Az NGC5363 és NGC5364 galaxis páros – Az NGC5363 galaxis csoport

NGC5364-NGC5363-LRGB-20200513-T11-600s-TTK

Az NGC5364 spirál galaxis (balra) és az NGC5363 lentikuláris galaxis (jobbra) párosa

(Az NGC5363 galaxis csoportról készített fotóm kivágott részlete)

iTelescope.net T11 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI ProLine PL11002M CCD camera

A felvételek 2020-05-14 és 2020-05-20 között készültek – Új-Mexikó (Mayhill közelében) – 24 x 600 sec L (bin2), 10 x 600 sec R,G,B (bin2)

A Polaris Csillagvizsgálóban pár éve vettem át a „kisszakkör” vezetését, melyet a Magyar Csillagászati egyesület a 8-12 éves korosztály számára tart. A szakköri foglalkozásokra a tanévben szerdánként került sor. A COVID-19 helyzet miatt 2020 tavaszán a csillagvizsgálót is be kellett zárnunk. A sorozatnak így végé szakadt.

A tematikában éppen a galaxisok kerültek volna terítékre. Optimistán, bízva az újranyitásban, elkezdtem frissíteni a prezentációimat. Ezt egyébként is rendszerese megteszem, mikor felkészülök a következő foglalkozásra. A csillagászatban mindig vannak új eredmények és aktualitások. Mivel a szakkörök elmaradtak, így azokat az órákat arra használtam fel, hogy több anyagomat is átírtam, átszerkesztettem.

A gyűjteményemből nagyon hiányzott egy olyan illusztráció, ami szemléletesen megmutatja a spirál galaxisok és a lentikuláris/elliptikus galaxisok közötti különbségeket. Mindezt egyetlen fotón, hogy ne kelljen a diák között oda-visszaváltani. Ekkor merült fel bennem, hogy miért ne választhatnék olyan célpontokat a következő digitális észleléshez, ami egyben megfelel ennek az elvárásnak. Miért ne készíthetnék magam is ilyen asztrofotót?

Már csak a megfelelő jelöltet kellett kiválasztanom. Ebben nagy segítségemre voltak saját jegyzeteim, melyeket a korábbi megfigyelésekhez írt cikkekhez készítettem. Nem mindig használom fel ezeket az anyagokat, de gyakran merítek belőle újabb ötleteket. Most is így történt.

Merre találhatók ezek a galaxisok? Mit érdemes tudni róluk? Ismerkedjünk meg először röviden a Kozmosz legnagyobb struktúráival, hogy el tudjuk helyezni a látottakat!

Galaxishalmazok és kozmikus ritkulások

A világegyetem nagy léptékű szerkezete leginkább kusza pókhálóra hasonlít. A galaxisok, galaxis csoportosulásokba, galaxishalmazokba, szuperhalmazokba tömörülnek e gigantikus szálak mentén.

Ezek a definíciók a halmaztagok között lévő gravitációs kapcsolaton alapulnak, melyek különböző skálán működnek. A galaxis egy gravitációsan kötött rendszer. Gáz, por és csillagok milliói vagy milliárdjai alkotják. Ezt hierarchiában a galaxiscsoportok követik, melyek általában néhány tucat tagot számlálnak. A több száz vagy ezer galaxist tartalmazó galaxishalmaz egy ennél is nagyobb gravitációsan kötött objektum, ahol a kölcsönös vonzóerő elég erős ahhoz, hogy még a kozmikus tágulás sem fogja majd eltávolítani egymástól a galaxisokat.

A legközelebbi masszív galaxishalmaz a Virgo galaxishalmaz. Távolsága 16.5±0.5 Mpc (Mei és mások – 2007), vagyis 54 millió fényév. Becslések szerint 1500-2000 tagot számlál, melyek az égbolt közel 8 fokos területén oszlanak el. A halmaz átmérője 4.4 Mpc, ami 14.3 millió fényévnek felel meg (Fouqué és mások – 2001). Ez alig valamivel nagyobb, mint a Tejútrendszerünkkel együtt nagyjából 50 galaxist magában foglaló Lokális Csoport mérete, ami körülbelül 3 Mpc (10 millió fényév). Azonban, míg eme utóbbi tömege 2.3±0.7×1012 M (Peñarrubia és mások – 2014), addig a Virgo halmazé 1.2×1015 M (Fouqué és mások – 2001). Nagyságrendnyi különbségről van tehát szó. Nagyjából 2 billiónyi naptömeg az 1 billiárdnyi naptömeggel szemben. A Virgo halmaznak három, egyértelműen azonosítható alcsoportja is van. Ezek középpontjában az M87, az M86 és az M49 galaxis helyezkedik el. Valószínű, hogy a halmazt még mindig a formálódása közben figyelhetjük meg.

Galaxy-Clusters-around-the-Local-Group

Galaxis csoportok és galaxishalmazok a Lokális Csoport közelében.

Szerző: Andrew Z. Colvin

Az egymáshoz közeli csoportok és halmazok – melyek mindegyike gravitációs kötésben van –, egy még nagyobb struktúra gravitációs vonzásának hatása alatt állnak. Csakhogy, ott a gravitáció vonzó hatása már eltér a gravitációsan kötött rendszer csillagászati definíciójától. Ezeket hívják a csillagászok szuperhalmazoknak, melyek a világegyetem legnagyobb, galaxisokat tömörítő struktúrái.

Valójában nem is olyan egyszerű behatárolni ezeket. Évekkel ezelőtt még úgy gondolták a csillagászok, hogy a Lokális Csoport, és közel 100 másik halmaz és csoport is, a 100 millió fényév kiterjedésű Virgo Szuperhalmaz része. (Az elnevezést a legnagyobb tömegű tagja, a Virgo halmaz után kapta.) Kiderült azonban, hogy ez csak a jéghegy csúcsa. Ezek a halmazok együtt, még egy ennél is jóval nagyobb, és jól behatárolható struktúra részesei.

2014. szeptember 4-én jelent meg az a cikk a Nature-ben, melyben Brent Tully (University of Hawaii) és kutatócsapatának 8000 galaxis mozgásának megfigyelésén alapuló kutatási eredményét közölte. Az Ősrobbanás óta táguló világegyetem globális hatását figyelembe véve korrigálták a mért eredményeket, és ebből megkapták, hogy miként hatnak pusztás a galaxisok gravitációsan egymásra. Egy háromdimenziós térképet alkottak, mely teljesen újradefiniálta a szuperhalmazok fogalmát. A földrajzban is ismert vízválasztó vonalakhoz hasonló analógiával élve, a galaxisok csoportjai különböző gravitációs vonzócentrumok irányába igyekeznek, akárcsak a víz egy vízválasztó vonal két oldalán. Jól elhatárolható felületek vannak a világegyetemben, melyek egyik oldalán az egyik, míg a másik oldalán egy másik ilyen vonzócentrum felé mozognak a galaxisok, illetve azok csoportosulásai.

