NGC2442 – A kobra és a titkai

NGC2442-LRGB-20180115-T30-300s-TTK

NGC2442 (balra) a PGC21457 (jobbra) társaságában

iTelescope.net T30 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI-PL6303E CCD kamera

A felvételek 2016-02-05 és 2018-01-18 között készültek – Siding Spring Observatory – 34 x 300 sec L, 10 x 300 sec R,G,B

(Kép orientációja: észak alul, kelet jobbra) 

Mindig is lenyűgözött az NGC2442 morfológiája, így azóta rajta volt a digitális észlelési listámon, amióta csak belevágtam asztrofotózásba. Tekintve, hogy ez a spirális szerkezetű galaxis a déli Repülő Hal csillagkép (Piscis Volans, röviden ma már csak Volans) területén található, így hazánkban sosem emelkedik a horizont fölé. Ezért döntöttem úgy, hogy távcsőidőt bérlek az iTelescope-nál. Az ausztráliai obszervatóriumuk (Siding Spring Observatory) közel fél méter átmérőjű tükrös távcsövét választottam a múltbéli tapasztalatok alapján. Megjegyzem, hogy a cirkumpoláris (mindig a helyi horizont fölött látható) csillagrendszer még ott is csak kb. 51° magasságba emelkedik maximum, így igyekeztem a delelés környékén fotózni. Előre elkészítettem a script-eket, így a felvételek készítését teljesen automatikusan hajtotta végre a távcső. Nem valami nagy ördöngösség ez, a webes felületükön pár kattintással össze lehet rakni. Kell a célpont neve vagy koordinátája. Meg kell adni az expozíciók hosszát, azok darabszáma, monokróm CCD esetén a használni kívánt szűrők. Egyéb beállításokra is van lehetőség. Ilyen például a fókuszálás gyakorisága (bár ezt magától is rendszeresen elvégzi, ha változik a hőmérséklet, vagy szűrőváltás történik), legyen-e vezetés (a mechanikák elméletileg maguktól is képesek vezetés nélkül is 5-10 percen keresztül követni a célpontot az égen), történjen-e bolygatás (dithering) a felvételek között, stb. Belegondolva, nem nagyon van ez másként a saját távcsövünk esetében sem, azok is félig meddig robotok ma már. A különbség csupán annyi, hogy az iTelescope.net esetében szolgáltatást veszünk igénybe. Nekem ez kényelmes, praktikus, és mivel távoli hozzáférésről van szó (nincs utazás!), így időt is takarít meg. De persze döntse el mindenki saját maga!

A déli pólushoz közeli NGC2442 galaxis, az ausztrál égen cirkumpoláris Repülő Hal (Volans) csillagképben. Forrás: ESO, IAU, Sky & Telescope

A képhez a felvételek közel 2 éves időintervallumban készültek. Meg kell mondjam, nem így terveztem. Történt ugyanis, hogy 2016 februárjába elszúrtam a koordináták megadását. Teljesen banális módon nem vettem figyelembe a téglalap alakú látómező égi tájolását. A felvételre nem pontosan az, továbbá nem pontosan úgy került, ahogy azt én elképzeltem. A saját balgaságom annyira felbosszantott, hogy inkább belevágtam az NGC3201 gömbhalmaz fotózásába, mely a következő célpont volt a sorban. Az expozíciók eredményét azonban nem töröltem le.

2017/2018 tele nem volt bőkezű a derült, mély-ég megfigyelésre is alkalmas éjszakák tekintetében. Saját távcsövem már több hónapja arra várt, hogy újra kitoljam az udvarra. Januárban eszembe jutott a „2016-os fiaskó”. Felvetődött bennem a folytatás gondolata. A korábbi bosszúság már a múlt halványuló emléke volt csupán. Megnéztem, hogy mit is lehetne kihozni az adott helyzetből. Arra jutottam, hogy egyszerűen majd más lesz a kivágás. Ennek felismeréséhez 1 perc sem kellett. Nem is értettem, miért reagáltam anno túl a dolgot. Az NGC2442 és a PGC21457 galaxisok úgyis rajta lesznek a képen, és amúgy is ezek köré szerettem volna a látványt „szervezni”. Akkor meg? Nem változtattam a programon, hagytam lefutni ugyanazokkal a koordinátákkal, csupán a színszűrős felvételek elkészítését adtam hozzá. 2018 áprilisának utolsó hetében pedig végre lett időm, hogy az egyik este feldolgozzam a felvételeket.

Közelebbi törpe vagy távolabbi óriás?

Amennyiben felütünk néhány régebben kiadott könyvet, vagy egy-egy régebbi cikket elolvasunk az interneten, akkor azzal találkozunk, hogy az NGC2442 távolsága 50-54 millió fényév. (Az interneten a szerzők gyakorta egyszerűen csak átveszik az adatokat egymástól, így akár még friss cikkekben is előfordulnak ezek a számok). Ezek a régebben elfogadott értékek javarészt még a múlt században végzett, az úgynevezett Tully-Fisher relációt felhasználó méréseken alapultak (például R. B. Tully: Nearby Galaxy Catalog, 1988).

A Spirál és lentikuláris galaxisoknál használható módszer lényege nagyon röviden annyi, hogy a viszonylag könnyen mérhető galaxison belüli sebességekből meghatározható a galaxis luminozitása, és ebből pedig távolsága. Ugyanis, a galaxis csillagainak dinamikáját a galaxis tömege határozza meg, mely pedig összefüggésben áll annak luminozitásával. Az így kapott luminozitást felhasználva a látszólagos fényesség ismeretében a távolság már meghatározható. (Elliptikus galaxisok esetén a Tully-Fisher reláció nem használható.)

Időközben a műszerek és a vizsgálati módszerek azonban jelentősen fejlődtek. Így például Tully és munkatársai is új katalógust publikáltak 2009-ben, melyben az NGC2442 távolságát is felülvizsgálták. Újabb eredményeik alapján 70 millió fényév (21.5 Mpc) a galaxis távolsága.

Pár évre rá a sors újabb „mérőpálcát” adott a csillagászok kezébe. Az Ia típusú szupernóvák úgynevezett sztenderd gyertyák a csillagászatban. De mik is ezek az objektumok? Alapvetően két elképzelés uralkodik erről a csillagászatban Az egyik vezető elmélet szerint a robbanásra akkor kerül sor, amikor a fehér törpe kísérőjétől elegendő anyagot gyűjtött ahhoz, hogy tömege átlépje a kritikus Chandrasekhar-határt (1.44 naptömeg). A másik elmélet szerint két fehér törpe kering egy kettős rendszerben, egymáshoz folyamatosan közeledve. Míg végül egymásba spiráloznak, és ekkor történik az Ia típusú szupernóva-robbanás. Sokáig úgy tűnt, hogy a megfigyelések majd eldöntik a kérdést, de egyre inkább valószínű, hogy egyetlen modell nem írja el ezeket, feltételezhetően legalább két altípusból állnak. (Akit a téma részletesebben is érdekel, annak a Magyar Csillagászati Egyesület hírportálján megjelent ismeretterjesztő cikket ajánlom a figyelmébe.

Mivel roppant fényesek, így igen-igen távoli galaxisokban is megfigyelhetők. Mindenféle típusú galaxisban elfordulnak. Ráadásul, csillagászati értelemben viszonylag gyakori jelenségről van szó, mivel jellemzően egy-egy Tejútrendszer méretű galaxis életében átlagosan 1000 évente következik be Ia típusú szupernóva-robbanás. Figyelembe véve a megfigyelhető galaxisok roppant nagy számát, bizonyos megfontolások szerint havonta (nagyságrendileg) 12+ ilyen robbanást kell látnunk. Természetesen, amennyiben megfelelő rendszerességgel képesek vagyunk pásztázni az egész égboltot. De mitől sztenderd gyertyák, és hogyan használhatók a távolság kiszámítására? Az Ia típusú szupernóvák maximális fényessége nem egyezik meg teljesen. Azonban, Mark Phillips, Mario Hamuy több közreműködő kutatóval együtt kimutatta, hogy a kisebb maximális fényességűek gyorsabban fényesednek fel, majd gyorsabban el is halványodnak, míg a fényesebbek lassabban halványodnak (Phillips relationship). Maximális fényességük és fénygörbéjük karakterisztikája között kapcsolat van tehát. Nem kell mást tenni, mint a halványodás lefolyását megfigyelni (mennyit halványodott az első 15 napban), és ebből (egyéb korrekciók után) már kellő pontossággal meghatározható az abszolút fényességük. (Az abszolút fényesség megmutatja, hogy milyen fényes lenne az adott objektum, ha az 10 pc távolságra lenne tőlünk.) A látszólagos fényesség és az abszolút fényesség ismeretében a távolságuk pedig már kiszámítható. (Azonos abszolút fényesség esetén, a látszólagos fényesség a távolság négyzetével fordítottan arányos.)

Némileg árnyalja a képet, hogy a módszer a „normál” Ia típusú szupernóvák esetén működik csak. Az esetek 70%-ban tehát használható, de vannak „renitensek” az Ia-k között, akik jól láthatóan kissé másként is viselkednek. De, ahogy fentebb is utaltam rá, egyre világosabban látszik az, hogy az Ia típusra nem tekinthetünk többé teljesen homogén halmazként. Ez persze nem ássa alá magának a módszernek a használhatóságát. A „normál” Ia típus tagjai továbbra is hatalmas messzeségből látszódó, jól meghatározható abszolút fényességű objektumok. Megfelelő sztenderd gyertyák, afféle „kozmikus méterrudak”.

Igen, jól sejti az olvasó. Az NGC2442-ben is sikerült ilyen robbanást elcsípni.  Libert A. G. Monard (ismertebb néven Berto Monard) 2015 márciusában fedezte fel, a később SN2015F-ként katalogizált Ia típusú szupernóvát. Monard az AAVSO prominens tagja, ismert változócsillag észlelő (MLF névkóddal). Igaz, hogy amatőrcsillagász (vagyis nem csillagászként végzett), azonban tagja a Nemzetközi Csillagászati Uniónak is. Az SN2015F alapján a galaxis távolsága (a használt szűrők függvényében) 69-71 millió (21.2-21.8 Mpc) fényévnek adódott. Ahogy a ezt a mérést taglaló cikk szerzői, R. Cartier és munkatársai is megjegyzik, ez igen jó egyezik Tully 2009-es eredményeivel.

A Changsu Choi and Myungshin Im (Seoul National University) készítette animáció az SN2015F feltűnését és elhalványodását mutatja be. A szerzők szintén az iTelescope egyik műszerét vették igénybe tudományos megfigyeléseikhez. Céljuk a szupernóva fényességváltozásnak nyomon követése volt.

Adam G. Riess és munkatársai az NGC2442 távolságát egy harmadik, a Cepheida változócsillagokon alapuló módszer segítségével is meghatározták. Henrietta Swan Leavitt még 1912-ben felfedezte fel a Cepheida-k fényváltozási periódusa és abszolút fényessége között fennálló kapcsolatot, miután a Nagy Magellán-felhő Cepheida változóiról készült több száznyi fotólemezt áttanulmányozta. E csillagok szintén sztenderd gyertyának tekinthetünk, vagyis ezek is jól használhatók távolságmérésre. A Cepheida periódusából adódik, annak abszolút fényessége. Ennek, és a mért látszólagos fényességnek a birtokában a távolság már meghatározható. A kutatók valójában a Hubble-állandó értékének bizonytalanságát igyekeztek leszorítani. Olyan galaxisok voltak a célpontjaik melyben korábban már detektáltunk Ia típusú szupernóvát, továbbá megfelelnek annak a kritériumnak, hogy a Hubble űrtávcső képes ezeket csillagokra bontani. De legalábbis a Cepheida változóik azonosíthatók. Reiss és kutató társai 65.5 millió fényévben (20.1 Mpc) határozták meg az NGC2442 távolságát. Ez a csillagászatban még mindig elég jó egyezésnek számít a fenti három adattal.

Most már válaszolhatunk a fejezet címében szereplő kérdésre. Látszólagos méretére 5.5 x 4.9 ívpercet ír a NED (NASA/IPAC Extragalactic Database), azonban a SIMBAD (SIMBAD Astronomical Database) az infravörös megfigyelések alapján 6.2 x 5.4 ívpercet közöl. Ezekkel az értékekkel, illetve a fent felsorol három távolságadattal számolva a galaxis átmérője 100-130 ezer fényév körül lehet. A felvételen tehát egy a Tejútrendszerünkhöz hasonló, nagyobb méretű spirál galaxis látható.

Az NGC2442 megjelenéséről, avagy megannyi nyitott kérdés

NGC2442-LRGB-20180115-T30-300s-TTK-label

Az NGC2442 mellett a felvételemen látható három fényesebb galaxis. A háttérben még több érdekes galaxis is megbújik, de ezekről a cikkben nem teszek említést.

(Kép orientációja: észak alul, kelet jobbra)

Az NGC2442 kampóra emlékeztető formájára már felfedezője, John Herschel is utalt. Később aztán a csillagrendszerre akasztották a Húskampó galaxis elnevezést. Jómagam sokkal jobban kedvelem azt a hasonlatot, ami a galaxist áldozatát üldöző (PGC21457) kobrának tekinti. A képet én is ennek megfelelően forgattam el, vágtam ki. Persze bárki bármi mást is láthat benne, és ha esetleg mindössze csak magát a galaxist, az is teljesen rendjén van.

Az NGC2442 látványos megjelenését kétségtelenül a külső deformált spirálkarjainak köszönheti. Belül a spirál karok a galaxis centrumát igen szorosan ölelik körbe. Ezzel olyan benyomást keltve, mintha óriási északkeleti-délnyugati orientációjú küllője lenne a csillagrendszernek. Igaz, hogy az NGC2442 küllős spirál galaxis, azonban a valódi küllő csak 66 ívmásodperc hosszú, és keleti-nyugati irányban döfi keresztül a magvidéket. Ha már az apró struktúráknál tartunk, akkor megemlítendő, hogy a magot elliptikus alakban molekula felhők és csillagkeletkezési régiók veszik körbe (circum-nuclear ring). Ennek az ellipszisnek a nagytengely körülbelül 12.5 ívmásodperc, orientációja pedig megegyezik a küllőjével.

NGC_2442-HST-1-740px

A Hubble űrtávcső felvétele az NGC2442-ről, mely a saját fotómnál is jobban mutatja a centrum körüli vidéket.

Felhívnám az olvasó figyelmét a magtól srégen jobbra lent lévő háttér galaxisra, melyet az NGC2442-őn keresztül láthatunk. Meglepő ugye, hogy ennyire átlátszók a galaxisok? A figyelmesebbek a saját felvételemen is felfedezhetik ezt, bár ott közel sem ennyire szembetűnő. Én el is siklottam volna felette, ha korábban már nem láttam volna ezt a fotót. Egyszerűen csak az NGC2442 struktúrájának részeként tekintettem volna rá. Aki nagyon szemfüles, az több ilyet galaxist is találhat a Hubble fotóján.

Forrás: NASA és ESA

A küllő végéből kiinduló két kar az első 2 ívpercet követően teljesen aszimmetrikussá válnak. Az északi elnyúlt kar a markánsabb. Érdemes megfigyelni, hogy a prominens porsávok miként ágaznak el benne, és hogy kifelé tartva miként vesz 90 foknál is „élesebb kanyart”. A déli kar már korántsem ennyire karakteres, bár szélesebb. Itt a porsávok pedig roppant kaotikus mintázatot mutatnak. Ez a kar kívül 180 fokban fordul vissza, majd egyre kevésbé feltűnő jelenség.

De mi ennek a különös aszimmetriának az oka? Minek köszönheti ez a galaxis különös megjelenését?

