteki napon enyhülni látszott a felhők szorítása. Azonban, mire hazaértem a munkából a helyzet már közel sem volt olyan rózsás. Az eget cirrus felhők lepték el, és párássá vált. Mivel csillagok így is látszottak, kipakoltam, hogy végre csillagokat is mutathassak a kamrának, és elvégezzek jó pár tesztet.

Sok minden várt rám ezen az éjszakán. A CCD-nek köszönhetően a már bejáratott szokásaimon, és összeállításon is változtatni kellet. Az egész távcsövet teljesen máshogyan kellett kiegyensúlyozni a jelentős plusz tömegnek köszönhetően. A tubust feljebb kellett tolnom, és az ellensúlyok új ideális pozícióját is meg kellet találnom. Ezután következett a fókuszálás. Ebben nagy segítségemre volt maga a kamera egy beépített képessége, mely a fókuszálást segíti. Nem volt más hátra, mint választani egy célpontot. Az M45 több szempontból is ideálisnak tűnt. Egyfelől a pocsék átlátszóság mellet is bíztam abban, hogy vezetőcsillagok garmadáját biztosítja majd a nyílthalmaz. Továbbá nagyszerűen használható a látómező megmérésére. Ezt korábban kiszámoltam természetesen, de látni akartam a saját, illetve a kamera szemével is.

Ideje volt nekilátni a felvételek készítésének, illetve a vezetés tesztelésének. Az ASI kamerával sosem kellett 2 percnél többet vezetni. Tudtam, hogy erre képes a mechanika. Terveimben az szerepelt, hogy a jövőben minimum 5, de inkább 10 perces expozíciókat szeretnék majd készíteni. Következett hát az 5 perces felvételek tesztelése. -20 °C-ra hűtöttem a kamerát, és elindítottam a vezetést, majd a felvételt. Lélegzetvisszafojtva vártam, hogy az első kép elkészüljön. Igaz, hogy az MGEN pislákolásából is látszott, hogy nincs gond a vezetéssel, de ezt igazán az első felvétel mutatta meg, ami alapján nekem jónak tűnt a vezetés. Elindítottam egy 10 képes szériát. Közben egyre párásabb lett az ég, és a felhők kezdtek összeállni. A nyolcadik kép közepén el is veszítettem a vezető csillagot.

Ezzel azonban még nem ért véget az éjszaka. El kellett készítenem a bias, flat, és dark fotókat. Igazából ezek közül a flat kép jelentett csak némi kihívást. Ezzel elbíbelődtem egy darabig. A flat box-ot felraktam a távcsőre, és elkezdtem keresni azt az expozíciós időt, ahol a kép legfényesebb (középső) részén 25000 ADU értéket mutat a szoftver. Majd elkészítettem a flat képeket. A bias és dark felvételek már a távcsőről leszerelt kamerával készültek, miközben pakoltam befelé.

Igazából nem azt sajnáltam, hogy csak 8 felvételt tudtam készíteni, hanem inkább azt, hogy miért nem rögtön a 10 perces fotókkal kezdtem. Akkor azt is tudhatnám már, hogy a 10 perces felvételekkel sem lesz gond.

Csak 8 expozíció, csak egyenként 5 percesek, cirrus felhők, párás ég. Nem vártam, hogy a feldolgozást követően egy remek képet kapok majd. A kép egy kicsit talán „érdes”, de szerintem illeszkedik a korábban az ASI kamerával készült M45 részletek sorához. Sok mindent kitapasztaltam az ég alatt azon az éjszakán, és később a feldolgozás közben is. Ebben pedig az M45 nagy segítségemre volt. Ezt köszönöm is az égieknek. Tényleg.