Mintegy 100 ezer társával egyetemben Tejútrendszerünk, a közel 160 Mpc (520 millió fényév) kiterjedésű Laniakea vagy más néven a Lokális szuperhalmazhoz tartozik. E szuperhalmaz összes galaxisa, legyen az magányos, vagy valamilyen kisebb csoport, esetleg népes halmaznak a tagja, mind a „Nagy Vonzó” („Great Attractor”) felé mozog. Tehát, a Lokális Csoport éppúgy részt vesz ebben a kozmikus áramlásban, mint a masszív Virgo halmaz.

A Laniakea szuperhalmaz. Azokat a filamenteket (szálakat), melyek mentén a galaxisokat összegyűjtötték a szerzők, és amely mentén a galaxisok együtt mozognak, halványkék színnel lettek jelölve. A vörös és fekete galaxisok különböző áramlásokhoz tartoznak. A videóban a Tejútrendszerünk van az origóban (zöld pötty), mely a feketével jelölt áramlásban vesz részt. Mint az látható, mi az ekképpen definiált Laniake szuperhalmaz külső peremén lakunk. A Lokális szuperhalmazban pedig különböző színekkel jelölték azokat a területeket, ahol a galaxisok sűrűbb, historikus csoportosulásai találhatók. Évtizedeken keresztül a csillagászok úgy vélekedtek, hogy mi a zöld régióval jelölt szuperhalmaznak vagyunk a részei. De kiderült, hogy ez is csak „kis szelete” valami sokkal nagyobbnak. A Laniakea hawaii nyelven mérhetetlen mennyet, mérhetetlen eget jelent. Ezzel az elnevezéssel próbálták a kutatók érzékeltetni, hogy milyen hatalmas struktúráról is van szó a világegyetemben. A 2014-ben Tully és kutatótársai által bevezetett új szuperhalmaz fogalom sokkal egyértelműbbé tette, hogy hol találhatóak eme grandiózus kozmikus képződmények határvonalai.

Forrás: R. Brent Tully, Helene Courtois, Yehuda Hoffman és Daniel Pomarède (Nature, vol 513, number 7516, p71 – 4 September 2014)

Laniakea-supercluster-TULLY

A Laniakea szuperhalmaz, és az új definíción (a galaxisok konvergáló mozgásán) alapuló, a Laniakea-t körülvevő szuperhalmazok. A kék pötty a Tejútrendszer pozícióját jelöli a szuperhalmazban.

Forrás: R. Brent Tully, Helene Courtois, Yehuda Hoffman és Daniel Pomarède (Nature, vol 513, number 7516, p71 – 4 September 2014)

A galaxisok, galaxishalmazok, szuperhalmazok kusza rostos hálózata mellett, legalább annyira érdekesek az ezeket elválasztó hatalmas ürességek. Azt is mondhatjuk, hogy a Univerzum buborékos szerkezetű, melynek „falain” helyezkednek el a galaxisok, illetve a korábban említett halmazok, szuperhalmazok. Pontosabb azonban, ha ezeket az ürességeket, inkább ritkulásoknak (Cosmic Void) nevezzük. A Világegyetem ezen területei ugyanis nem teljesen üresek. Bennük is találkozhatunk galaxisokkal, galaxishalmazokkal, de szignifikánsabban kevesebbel. A legközelebbi ilyen hatalmas „üreg”, a Lokális Ritkulás (Local Void) határa éppen extragalaktikus szomszédságunkban húzódik.

A Lokális Ritkulás létezését 30 évvel (1987) ezelőtt ismerte fel Brent Tully és Rick Fisher.  Tully és munkatársainak vizsgálata alapján a Lokális Csoportnál kezdőd ritkulás nagyjából 45-60 Mpc (150-200 millió fényév) kiterjedésű. Továbbá, centrumának távolsága legalább 23 Mpc-re (75 millió fényévnyire) van tőlünk. Meg kell jegyeznem azonban, hogy pontos kiterjedését a mai napig viszonylag nagy bizonytalanság övezi.

Laniakea-Local_Void1

Kozmikus áramlások és sűrűsödések a Laniakea szuperhalmazban. Ebben a metszetben jól látszik, hogy a Lokális Sűrűsödés elnyúlik egészen a Virgo galaxishalmaz mögé. A galaxisok kiáramlása a ritkulásból teljesen evidens ebben a nézetben.  Forrás: Hélène M. Courtois, Daniel Pomarède, R. Brent Tully, Yehuda Hoffman, Denis Courtois

A vizsgálatok tanúsága szerint a Lokális Ritkulás tágul. A Lokális Csoport és a környező galaxisok alkotta fal (Local Sheet) távolodik a ritkulás centrumától. Úgy tűnhet, mintha az „üresség” taszítana minket. A helyzet azonban nem ez. Arról van szó, ahogy azt már fentebb említettem, hogy a galaxisok mozgásából levonva a világegyetem tágulásának hatását, azok összeáramlása, koncentrációja figyelhető meg a Világegyetemben. Mindez meghatározott vonzócentrumok irányába történik, és a jelenség a gravitációnak köszönhető. De nemcsak e masszív képződmények játszanak fontos szerepet az egészben, hanem ellenpárjaik, a ritkulások is. A korábban említett vízválasztós példánál maradva, az is fontos tényező a víz áramlása szempontjából, hogy van-e magas hegy a közelben. A ritkulások pedig magas, meredek falú hegyeknek tekinthetők, ahol gyorsabban igyekszik a víz a völgybe. Vagyis, ezek közelében a helyi csoportok gyorsabban mozognak az „alacsonyabban fekvő”, vagyis a sűrűbb régiók felé, mint azt egyébként tennék. A nettó hatást pedig úgy érzékeljük, mintha a ritkulás „eltaszítaná” magától, a vonzócentrum pedig „húzná” maga felé a galaxisokat, és ennek a kettőnek a hatás pedig a tőlük való távolság függvényében összeadódik. A Lokális Ritkulást ugyan szinte teljesen galaxisok veszik körül, de ezek eloszlás nem egyenletes. Van olyan része, ahol szinte „semmi sincs”, erről a környékről így még több anyag képes távozni. Az analógiát tovább használva, a hegyek idővel egyre nagyobbá, kiterjedtebbé nőnek, miközben a róluk lezúduló víz a völgyekben összegyűlik. Az összeáramlással a ritkulások egyre nagyobb méreteket öltenek, és pontosan ez az, ami a Lokális Ritkulással is történik.