Az NGC2442 az LGG 147 kompakt galaxiscsoport legnagyobb tagja. A csoporthoz még vagy egy tucatnyi kisebb galaxis tartozik. Teljesen kézenfekvő ötlet, hogy a csoport valamelyik másik galaxisát gyanúsítsuk meg azzal, hogy valamikor a múltban megközelítette az NGC2442-őt. Ilyen közeli találkozók alkalmával a két galaxis közötti gravitációs kölcsönhatás közben fellépő árapályerők erősen megtépázzák a résztvevő galaxisokat. Ezek az erők akár teljesen el is torzíthatják a galaxisok eredeti alakját. Csillagjaiknak egy része szétszóródhat a galaxisok közötti űrben. De hasonló sorsra juthat a bennük lévő intersztelláris médium is akár. Az árapály erők azonban nem csupán pusztítani képesek, de teremthetnek is. A gázfelhőkben olyan lökéshullámok keletkezhetnek, melynek hatására megindul azok csillagokká tömörülése. Felfokozott csillagkeletkezés veheti kezdetét a galaxisok egyes területein.

Chris Mihos és Greg Bothun 1997-ben tették közzé tanulmányukat melyben az NGC2442 megfigyelhető tulajdonságaiért a PGC21457 (AM 0738-692) galaxist tették felelőssé. Ha megnézzük eme utóbbi csillagrendszert, akkor valóban annak is szemmel láthatóan torzult az alakja. Valamit szemmel látni nem feltétlenül elég! Alapos morfológiai és kinematikai vizsgálatnak vetették alá az NGC2442-őt. Illetve, numerikus szimulációkat futtattak. Modellezték, ahogyan a két galaxis megközelíti egymást, kölcsönhat, majd eltávolodik egymástól. Találtak is olyan megoldást, ami az NGC2442 legtöbb tulajdonságát egészen jól megmagyarázta. Arra a következtetésre jutottak, hogy a találkozóra valamikor 150-250 millió évvel ezelőtt kerülhetett sor. Továbbá, a modelljük szerint az északi kar kialakulásában sokkal inkább a két galaxis közötti gravitációs kölcsönhatás játszotta a fontosabb szerepet, mintsem a spirál galaxisok karjait megformáló sűrűséghullám. Nem is klasszikus értelemben vett spirálkar tehát, hanem úgynevezett árapály-csóva (tidal tail). Amennyiben valóban erről van szó, az jól megmagyarázza a prominens porsáv létét, a felfokozott csillagkeletkezést, és e terület különös színképprofilját. A déli kar sokkal diffúzabb a gáz itt kevésbé tömörült össze.

A karok kinézete, kinematikája egyaránt a randevú históriáját mesélik el. Mikor a PGC21457 megközelítette az NGC2442-őt, akkor korongjának hozzá közelebbi oldalán az árapályerők nyíróhatása igen jelentős volt, igy a két galaxis közötti ideiglenesen kialakuló árapály-híd (tidal bridge) csillagai és gázfelhői hamar szét is szóródtak. Ezzel ellentétben a korong túloldala valamivel enyhébb, de még mindig elég effektív árapályhatásnak volt kitéve. Így itt egy sokkal koherensebb árapály-csóva alakult ki. A szimuláció szerint a kis galaxis az NGC2442 déli részét közelítette meg a legjobban. Mivel a korong külső része mára szignifikánsan elfordult, így ez a pont átkerült az északkeleti részre (a Földről tekintve a galaxisra). A két szerző még arra is jóslatot adott, hogy az NGC2442 és a PGC21457 nagyjából 3 milliárd év múlva egy végső találkozás folyamán összeolvad majd.

Az NGC2442 és a PGC21457 (AM 0738-692) galaxisok kölcsönhatását modellező numerikus szimuláció képkockái. Forrás: Chris Mihos és Greg Bothun

Az NGC2442 és a PGC21457 (AM 0738-692) galaxisok kölcsönhatását modellező numerikus szimuláció vizualizációja. Forrás: Chris Mihos és Greg Bothun

Chris Mihos és Greg Bothun modellje látszólag választ ad a feltett kérdésre. Van azonban némi bökkenő. Először is a PGC21457 nem mutatja egyértelmű jelét annak, hogy ő lenne a tettes. Nemhogy ez a galaxis nem, de semelyik sem az NGC2442 környékén. Természetesen lehet, hogy a lövés eldördült, de akkor kellene lennie füstölgő puskacsőnek is. Egyelőre ilyet nem találtak a csillagászok. Találtak azonban valami egészen mást.

A századforduló környékén zajlott a HI Parkes All Sky Survey (HIPASS) projekt. Célja a semleges hidrogén feltérképezése volt a 21 cm-es hullámhosszon. Korábban nem volt olyan jellegű program, ami ezen a hullámhosszon a teljes déli égboltot lefedte volna. A felmérés kiterjedt egészen az északi ég +25 deklinációig. Ehhez az ausztráliai 64 méter átmérőjű Parkes rádiótávcsövet, vagy becenevén „A Tányért” használták a csillagászok. A projekt egyik legérdekesebb felfedezése a HIPASS J0731-69 gázfelhő az NGC2442 közelében. Kinematikáját tekintve leginkább egy diffúz gázáramláshoz hasonlít. Az objektumban egyetlen csillag sincs, így az az optikai tartományban nem is látható. 1 milliárd naptömegű semleges hidrogéngázról van szó. Ez a tekintélyes mennyiség nagyjából harmada az NGC2442 teljes atomos gázkészletének.

NGC2442 - HIPASS - 0103099v1.f1

A HIPASS program keretében felfedezett HIPASS J0731-69 óriási gázfelhő, ami valaha talán az NGC2442 része lehetett. Forrás: Stuart D. Ryder és mások

Stuart D. Ryder és csapata, 2001-ben az Astrophysical Journal-ban megjelent cikkében azt feltételezi, hogy ez a hatalmas mennyiségű atomos hidrogéngáz mind az NGC2442-ből származik. De hogyan történhetett ez? Ryder-ék körül járták azt a lehetőséget, miszerint egy másik galaxissal történt kölcsönhatás tépte ki a gázt „a horgos” galaxisból. Kompakt galaxiscsoportokban egyáltalán nem ritkák az ilyen események. Esetenként, akár 100 ezer fényév hosszúságú árapály-csóvák is megfigyelhetők. Gondoljunk csak a tavaszi égbolt egyik látványosságára! A Leo hármasban (Leo triplet: M65, M66, és NGC3628) pont ilyen jelenség figyelhető meg, ami akár amatőrcsillagász műszerrel is lefotózható. Ne feledjük azonban, hogy a HIPASS J0731-69 felhőt esélyünk sincs megpillantani, az csak a rádiótartományban sugároz (eddigi ismeretek szerint).

A galaxisok közötti interakción alapuló elképzelést több dolog is bizonytalanná teszi, ugyanakkor nem elvetendő az ötlet. Sajnos a HIPASS adatai kevéssé adekvátok ahhoz, hogy eldönthető legyen egyetlen gázfelhőről van-e szó, vagy felhők csoportjáról. A felmérésből azt sem lehet egyértelműen kijelenteni, hogy van-e anyaghíd, ami összeköti az NGC2442-vel. Természetesen ismert volt a szerzők számára Chris Mihos és Greg Bothun szimulációja. Azonban, kevéssé tartották valószínűnek, hogy a PGC21457 (AM 0738-692) valaha ennyi gázt tartalmazott volna, vagy éppen ekkora mennyiséget képes lett volna kiszakítani az NGC2442-ből. Ez a galaxis „túl ártatlan ahhoz”. Ha már csillagrendszerek gravitációs csatájáról van szó, akkor csak sokkal masszívabb jelöltek jöhetnek szóba. Talán az NGC2443 elliptikus galaxis északnyugatra. Talán az NGC2397 és NGC2397A párosa. Talán. Ennek megerősítéséhez, ahogy fentebb is utaltam rá, ezeknek a galaxisoknak is mutatni kellene valami olyan tulajdonságot, ami a múltban lezajlott kölcsönhatásra utal. Ilyenről pedig egyelőre nem tudni.

Ryder és csillagászkollégái szerint azonban felvetettek egy másik eshetőséget is, amivel az NGC2442 torzult alakját és a HIPASS J0731-69 felhő létezését esetleg meg lehet magyarázni. A galaxisok közötti tér sem teljesen üres. Több halmaz esetében igen forró (10-100 millió K) gáz tölti azt ki (IGM – Inter Galactic Medium). Ennek azonban 10-4-10-2 elektron/cm3, vagyis extrém alacsony a sűrűsége. Sok-sok nagyságrenddel kisebb, mint a galaxisok atomos hidrogénjének sűrűsége, ami 0.2-100 atom/cm3. Elsőre azt gondolhatnánk, hogy a halmazban mozgó galaxisokra nincs hatással a roppant ritka gáz. Több galaxishalmaz megfigyelése azonban azt mutatta, hogy miközben a galaxisok ebben a gázban mozognak, torlónyomás lép fel, ez pedig képes letépni a csillagrendszer korongjának külső területeiről a csillagközi anyagot (Ram Pressure Stripping). Hasonlóan ahhoz, ahogy a menetszél kerékpározás közben lefújja az ember fejéről a sapkát. Ehhez nem kell más, csak az, hogy a galaxis relatív nagy sebességgel mozogjon a halmazon belül, és elég sűrű legyen a halmazon belüli gáz.

Több példát is felsoroltak a szerzők. Szerintük az NGC2276, NGC4273, NGC7421, NGC4388, NGC4654, NGC4522 esete ékesen bizonyítja, hogy érdemes foglalkozni a kérdéssel. Több esetben a Föld körül keringő műszerekkel is sikerült kimutatni a röntgentartományban a halmazon belüli gázt, bár ahogy szerzők is megjegyzik, ez azért nem minden esetben annyira nyilvánvaló. Ahogy a felvételeken is látható, az NGC2442 korongjának északi része elég éles határvonalú, míg a délkeleti, délnyugati rész igen diffúz. Ez a Hα keskenysávú felvételeken még sokkal nyilvánvalóbb. Ebből arra lehet következtetni, hogy a csillagrendszer mintegy „keresztülfúrja” magát az intergalaktikus gázon. Amennyiben tényleg helyes az elképzelés, akkor az északi kar képviseli azt az NGC2442 előtti lökéshullámot (orr-hullám, bow shock), ami a korong anyagának és a galaxisok közötti gáz ütközésének következménye. Hogy könnyebben elképzelhessük az egészet, tekintsünk a galaxisra, mint egy csónakra. A csónak orra az északi kar keleti részénél van (a képen a galaxis centrumától jobbra és le). A csónakkal ellentétben a galaxis korongja viszont forog, ami a lökéshullámot elnyújtja, és a gáz az északi kar mentén áramlik a galaxis „mögé”. A HIPASS J0731-69 tulajdonképpen a galaxis „mögött” húzódó gázáramlat, ami akár talán teljesen le is szakadhatott róla. Korábbi megfigyelések eredményei (Houghton 1988), mely a galaxisban a semleges hidrogéngáz mozgására vonatkoztak, alátámasztani látszanak ezt a teóriát.  Pontosabban, akár ezzel is magyarázhatók. A ROSAT HRI felvételein, vagyis a röntgentartományban viszont alig látszik az NGC2442, nem is beszélve bármiféle forró gázról a környékén.

Bár nem történt meg az egész galaxis molekuláris gázainak feltérképezése (12CO emissziós vizsgálat), de úgy tűnik, hogy az jelentős koncentrációt mutat az északi kar keleti részén, ahol az visszahajlik. Tekintve, hogy a molekuláris gáz inkább a galaxis korongjára jellemző, így bármiféle aszimmetria annak eloszlásában, az az árapály elképzelés malmára hajtja a vizet. Továbbá, a csillagászok tapasztalata alapján a torlónyomás (ram pressure) a molekuláris hidrogént inkább összetömöríti, míg az atomos hidrogént pedig kisöpri a galaxisból. Az atomos és molekuláris gáz aránya az NGC2442-ben viszont teljesen közel áll ahhoz, ami az ilyen típusú (Sbc) galaxisoknál megszokott.

Mit lehet ezek fényében mondani? Pillantson csak az olvasó újra ennek a résznek a címére! Elképzelhető, hogy az NGC2442 felépítése annak köszönhető, hogy korábban valamelyik környékbeli galaxis megközelítette. Hogy melyik, abban nem lehetünk egyelőre biztosak. Azonban, nem zárható ki, hogy a galaxisok között lévő gázzal való ütközés formálta ilyenre az alakját. Konkrét válaszok helyett – kevés biztos akad, inkább azt szerettem volna megmutatni, hogy miként működik a csillagászat tudománya. Megfigyelés és analitikus gondolkodás folyamata ez. Ebben az esetben is van még bőven feladvány. Újabb megfigyelésekre, újabb megfontolásokra lesz még szükség.

Az NGC2442-nek nemcsak a megjelenése lenyűgöző, hanem az is, ahogy egyelőre féltve őrzi titkait. Én mindenesetre továbbra is figyelni fogom a vele kapcsolatos újabb fejleményeket. A fotó elkészítésével még nem ért véget a kettőnk közötti „affér”.

Felhasznált irodalom:

Chris Mihos, Greg Bothun: NGC 2442: Tidal Encounters and the Evolution of Spiral Galaxies

S. D. Ryder, B. Koribalski, L. Staveley-Smith, V. Kilborn, D. Malin, G. Banks, D. Barnes, R. Bhatal, W. de Blok, P. Boyce, M. Disney, M. Drinkwater, R. Ekers, K. Freeman, B. Gibson, P. Henning, H. Jerjen, P. Knezek, M. Marquarding, R. Minchin, J. Mould, T. Oosterloo, R. Price, M. Putman, E. Sadler, I. Stewart, F. Stootman, R. Webster, A. Wright: HIPASS Detection of an Intergalactic Gas Cloud in the NGC 2442 Group

J. Harnett, M. Ehle, A. Fletcher, R. Beck, R. Haynes, S. Ryder, M. Thierbach, R. Wielebinski: Magnetic fields in barred galaxies III: The southern peculiar galaxy NGC 2442

Anna Pancoast, Anna Sajina, Mark Lacy, Alberto Noriega-Crespo, Jeonghee Rho: Star formation and dust obscuration in the tidally distorted galaxy NGC 2442

https://arxiv.org/abs/1009.1852

Adam G. Riess, Lucas M. Macri, Samantha L. Hoffmann, Dan Scolnic, Stefano Casertano, Alexei V. Filippenko, Brad E. Tucker, Mark J. Reid, David O. Jones, Jeffrey M. Silverman, Ryan Chornock, Peter Challis, Wenlong Yuan, Peter J. Brown, Ryan J. Foley: A 2.4% Determination of the Local Value of the Hubble Constant

R. Cartier, M. Sullivan, R. Firth, G. Pignata, P. Mazzali, K. Maguire, M. J. Childress, I. Arcavi, C. Ashall, B. Bassett, S. M. Crawford, C. Frohmaier, L. Galbany, A. Gal-Yam, G. Hosseinzadeh, D. A. Howell, C. Inserra, J. Johansson, E. K. Kasai, C. McCully, S. Prajs, S. Prentice, S. Schulze, S. J. Smartt, K. W. Smith, M. Smith, S. Valenti, D. R. Young: Early observations of the nearby type Ia supernova SN 2015F

 

NGC6769, NGC6770, NGC6771 – Kölcsönható galaxisok a déli Páva csillagképben

NGC6769-70-71-LRGB-20170725-T30-300s-TTK

NGC6769 (jobbra felül), NGC6770 (balra felül), NGC6771 (alul) – Kölcsönható galaxisok a Pávában

iTelescope.net T30 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI-PL6303E CCD kamera

2017-07-25, 2017-07-26 – Siding Spring Observatory – 38 x 300 sec L, 10 x 300 sec R,G,B

Folytatva az észlelőprogramom

A Hickson68 kompakt galaxiscsoportról készült felvétel és cikk után még nagyobb késztetést éreztem arra, hogy további csoportokat, halmazokat, illetve kölcsönható galaxisokat keressek fel. Mivel láttam, hogy 25-30 cm-es távcsövekkel, és 1 métert meghaladó fókusztávolsággal már minden gond nélkül be lehet lépni a távoli, a pár ívperces, vagy annál is kisebb látszólagos méretű csillagrendszerek világába, folytatni kívántam a vadászatot.