Egy 2017-es publikáció szerint létezik egy sokkal „meghatározóbb” ritkulás is, ami mintegy „eltaszít” minket magától. Így megoldás kínálkozik a Lokális Csoportnak a kozmikus mikrohullámú háttérsugárzáshoz viszonyított túlságosan nagy sebességére. Azonban, ezzel a mostani cikk keretein belül nem foglalkozom, mert nem egy átfogó kozmológiai cikk megírása volt a célom. Kizárólag a Lokális Ritkulásra koncentrálnék. Akit mégis érdekel a téma, annak Yehuda Hoffman, Daniel Pomarede, R. Brent Tully, Helene Courtois: The Dipole Repeller című cikkét ajánlom a figyelmébe, ami az arxiv.org-on szabadon elolvasható. A Nature-ben megjelent változat fizetős. Illetve, aki csak pár percet szánna rá, annak itt egy rövid kis videó.

Okkal emeltem ki külön a fentiekben a Virgo galaxishalmazt és a Lokális Ritkulást. Ezek nemcsak remek példái a Világegyetem galaxisokkal zsúfolt, illetve üresebb térségeinek, de a további mondandóm szempontjából is fontos szerepük lesz.

Galaxisok fonala a Lokális Ritkulás peremén és a Virgo galaxishalmaz között

Az elmúlt évtizedek teljes égboltra kiterjedő távcsöves felméréseinek hála, manapság már rengeteg galaxis radiális (látóirányú) sebességét és távolságát megmérték a csillagászok. Ezek a tömeges adatok, ahogy ezt fentebb is említettem, lehetőséget adnak arra, hogy a szakemberek megállapíthassák, a galaxisok látszólagos radiális mozgása (a valóságban ezt lehet csak mérni) mennyiben származik a tér tágulásából, és mennyiben egy halmazon vagy csoporton belüli lokális gravitációs hatás okozta mozgásából. A távolságok és a galaxisok pekuliáris mozgásának ismerete remek eszköz a csillagászok kezében, hogy feltérképezzék a masszív vonzócentrumokat és a ritkulásokat a Világegyetemben. (A galaxis pekuliáris sebessége alatt, az univerzum izotropikus tágulása miatti mozgáshoz viszonyított sebessége értendő, amit a Hubble áramlás ír le. Hubble áramlás pedig a tér tágulásából származó elmozdulása az anyagnak.)

Igor D. Karachentsev, Valentina E. Karachentseva és Olga G. Nasonova 2014-ben publikálták azt a cikket (Galaxy motions in the Bootes strip), melyben alaposan szemügyre vetették az általuk Bootes Sávknak (Bootes Strip) nevezett égterületet. A szerzők a Lokális Ritkulás és a Virgo halamaz között elhelyezkedő, szétszórt galaxisok alkotta Bootes Szálat (Bootes Filament) vizsgálták a galaxisok kinematikáján és elhelyezkedésükön keresztül. Tették mindezt azért, hogy következtetéseket vonhassanak le a Virgo halmaznak és a Lokális Ritkulásnak a környezetükre gyakorolt hatásáról.

Bootes-Strip-Stellarium-01-mark2

Az égboltnak azon szelete, melyet Karachentsev és munkatárai átvizsgáltak. A Bootes Sáv (Bootes Strip) galaxisai, a halvány vörössel megjelölt égterületen helyezkednek el.

Olyan galaxisokat választottak ki, melyek radiális (látóirányú) sebessége 2000 km/s-nál kisebb volt. A kutatásban összesen 361 galaxist használtak fel mintaként. Megállapították, hogy ezek 56%-a nem magányos csillagrendszer, hanem csoportokat és párokat alkotnak. Egészen pontosan, 13 galaxis csoportról és 11 párról van szó. A 700 km/s és 1300 km/s radiális (látóirányú) sebességű galaxisok legtöbbje a sáv nyugati oldalán helyezkedik el, a Virgo halmaz szomszédságában. E nyugati galaxisok legtöbbje a Virgo halmaz erős gravitációs hatása alatt áll, vagyis annak középpontja felé mozog.

Bootes-Strip-1

Az ábra a galaxisok radiális (látóirányú) sebességét mutatja a Bootes Sávban. 14h környékén látható körív rész (zero velocity surface) választja el a Virgo halmaz centruma felé mozgó galaxisokat azoktól, melyek részt vesznek a kozmosz tágulásban. Ennek a körnek a sugara 7.2 Mpc (23.5 millió fényév) vagy 25 fok az égbolton (Karachentsev és mások – 2014). Ábra forrása: Karachentsev és mások – 2014

A Bootes Sávban a galaxisok eloszlásának egyik legmeghatározóbb sűrűsödése az NGC5846 kompakt csoport. Korábbi becslések szerint körülbelül 250 darab -12 magnitúdónál (MR) is nagyobb abszolút fényességű tagja lehet (Mahdavi és mások – 2005) ennek a halmaznak. Az NGC5846 csoport két alcsoportból áll össze a röntgen tartományban végzett megfigyelések tanúsága szerint. A tagok jellemzően két meghatározó galaxis körül, vagyis az NGC5846 és az NGC5813 elliptikus galaxis körül gyülekeznek. Mindazonáltal, a kinematikai jellemzők megkülönböztetnek egy másik alcsoportot is az NGC 5846 mellett. 9 galaxist az NGC5838 lentikuláris galaxis gravitációja ural.

Bootes-Strip-6

Az NGC5846 és az NGC5746 galaxis csoportok közeli nézete a Bootes Sáv régióban. A csoportok tagjait vonalak kötik össze a domináns galaxissal. Ábra forrása: Karachentsev és mások – 2014

A Bootes Sáv 361 galaxisából álló mintából csak 161 galaxis (45%) esetében volt ismert a távolságérték. Ezekre építve állapították meg, hogy ezek a csillagrendszerek 17 és 27 Mpc (55.4 és 88 millió fényév) között helyezkednek el. Hozzávetőleg 2/3-uk távolsága a 25 ± 5 Mpc (82 ± 16 millió fényév) tartományba esik. Fontos megjegyezni, hogy a legtöbbjüknek a távolsága a Tully-Fisher reláción alapuló érték, melynek pontossága körülbelül 20%. Ennek vonzata, hogy a látóirányú vastagsága a Bootes Szálnak összemérhető a tipikus távolságmérési hibával. Mégis, az adatokból ki tudták következtetni, hogy a Bootes Szál galaxisainak nagy része távolabb van tőlünk, mint a Virgo halmaz. Továbbá, hogy enyhén ívelt, és a csillagrendszerek távolsága folyamatosan csökken a Virgo halmaz felé. Sikerült pontosítaniuk a Virgo halmaz attribútumait is, és egyértelműen kimutatták, hogy ennek a hatalmas halmaznak a gravitációja miként vonzza maga felé a környező galaxisokat. Ugyanakkor, a Lokális Ritkulás pontos kiterjedése és centrumának pozíciója még további vizsgálatokra szorul.

Bootes-Strip-4

A Bootes Szálnak a Virgo halmazhoz és a Lokális Ritkuláshoz képesti pozícióját mutatja az ábra. A megfigyelő a diagram bal alsó sarkában helyezkedik el (LG, Lokális Csoport). A nyilak a Virgo halmaz gravitációs vonzásának, és a Lokális Ritkulás (korábban említett) taszító hatását reprezentáló vektorok. Látható, hogy ezek eredője a Bootes Szál különböző részén más és más. A Virgo halmaz körüli körív (zero velocity surface) választja el a Virgo halmaz centruma felé mozgó galaxisokat azoktól, melyek részt vesznek a kozmosz tágulásban. Ennek a körnek a sugara 7.2 Mpc (23.5 millió fényév) vagy 25 fok az égbolton (Karachentsev és mások – 2014). Ábra forrása: Karachentsev és mások – 2014

Az NGC5363 csoport galaxisai

NGC5363GG-LRGB-20200513-T11-600s-TTK

Az NGC5363 csoport galaxisai

iTelescope.net T11 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI ProLine PL11002M CCD camera

A felvételek 2020-05-14 és 2020-05-20 között készültek – Új-Mexikó (Mayhill közelében) – 24 x 600 sec L (bin2), 10 x 600 sec R,G,B (bin2)

Karachentsev és szerzőtársai a Bootes Sáv galaxisainak morfológiai besorolását külön is elvégezték, és nem csupán az égbolt felmérő programok keretében született katalógusok adataiból dolgoztak. Az egyes csillagrendszereket három nagy populációba osztották be: korai, köztes, és késői típus.

Bootes-Strip-2

A Bootes Sáv galaxisainak morfológiai besorolása: korai (Early types), köztes (Intermediate types), és késői (Late types) típus. Ez az ábra volt nagy segítségemre a fotó témájául szolgáló csoport kiválasztásában. Ábra forrása: Karachentsev és mások – 2014

A korai típusú galaxisok vörös árnyalatúak, erősen koncentráltak és kerek/elliptikus alakúak. A késői típusú galaxisok ellenben kékes árnyalatúak, alacsony koncentrációjúak, és domináns a galaktikus korongjuk. A köztes típusú galaxisok, ahogy a nevük is mutatja, az átmenetet képviselik. Vöröses színűek, közepes koncentrációjúak és van galaktikus korongjuk.

Hubble_-_de_Vaucouleurs_Galaxy_Morphology_Diagram-mini

Ma már tudjuk, hogy a Hubble-de Vaucouleurs galaxis morfológiai diagrammon a galaxisok fejlődése nem a balról jobbra irányt követi (elliptikus, lentikuláris, spirál galaxisok). Azonban, a korai elképzelések miatt, ma is használják a korai, köztes, késői típus kifejezéseket a csillagászok.

Felhasználva Karachentsev csapatának ábráját, átnéztem az Interneten elérhető STScI Digitized Sky Survey felvételeit az egyes csoportokról. Kimondottan olyat kerestem közöttük, ahol az égbolt viszonylag szűk területén a fent említett galaxis populációk vegyesen fordulnak elő. Alaposabban megnézve az említett ábrát, láthatóan csak kevés számú csoport vagy galaxis páros felelt meg ennek a kritériumnak. Ezek közül számomra az NGC5363 galaxis csoport volt az „első látásra szerelem”. Pontosan valami ilyesmit kerestem: prominens lentikulásris és spirál galaxis párosa egyetlen látómezőben, ahol az utóbbi korongjára ferde szögben látunk rá.

Az rögtön kiderült számomra, hogy az össze tagot nem tudom majd egyetlen képen megörökíteni. Például az NGC5363 centrális lentikuláris és a valamivel kisebb látszólagos méretű NGC5300 spirál galaxis távolsága az égen kb. 2.3 fok. A bérelni kívánt távcső látómezője pedig ennél jóval kisebb volt. Arra törekedtem, hogy a legtöbb nagyobb méretű halmaztagot „rápréselhessem” a felvételre. Ennek megfelelően kalkuláltam ki a távcsőnek megadott égi koordinátákat.

NGC5363GG-LRGB-20200513-T11-600s-TTK-annotated

A látómező azon galaxisai, melyek az NGC5363 galaxis csoporthoz tartoznak

Objektum RA (2000.0) DEC Magnitúdó (NED – Bt) Távolság (Mpc)** Morfológiai besorolás*** Szerepel a felvételen?
NGC5300 J134816.0+035703 13.6 21.6 tf Sc Nem
PGC1283560 J135143.0+052647 16.2   dE Nem
UGC08799 J135319.8+054618 16.32 12.1 sbf dE Nem
NGC5348 J135411.2+051338 14.18 19.8 tf Sc Igen
NGC5356 J135458.4+052001 13.63 19.5 tf Sb Igen
PGC1277985 J135502.7+050525 17.1   dEn Igen
PGC1279452* J135504.5+051122 17.18 14.8 TF BCD Igen
NGC5360 J135538.7+045906 14.8 21.5 TF Sm Igen
NGC5363 J135607.3+051517 11.1 16.6 TF S0 Igen
AGC232142 J135609.4+053234 17.38 15.1 TF Ir Nem
NGC5364 J135612.0+050052 11.19 19.5 tf Sbc Igen
SDSSJ13562 J135621.3+051944 17.37   dE Igen
UGC08857 J135626.6+042348 15.26   Sab Nem
PGC049602 J135655.6+050907 15.82   dEn Igen
PGC1266441 J135714.1+041826 17.1   Sm Nem
PGC1285591 J135723.6+053427 16.3   Sph Nem
UGC08986 J140415.9+040644 15.03   dEn Nem

Az NGC5363 galaxis csoport tagjai (Karachentsev és mások – 2014). Megadtam a koordinátákat, amennyiben az olvasó is meg szeretné figyelni őket. Feltüntettem továbbá az integrált (B szűrővel mért) fényességüket, nem a vörös eltolódáson alapuló távolság adatukat (amennyiben szerepelt ilyen), a morfológiai besorolásukat. Továbbá megjelöltem, hogy szerepelnek-e a felvételemen.