Természetesen senki ne számítson arra – én sem számítottam -, hogy a mai modern földi vagy akár űrtávcsövekkel fel lehet venni a versenyt a részletek tekintetében. Ahogy azonban mondani szoktam, nem egy ligában játszom velük. Különben sincs semmiféle verseny, csupán a megélt öröm egy-egy izgalmas részlet megpillantásakor. Még akkor is, ha ezek elnagyoltak a professzionális műszerekkel készült felvételekhez képest. Érdemes-e egyáltalán kicsiny csillagrendszereket fotózni 20-25 cm-nél kisebb apertúrájú, és 1 méternél rövidebb fókuszú távcsövekkel? Természetesen! Tapasztalatból mondom. Bár a nagyobb, kétségtelenül jobb, azonban le szeretném azt is szögezni, hogy nincs semmiféle ökölszabály arra nézve, hogy milyen mérettartomány fölött érdemes nekiállni. Nincs eget rengető különbség például a hazánkban közkedvelt 200/800-as, 200/1000-es Newton távcsövek és az én 300/1200-as (korrektorral 300/1380) Newton távcsövem között. Pláne, ha a felvétel készítésének körülményeit is figyelembe vesszük (légkör állapota, fényszennyezettség). Azért az is igaz, hogy az általam korábban használt UMA-GPU APO Triplet 102/635 nem éppen az apró galaxisok részleteinek feltárására tervezték. Az máshol jeleskedik.

Visszatérve az észlelési programomra, hosszasan tanulmányoztam az Arp és a Hickson katalógusokat, böngészőben pedig nézegettem az SDSS felvételeit. Mennyire más időket élünk ma, mikor a teljes égboltról készült felvételek könnyen elérhetőek az Interneten keresztül! Illetve, a katalógusok is csak egy kattintásnyira vannak. Az elektronikus változatai a katalógusoknak azért is nagyszerűek, mert könnyen lehet bennük feltételek szerint keresni, szűrni. Sorban gyűltek az északi vagy éppen a déli féltekről látható kölcsönható galaxis párok, triók. Olyan célpontokat választottam ki, amik számomra legalábbis izgalmas megjelenésűek, de ami még ennél is többet nyomott a latban, amin keresztül folytatni tudom a kölcsönható galaxisokkal és úgy álltalában a galaxisokkal kapcsolatos cikksorozatomat. Vagy egyszerűen csak írhatok arról, ami éppen foglalkoztat, de valamennyi köze azért van a csillagászathoz.

Már csak a derült éjszakára vártam idehaza, illetve foglaltam távcsőidőt az iTelescope.net hálózatán. Eme utóbbi esetben el is készítettem előre a script-eket, melyeket már csak a futásra vártak. Nem valami nagy ördöngösség ez, a webes felületükön pillanatok alatt le lehet gyártani ezeket.

A napok teltek, észak volt dél ellenében, de ezúttal dél nyert. 2017. július 25-én derült volt az ég Siding Spring hegyei (Ausztrália) felett. Idehaza az ebédszünetemben a képernyőt bámultam éppen (tudom, nem egészséges), és azon vacilláltam, hogy melyik programot indítsam majd. Végül Arp egyik katalógusából (H. Arp, B. F. Madore and W. Roberton: A Catalogue of Southern Peculiar Galaxies and Associations) az AM 1914-603-ra esett a választásom, vagyis az NGC6769, az NGC6770 és az NGC6771 galaxisokra. Ennél minden fentebb megfogalmazott feltétel teljesült, ráadásul a déli égbolton lévő Páva csillagképben még nem fotóztam semmit.

Felfedezések, elnevezések, és az emberi fantázia

Hajlamosak vagyunk különböző alakzatokba belelátni dolgokat. Az emberi elme egyik érdekes sajátossága ez. Ha már csillagászatról van szó, akkor ott vannak nagyszerű példának a csillagképek. Az idők folyamán mennyi mindennel megtöltötte képzeltünk az eget! Az európai kultúrában az északi égboltot görög mondák hősei és különös teremtményei népesítik be, bár akad pár kivétel is. Többek eredete, a görögöket megelőző korokba vezethető vissza, egészen az ősi Mezopotámiáig.

Az európai ember nemcsak átvett csillagképeket, de újakat is alkotott, mikor a XV. században kezdetüket vették a nagy földrajzi felfedezések. Jobbára kereskedelmi expedíciók voltak ezek. Ugyan Kínával és Indiával korábban is kereskedett Európa, de a megerősödött Oszmán birodalom csak magas vámokért cserébe engedte folytatni ezt a tevékenységet. Európa alternatív útvonalak keresésébe kezdett. Mozgatórugó volt az úgynevezett aranyéhség is. A keleti portékákért arannyal ezüsttel fizetett a kontinens, az arany bányák pedig már kimerülőben voltak. Szükség volt hát új lelőhelyekre.

E törekvések sikeréhez kellett a reneszánsz is. Az emberek nyitottak lettek, kíváncsiak. Ráébredtek, hogy az egyház nem ad minden kérdésre választ. Visszanyúltak az ókori bölcsek tanaihoz, mely szerint megfigyeléssel megismerhető a világ. Előkerült újra a gömb alakú Föld elképzelése. Térképek, földgömbök készültek ennek szellemében. Itt megemlítendő Paolo dal Pozzo Toscanelli firenzei csillagász híres világtérképe (1474), ami már gömb alakúnak tekinti bolygónkat. Illetve, sokan nagy jelentőséget tulajdonítanak Martin Behaim nürnbergi tudós, a térképészet és a navigációs eszközök (asztrolábium) fejlesztése terén végzett munkáinak. Behaim neve azonban talán a legismertebb, a máig fennmaradt első földgömbök egyikéről (Erdapfel 1490-1492).

Behaims_Erdapfel

Martin Behaim földgömbje, az „Erdapfel”. A felvételen Eurázsia látható. Mivel Kolombusz csak később tért haza felfedező útjáról, így a gömbön Európa nyugati oldala, és Ázsia között még üres az óceán. A kép forrása: Wikipedia

A tudomány és a technika fejlődését Nyugat-Európában elősegítette a XV. századra megerősödő gazdaság is. Ennek volt köszönhető az is, hogy a részben arabok által közvetített ismeretek, és azok továbbfejlesztése révén megszülethetett az új hajótípus, a karavella. E nélkül talán sosem hajózhatott volna túlságosan messze a kor embere a partoktól, de így már biztosabban kimerészkedhetett a nyílt óceánokra. A tájékozódást a tengereken, a szintén az araboktól átvett iránytű segítette. A pontos helymeghatározáshoz pedig nélkülözhetetlen volt a gnomon, majd az asztrolábium, később pedig a Jákob-pálca. Ezek sorban váltották egymást, mígnem az 1700-as évek első felében megjelent a szextáns. Ugyan a korábban említett csillagászati eszközökkel meg lehetett határozni a földrajzi szélességet, de a földrajzi hosszúság kérdése már problémás volt. Kapaszkodót jelentett a Holdnak egy adott csillaghoz képest megmérni a pozícióját, amit csillagászati almanachok közöltek a greenwichi középidőben. A helyi időt, azonban ismerni kellett. Ezt a legtöbbször szintén csillagok kelésével, vagy éppen nyugvásával határozták meg. A navigátor a csillagászati almanachban lévő és a mért értékekből kiszámított az időkülönbséget. A helymeghatározásban tehát a dátum és az idő pontos ismerete is igen fontos volt, így az időmérő eszközöket is egyre tökéletesítették. Igazi áttörést a tengerészeti kronométerek megjelenése jelentette. A Föld forgása alapján 1 óra időkülönbség 15° földrajzi hosszúság különbséget jelent (24 óra az 360°). A kronométer használatával megállapíthatóvá vált egy ismert földrajzi hely ideje (jellemzően Greenwech) és az aktuális tartózkodási pontnál érvényes helyi idő közötti különbség. Ehhez a kronométert csak induláskor be kellett állítani az ismert földrajzi hely idejére. A kronométer használatát már 1530-ban felvetette a holland Gemma Frisius, és ugyan Christiaan Huygens – aki az ingaórát is feltalálta -, 1675-ben megalkotta az első tengerészeti kronométert, azonban hiába próbálta az ingát lendkerékkel és rugóval helyettesíteni, az a gyakorlatban pontatlannak bizonyult. Egészen az 1700-as évek közepéig kellett várni, amikor John Harrison elkészítette az első tengeren is működő kronométereit az angol kormány által kiírt pályázatára. Több változatot is készített az évtizedek folyamán, néha teljesen áttervezve az előzőt. Ezek egyre pontosabbak és pontosabb voltak.

ZAA0037

John Harrison legtökéletesebben sikerült tengerészeti kronométere a H4. Egészen az elektronikus oszcillátorok elterjedéséig használták. Ránézésre egy nagyra nőtt zsebóra benyomását kelti. Néhány történész szerint a Brit Birodalom a nagyságát ennek a szerkezetnek is köszönheti. A kép forrása: National Maritime Museum, Greenwich, London

A felfedezésre váró idegen világokhoz, az európai ember számára idegen déli égbolt csillagai vezették el a hajósokat. A tengeri tájékozódást is segítendő új csillagtérképek születtek, és egyben új csillagképeket alkotott az emberi fantázia, de már nem kimondottan csak a mítoszok alapján. A déli ég megtelt egzotikus állatokkal, és a kor technikai vívmányaival. Ezért találkozhatunk a déli égen például Christiaan Huygens tiszteletére az Ingaóra (Horologium), vagy az Oktáns (Octans), a Kemence (Fornax), a Légszivattyú (Antila) csillagképekkel. Így kerültek az égre a „déli madarak” is, vagyis a Főnix (Phoneix), a Daru (Grus), a Tukán (Tucana), és a Páva (Pavo) csillagképek. Eme utóbbi területén található a fotómon látható galaxishármas.

Grus-Bayer-Uraniometria

Johann Bayer csillagtérképének, az Uranometria-nak (1603) az úgynevezett „déli madarakat” ábrázoló lapja. A Páva (Pavo) csillagkép a jobb felső sarokban látható.

Ezek a csillagképek először Petrus Plancius és Jodocus Hondius által készített éggömbön jelentek meg 1598-ban (valószínűleg Pieter Dirkszoon Keyser és Frederick de Houtman megfigyelései alapján).  – Kép forrása: U.S. Navy Library

Ma összesen 88 csillagkép létezik az égbolton, melyeket még 1922-ben ismert el hivatalosnak a Nemzetközi Csillagászati Unió (International Astronomical Union, IAU). Vajon milyen csillagképek születnének manapság? Korunknak is megvannak a magunk hősei, legyenek azok valósak vagy kitaláltak, és jelenünk jobban bővelkedik új technikai vívmányokban, mint az azt megelőző századok. A csillagképek bár elfogytak, de ott vannak a távcsővel látható objektumok, amik szintén megmozgatják az emberek fantáziáját. Több halmaznak, aszterizmusnak (csillagalakzatoknak, melyek csillagai között nincs fizikai kapcsolat), ködnek, galaxisnak számos „beceneve” van. Teremtés Oszlopai, Örvényköd, Gyűrűs-köd, Bagoly-halmaz, hogy csak párat említsek. Természetesen ezek sem nem hivatalos, sem nem tudományos nevek. Nem kell őket túl komolyan venni! Van hivatalosan elfogadott nevük (katalógusjelük). Ám semmi sem tiltja, hogy a játékos képzeletnek teret engedjünk, és névvel illessünk az égen bármit.

Akinek az a vágya, hogy hivatalosan is elnevezhessen égitesteket, az sem kerget hiú ábrándokat. A Nemzetközi Csillagászati Unió (International Astronomical Union, IAU) több kezdeményezést is hirdetett például olyan csillagok elnevezésére, melyeknek van bolygója. A korábban megkezdett, a Naprendszer újonnan felfedezett égitesteinek elnevezésével kapcsolatos trendet követve, a csillagok és exobolygók nevei már nemcsak a nyugati kultúrkörből kerülhetnek ki. Persze olyan esetek is vannak, amikor egy nem hivatalos nevet oly hosszan, és oly régóta használnak, hogy előbb-utóbb a Nemzetközi Csillagászati Unió is rábólint. Például 2018 decemberében lettek csak hivatalos csillagnevek a Barnard csillaga, és Proxima Centauri. A másik lehetőség, hogy mondjuk kisbolygót fedez fel, és javaslatot tehet (a névkonvencióknak megfelelően). Hazánkban csak az utóbbi két évtizedben rengeteg kisbolygó felfedezés született. De a változócsillag keresők előtt is nyitva áll a lehetőség. Igaz, hogy az olvasó talán nem találja majd túlságosan romantikusnak a Vend32 elnevezést, de a Vendégcsillag kereső program résztvevői mind nagyon büszkék arra, hogy az általuk felfedezett változócsillag az ő „Vend” katalógusjelükkel lett ellátva.

Az NGC6769, NGC6770 és NGC6771 triónak is van beceneve: „Az Ördög Maszkja” (Devil’s Mask). Fogalmam sincs, kitől származhat az elnevezés eredetileg. Elhatároztam, hogy amikor kész lesz a felvétel, akkor megmutatom pár embernek, hogy megtudjam, ők vajon mit is látnak benne. Majd a válasz után mély hangon közölöm, hogy ez bizony a „Máscara el Diablo”. Ugye? Spanyol nyelven sokkal félelmetesebben hangzik! A viccet félretéve, az alanyok többsége tényleg valamiféle arcot vélt felfedezni benne. (Nem, nem adtam elő mély hangon a spanyol verziót.) Bár senki nem látott semmi ördögit a három galaxisba (ahogy én sem), de volt, akit a velencei karneválok maszkjaira emlékeztette. Mégis csak lenne valami a maszkos elnevezésben? Lehet. A mintavételezés igen kis számú csoporton történt. Nem volt ez más, csak afféle játékos kísérlet. Vajon mit lát bele a három galaxisba a kedves olvasó?

velence_i__by_funnymanus

Velencei karneváli maszk. Fotó: Kalmár Gábor 

Ami a maszk mögött van

Velencében a karneválra mindenki a kor „nagy bulijaként” gondol. Szórakozás, kicsapongás, evés, ivás. De nemcsak ez volt a jelentősége. Az álarcot felrakva, ha csak ideiglenesen is, de eltűntek az emberek közötti rangbéli különbségek. A merev társadalmi hierarchia a karnevál idejére megszűnt. Az egész arcot beborító álarc elfedte viselője pontos kilétét. Vajon mi bújik meg az NGC6769, az NGC6770, és az NGC6771 megjelenése mögött?

Ugyan több katalógusban és felmérésben is szerepel a három galaxis, de mégis csak csekély számú tudományos publikáció jelent meg konkrétan velük kapcsolatban. A legtöbbször csupán említés szintjén szerepelnek, esetleg egy-egy sort képviselnek egy nagyobb táblázatban, vagy éppen részesei egy nyúlfarknyi tudományos sajtóbejelentésnek. Őszintén megmondva, bennem az a kép alakult ki ezek elolvasása után, hogy bizonyos vonások már kivehetők, de nem látjuk még teljesen tisztán az arcot a maszk mögött.

A három galaxis távolsága jelenleg mindössze a vöröseltolódásuk (távolodási sebességük) alapján ismert, melyet az elmúlt három évtizedben többször is meghatároztak a különböző kutatásiprogramok keretében. Ugyan az egyes értékek között nincs nagyságrendnyi különbség, némileg azonban mégis eltérnek. De hogyan működik a módszer?