* Karachentsev és munkatársainál AGC232141, én a PGC-ben (Principal Galaxies Catalogue) szereplő azonosítóját tüntettem fel itt.

** Különböző távolságmeghatározási módszerekkel kapott értékek: sbf (surface brightness fluctuations) – a galaxis felületi fényesség fluktuációján alapuló módszer; tf/TF: A Tully-Fisher reláción alapuló módszer (TF: Karachentsev és szerzőtársai által elvégzett távolságmérés)

*** Karachentsev és munkatársai szerint

Az NGC5363 galaxis csoport a Bootes Szál Virgo halmazhoz közeli részén helyezkedik el. Annak gravitációs hatása alatt áll, így tulajdonképpen inkább a Virgo halmaz egyik nyúlványának tekinthető. Megnézve a fenti táblázatot szembetűnő, hogy a nagyobb halmaztagok szinte mind spirál galaxisok: NGC5364, NGC5356, NGC5348, NG5300 (nem szerepel a felvételemen). Kivételt képez az NGC5363 központi galaxis, mely a lentikuláris galaxisok egyik szép példánya. A kisebb méretűek inkább a törpe elliptikus galaxisok, vagy ahogy újabban nevezik őket törpe szferoidális galaxisok (Kormendy és Bedner felvetése alapján), illetve az irreguláris galaxisok közé sorolhatók be.

Mielőtt rátérnék a spirál galaxisok és a lentikuláris galaxisok közötti különbségek ismertetésére, vagyis amiért maga a kép illusztráció gyanánt készült, hadd emeljek ki külön két galaxist. Ez a kettő számomra két külön izgalmas csemege. Bár mind a kettő megjelenésében már elsőre is van valami különös, de talán mégsem ezeken akad meg elsőre az ember szeme a felvételen. Izgalmas mellékszereplői a csoportról készült fotónak. Az egyik ezek közül az NGC5360, melynek megjelenése ugyan irregularitást mutat, azonban Karachentsev-ék szerint ez egy spirál galaxis, melynél teljesen hiányzik az úgynevezett központi dudor (bulge). A másik személyes apró kedvencem a felvételen a PGC1279452, ami egy kék kompakt törpe galaxis (BCD – Blue Compact Dwarf). Ezeknek a szabálytalan alakú törpéknek a tömege a Tejútrendszer tömegének nagyjából a tizedét teszi ki. Masszív és forró csillagok hatalmas halmazaival teletűzdeltek, s mivel ezek magas felszíni hőmérsékletük miatt kékes árnyalatúak, így az egész galaxis kékben tündököl. Ez a helyzet a PGC1279452 esetében is. A masszív csillagok tömegüktől függően mindössze néhány millió, vagy néhány tízmillió évig léteznek. (A kisebb tömegű csillagok hosszabb ideig élnek.) Az, hogy olyan óriási számban fordulnak elő, annak a bizonyítéka, hogy csillagászati értelemben nem is olyan régen még viharos ütemű csillagkeletkezés zajlott ebben a kompakt törpében, s talán zajlik még most is. Most alatt természetesen azt a pillanatot értem, mikor is a fényük elindult felénk. Ezek a csillagrendszerek nem tartalmaznak túl sok port, sem nem túl sok fémet. A csillagászok minden elemet a hidrogénen és a héliumon túl a periódusos rendszerben fémnek neveznek. Egy csillag fémtartalmát általában a Naphoz szokták hasonlítani a kutatók. A világegyetem története folyamán, a csillagoknak hála egyre dúsabb lett fémekben. Az újabb és újabb csillaggenerációk már egyre több fémet tartalmaztak. A fémszegény BCD galaxisok megfigyelése tehát közelebb viheti a csillagászokat ahhoz, hogy megértsék milyen folyamatokban alakultak ki a Világegyetemben a legelső csillaggenerációk.

NGC5364-NGC5363-LRGB-20200513-T11-600s-TTK

A 16.6 Mpc-re, azaz 54 millió fényévre (Karachentsev és mások – 2014) lévő NGC5363 (a képen jobbra) lentikuláris galaxis. Ezt a típust gyakran átmenetnek szokták tekinteni a spirál és az elliptikus galaxisok között. A lentikuláris galaxisok alapvetően diszk alakúak akárcsak a spirál galaxisok. Nincsenek azonban spirálkarjaik, a korongban nem figyelhetők meg határozott struktúrák. Jellemző rájuk, hogy a központi dudor a galaxis korongjához képest viszonylag nagyméretű, és meghatározó a galaxis felépítése szempontjából. A Spitzer infravörös űrtávcsővel végzett megfigyelések szerint, az NGC5363 is pontosan ezt a felépítést követi: nagy méretű központi dudor és galaktikus korong.

Ugyanakkor, bizonyos lentikuláris galaxisokban, a küllős spirál galaxisokhoz hasonlóan szerkezet (az angol nyelvű irodalomban: bar) figyelhető meg. Bennük a csillagok dinamikája is nagyon hasonlatos a spirál galaxisokéhoz, ugyanis eltolva az ezek esetében érvényes Tully-Fisher reláció diagramját megkapjuk a lentikuláris galaxisokra jellemzőt.

Nem mondhatók elliptikus galaxisoknak sem, bár kétségtelenül vannak nagyon hasonlatos jegyeik. Éppen ezért, az elliptikus galaxisokat és a lentikuláris galaxisokat gyakran nem is olyan könnyű megkülönböztetni egymástól. Például, a színképük az öreg csillag populációjuknak hála alig tér el. A prominens központi dudor szintén jellemző mind a kettőre. Ezekben a csillagok mozgása véletlen eloszlást mutat. Nincs sem kitüntetett iránya, sem kitüntetett síkja a csillagok keringésének a centrum körül. Ellenben, a lentikuláris galaxisok korongjában van kitüntetett keringési irány, és a pályák is síkba rendezettek. Ez pedig, határozottan megjelenik az egész galaxis dinamikájában. Tekintve, hogy az elliptikusoknak nincs korongja, így megfigyelve a galaxison belüli mozgások jellegét, különbséget tudunk tenni a lentikuláris és az elliptikus csillagrendszerek között.

A lentikuláris galaxisokban csekély mennyiségű molekuláris gáz található, ezért alacsony bennük a csillagkeletkezési ráta. 21 cm-es rádióemissziójuk is jelentéktelen, mivel alig van bennük atomos hidrogént tartalmazó intersztelláris anyag. Az ionizált hidrogént tartalmazó HII régiók hiányában Hα sugárzásuk sem számottevő. Eme utóbbi tulajdonságok amúgy az elliptikus galaxisokra is jellemzők, azonban a lentikuláris típusúak porban viszonylag gazdagok. Röviden és általánosságban ezek mondhatók el erről a típusról. Ám nincs olyan, hogy átlagos lentikuláris galaxis, ez a példány pedig némileg ki is lóg a sorból.

Az NGC5363 csillagainak túlnyomó többsége 8.5-9 milliárd éves (az illesztett modelltől függő érték). Főként öreg sárgás és vöröses fényű fősorozati, vagy a fősorozatról mer elfejlődött csillagok alkotják. Nem véletlen, hogy ezek árnyalatok dominálnak a galaxisban. Ennek a populációnak a kérész életű masszív csillagai már réges-régen kihunytak, s velük tovatűnt a hajdani kékes ragyogásuk. A galaxis vörös és halott (az angol nyelvű szakirodalomban használatos „red and dead” után). De valóban leállt volna teljesen a csillagkeletkezés? Az UV tartományban végzett megfigyelésekkel mégiscsak sikerült fiatal csillagok sugárzását detektálni az NGC5363-ban. Bár az UV sugárzásra más magyarázat is lehetne (például post-AGB csillagok, planetáris ködök), de a galaxisban sikerült még Hα sugárzást is detektálni. Így együtt ez már elég érv amellett, hogy fiatal csillagok populációja is megtalálható ebben a galaxisban, még ha a galaxis tömegének csak néhány százalékát (kb. 2%) teszi is ki. A legvalószínűbb, hogy egy másik galaxissal történt összeolvadás, annak bekebelezése válthatta ki ezt a csillagkeletkezési aktivitást. Ekkor tehetett szert az NGC5363 arra a gázra, melyből e csillagok keletkeztek. Majd a forró fiatal csillagok sugárzása ionizálta ezt a gázt, így létrehozva a megfigyelt Hα sugárzást. E lehetséges forgatókönyv a galaxis más egyéb tulajdonságait is megmagyarázza.

Az NGC5363 megjelenését nagyban meghatározza a benne található por. Nézzük csak meg azokat a porsávokat! Bár az optikai tartományban is nyilvánvaló, de igazán az infravörös tartományban tanulmányozható alaposabban. És amit a csillagászok így találtak, az még őket is nagyon meglepte: abnormálisan sok a por az NGC5363-ban. A galaxisokban az intersztelláris port az öregedő csillagok termelik az úgynevezett AGB fázisban (Asymptotic Giant Branch – Aszimptotikus óriás ág). A csillagok életük eme késői szakaszában jelentős mennyiségű tömeget veszítenek, az időszakonként eltérő sűrűségű és intenzitású csillagszél révén. Hihetetlen tűnik, de ebben a folyamatban könnyen kezdeti tömegüknek több mint a felétől is megszabadulhatnak. Ezek a Napnál akár ezerszer is fényesebb, vöröses árnyalatú óriás csillagok szó szerint ledobják külső rétegjeiket, és ennek egy részéből kondenzálódnak ki a porszemcsék. Azonban, a megfigyelések tanúsága szerint, százszor annyi por van a galaxisban, mint amit ezek az idősödő csillagok képesek lettek volna valaha is előállítani. Honnan ez a sok por? A legvalószínűbb, hogy ez is külső eredetű, akárcsak a fiatal csillagok kialakulásoshoz szükséges gáz. De az NG5363 héjakból álló felépítése (ami jobb monitoron a fotómon is felfedezhető), illetve a csillagok mozgása a galaxisban is egy korábbi kozmikus karambolra utal.

NGC5363-HII-Figure-Finkelman

Az NGC5363 belső vidékének R-band kontur térképe, a kontimuumból kivont Hα+[NII] képe és a B−R színindex térképe. Forrás: Finkelman és mások (2010).

Gondosan megvizsgálva az NGC5363 belső vidékének kontinuum képéből kivont Hα+[NII] képét, a HII régiók térbeli eloszlása küllős spirál szerkezetre emlékeztet. A B−R színindex térkép alapján pedig elmondható, hogy az erős takarásban lévő belső küllő egy összetettebb porszerkezet része, amely követi a spirálszerkezetet és a galaxis főtengelye mentén nyúlik tovább. Az NGC5363 azon lentikuláris galaxisok közé tartozik, melyeknek szorosan feltekeredett spirálkarja van, és ezekben csillagok keletkeznek. Nem sok ilyet ismerünk! Nagyon is kilóg a lentikuláris galaxisok sorából.

Az NGC5363 továbbá a LINER (Low Ionization Nuclear Emission Region) galaxisok csoportjába tartozik. A LINER-ek a nevüket magjuknak színképe alapján kapták, amiben tipikusan gyengén ionizált atomok (egyszeresen ionizált oxigén, nitrogén, kén, stb.) keskeny vonalai figyelhetők meg, míg az erősen ionizált atomok (például kétszeresen ionizált oxigén) vonalai viszonylag gyengék. A LINER galaxisok közel sem olyan ritkák, mint az elsőre gondolnánk. A megfigyelések azt mutatják, hogy a környezetünkben (486 elemű, legalább 12.5 magnitúdós (BT) galaxismintát tekintve) minden ötödik-harmadik galaxis ilyen. Érdekes, hogy túlnyomórészt inkább elliptikus és lentikuláris galaxisok esetén figyelhető meg ez a jelenség, bár számottevő a spirál galaxisok mennyisége is. Az irreguláris galaxisok között viszont csak elvétve akad ilyen.