A világegyetem tágulásának köszönhetően a galaxisok távolodnak tőlünk, méghozzá annál nagyobb sebességgel, minél nagyobb a távolságuk. Ezt az összefüggést nevezik a csillagászok Hubble-törvénynek. A Doppler-effektus miatt, a távolodó égitest spektrumában a színképvonalak a sebességgel arányosan a vörös szín felé tolódnak. A vöröseltolódást megmérve tehát, kiszámítható a távolodás sebessége. Ebből pedig, az említett Hubble-törvényt felhasználva, következtetni lehet az adott galaxis távolságára. 

Anélkül, hogy pontosan megmagyaráznám – természetesen az olvasó szabadon utánanézhet a fogalmaknak a szakirodalomban -, a továbbiakban ismertetésre kerülő távolság értékek kiszámításánál a kozmológiai korrekcióban a következő értékek kerültek felhasználásra: H = 73.00 km/sec/Mpc, Ωmatter=0.27, Ωvacuum=0.73. Az adatok forrása pedig a NASA/IPAC Extragalactic Database (NED) volt.

Az NGC6769 és NGC6770 radiális sebességük különbsége, vagyis a tőlünk való távolodási sebességük differenciája hozzávetőlegesen 155 km/s, így egymáshoz viszonylag közeli csillagrendszerekről van szó. Mindössze néhány millió fényév választja el őket. A hozzánk közelebbi NGC6769 távolsága 163 millió fényév körüli, míg a némileg távolabbi NGC6770 esetében 168 millió fényév körül szórnak a távolságadatok. Az NGC6771 radiális sebessége azonban már számottevően nagyobb, mint a másik két galaxisé. Körülbelül 530 km/s-mal több, mint az NGC6769-é, és közelítőleg 375 km/s-mal haladja meg az NGC6770-ét. A Hubble-törvény értelmében, így jóval távolabb is kell lennie azoktól. A nagyjából 184 millió fényéves távolságával, az NGC6771 a trió legtávolabbi tagja. Némileg ki is lóg a sorból, mint ezt később látni fogjuk.

NGC6769-70-71-LRGB-20170725-T30-300s-TTK-1arcmin

A galaxisok méretének érzékeltetése céljából, a képen feltüntettem 1 ívperc hosszúságot. Az NGC6769 (jobbra felül) látszólagos mérete 2.3 x 1.5 ívperc, az NGC6770 (balra felül) látszólagos mérete 2.3 x 1.7 ívperc, az NGC6771 (alul) látszólagos mérete 2.3 x 0.5 ívperc. Ha egy másik népszerű amatőrcsillagászati célponthoz, a Gyűrűs-ködhöz (M57) hasonlítjuk ezeket, akkor elmondható, hogy annál a Planetáris ködnél csak alig látszanak nagyobbnak az égen.

A tekintélyes távolságuk az oka annak, hogy ezek a csillagrendszerek apróknak látszanak az égen. A legnagyobb látszólagos kiterjedésük alig haladja meg a 2 ívpercet. Azonban csak látszólag aprók. Távolságuk alapján, átmérőjük 100-130 ezer fényév között mozog, vagyis kiterjedésük a Tejútrendszerünkéhez hasonlatos.

Ma úgy gondolják a kutatók, hogy a nagyobb galaxisok mind ütközések, és összeolvadások révén jöttek létre. Igen, még a Tejútrendszer is. A „galaktikus kannibalizmus” már a kezdetektől fogva fontos szerepet játszott a csillagrendszerek fejlődésében. Noha ezek a kölcsönhatások, összeolvadások emberi időskálán nézve mérhetetlen hosszú ideig zajlanak, a csillagászok abban a szerencsés helyzetben vannak, hogy népes számú mintán keresztül tanulmányozhatják a Világegyetemet. Éppen ezért is fontos a kölcsönható rendszerek megfigyelése.

A galaxisok közötti gravitációs kölcsönhatások igen viharos események. A másik csillagrendszer keltette árapály erők akár teljesen el is torzítják a galaxisok eredeti alakját. Csillagjaiknak egy része szétszóródhat a galaxisok közötti űrben. De hasonló sorsra juthat a bennük lévő intersztelláris médium is akár. Az árapály erők azonban nem csupán pusztítani képesek, de teremthetnek is. A gázfelhőkben olyan lökéshullámok keletkezhetnek, melynek hatására megindul azok csillagokká tömörülése. Egy új felfokozott csillaggenezis gyakorta két galaxis gravitációs interakciójának vagy éppen összeolvadásának következménye. Ne feledjük, hogy a csillagok között óriási távolságok vannak. Nagyon kicsi annak az esélye, hogy két galaxis összeolvadásakor összeütközzenek. Az intersztelláris anyag esetében már más a helyzet. Azok ütközése a már fentebb említett lökéshullámok kialakulásához vezet. Már amennyiben a galaxisoknak már eleve jelentős gázkészlete volt. Hogy mi a történet folytatása? A spirál galaxisok összeolvadása a mai elképzelések szerint terméketlen elliptikus, vagy éppen lentikuláris galaxisok kialakulásához vezet. Ezekben a csillagkeletkezés szinte teljesen leáll. Az ütközések felmelegíthetik annyira a gázt, hogy az kiszabaduljon a galaxisból, vagy éppen megakadályozza azok összetömörülését (a csillagok keletkezéséhez hideg és kellően sűrű molekuláris gázfelhőkre van szükség). Illetve, a másik lehetőség, hogy szintén az ütközésnek köszönhető heves csillagkeletkezésben egyszerűen felemésztik a gázkészleteiket.

Az éppen folyamatban lévő csillagkeletkezés indikátorai a forró, és ezért kékes színű masszív csillagok tömeges jelenléte. Egy spirál galaxis csillagpopulációját 70%-ban az úgynevezett M típusú, Napunknál is kisebb tömegű, halvány vörös törpe csillagok alkotják (ez az arány 90% az elliptikus galaxisoknál). Azonban hiába nagyobb a kistömegű sárgás-vöröses halvány csillagok aránya, heves csillagkeletkezés esetén oly nagyszámban keletkeznek a csillagok ezeken a területeken, hogy igen magas a forró nagytömegű csillagok száma. A kisebb testvéreiket ezek pedig kékes fényükkel könnyűszerrel túlragyogják. Így végső soron, nekik köszönhetően világítanak a fiatal csillagok halmazai kékes fényfüzérekként a galaxisban. A masszív csillagok azonban tömegüktől függően mindössze néhány millió, vagy néhány tízmillió évig léteznek. (A kisebb tömegű csillagok hosszabb ideig élnek.) Létezésük tehát annak bizonyítéka, hogy legalább az említett időintervallumokon belül intenzív csillagkeletkezés folyt az adott területen. Hasonlóan a fiatal masszív csillagok által ionizált gázfelhők, vagyis a HII régiók vöröses pamacsai is az „éppen zajló” csillagkeletkezés jelei. Nagy távolságok esetén, ahol már távcsövünk felbontása kevés, ezek fénye már gyakorta elvész a kék behemótok ragyogásában.

Elég a három galaxis fotójára egy gyors pillantást vetni, hogy felfedezzük a galaxisok közötti gravitációs kölcsönhatás jegyeit. Ez a legszembetűnőbb az NGC6770 esetében. Magjának és küllőjének fényét ugyan hűvösebb öreg csillagok fénye festi sárgásvöröses színűre, azonban karjai kékes árnyalatúak. Kimondottan a különös megjelenésű egyenes kar, mely a felvételen az NGC6769 felé mutat, szinte hemzseg a fiatal csillaghalmazoktól. De nem ez az egyenes kék kar az egyetlen jele annak, hogy az NGC6770 a múltban gravitációs kölcsönhatásba került szomszédjával. A korongon keresztülhúzódó porsávok is erről tanúskodnak. Ott van továbbá a karon kívüli halvány déli része is, ami azt a benyomást kelti, mintha elszakadni készülne. De az egész NGC6770-et körbevevő háromszög alakú haló is a galaxisok közötti interakció eredménye.

Az NGC6769 megjelenése azonban merőben más kétkarú társához képest. Szakadozott karjai egy belső és egy külső gyűrűt formálnak a kissé kaotikus korongban. Ennek a galaxisnak a külső halója inkább kissé megnyúlt ellipszist formáz. A felvétel alapján olybá tűnik, mintha az NGC6769-ből és az NGC6770-ből is csillagokat és gázt szakított volna ki a gravitációs kölcsönhatás, és ezek éppen valamiféle közös burokká állnának össze a két csillagrendszer körül.

Bár az LRGB felvételen is sejthető, de a kép negatív, és kontrasztnövelt változatán jobban látszik, ahogy halvány „anyaghíd” köti össze az NGC6771 és az NGC6769 galaxisokat. Talán. Elképzelhető, hogy ez csak a perspektíva miatt tűnik így, és a kettőjük tekintélyes távolsága miatt valójában nem is „anyaghídról” van szó. Lehetséges, hogy az egyik galaxishoz tartozó, a galaxisok közötti kölcsönhatás eredményeként létrejött árapálycsóvát látunk a felvételen.

NGC6769-70-71-LRGB-20170725-T30-300s-TTK-neg-crv

Az NGC6769-ről, az NGC6770-ről és az NGC6771-ről készült felvételem negatív, kontrasztnövelt változata. Ezen jobban érzékelhető az NGC6771 háromszög alakú halója, és az NGC6769 és az NGC6771 közötti részen látható árapálycsóva, vagy esetleg anyaghíd. (Eme utóbbit képződményt szinte alig tudtam elválasztani a háttérzajtól. Hosszabb és nagyobb számú expozícióval kellett volna dolgoznom, és akkor talán jobban ki lehetett volna emelni.)

Ahogy már fentebb is írtam az NGC6771 kilóg a sorból. Míg a másik két galaxis színében meghatározók a kékes árnyalatok, addig ennél a galaxisnál ezeknek még csak nyoma sincs. Ebben a csillagrendszerben már rég leállt a csillagok születése, de legalábbis nagyon alacsony a csillagkeletkezési ráta. A kérész életű masszív csillagok már réges-régen kihunytak, s velük tovatűnt a hajdani kékes ragyogás. Vörös és halott (az angol nyelvű szakirodalomban használatos „red and dead” után). Az NGC6771 lentikuláris galaxis. Ezt a típust gyakran átmenetnek szokták tekinteni a spirál és az elliptikus galaxisok között. A lentikuláris galaxisok alapvetően diszk alakúak akárcsak a spirál galaxisok. Nincsenek azonban spirálkarjaik, a korongban nem figyelhetők meg határozott struktúrák. Jellemző rájuk, hogy a központi dudor a galaxis korongjához képest viszonylag nagyméretű, és meghatározó a galaxis felépítése szempontjából. Csekély mennyiségű molekuláris gáz található bennük, ezért nem keletkeznek ma már csillagok ezekben a galaxisokban. 21 cm-es rádióemissziójuk is jelentéktelen, mivel alig van bennük atomos hidrogént tartalmazó intersztelláris anyag. Az ionizált hidrogént tartalmazó HII régiók hiányában Hα sugárzásuk sem számottevő. Eme utóbbi tulajdonságok amúgy az elliptikus galaxisokra is jellemzők, azonban a lentikuláris típusúak porban viszonylag gazdagok. Ezért láthatunk a majdnem teljesen az élével felénk forduló NGC6771 korongjának síkjában markáns porsávot.

Most pedig arra kérem az olvasót, hogy fókuszáljon az NGC6771 közepére. Ha ezt megteszi, akkor észlelhet benne egy tünékeny X alakú struktúrát. Bevallom, hogy ez volt az egyik oka annak, amiért ezeket a galaxisokat választottam célpontnak. De mi is ez? Mi ez a misztikus „X”?

Először is ismerkedjünk meg kettő, a csillagászati megfigyeléseken alapuló felismeréssel.

A Hubble Űrtávcső 2000 galaxist magában foglaló felmérése, a Cosmic Evolution Survey (COSMOS) eredményei szerint a múltban kisebb volt a küllős galaxisok aránya a spirális galaxisok között. A mai univerzumban a spirál galaxisok körülbelül 65% rendelkezik küllős szerkezettel, míg a múltban ez az arány, mindössze 20% volt. 7 milliárd év alatt megháromszorozódott a számuk. A küllős felépítés, nem kizárólag a spirális csillagrendszerek kiváltsága, küllőt lentikuláris galaxisokban is szép számmal megfigyelhetünk. Megjegyzem, hogy sajnálatos módon a lentikulárisok küllőinek alapos vizsgálata viszonylag elhanyagolt terület.

A másik tapasztalat, hogy az éléről látszó korong alakú galaxisok (disc galaxies) központi dudorja (bulge) gyakorta szögletes (boxy), vagy éppen földimogyoróra hasonlít (peanut-shaped), de nem ritka, hogy az NGC6771-hez hasonlóan, „X” alakú derengés figyelhető meg bennük.

A szakemberek többsége ma úgy véli, hogy a korong alakú galaxisokban, vagyis a spirálisokban és a lentikulárisokban idővel törvényszerű a küllő kialakulása. A küllős szerkezet megjelenése e galaxisok dinamikus fejlődésének egyik természetes állomása. Az elméleti megfontolások mellet, a numerikus szimulációk is megerősíteni látszanak azt az elképzelést, hogy a csillagok mozgásának a galaxis síkjára merőleges oszcillációja (a csillagok pályája felülről, majd alulról keresztezik a galaxis síkját, mintha pillangó úszók lennének egy kozmikus medencében) és a küllő forgása között rezonancia lép fel. A szakirodalomban ezt vertikális rezonanciának nevezik. Ez analóg a Lindblad rezonanciával. A kutatók úgy vélik, hogy egészen pontosan 2:1 vertikális rezonanciáról van szó, vagyis két oszcilláció történik rotációs periódusonként. Ahol a rezonancia fellép, ott a csillagok a küllő pozíciójához képest ugyanott kezdik keresztezni a galaxis síkját, pályájuk igazodik a küllőhöz.

Nearly Periodic Orbits - comp4-cut1

Az ábra a küllő forgásával 2:1 vertikális rezonanciában lévő csillagok pályáját szemlélteti különböző galaktikus vetületekben. Figyeljük meg a baloldali diagramon (zöld görbe), hogy a korong síkjára merőleges vetülete a nagyjából periodikus csillagpályának (xz sík) banánhoz hasonló formát rajzol ki. Az ábrán a „banán alakú” pályák két lehetséges konfigurációját (két fekete görbe) is külön feltüntettem (az xz síkban). Az egyik „banán” „két vége” a galaxis korongjának síkja alatt, míg a másiké a fölött van. Az ilyen pályáknak a küllő nagytengelye mentén (az x a küllő nagytengelye, az y a kistengelye) a legnagyobb a dőlés szöge. A jobboldali ábrán látható a vertikális rezonancia következtében módosult csillagpálya (resonant heating), mely többé már közel sem tekinthető periodikusnak. Az ehhez hasonlatos pályákon mozgó csillagok együttes fénye rajzolja ki az éléről látszó galaxisban a központi dudor szögletes vagy éppen a földimogyoró alakját. A földimogyoró forma speciális esete, amikor derengő X-et látunk a galaxis központi régiójában. Az eredeti ábra szerzője: Yu-Jing Qin

A hatás önmagát erősíti. A csillagok egyre magasabbra jutnak a korongból a galaxis síkja fölé (a pályájuk inklinációja megnő) ezeken a részeken. Ahogy az idők folyamán a küllő forgása lassul, vagy éppen a galaxis korongja vastagszik, a rezonancia területe fokozatosan kijjebb húzódik a küllőben. Azok a csillagok, amiken már túlhaladt a rezonancia, továbbra is nagy inklinációjú pályán maradnak, de elvegyülnek a központi dudor csillagai között. Ne feledjük, hogy ezek eredetileg a korongból származnak). Adott időpillanatban ennek hatására azt látjuk a korong síkjával párhuzamos nézetből, hogy a küllő a centrumtól távolodva egyre jobban megvastagodik. Amennyiben, a küllős galaxis korongja az élével fordul felénk, és a küllőre a hosszanti tengelye mentén látunk rá, akkor szögletes alakúnak, amennyiben a hosszanti tengelye merőleges a látóirányunkra (a küllő keresztben áll), akkor földimogyoró alakúnak látjuk a galaktikus dudort.

Fontos megemlíteni egy másik hatást (elképzelést) is. Ennek lényege, hogy a küllőben idővel fellépő instabilitás (bar buckling instability/firehose instability) az, ami a korong csillagait a galaxis síkja fölé emeli, vagy az alá kényszeríti, létrehozva a banán alakú csillagpályákat. A csillagpályák kezdetben kicsiny kitérései a galaxis síkjából idővel felerősödnek. A folyamat hasonló a Kelvin-Helmholtz instabilitáshoz. Azzal analóg módon működik. A numerikus szimulációk viszont azt mutatják, hogy ez inkább a korong megvastagodásában játszik szerepet. A rezonancia sokkal meghatározóbb tényező a szögletes vagy földimogyoró alak kialakításában. Vannak csillagászok, akik azonban ezt vitatják. A jövőbeni megfigyelései majd talán segítenek eldönteni a kérdést.

Remélem, hogy mindenféle hosszabb fejtegetés és matematikai formula nélkül is érthetően sikerült felvázolnom a kedves olvasó számára magát a folyamatot. (A jelenség ennél azért bonyolultabb. A cikk után felsorolt szakirodalomban megtalálhatók a pontos részletek. Nem éreztem szükségét azonban annak, hogy precíz módon minden apró részletre pontosan kitérjek.) Most pedig pörgessük fel az idő kerekét, és néhány percben nézzük meg a sok 100 millió éves időskálán lezajló eseményeket. A következő szimulációk durván 2-3 milliárd évet átfogva mutatják be a küllő kialakulását, fejlődését. Működés közben láthatjuk a korong galaxisokban munkálkodó fentebb ismertetett mechanizmusokat.

A videó a küllő kialakulásának és fejlődésének folyamatát mutatja be. Várjunk türelmesen! 1 perc 20 másodperc környékén láthatóvá válik mindaz, amiről írtam. Szerzők: Fabian Lüghausen, Benoit Famaey, Pavel Kroupa

Hasonló szimuláció (diszk és sötét anyag haló). Figyeljük meg, ahogy a küllő forgása lassul, egyre kijjebb halad a rezonancia, a földimogyoró alak egyre markánsabb  lesz. Szerző: Rubens Machado

A fenti szimuláció kissé döntött nézetben. Figyeljük meg, hogy a küllő miként vastagszik meg, és miként emelkednek ki a csillagok a két átellenes végén, hogyan születik meg az „X”. Szerző: Rubens Machado

Az előbb tehát csak tömören és mindössze vázlatosan ismertetett elképzelés mögött sok-sok elméleti munka, szimuláció és nem utolsó sorban megfigyelés áll. Gondoljunk csak bele, hogy a központi dudor megfigyelésének az kedvez, ha nagyjából éléről vizsgálhatjuk a galaxist, míg a küllő tanulmányozását inkább a hozzávetőleg merőleges rálátás segíti. Ritka kivételek akadnak. Például a korábban általam fotózott NGC7582 galaxis ilyen, ahol a közeli infravörös tartományban (K Band) előbukkan a központi dudor is. Ebben az esetben a küllő és a földimogyoró alakú dudor egyszerre tanulmányozható.

Alapvetően tehát nem voltak könnyű helyzetben a megfigyelő csillagászok. Azonban, mára nem igazán fér kétség ahhoz, hogy kapcsolat van a küllők és a szögletes, illetve a földimogyoró alakú központi dudor között. Legfeljebb a pontos hatásmechanizmusok terén akadnak még kérdések.

Az NGC6771-ben tehát azért látjuk a derengő „X”-et, mert ez a lentikuláris galaxis küllős. Bizonyára impozáns látványt nyújtana, ha a korongja felől látnánk rá. Hogy milyen lenne pontosan? Talán hasonlítana az NGC936-hoz.

NGC 936

A 8.2 m tükörátmérőjű VLT-vel (Very Large Telescope) és B, V, R, I szélessávú szűrőkkel készült felvétel az NGC936 küllős lentikuláris galaxisról. Az NGC6771 is hasonlóan festene, ha korongjára körülbelül merőlegesen látnák rá. Forrás: ESO (Cerro Paranal, Chile)

A Földünkhöz sokkal közelebb is találhatunk azonban olyan galaxist, melynek központi dudorjában szintén megfigyelhető az NGC6771-hez hasonló X alakú mintázat. Ez a Tejútrendszerünk, ami szintén küllős galaxis. Ellentétben az NGC6771-gyel, a saját csillagrendszerünk spirális és nem lentikuláris. Még tekintélyes mennyiségű hideg hidrogén gázfelhő található benne. A Tejútrendszerben évente 1-3 naptömegnyi csillag keletkezik. A spirál karok mentén pedig hemzsegnek a csillagkeletkezési régiók. El kell keserítenem az olvasót, ha arra számít, hogy csak úgy kisétál a sötét ég alá, és némi szemszoktatás után a galaxisunk centruma felé tekint, majd egyszerűen meglátja a „misztikus X-et”. Hasonlóan az „X” amatőrtávcsöves fotózása is lehetetlen. Sokáig mindössze megfigyelési adatok alapján sejtették a létezését, és „szemmel láthatóvá tenni” is csak ügyes trükkel sikerült. A WISE infravörös űrtávcső egész égre kiterjedő megfigyeléseiből a csillagászok kivonták a szimulációkból előállított szimmetrikus dudor csillagait. Vagyis az eredeti WISE képből levonták az elméleti modellek adta, a szimmetrikus dudorban feltételezett csillageloszlást.

MilkyWay-X-in-the-bulge-m

MilkyWay-X-in-the-bulge-explain

A Tejútrendszer központi részén is láthatóvá tehető az X alakú struktúra, ám ehhez a korábban ismertetett módszerre van szükség. Forrás: Credits: NASA/JPL-Caltech/D.Lang

Most már a kedves olvasó is tudja, mit is rejt a maszk: a három galaxis evolúciójának meghatározott pillanatát. Hogy számomra, aki amatőrcsillagász vagyok mitől annyira érdekesek ezek a galaxisok? Hiszen erről szólt az egész cikk! Mivel életem csupán egy szempillantás e kozmikus folyamatok időskáláján, így nincs más választásom, mint újabb és újabb kölcsönható galaxisok felkeresése az égbolton. Akadnak még jelöltek bőven, így folytatás következik.

Felhasznált irodalom:

H. Arp, B. F. Madore and W. Roberton: A Catalogue of Southern Peculiar Galaxies and Associations

Wolfgang Steinicke, Richard Jakiel: Galaxies and How to Observe Them (ISBN 978-1-84628-699-5)

Michael König , Stefan Binnewies: The Cambridge Photographic Atlas of Galaxies (ISBN 978-1107189485)

Gordon, Scott Douglas: Radio studies of southern interacting galaxies

Oddone, M.; Díaz, R.; Carranza, G.; Goldes, G.: El trío de galaxias en Pavo

Kartik Sheth, Debra Meloy Elmegreen, Bruce G. Elmegreen, Peter Capak, Roberto G. Abraham, E. Athanassoula, Richard S. Ellis, Bahram Mobasher, Mara Salvato, Eva Schinnerer, Nicholas Z. Scoville, Lori Spalsbury, Linda Strubbe, Marcella Carollo, Michael Rich, Andrew A. West: Evolution of the Bar Fraction in COSMOS: Quantifying the Assembly of the Hubble Sequence

Francoise COMBES, Patrick Boissé, Alain Mazure, Alain Blanchard: Galaxies and Cosmology (ISBN 978-3540419273)

Alice C. Quillen, Ivan Minchev, Sanjib Sharma, Yu-Jing Qin, Paola Di Matteo: A Vertical Resonance Heating Model for X- or Peanut-Shaped Galactic Bulges

Fabian Lüghausen, Benoit Famaey, Pavel Kroupa: Phantom of RAMSES (POR): A new Milgromian dynamics N-body code

Oscar A. Gonzalez, Victor P. Debattista, Melissa Ness, Peter Erwin, Dimitri A. Gadotti: Peanut-shaped metallicity distributions in bulges of edge-on galaxies: the case of NGC 4710

WISE sajtóhír: X Marks the Spot for Milky Way Formation

Egyéb adatok: NED és SIMBAD adatbázisok

 

NGC1532 és NGC1531

NGC1532-LRGB-20140729-TTK

NGC1532 és NGC1531 – LRGB változat (72%-os kivágás)

2014-07-29, 2014-07-30, 2014-08-02, 2014-08-06 – Siding Spring Observatory – 30 x 120 sec L, 21 x 180 sec L, 10 x 180 sec R,G,B

iTelescope.net T32 – Corrected Dall-Kirkham Astrograph Planewave 17″ – 43 cm, f/6.8  – FLI Proline 16803 CCD kamera

A Tejútrendszeren túl, a galaxisok birodalma egy mozgalmas világ. A galaxisok közötti kölcsönhatás és ütközés teljesen hétköznapi eseménynek számít az világegyetemben, mondhatni szerves részei a galaxisok fejlődésének. A legtöbb csillagvárosról elmondható, hogy részt vett már ilyen interakcióban. Ez alól a Tejútrendszerünk sem kivétel, ugyanis több ütközést elszenvedett már, melyből eddig győztesen került ki, és ennek köszönhetően gyarapodott. A nagy halak felfalják a kisebb halakat, és így nőnek folyamatosan. De nem csak ennek köszönhetően.

Egy nem is oly rég megjelent publikációban kutatók rámutattak arra, hogy bár a kisebb galaxisok bekebelezése kétségtelenül hozzájárul a galaxisok növekedéséhez, azonban e törpék elnyelése nem fedezi a nagy spirál galaxisok világegyetemben megfigyelhető növekedési ütemét. Pontosabban fogalmazva a törpe galaxisok által tartalmazott gáz mindössze egyötöde annak, ami ezekben a nagy spirál galaxisokban megfigyelhető csillagkeletkezési ütem biztosításához szükséges. A nagyra nőtt spirál galaxisok az ütközéseken túl valahonnan máshonnan is szereznek gázt a csillagkeletkezési ütem fenntartásához. A törpe galaxisok elfogyasztása ehhez kevés. Egy lehetséges magyarázat, hogy az intergalaktikus térben található forró gázfelhők az utánpótlás forrásai. Azonban ez is felvet kérdéseket. A csillagok ennél jóval alacsonyabb hőmérsékletű gázködökben születnek. Mi hűti le a gázt? Nos, erre pillanatnyilag még nincs igazán meggyőző magyarázat. Ha a csillagászok nem is tudják pontosan a választ, miszerint honnan is van a gáz utánpótlása, egy valami vitathatatlan: a törpe galaxisok gravitációs hatásuk révén, a gázban gazdag nagy spirál galaxisokkal heves csillagkeletkezést képesek indukálni. A törpe galaxis pedig a végén sok esetben áldozatul esik, és szinte nyomtalanul olvad bele a nála jóval nagyobb tömegű galaxisba, és mindössze egy hátramaradó csillagáramlat tanúskodik csak arról, hogy ott valaha egy viharos esemény történt.

Más esetekben csupán a teljesen lecsupaszított mag marad csak megfigyelhető, amely tovább kering a nagyobb galaxis magja körül. Újabb vizsgálatok eredményei alapján a kutatók egy része azt feltételezi, hogy törpe galaxisok bizonyos fajtája (Törpe Kísérő Galaxisok – Dwarf Satellite Galaxies) és a gömbhalmazok között kapcsolat van. Hasonló a felépítésük, és köztük a határ igencsak elmosódott. Illetve olyanok a gömbhalmazok, mintha ilyen galaxisok magjai lennének. Ezen elképzelések szerint bizonyos gömbhalmazok, az ütközésben lecsupaszított és a Tejút által felfalt kicsiny galaxisok magjai. Mivel a galaxisok magjában a csillagok gravitációsan sokkal kötöttebbek, így nehezebb ennek a formációnak a szétszakítása, a csillagok sűrű raja együttmard, míg a külső lazább régiók leszakadnak. Fontosnak tartom kiemelni, hogy pontosan nem ismeretes még ma sem, hogy a galaxisok fejlődésében milyen szerepet is töltenek be a gömbhalmazok és kialakulásuk pontos körülményét is homály fedi.

Bizonyos esetekben az ütközés mementójaként létrejövő struktúrák összemérhetőek a galaxis kiterjedésével. Ezek van, hogy roppant halványak és csak nagyon hosszú expozícióval érhetőek csak tetten az optikai tartományban. Ennek egyik jó példája az NGC5907 körül megfigyelhető csillagáramlat.

bbro_ngc5907

Az NGC5907 és a galaxist körülölelő hurkok David Martınez-Delgado felvételén (BlackBird Remote Observatory). Látható, hogy maga a galaxis teljesen beég a felvételen, amire megjelennek a korábbi ütközés nyomai.

Azonban van, hogy annyira markáns az ütközés maradványa, hogy nem kell hatalmas távcső vagy éppen sok tízórányi expozíciós idő, és akár viszonylag egyszerű amatőrcsillagász felszereléssel is megfigyelhetjük, lencsevégre kaphatjuk az ütközés emlékeit, még ha nem is lesz olyan részletes és szép a felvételünk, mint a hivatásos csillagászok óriástávcsöveivel vagy űrtávcsöveivel készültek képek. Azonban már magáért a megfigyelés élményéért érdemes felkeresni például az NGC660-ot, mely egy polárgyűrűs galaxis (Polar Ring Galaxy).

NGC660 - 20131026 - ttk

Az NGC660 galaxis egy korábbi felvételemen. A galaxis körüli gyűrű halványan, de kivehető.

Ezen galaxisok körül egy csillagokból, gázból és porból álló gyűrűszerű képződmény figyelhető meg, mely jellemzően a galaxis síkjára nagyjából merőlegesen helyezkedik el. A gyűrű létrejöttére több magyarázat is létezik. A közös ezekben a teóriákban, hogy két galaxis gravitációs kölcsönhatása, pontosabban összeütközése hozza létre. Csupán a mikéntben vannak különbségek. Egyes elképzelések szerint az ütközésben résztvevő egyik tagról szaggatja le az árapályerő az anyagot a találkozó közben, mely anyag aztán létrehozza magát a gyűrűt. Míg más elképzelések szerint a két karambolozó fél nem azonos súlycsoportba tartozik. A kisebb ütközést elszenvedő galaxis pályája szinte merőleges a nagyobb tag korongjára. Ebben a találkozóban a nagyobb fél kis partnerét teljesen megsemmisíti, és annak anyagából jön létre a gyűrű alakú formáció. Maga a gyűrű – a második elmélet szerint – tehát mementója annak, hogy Dávid és Góliát harcában ezúttal nem Dávid győzedelmeskedett. A gyűrű maga a kis galaxis, legalábbis ami megmaradt belőle. Bármelyik is legyen a helytálló keletkezési elmélet, amikor az NGC660-ra tekintünk, két galaxis ütközése utáni állapotot látjuk.

Szétnézve az égen sok galaxis arcán hordozza viharos múltjának emlékét. Van azonban lehetőségünk a tettenérésre is, vagyis megfigyelhetünk kölcsönható galaxisokat. Rövid életünknek köszönhetően a kölcsönhatásnak, illetve az ütközésnek csak egy pillanatfelvételét láthatjuk, ugyanis egy ilyen esemény általában sok százmillió évig is eltarthat.  Amatőrcsillagászként roppant izgalmasnak tartom egy-egy ilyen pillanat megfigyelését, miközben elgondolkodom azokon a grandiózus dolgokon, amelyek ott munkálnak a dolgok hátterében.