Máig vitatott, hogy pontosan miért látjuk ezeket az emissziós vonalakat a LINER galaxisok színképében. Már abban sincs egyetértés a csillagászok között, hogy egyáltalán miként jön létre maga a gerjesztés. Egyesek szerint az intersztelláris gázban terjedő lökéshullámok (shock waves), míg mások szerint a fotoionizáció (intenzív UV sugárzás) okozza azt. Nemcsak az ionizációs mechanizmus kérdésében oszlik meg a kutatók véleménye, de annak forrását illetőleg is. A csillagászok egyik jelentős tábora szerint, e galaxisok esetében a centrumban tanyázó szupermasszív fekete lyukak okolhatók a gáz gyenge ionizációjáért. Az NGC5363 magjában is tanyázik egy ilyen szörnyeteg, melynek tömege 3.75418 x 108 naptömeg (Saikia és mások – 2015). Míg más csillagászok véleménye az, hogy a LINER galaxisok megfigyelhető tulajdonságai nem a központi fekete lyuk „munkálkodásának” eredménye.  Szerintük, a csillagkeletkezési régiók fiatal, masszív és egyben forró csillagai gerjesztik a gázt. Vannak olyan csillagászok, akik nem az aktív galaxismagban, vagy éppen az intenzív csillagkeletkezésben látják a megoldás kulcsát. Sőt, éppen ezek hiányával magyarázzák az egészet. Az 1 milliárd évnél öregebb, előrehaladott fejlődési állapotban lévő csillagok, az aszimptotikus óriás ág elhagyása után (post AGB phase) rövid ideig elég forrók ahhoz, hogy képesek legyenek gyengén ionizálni a környező csillagközi gázokat. Az emisszió megfigyelésére pedig azért nyílik egyáltalán lehetőségünk, mert sem az aktív mag, sem a fiatal forró csillagok keltette sugárzás nem ragyogja túl azt.

Az NGC5364 távolságadatai viszonylag nagy szórást mutatnak. Ne feledjük, hogy a Tully-Fisher reláción alapuló mérések pontossága nem éppen a legjobb! A NED (NASA/IPAC Extragalactic Database) oldalán felsorolt publikációkban található távolságok két szélsőértéke között közel 10 Mpc az eltérés. Csak az utolsó nagyjából két évtized méréseinek mediánja alapján, a galaxis távolsága 18.1 Mpc (59 millió fényév). Ehhez egészen jól illeszkedik Karachentsev és szerzőtársai által közölt 19.5 Mpc (63.6 millió fényév) távolság.

A galaxis korongjára srégen látunk rá (inklinációja 47 fok). Ebben a galaxisban szemmel láthatóan ma is aktív csillagkeletkezés zajlik. Tökéletes ellentéte az NGC5363-nak. Nem vörös és halott galaxis. Sőt! Figyeljük csak meg a karok kékes árnyalatát, és a HII régiók vöröses-rózsaszínes pöttyeit, melyek a csillagkeletkezés csalhatatlan jelei.

NGC5364-B-Band-and-Ha-Band

Az NGC5364 B szűrővel (balra) és Hα szűrővel készült felvétele. Az elsőn a csillagkeletkezési gyűrű és a spirál karok, míg az utóbbin a HII régiók eloszlása rajzolódik ki tökéletesen. Forrás: Grouchy és mások (2010)

Az NGC5364 egyik szembetűnő tulajdonsága a két szimmetrikus, egybefüggő és határozott spirálkar (grand design galaxy). A galaxis SA (r) bc morfológiai besorolású (Grouchy és mások – 2010). SA, mert nincs küllője. A karok a centrumból indulnak, én nem a küllő két végéről. A bc jelzés arra utal, hogy a karok nem szorosan ölelik körbe a centrumot. Az (r) jelzés pedig azt jelenti, hogy belső csillagkeletkezési gyűrűje is van.

A csillagkeletkezési gyűrűk jelenléte a nem küllős galaxisokban máig nagy talány. A numerikus szimulációk azt mutatják, hogy a gyűrűk létrejöttében a küllőnek (bar) esszenciális szerepe van. Annak gravitációs hatására a csillagközi gáz jól meghatározott régiókban képes felhalmozódni. Léteznek olyan elképzelések, hogy valaha ezeknek a galaxisoknak is volt küllője, de az mára feloszlott, vagy csak elhalványulva beleolvadt a galaktikus korongba. Vagy éppen ott van a küllő, csak éppen megfelelő hullámhosszon kell vizsgálni a galaxist. A XX. századba készült galaxis osztályozások (de Vaucouleurs és mások – 1991, Sandage és Tammann – 1981) egyedül a B (kék) szűrős felvételek alapján készültek. A kék színtartományban jól láthatóak a gyűrűk és a spirál karok a fiatal csillagok révén. A küllő viszont sokszor észrevehetetlen ezeken a fotókon, mivel az ezeket alkotó idősebb csillagpopulációk kevésbé sugároznak a kék tartományban. Ezek megfigyelésére sokkal alkalmasabb a közeli infravörös tartomány. Nem egy galaxisban sikerült utólag kimutatni a küllő jelenlétét az infravörös felméréseknek hála.

Az NGC5364 esetében azonban máig nincs tudomása a csillagászoknak arról, hogy lenne küllője. Pár kutató azonban meg van győződve arról, hogy kellően erős spirális sűrűséghullámok hatására is létrejöhetnek ezek a gyűrűk olyan galaxisokban, melyeknek korongjában korábban sosem alakult ki küllő (Rautiainen és Salo – 2010). A gyűrűk megfelelő körülmények között, a spirális hullámminta sebességének belső Lindblad-rezonanciájánál formálódnak az NGC5364-hez hasonló galaxisokban. Így, a sűrűséghullámok nemcsak a karok létezésért, de a csillagkeletkezési gyűrű létezéséjért is felelősek lehetnek ennél a galaxisnál.

Figyeljük meg, hogy ez a gyűrű mennyire látványosan kiugrik a galaxis belső korongjából a fotómon, és hogy a galaxisnak és a gyűrűnek a középpontja nem esik tökéletesen egybe! Ugyanígy hangsúlyos e fiatal behemót kék csillagok fénygyűrűje a fenti képen, a B (kék) szűrővel készült baloldali mozaikon is. A galaxis spirális struktúrája szintén igen markánsan megmutatja magát a kék tartományban. De a karokat határozottan követik az ionizált gáz HII régiói is. Kitűnik a Hα keskenysávban készült fotóról az is, hogy maga a gyűrű az északi oldalon sokkal intenzívebben sugároz ezen a hullámhosszon a déli oldalához képest. Ez a tendencia igaz az egész spirális szerkezetre is. Összességében, az ionizált gáz jelenléte a galaxis északnyugati oldalán sokkal dominánsabb. Hogy mi lehet mindennek az oka? Elképzelhető, hogy a tőle északra látható NGC5363 gravitációs hatása hagyott nyomot az NGC5364 morfológiáján (Grouchy és mások – 2010). És talán ennek köszönhető a galaxis nyugati és délnyugati oldalán lévő árapály képződmény is.