Még tavaly összeállítottam egy listát a kölcsönható galaxisokról, melyeket egyszer talán majd meg is örökítek. Az NGC1097-ről és az M51-ről készült felvételem után egy olyan kölcsönható galaxis párost választottam célpontnak, mely esetében a nagyobb spirális galaxis korongjára inkább éléről látunk rá. Ennek a kritériumnak az NGC1532 és NGC1531 éppen megfelelt. A korábbi két felvételem esetében megcsodálhatjuk, ahogy a kisebb társ eltorzítja a nagyobb spirális szerkezetét, illetve megfigyelhetjük az anyaghidat, továbbá az árapály csóvát. A kisebbik galaxis egyik esetében sem a nagyobb korongjának a síkjában található, azonban ez a rálátási szögnek köszönhetően a fotóimon nehezen érzékelhető. Példának okáért, az M51 esetében a kisebb galaxis, vagyis az NGC5195, éppen távolodik tőlünk, miután keresztülhatolt az M51 látóirányunkra merőleges korongjának a síkján. A képet megnézve, azonban erről vajmi kevés árulkodik.

M51-LRGB-20140427-TTK

Az M51 és az NGC5195 kölcsönható galaxisok egy korábbi felvételemen. A kisebbik galaxis (NGC5195) valójában a nagyobb (M51) mögött helyezkedik el a térben.

Az NGC1532 és NGC1351 kiválasztása tehát korábban már megtörtént, és egyszer csak kínálkozott egy lehetőség, melyet ki is használtam. Vagy csak ügyesen megfogtak? Mindenki döntse el maga.

Még május elején felfüggesztettem a tagságomat az iTelescope hálózatán, és inkább csak a saját műszeremmel készítem felvételeket, vagy csak okuláron keresztül kémleltem vele az eget. Ez teljes mértékben ki is elégített. Azonban július végén kaptam egy levelet az iTelescope üzemeltetőitől, hogy amennyiben újra előfizetek, a befizetésemet megduplázzák. Úgy gondoltam elérkezett az idő, hogy valóra váltsam korábban megfogalmazódott tervemet, és elkészítsem a felvételemet a hőn áhított párosról. Ehhez egy eddig általam még ki nem próbált műszert választottam: a T32-es távcsövet. Nem is a távcső vonzott igazán, hanem a rajta található FLI Proline 16803 CCD kamera. Erre voltam igazán kíváncsi.

NGC1532 és NGC1531

Hazánkból nézve, az Erdidanus csillagkép égi folyója hosszasan, kanyarogva hömpölyög lefelé délre az Orion és a Cet csillagkép között, hogy aztán alábukjon a horizonton. Ahhoz, hogy teljes terjedelmében bebarangolhassuk, az égbolt eme hatodik legnagyobb csillagképét, jóval délebbre kell utaznunk. Ez a csillagkép ad otthont az NGC1532 és NGC1531 galaxis párosnak, mely lakhelyemről nézve sosem emelkedik 9.5 foknál magasabbra az égen. Hazánkból tehát igen körülményes lett volna a megörökítése.

Eridanus-NGC1532

Az NGC1532 és NGC1531 galaxisok az Eridanus csillagképben. A páros sosem emelkedik 9.5 foknál magasabbra az égen lakhelyemről nézve.

Az NGC1532 10.6 magnitúdó fényes és 12.6 x 3.3 ívperc a látszó átmérője az égen. A színképvonalakban látható vöröseltolódás alapján 1040 ± 5 km/s sebességgel távolodik tőlünk. A Hubble-törvényt felhasználva, miszerint a galaxisok távolodási sebessége arányos a távolságukkal, az NGC1532 távolságára 50 millió fényévet kapunk. Ez egészen jól egyezik a nem a vöröseltolódáson alapuló távolság meghatározási módszerek adta értékekkel, melyek 45 és 62 millió fényév között szórnak. Elfogadva az 50 millió fényéves távolsági adatot, és felhasználva a viszonylag egyszerűen mérhető látszólagos méretet az égen, kiszámolható a galaxis átmérője, melyre így 180000 fényév adódik. Egy hatalmas, a 100000 fényév átmérőjű Tejútrendszernél is nagyobb, majdnem éléről látszó küllős spirál galaxisról van tehát szó. A galaxis morfológiája a de Vaucouleurs osztályozás szerint: SB(s)b. Ez azt jelenti, hogy a galaxis küllős, a karok a küllők végéből indulnak ki, és azok „felcsavarodása” szoros és a laza közötti. Nem is olyan egyszerű egy ilyen közel éléről látszó galaxis esetén meghatározni a pontos morfológiát. Példának okáért, ebből a betekintési szögből csak alapos vizsgálatokkal lehet eldönteni, hogy a galaxis központi részén látható struktúra egy központi dudor, vagy azok a galaxis küllői.

NGC1532-LRGB-20140729-c-TTK

NGC1532 és NGC1531– LRGB változat (24%-os kivágás)

Érdemes megfigyelni az NGC1532-ben az aktív csillagkeletkezési területek sokaságát, illetve az NGC1531 és az NGC1532 között elhelyezkedő fiatal csillagok asszociációit (NGC1531-nél 7 óra irányában lévő kis kékes pamacs) és a csillagkeletkezési területeket (NGC1531-nél 4 óra irányába lévő vöröses-rózsaszínes távolabbi kis apró folt/pötty).

Az NGC1531 törpe galaxis, az NGC1532 egyik szatellit galaxisa. A törpe galaxis gravitációs hatásának köszönhetően a nagy spirál galaxisban heves csillagkeletkezés zajlik. Elég csak rátekinteni az NGC1532-re, és azonnal szembetűnnek a fényes csomók, melyek hatalmas aktív csillaggyárak. Ezek közül is kiemelkedik a felvételen, az egyik karban megfigyelhető hosszú és fényes ív, ahol szinte egymásba érnek azok a ködök, ahol a csillagok nagy ütemben keletkeznek. Ennek a területnek a fényessége szinte vetekszik a galaxis magja körüli régió fényességével. A mag körüli öreg csillagok sárgásvöröses fényével kel versenyre a karban nemrég született fiatal csillagok és az általuk gerjesztett ködök fénye.

Magának az NGC1532-nek a meggyötört szerkezete is a két galaxis kölcsönhatásának az eredménye. Az egyik hátsó kar szinte kicsavarodik a korong síkjából és ennek folytatása (valószínűleg) anyaghidat képez az NGC1532 és az NGC1531 között. Alaposabban megnézve a felvételt találhatunk rajta „kóbor” csillagkeletkezési területeket is, illetve fiatal csillagok asszociációját, melyek a NGC1532 és az NGC1531 közötti térben helyezkednek el bizonyítékául a kölcsönhatásnak.

Hogy mi lesz a történet vége? Valószínűsíthető, hogy az NGC1531-et teljesen szétszaggatja majd a nagyobb galaxis, és esetleg több százmillió év múlva, az NGC5907-hez hasonlóan, csak az NGC1532 körül megmaradó halvány ívek tanúskodnak arról, hogy valaha is létezett. Az NGC1532 pedig a kölcsönhatás folyományként létrejött új csillagok generációjával rója tovább az útját, talán éppen újabb prédára vadászva.

A nyes felvételeket szabadságom alatt egy borult éjszakán dolgoztam fel a notebook-omon. Talán nem lett a legtökéletesebb, mert a hordozható masinám kijelzője sem az. Továbbá, ekkor láttam csak meg a T32-es távcső pár hibáját. Semmi sem tökéletes azonban. Az igazi örömet így utólag az jelenti számomra, hogy a gyűjteményemet egy újabb kölcsönható galaxis párossal gyarapíthattam, illetve a magam szórakoztatására összerakott észlelési program egy újabb tételét pipálhattam ki.

M51 (Örvény-köd) és az NGC5195

 m51-20140327-ttk

M51 (Örvény-köd) és az NGC5195

2014-03-27 – Göd – 90 x 55 sec light és 15 x 55 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera

M51-LRGB-20140427-TTK

M51 (Örvény-köd) és az NGC5195

2013-03-27 – Göd – 90 x 55 sec light és 15 x 55 sec dark

és

2014-04-27 – Göd – 62 x 55 sec R, 63 x 55 sec G, 54 x 55 sec B és 15 x 55 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera, Astronomik RGBL fotografikus szűrőszett

Ritkán szoktam ilyen kifejezéssel élni egy égi objektum esetén, de az M51 (NGC5194) az égbolt egyik ikonikus galaxisa. Egyszer érdemes lenne egy felmérést végezni, hogy a csillagászati könyvek mekkora százalékában szerepel a fotója. Amennyiben lesz egyszer időm, akkor végignézem a polcomon sorakozó nagymennyiségű könyvet, és elkészítem a saját statisztikámat. Nagy összegben mernék fogadni, hogy jelentős százalékról lehet szó. Arra is nagyobb összeget mernék tenni, hogy a nem kimondottan csillagászati érdeklődésű, de azért a tudomány iránt fogékony emberek közül a legtöbben már látták a fotóját. A galaxis bizonyosan igen előkelő helyet foglal el az amatőrcsillagász bakancslistán is. Egy objektum, ami a legtöbbünknél a látni kell, észlelni kell kategóriába tartozik. E fotó elkészítésének egyik fő mozgatórugója is ez volt. De azért volt ott más is.

A tavasz közeledtével a Nagy Medve (Ursa Major) csillagkép, és ennek részeként, a Göncölszekér egyre magasabbra emelkedik az esti égen. Kitűnő lehetőséget biztosítva, hogy megfigyelhessük azt a sok égi csodát, ami ebben és a környező csillagképekben található. Azért hangsúlyoztam ki a környező csillagképeket, mert az M51 nem a Nagy Medve csillagkép, hanem a Vadászebek (Canes Venatici) területén helyezkedik el. Azonban én mindig a Göncölszekér rúdjának a végétől (Éta UMA), arab nevén az Alkaid nevű csillagtól szoktam elindulni, a Vadászebek legfényesebb csillagának, a Cor Caroli-nak az irányába. Innen ugyanis alig 3.5 fokra található nagyjából az előbb említett egyenes mentén. Könnyen ráakadhatunk, mert már a 9×50-es keresőtávcsövemben is látható a 8.4 magnitúdós galaxis sejtelmes halvány pacaként. Tehát akár binokulárral is felkereshetjük megfelelően sötét ég alatt, de arra ne számítsunk, hogy már egy ekkora távcsővel is megcsodálhatjuk a spirálkarokat. Inkább kisebb halvány ködösség formájában fog megjelenni. Vizuálisan az én 10 cm-es távcsövemmel már látszik ködös kiterjedése. Az alakja határozott, de pereme beleolvad az égi háttérbe. Régebben sokat észleltem Ráktanyán egy 44.5 cm-es Dobson távcsővel, melyet Szitkay Gábor jólelkűségének köszönhetően használhattunk a hegyen. Ej, mennyi különleges mély-ég csodát megmutatott ott Bakos Gáspár nekem, miközben én változócsillagokat észleltem. De visszatérve az eredeti témához, emlékszem, hogy a sötét égen ebben műszerben miként pompáztak az M51 varázslatos spirálkarjai, és hogy látszott az egyértelmű összeköttetés a galaxis és társa között. Rendelkezzünk akármekkora műszerrel, könnyű azonosíthatósága miatt bátran ajánlom az égbolttal csak most ismerkedőknek a felkeresést, mert az önmagunknak való felfedezés örömét élhetjük át, még akkor is, ha nem mi vagyunk az elsők.

A galaxis felfedezője Charles Messier, akinek katalógusában az 51-es sorszámot kapta. Messier saját maga 1773. október 13-án talált rá az égbolton. Az NGC5195-re, az M51 társára, azonban csak évekkel később (1781) akadt rá Pierre Méchain. Ő Messier-vel közösen végezte az égbolt átfésülését üstökösök után kutatva, és katalogizálva azokat a mély-ég objektumokat, melyek összetéveszthetőek voltak a csóvás vándorokkal. Az ő műszereik még nem mutatták meg az objektum igazi arcát. Az csupán ködös foltokként jelent meg a távcsőben. William Parsons, ismertebb nevén Lord Rosse volt, aki felismerte spirális szerkezetét a XIX. század derekán. Ez az objektum volt a spirális ködök csoportjának elsőként megtalált képviselője.

m51-lord_rosse

Lord Rosse (William Parsons) rajza az M51-ről.

A XIX. században egészen a XX. század elejéig vita tárgyát képezte, hogy mik is pontosan ezek az objektumok és hol helyezkednek el. A kérdést végül 1926-ban Edwin Hubble döntötte el, amikor Cepheida változókat sikerült azonosítani eme spirális ködökben. Az említett változók periódus és fényesség relációját felhasználva megállapította, hogy bizony ezek a Tejútrendszeren kívül elhelyezkedő önálló távoli csillagvárosok, galaxisok.

Egy pillanatra álljunk itt meg. Kisfiam tett fel egyszer egy érdekes kérdést: Apa, meddig látunk el a távcsöveddel? Őszinte gyermeki kérdés, és nem tudtam egyetlen mondatban válaszolni. Megint az attól függ kezdetű mondattal láttam neki a magyarázatnak és igyekeztem rövidre és érthetőre fogni. Ez többé-kevésbé sikerült csak. Tényleg, milyen messze tekintünk akkor, amikor az M51-et beállítjuk a távcsőben?

Gondolhatnánk, hogy erre a tudomány egzakt választ ad napjainkban, amikor már közel 100 éve Hubble megállapította, hogy a galaxisok túl vannak a Tejútrendszer határain. Hiába vannak gyakran egymásra épülő távolság meghatározási módszerek a csillagászok kezében, erre nem tudunk tökéletesen pontos választ adni még ma sem. Az egyes módszerek némileg eltérő eredményeket adnak. Ezen módszerek tökéletesítése és azok kalibrációja folyamatos munkát ad a csillagászoknak, és a szakemberek meg is tesznek mindent, hogy megalkothassák a „kozmikus méterrudat”.

Valójában különböző távolságmérő rudak sokaságáról kell beszélni. Különböző távolságskálán más és más módszer használható. Szerencsés esetben kettő vagy több módszer átfed egy adott távolságot lehetőséget adva a módszerek, illetve távolságindikátorok pontosítására, kalibrációjára. Az egyik legalapvetőbb mérési eljárás a trigonometrikus parallaxis. Többször megmérve egy viszonylag közeli csillag pozícióját egy év folyamán azt tapasztaljuk, hogy az megváltozik. A csillag elmozdulni látszik a távolikhoz képest. Az elmozdulás ciklusa pedig pontosan egy év, ami alatt a Föld egyszer megkerüli a Napot. A Föld ugyanis egy nagyjából 300 millió kilométeres nagytengelyű ellipszis pályán mozog, és kissé más irányból nézünk a csillagot a pálya különböző pontjain. Az égi látszólagos elmozdulás szögét megmérve, a Nap és Föld távolságot ismerve, kiszámolható a csillag távolsága trigonometrikus alapismeretek birtokában.

parallaxis

Az évi parallaxis jelensége.

A csillagászatban a fényév helyett éppen ezért vezették be a parszek (pc) távolsági egységet. 1 parszek 3.26 fényév. Egy parszek (pc) távolságra van tőlünk az az objektum, melyből merőleges rálátás esetén a földpálya sugara éppen 1 ívmásodperc szög alatt látszik.

A módszernek az szab határt, hogy mekkora a legkisebb szög, amit még ki tudunk mérni. A Földön a légkör is akadályt gördít elénk, így 1989-ben pályára állították a Hipparcos űreszközt mely 120000 csillag parallaxisát mérte meg nagy pontossággal, és még további egymillió csillagról gyűjtött adatokat. A Hipparcos 0.001 ívmásodperc pontossággal tudott mérni. 2013 decemberében sikeresen felbocsájtották a Gaia űrszondát. Ennek az eszköznek 1 milliárd csillag pozíciójának megmérése és elmozdulásának detektálása lesz a feladata. A pontossága 0.000001 ívmásodperc. Ezerszer nagyobb, mint a Hipparcos szondáé volt. Pár éven belül rengeteg pontos távolság adat birtokában leszünk a Tejútrendszerben található csillagok esetében. A mérési módszerek „Szent Grálja” ez, ugyanis pusztán szögmérés, és nem egyéb asztrofizikai összefüggéseken, relációkon illetve tapasztalati összefüggéseken alapszik.

Ahhoz, hogy galaxisok távolságát megmondhassuk, további módszereken keresztül vezet az út. A teljesség igénye nélkül megemlítenék párat.

Itt van például a már fentebb is említett Cepheida változók periódus és abszolút fényesség relációja. A periódusból megkapható az abszolút fényesség. Ennek és a mért látszólagos fényesség birtokában a távolság megmondható. Ehhez csak ilyen változókat kell találnunk egy távoli galaxisban. Még a mai műszerekkel sem egyszerű csillagokra bontani a távolabbi galaxisokat. Van a Cepheida pulzáló változókkal egy másik probléma is. Ezek nagytömegű, és ezért rövid életű csillagok egyik fejlődési fázisát képviselik. Így csak olyan galaxisokban találhatunk ilyeneket, melyekben még ma is aktív csillagkeletkezés zajlik. Ezért például elliptikus galaxisokban erre nem sok esélyünk van. Itt más módszerhez kell folyamodnunk. Ebben az esetben a Cepheida változóknál kisebb tömegű, és ezért hosszabb életű csillagok egy késői fejlődési stádiumát jelentő RR Lyrea változócsillagok után kell kutatnunk. Az RR Lyrae váltózó csillagok a magjában már javában folyik a hélium szénné alakítása. Pulzációs periódusuk és abszolút fényességük között pedig reláció áll fent, így tökéletesek távolság meghatározására, akár csak a Cepheida változók. Az RR Lyrae típusú csillagok nem olyan fényesek, mint a Cepheida típusúak, így nehezebb azonosításuk, csak közelebbi elliptikus galaxisok esetén használhatóak.

A szupernóvák azonban roppant fényesek és messzire ellátszanak, és az Ia típusúak abszolút fényessége az őket létrehozó fizikai folyamatoknak köszönhetően állandó. Leegyszerűsítve nincs más hátra, mint a látszólagos fényességet megmérni, és már meg is tudtuk a távolságot. Ehhez azonban el kell csípnünk egy ilyen robbanást. Ezért (is) örülnek a csillagászok minden egyes extragalaktikus szupernóvának. Ezek ugyanis nagyban hozzájárulhatnak egy galaxis távolságának pontosításához.

Egy másik módszer a Tully-Fisher reláció használata (elliptikus galaxisok esetén nem használható, csak spirális és lentikuláris galaxisoknál), mely egy tapasztalati összefüggés a galaxisok luminozitása és a galaxis rotációs görbéjének amplitúdója között. A részletekbe nem nagyon elmerülve, arról van szó, hogy a viszonylag könnyen mérhető galaxison belüli sebességekből meghatározható a galaxis luminozitása, és ebből pedig távolsága. Ugyanis, a galaxis csillagainak dinamikáját a galaxis tömege határozza meg, mely pedig összefüggésben áll annak luminozitásával. Az így kapott luminozitást felhasználva a látszólagos fényesség ismeretében a távolság már meghatározható.

Elliptikus galaxisok esetén is van azonban egy tapasztalati törvény, melyet Faber-Jackson relációnak neveznek. Itt is az a lényeg, hogy valami viszonylag könnyen mérhető tulajdonságból következtetünk a galaxis távolságára. Az elliptikus galaxisok központi csillagainak látóirányú sebesség diszperziója spektroszkópiai módszerekkel (Doppler-effektus) meghatározható. Majd a Faber-Jackson tapasztalati relációt felhasználva megkapjuk a galaxis abszolút fényességét. Ebből és a látszólagos fényességből már meghatározható az elliptikus galaxis távolsága.

A felsorolásom közel sem teljes, és valójában csak egy rövid betekintést szerettem volna nyújtani a módszerek tárházába. Léteznek még további megfigyeléseken alapuló tapasztalati összefüggések is, illetve műszereink működéséből fakadó módszerek, például a felületi fényesség fluktuáció módszere, melyek felhasználhatóak a távolság meghatározására bizonyos esetekben. A téma iránt érdeklődök, bőséges szakirodalmat találhatnak az interneten, akár magyar nyelven is.

Ha több módszer is van, és ebből pár átfed közös tartományokat, akkor mégis mire fel a bizonytalanság? A legtöbb módszernek magának is van egyfajta bizonytalansága, hibája. A Cepheida változók esetén ez 7-15% attól függően, hogy milyen messze van a galaxis. Az Ia szupernóvák módszere az egyik legpontosabb, de itt is 5%-os hibával kell számolni. Mivel a legtávolabbi mérésekre használható módszerek a közelebbi távolságokra működőkre épülnek, azokhoz kalibráltak, így a statisztikai és szisztematikus hibák egymásra rakódnak. Nem kell hát csodálkozni azon, hogy a csillagászatban ritkán érhető el az a pontosság, mint a tudomány más területein.

Mielőtt a távolság kérdését lezárnám, büszkeséggel had említsek meg egy tanulmányt, mely sok magyar kutató nevével jegyzett: J. Vinko, K. Takats, T. Szalai, G. H. Marion, J. C. Wheeler, K. Sarneczky, P. M. Garnavich, J. Kelemen, P. Klagyivik, A. Pal, N. Szalai, K. Vida: Improved distance determination to M51 from supernovae 2011dh and 2005cs.

A szerzők az M51-ben történt két szupernóva robbanás alapján határozták meg a galaxis távolságát. Az egyik szupernóva 2005-ben (SN 2005cs) míg a másik 2011-ben (SN 2011dh) tűnt fel ebben a csillagvárosban. Ők eredményül 8.4 +/- 0.7 Mpc, vagyis 27.4 millió +/- 2.3 millió fényév értéket kaptak. Ez elég jól egyezik más módszerekből kapott távolságadatokkal. Meg kell jegyeznem azonban újfent, hogy más és korábbi módszerek eredményei ehhez az értékhez képest +/- 10 millió fényéves tartományban szórnak. Az M51 példáján keresztül is látszik, hogy a távolság meghatározása keményebb dió a csillagászatban, mint az ember azt elsőre gondolná.

Visszatérve az eredeti kérdésre, fiamnak ebben az esetben azt mondanám, kerülve a fenti hosszas eszmefuttatásokat, hogy az M51 nagyon durván 27 millió fényévre van. Ily messzire tekintettem aznap hajnali egy előtt nem sokkal. Ez irdatlan nagy távolság, azonban közelinek számít a látható világegyetem méreteihez képest. Szinte csak a nem túl távoli kozmikus szomszédhoz kukkantottam át.

A „szomszédban” pedig két ütköző galaxis, az M51 (NGC5194) és az NGC5195 látvány fogadja az észlelőt. Az M51-et találó néven Örvény-ködnek vagy Örvény-galaxisnak is nevezik. Mérete, a távolság adatok függvényében, valahol 50 és 75 ezer fényév körül lehet. Tömegét 160 milliárd naptömegre becslik. A két roppant határozott markáns spirálkar a központi régióból indul ki. Felépítése miatt a grand design spiral galaxy csoportba sorolják. (Igazán jó magyar fordítást még mindig nem találtam.) Ha alaposan szemügyre vesszük ezeket a karokat, akkor látható, hogy helyenként kissé torzultak, és igen aktív csillagkeletkezés zajlik bennük. Ezek a kisebb, és a találkozásnak köszönhetően rendkívül deformált NGC5195 gravitációs hatásának köszönhetőek. A két galaxis deformitásának mértéke alapján arra lehet következtetni, hogy az M51 jóval nagyobb tömegű a partnerénél. Az ütközés körülbelül fél milliárd éve kezdődött meg. A kisebb galaxis éppen távolodik tőlünk, miután keresztülhatolt az M51 látóirányunkra merőleges korongján. A gravitációs kapocsnak köszönhetően még visszatér majd, és megpróbál újra átkelni az M51 galaktikus síkján. Néhány 100 millió év múlva, és pár ilyen keringővel később az összeolvadás befejeződik majd.

De vizsgáljuk meg egy kicsit alaposabban mi is zajlik ebben a két galaxisban. Korábbi cikkeimhez hasonlóan itt is az elektromágneses spektrum különböző tartományaiban készült felvételeket hívom segítségül.

m51_xray

Az M51 (NGC5194) és az NGC5195 a röntgen tartományban – Chandra űrtávcső

A Chandra űrtávcső felvételén megfigyelhetőek a fekete lyukkal rendelkező kettős rendszerek (apróbb pöttyök), illetve a galaxisok magjában található nagytömegű központi fekete lyukak által kibocsájtott röntgensugárzás (két nagy fehér folt). Az, hogy az M51 magjában egy szupermasszív fekete lyuknak kell lennie, már az optikai tartományban készült felvételek alapján is sejthető. A mag roppant fényes. A saját felvételem készítésekor is úgy igyekeztem beállítani a kamera paramétereit, hogy a mag ne égjen be durván. Egy Seyfert II típusú galaxisról van szó, mely aktív galaxis maggal (Active Galactic Nucleus – AGN) rendelkezik. Ezen magok által kisugárzott nagymennyiségű energia, pedig egy ott elhelyezkedő szupermasszív fekete lyuk jelenlétével magyarázható. A képen látható halványabb kiterjedt foltok pedig felhevült gázfelhők, melyek a lágy röntgentartományban sugároznak.

m51-uv

Az M51 (NGC5194) és az NGC5195 ultraibolya tartományban – GALEX felvétele

Az ultraibolya tartományban készült felvételen jól látszik a spirális galaxisban nemrég megszületett nagytömegű forró kék csillagok sugárzása. Csillagászati értelemben ezek igen rövid ideig, mindössze pár millió évig élnek. Létezésük a most is zajló igen intenzív csillagkeletkezésnek a biztos jele. Ahogy fentebb is írtam, az M51-ben a heves csillagkeletkezés az NGC5195 gravitációs hatásának köszönhető. Érdemes megfigyelni, hogy az NGC5195 csak egy halvány vöröses foltocska. Szinte alig látszik. Ebben a galaxisban nem zajlik csillagkeletkezés. Ennek oka, az ehhez szükséges anyag hiánya, melyre két magyarázat kínálkozik. Valaha formás elliptikus galaxis volt, s mint az ilyenekben a csillagok gyártása már régen leállt. A másik lehetséges magyarázat, hogy az ütközésben elvesztette az ehhez szükséges készleteit.

m51-infra

Az M51 (NGC5194) és az NGC5195 az infravörös tartományban – Spitzer űrtávcső

Végezetül vessünk egy pillantást a Spitzer űrtávcső infravörös tartományban készült felvételére. A kék szín az idősebb hidegebb csillagok infravörös sugárzását jelöli. Míg a vörös a csillagászati értelemben meleg csillagközi por sugárzását jelöli. Így a vörös területek reprezentálják azokat a területeket, ahol a csillagok következő generációja fog megszületni az M51-ben. Itt is jól látható, hogy az NGC5195-ben már nincsenek csillagok keletkezésére alkalmas környezetek.

Ha nekem is szabad egy hasonlattal élnem, akkor az M51 és az NGC5195 olyan, mint Stan és Pan. Meglepően különböző karakterek, de együtt igen látványosat alakítanak.

2014. március 26/27. éjszaka

Már hetek óta vártam a megfelelő derültet, mígnem 2014. március 26-án 21 óra környékén kiderült. A felhők elvonultak végre, és csillagos eget hagytak maguk mögött. Villámgyorsasággal és hatalmas lelkesedéssel pakoltam ki a távcsövemet. Mire mindent beállítottam, és a távcső már csak a bevetésre várt, a semmiből megint felhők jelentek meg. Olyan érzésem volt, hogy mind a négy égtáj felől támadnak, majd a fejem felett összezáródott a felhőpaplan. Csalódottságom határtalan volt, ugyanis ezen a héten nem ez volt az első alkalom. Pár nappal korábban már alkalmam volt összerakni, majd 20 perccel később szétszedni a felszerelést. Aznap viszont nem így tettem. A házba beballagva hosszasan szemléltem a műholdfelvételeket. Elhatároztam, hogy várok. Bár egy roppant hosszú és fárasztó munkanap volt mögöttem, de nem adtam fel. Olvasással ütöttem el az órákat, miközben néha kikandikáltam. Éjfél után a felhők, ahogy jöttek, el is mentek. Az ég már közel sem volt olyan nagyszerű, volt valami furcsa opálossága. Vakargattam a fejem, mert az előre eltervezett célpont fotózása már kútba esett. Túl halvány volt ahhoz, hogy ilyen égen megpróbálkozzam vele. A Göncölszekér éppen a zenit közelében tartózkodott. Jött hát az elhatározás. Egyszer úgyis szerettem volna egy elfogadható fotót készíteni az M51-ről. Ott volt az a bizonyos amatőrcsillagász, vagy asztrofotós bakancslista. Az Örvény-köd egy látványos, viszonylag fényes és asztrofizikai szempontból is érdekes objektum. Most pedig a zenit közelében szinte kínálta magát hívogatóan. Ráfordítottam hát a távcsövet, készítettem pár próbafelvételt. Az ég nem volt igazán jó, ez a képeken is látszott, de hajlandó voltam kompromisszumot kötni a cél érdekében, és egy kicsit visszavettem az expozíciós időből. Megkezdtem a felvételek készítését, miközben azon töprengtem, mit is kellene majd írni erről a nagyszerű galaxisról és társáról. 90 darab nyers kép elkészítését adta nekem a sors, mert azután lehelet finom fátyolfelhők úsztak be az egemre.

Úgy érzem mégsem volt hiábavaló a virrasztás, mert jutalmam egy újabb megörökített nagyszerű objektum lett. Saját Messier katalógusom újabb taggal gyarapodott. Ez a kép közel sem biztos, hogy a végső változat. Talán exponálok még hozzá hosszabban is, talán készítek LRGB változatot. De annyi más érdekes látványt tartogat még az égbolt, így lehet, csak később térek vissza rá. Meglátjuk. Talán jöhetne a következő pont a bakancslistán.

2014. április 27/28. éjszaka

20 nap telt el úgy, hogy egyáltalán észlelésre alkalmas lett volna az éjszakai égbolt lakóhelyemen. Ezen a vasárnapon viszont végre szép volt az idő. Kellemesen sütött a nap, lehetett kertészkedni és a gyerekekkel játszani a kertben. A szél elég intenzíven fújt. Mókás volt, ahogy kislányom haját kócolta, de azért titkon reménykedtem, hogy napnyugtára elcsendesedik, az ég pedig derült marad.

Mivel már nem sötétedik korán, így nyugodtan csináltam végig az esti szertartást a három gyermekkel. Miután mindenki ágy közeli helyzetbe került, kipakoltam. Ujjongtam, mert derült maradt, és a szél is elállt. Mire azonban teljesen besötétedett, az átlátszóság durván leromlott. A nyugodtság korábban sem volt valami fergeteges. Nem volt más választásom, mint a pocsékká vált égen keresni egy célpontot megfelelő magasságban, és reménykedni benne, hogy a helyzet nem lesz rosszabb. Ekkor ötlött a fejembe, hogy talán itt lenne az ideje színeket adni az egy hónappal korábban készült M51 felvételemhez. Bármely más esetben, ha csak úgy este 11 körül kitekintettem volna az égre, akkor talán a felszerelést sem pakolom ki. Az ínséges idők után viszont igen elszánt voltam. Végül 62 darab R szűrős, 63 darab G szűrős és 53 darab B szűrős felvételt készítettem. Mindegyik expozíció 55 másodperces volt.

Az éjszakának több tanulsága is volt:

  • Végre nem kellet masszívan felöltözni. A 10 fok körüli hőmérsékletet szinte melegnek éreztem a korábbi hónapok éjszakáihoz képest.
  • Sose feledd megjelölni, és felírni a kamera állását egy felvétel után! Ez korábban elmaradt, és a végső képet nagyon meg kellett vágnom, mert az RGB felvételek elforogtak az L-hez képest. Erre mostmár valami alkalmatosságot is fogok eszkábálni.
  • A harmatsapka sem véd a végtelenségig. Hajnalra minden úszott, és a távcső objektívje elkezdett párásodni. Ezért készült összesen csak 53 darab B szűrős felvétel.
  • 2 óra alvás után nem túl vidám végigdolgozni egy napot.

Tanulságok ide, tanulságok oda. Körülmények ide, körülmények oda. Most azt gondolom, hogy megérte az élmény. E sorok írása közben már kipihentem egy kissé magam, így megint izgatottan várom az újabb derült eget.

Kívánok derült eget nektek is!

Seyfert galaxisok Ausztrália egén

Péntek

Egy kissé már elnehezülten a Mikulás által hozott édességet majszolva dolgoztam, miközben kint a szél üvöltve bucskázott át az iroda tetőtere felett. Igazi pénteki volt a hangulat. Aznapi feladatom ritmusát az adta, hogy körülbelül 10 percnyi igen aktív munkavégzést 20-25 perc várakozás követte, míg a számítógépes rendszerek és a tárolók tették a dolgukat. Alkotó volt a tevékenység, de jelentős szünetekkel. Beborult, és az égből picike hógolyóra emlékeztető valami kezdett hullani. Már sok évet megéltem, de ilyet még egyáltalán nem pipáltam. Az édesség elfogyott, és nem is kívántam már többet. Azon kezdtem töprengeni, hogy mit csináljak ezekben a várakozással teli percekben. Az idő délkörül járt, de valahogy még nem akaródzott elkölteni az ebédet.

Ekkor jutott eszembe, hogy kellene egy próbát tenni az interneten elérhető távcsövekkel. Már hetekkel korábban regisztráltam az itelescope.net hálózatán, de semmi komolyra nem használtam még. A videókat megnéztem, és egyetlen színes képkockát rögzítettem a demó előfizetéssel, de nem voltam túlságosan elégedett az eredménnyel. Nem is nagyon foglalkoztatott tovább a dolog. Ezen a pénteken viszont újra feltámadt bennem a kíváncsiság. Milyen nagyszerűen eltölthetném így a várakozással teli perceket! Csak be kell állítanom, hogy mit szeretnék, és a távcső teszi a dolgát. Később kiderült, hogy azért a dolog nem ilyen egyszerű, de ne rohanjunk ennyire előre a történetben.

Bejelentkeztem az oldalon, és megnéztem van-e szabad távcső. Kimondottan olyan objektumot szerettem volna célpontnak, ami vagy teljes mértékben esélytelen hazánkból, vagy nagyon határeset. Volt is 5-6 jelöltem. Az Ausztráliában lévő obszervatóriumban (Siding Spring Observatory, Coonabarabran, NSW, Australia) éppen szabad volt a T17-es távcső, és nem is volt rá foglalás. A célom monokróm felvételek készítése volt. Gyorsan számoltam, és átutaltam annyi pénzt, melyből úgy 80-90 perc távcső idő kijöhet. Ez természetesen függ az adott műszertől, mert a pénzünkért pontokat kapunk, melyet a rendszer levon tőlünk a használati idő után.

t17-itelescope-net

Megvolt hát a keret, és a távcsövet még mindig senki sem használta. A T17 egy 43 cm-es f/6.8 Ritchey-Chretien tükrös teleszkóp, melynek egy FLI ProLine PL4710 a képrögzítő berendezése. 1024 x 1024 pixel található ezen a CCD-n, így a képméret és a látómező hasonló az én otthoni felszerelésemhez.

A hálózat üzemeltetői szerint ezzel a távcsővel készült az a kép is, melyen valaha amatőr csillagászok által lefotózott legtávolabbi objektum, egy bizonyos kvazár is látható. Nekem egyáltalán nem voltak ilyen ambícióim. Valami látómezőnek megfelelő extra galaktikus objektumot szerettem volna, amire ezekkel a paraméterekkel rendelkező felszereléssel 45 vagy 60 másodperc elég kockánként, és itthonról semmi esélyem sem lenne a megfigyelésükre. Így esett a választásom először a Fornax (Kemence) csillagképben található NGC1365-re. Mielőtt azonban elkezdtem volna a sorozatot, szerettem volna pár próba felvételt készíteni, melyen az expozíciós időt szerettem volna belőni, továbbá kíváncsi voltam hogyan is fest a látómezőmben. Ekkor jött az első kellemetlen meglepetés. A távcső úgy állította be az objektumot, hogy a galaxis karja éppen érintette a látómezőt. Azt láttam, hogy a becsült expozíciós időn egy kissé emelni kell. Az új beállításokkal készült képen már csak a galaxis fele volt látható. Ilyenkor milyen jó lenne egy lehetőség, amivel a megfelelő kompozícióhoz a megfelelő helyre noszogathatnám a galaxist, ahogyan ezt otthon már megszokhattam. Az itelescope.net viszont erre nem ad lehetőséget. Vagy legalábbis én nem tudok róla. Kissé csalódottan vettem tudomásul, hogy erről a szépséges galaxisról ma már nem lesz fotó. Visszaigényeltem a pontokat, amiket elhasználtam. Ezt később vissza is kaptam. Egy galaxist hát lehúztam a listámról. Abban bíztam, hogy az ég egy másik területén talán nagyobb sikerrel járok. A Stellarium programmal gyorsan egy pillantást vetettem az égre, és megállapítottam, hogy az NGC613 a Sculptor (Szobrász) csillagképpen éppen megfelelő magasságban van az ausztrál égen. Azt már tudtam, hogy a kép kompozíciójába semmi beleszólásom nem lesz, sőt örülhetek, ha a galaxis nem lóg le. A próbafelvételen látszott, hogy itt is csak elégségesnek mondható, ahogyan az objektumra ráállt a távcső. Belenyugodtam az eredménybe, mert képeket szerettem volna már rögzíteni, és kiadtam az utasítást a távcsőnek. Majd folytattam aznapi munkám.

NGC613

NGC613-20131206-ttk

2013-12-06 – Siding Spring Observatory – 20 x 45 sec light

iTelescope.net T17 – Corrected Dall-Kirkham Astrograph – 43 cm,  f/6.8 Ritchey-Chretien tükrös teleszkóp – FLI ProLine PL4710 CCD kamera

A galaxisról részletes leírás itt olvasható.

Az NGC613-ról csak 20 x 45 másodperces felvételt készítettem. Ennyire adtam csak ki az utasítást ugyanis a távcsőnek. A felvételek elindítása után annyira lefoglalt a munka, hogy csak órákkal később döbbentem rá, a program már régen lefutott. Letöltöttem a nyers képeket, és hazaindultam. Az estét családom társságában töltöttem el, és lefekvés előtt még kimentem, hogy rápillantsak az égre. Ahogyan ezt jósolták is, észlelésre egyáltalán nem volt alkalmas. Miközben a kabátomat fejtettem le magamról elfogott a kíváncsiság a 20 felvétellel kapcsolatban. Leültem hát, hogy feldolgozzam. Órákat töltöttem még a monitor előtt, és éjfélig simogattam az anyagot. Ekkor éreztem először, hogy kihoztam belőle azt, amit kitudok. A monitoromról visszanézett az NGC613 megmutatva szépségéből annyit, melyet a rászánt idő és a műszerek képessége megengedett. A képet sajnos meg kellett vágnom, ugyanis a galaxis nagyon a szélére sikerült. Utólag kellett keresnem egy kompozíciót, mely nekem is tetszett. Lassan ideje volt már lefeküdni, mert másnap munkanap volt megint. Nincs is kegyetlenebb egy hat napos hétnél! Miközben lassan elmerültem az álmok birodalmában, még azon töprenget mit is tegyek a maradék pontjaimmal. Még hajtott a furcsa izgalom, és elhatároztam a következő célpont egy másik különleges galaxis lesz, de immáron egy másik műszerrel.

Szombat

t9-itelescope-net

Nem túl barátságos dolog, amikor az ember szombaton egy csörgő vekker hangjára ébred. Ez azonban nem volt szokásosnak mondható szombat. Egyfelől egy újabb munkanap várt rám, másrészt annak ígérete, hogy amennyiben az ég engedi egy újabb Seyfert típusú galaxis kerül távcsővégre. Indulás előtt még megnéztem az előrejelzéseket, és ígéretesnek tűnt. A Siding Spring obszervatórium környékére derültet ígértek. Az utazás a munkahelyig eseménytelen volt, és gyors. Az emberek nagy része, ahogyan ez normális is egy szombati napon, egyáltalán nem sietett munkába, ha egyáltalán ment. Elmerültem aznapi feladatomban, és ez nagyban segített abban, hogy ne a közelgő fotózáson járjon az eszem. Azért egy böngészőben nyitva tartottam az itelescope.net oldalát, és néha ellenőriztem az időjárási viszonyokat.

Végre besötétedett, és még mindig derült volt az ég. A T9-es távcső szabad volt, mely egy 32 cm-es f/9.3 Ritchey-Chretien tükrös távcső. Egészen pontosan f/7.4 a fényereje, ugyanis fókusz reduktorral van ellátva. A képek rögzítésére egy SBIG ST8 XME CCD kamerát szereltek rá, mellyel 1530 x 1024 pixeles képeket készít.

Gyorsan számoltam, és a megmaradó pontjaimmal nagyjából 50 perc állt már csak a rendelkezésemre ezzel a műszerrel. Kiadtam hát az utasítást 50 darab 1 perces felvétel elkészítésére az NGC1097-ről. Az első képeket megnézve megállapítottam, hogy ennek a berendezésnek sem sikerült tökéletes pontossággal ráállni a galaxisra. Azonban használhatónak ítéltem meg a nyersanyagot, így hagytam hát, hogy elkészítse az 50 felvételt a rendszer. Közben folytattam napi munkámat.

NGC1097

NGC1097-20131206-ttk

2013-12-07 – Siding Spring Observatory – 50 x 60 sec light

iTelescope.net T9 – 32  cm f/9.3 (f/7.4 fókusz reduktorral) Ritchey-Chretien tükrös távcső – SBIG ST8 XME CCD

Az NGC1097 (Arp 77) küllős spirál galaxis a Fornax (Kemence) csillagképben található tőlünk 45 millió fényévre. A fényessége 10.2 magnitúdó, míg legnagyobb látszólagos kiterjedése 9.3 ívperc az égen. Úgynevezett aktív galaxis maggal (Active Galactic Nucleus – AGN) rendelkezik. Az NGC1097 a spirál galaxisok 1 százaléknyi kissebségét alkotó a Seyfert galaxisok közé tartozik. Magjában egy becslések szerint 100 millió naptömeggel rendelkező fekete-lyuk felelős az aktivitásért. Összehasonlításképpen a Tejút csak egy szerény mindössze néhány millió naptömegű fekete-lyukkal rendelkezik. Akárcsak az NGC613-nál, a magot itt is egy gyűrű alakú igen aktív csillagkeletkezési terület veszi körbe, melynek mérete nagyjából 1000 pc. Érdemes egy pillantást vetni a HST felvételére, melyen nagyszerűen látszik ez a formáció.

ngc1097-hubble-mag_kornyeke_mini

Gyűrű alakú csillagkeletkezési régió a HST felvételén az NGC1097 magja körül

Igen erőteljes a küllők felépítése, és markáns a magnál 90 fokban elcsavarodó porsávok szelik keresztül ezt a rögbi labda alakú területet annak hosszanti tengelye mentén. Kevésbé hangsúlyos sötét sávok is megfigyelhetőek ezen a területen, melyek megkevert levesben kifelé spirálozó cérnametéltként ölelik körbe a magot. A küllők végén induló karok igen cingárak a galaxis egészéhez képest, melyeket néhol fényesebb régiók pöttyöznek. Az arányok engem a csiborra emlékeztetnek, ahol a masszív felépítésű testhez képest az ízelt lábak igen csak vékonykák.

Ennek a csillagvárosnak két szatellit galaxisa is van. Ebből az egyik, a felvételen is nagyszerűen látszó, tőle 42000 fényévre lévő NGC1097A jelű törpe elliptikus galaxis. A két galaxis között igen intenzív kölcsönhatás zajlik, és éppen megfigyelhetjük azok összeolvadását. A nagyobb fél alakját eltorzítja a kisebb partner, miközben feláldozza magát. Nem egy békésen randevúzó párt láthatunk a kozmikus étteremben, mert ezen a vacsorán a kísérő a főfogás. Az NGC1097 másik társa, az NGC1097B a felvételemen nem látható. Egy roppant halvány irreguláris galaxisról van ugyanis szó, amit az NGC1097 HI emissziós vizsgálatakor vettek észre. Nagyon hosszú expozíciós felvételeken felfedezhetőek a magból kiinduló jet-ek is, szám szerint négy.

ngc1097-jets

Jet-ek az NGC1097 körül – Robert Gendler felvétele

Ezeket csillagok alkotják a különböző tartományokban felvett színképek tanúsága szerint. Továbbá nem sikerült atomos hidrogént sem kimutatni bennük. Ez utóbbi miatt valószínűtlen, hogy az NGC1097 korongjából származna az anyag, melyet az árapály erők szakítottak ki. A legvalószínűbb, hogy ez egy olyan törpe galaxis maradványa, amit darabokra szaggatott az NGC1097 néhány milliárd éve. Az alakzat szimulációk szerint úgy jöhetett létre, hogy az áldozat keresztül haladt a nagy galaxis korongján.

Ebben az esetben is csak a nap végén töltöttem le a képeket a munkám végeztével, de még átfutottam a képeket mielőtt hazaindultam, hogy megkezdjem az igen csak rövid hétvégét. Meglepődtem, hogy mennyi felvételen látható kis fényes csíkocska, vagy pont, melyet valószínűleg kozmikus sugárzás keltett. Szerencsére ezek az összegzés folyamán eltűntek, de az első futtatás után már látszott két dolog: egyfajta finom furcsa zaj terhelte a képet, továbbá itt is vágnom kell majd a megfelelő kompozíció előállításához. Hagytam pihenni az anyagot, és csak vasárnap éjszaka, illetve hétfő éjszaka dolgoztam fel a felvételeket.

Pár gondolat a végére

Összességében elmondható, hogy nagyszerű kaland volt ezekkel a távirányítású műszerekkel felvételeket készíteni. Mondom ezt azért, mert ezek az eszközök igen komoly teljesítménnyel rendelkeznek a sajátoméhoz képest. Már viszonylag rövid expozíciós időkkel meglepően sok fényt gyűjtenek össze. Azt azért hozzá kell tennem, hogy amennyiben még egyszer fotóznám a két galaxist, akkor készítenék ennél rövidebb, és hosszabb felvételeket is, hogy a kettőt kombinálva még több részletét előcsalogathassak. Ezek az eszközök több lehetőséggel rendelkeznek, mint amiket én ki tudtam aknázni. De végül is, ez csak első próbálkozásom volt. Nagyszerű volt a kaland azért is, mert tőlünk egyáltalán nem, vagy nehezen észlelhető számomra érdekes objektumokat örökíthettem meg.

Nem éreztem azonban a közvetlenséget, és nem éreztem, hogy teljesen a kezemben lenne az irányítás. Hiányzott egyfajta kapocs. Nem voltam ott az ég alatt, és nem emelhettem pillantásom a mindenség felé. Valami nem volt meg, ami kell a lelkemnek.

Fogom-e még használni ezeket a távcsöveket? Valószínűleg, mert nagyszerű lehetőségek rejlenek bennük. Csak biztatni tudok másokat is, hogy amennyiben módja van rá, tegyen egy próbát velük. Ami azonban biztos, hogy nem fogom hagyni a sarokban porosodni saját távcsövemet, és megyek az ég alá, amikor csak tehetem.