Végszó

Az NGC5363 galaxis csoportról készült felvételem révén hozzájutottam az általam áhított illusztrációhoz. Nem mondanám, hogy nem kötött le és nem volt szórakoztató az az 5-6 órányi pepecselés, amíg a képet feldolgoztam a Pixinsight nevű programmal. De mire elolvastam a galaxisokhoz tartozó tudományos publikációkat, már sokkal többet jelentett nekem egyetlen fotónál. Bepillanthattam a kép mögött rejlő titkokba. És azzal, hogy mindezt „papírra vetettem” megszületett a digitális észlelést lezáró szintézis is. Számomra így lett teljes az élmény. Ezzel természetesen még nem volt vége. Következő lépésként, a digitális észlelést feltöltöttem a Magyar Csillagászati Egyesület észlelési archívumába. Ott van igazán jó helyen, és nem a fiókomban, nem a saját oldalamon, nem egy közösségi médium oldalán.

Felhasznált irodalom:

Pascal Fouque, Jose M. Solanes, Teresa Sanchis, Chantal Balkowski: Structure, mass and distance of the Virgo cluster from a Tolman-Bondi model

M. A. Pahre, M. L. N. Ashby, G. G. Fazio, S. P. Willner: Spatial Distribution of Warm Dust in Early-Type Galaxies

Ido Finkelman, Noah Brosch, José G. Funes S.J., Alexei Y. Kniazev, Petri Väisänen: Ionized gas in E/S0 galaxies with dust lanes

A.E. Sansom, E. O’Sullivan, Duncan A. Forbes, R.N. Proctor, D.S.Davis: X-ray observations of three young, early-type galaxies

M.K.Patil, S.K.Pandey, D.K.Sahu, A.K.Kembhavi: Properties of dust in early-type galaxies

R. Brent Tully, Edward J. Shaya, Igor D. Karachentsev, Helene M. Courtois, Dale D. Kocevski, Luca Rizzi, Alan Peel: Our Peculiar Motion Away from the Local Void

Brent Tully: Our CMB Motion: The Local Void influence

Ido Finkelman, Noah Brosch, José G. Funes, S.J., Alexei Y. Kniazev, Petri Väisänen: Ionized gas in E/S0 galaxies with dust lanes

R. D. Grouchy, R. J. Buta, H. Salo, E. Laurikainen: Ring Star Formation Rates in Barred and Nonbarred Galaxies

Igor D. Karachentsev, Valentina E. Karachentseva, Olga G. Nasonova: Galaxy motions in the Bootes strip

Hélène M. Courtois, Daniel Pomarède, R. Brent Tully, Yehuda Hoffman, Denis Courtois: Cosmography of The Local Universe

R. Brent Tully, Helene Courtois, Yehuda Hoffman, Daniel Pomarède: The Laniakea supercluster of galaxies

CLUES (Constrained Local UniversE Simulations) projekt

Payaswini Saikia, Elmar Körding, Heino Falcke: The Fundamental Plane of Black Hole Activity in the Optical Band

Gustavo Morales, David Martínez-Delgado, Eva K. Grebel, Andrew P. Cooper, Behnam Javanmardi, Arpad Miskolczi: Systematic search for tidal features around nearby galaxies: I. Enhanced SDSS imaging of the Local Volume

Abell 33 (PN A66 33 – PK 238+34.1 – PN G238.0+34.8)

Abell33-OIIIRGB-20190203-T30-600s-TTK

Abell 33 (PN A66 33 – PK 238+34.1 – PN G238.0+34.8) planetáris köd az Északi Vízikígyó (Hydra) csillagképen

iTelescope.net T30 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI-PL6303E CCD kamera

A felvételek 2019-02-03 és 2019-02-15 között készültek – Siding Spring Observatory – 29 x 600 sec (bin2) OIII, 10 x 120 sec (bin2)  R,G,B

(Kép orientációja: észak balra, kelet alul)

Abell katalógusa a planetáris ködökről

A felvételen látható kékeszöld gázbuborék Abell katalógusában a 33-as sorszámot viseli. George Ogden Abell (1927-1983) megfigyelő csillagászként kezdte pályafutását a Palomar Égboltfelmérő Programban (Palomar Sky Survey). A Palomar Obszervatórium 48 hüvelykes Schmidt típusú távcsövével készített felvételeket fotólemezekre a projekt keretében. Egyik korai munkája az alacsony felületi fényességű planetáris ködök tanulmányozása volt, melyhez éppen az előbb említett lemezeket használta fel. A 48 hüvelykes Schmidt távcső ideális volt a nagy kiterjedésű, de halvány felületi fényességű objektumok megörökítéséhez. 1966-ban kiadott publikációja (Properties of Some Old Planetary Nebulae) 86 planetáris ködöt tartalmazott. Ezek nem mind az ő saját felfedezései. Nagyjából a felük Albert George Wilson, míg a maradék ő hozzá, illetve Robert George Harrington és Rudolph Minkowski nevéhez köthető. Bár 4 planetáris köd jobban ismert más katalógusokból, és szintén 4-ről később kiderült, hogy valójában más objektum, de Abell-nek Peter Goldreicher-rel karöltve fontos szerepe volt abban, hogy a csillagászok kapcsolatot teremtsenek a vörös óriás csillagok életének végső fázisa és a planetáris ködök között.

George Abell preparing to take plate with 48-inch Schmidt telescope

A fiatal George Ogden Abell a Palomar Obszervatórium Samuel Oschin 48 hüvelykes (1.2 méteres) Schmidt távcsövével. Abell ezzel a távcsővel készítette a Palomar Égboltfelmérő Programhoz a felvételeket. A távcső napjainkban már teljesen automatizált, praktikusan működésközben senki sincs fizikailag a kupolában. A fotólemezeket pedig CCD technológia váltotta fel. Teljesen hasonlóan készült a saját felvételem is az Abell 33-ról. Az iTelescope távcsöve teljesen önállómódon, az általam megadott program alapján készítette el a kívánt felvételeket. – A kép forrása: Caltech

Öregedő csillagok és a planetáris ködök

Ma már tudjuk, hogy a planetáris ködök létezése, az életük végéhez közelítő (kezdetben) 0.8 és 8 naptömegű csillagokhoz köthető.

A csillagok energiatermelését életük leghosszabb szakaszában a hidrogén fúziója biztosítja, melyben hélium keletkezik. E folyamatban keletkező energiának köszönhetően képes dacolni a gravitációval. Azonban ez sem tart örökké. A hidrogén készletek idővel megcsappannak, és a magból a hidrogén fúzió egy külső héjba tevődik át. A csillag vörös óriássá fújódik fel. Idővel a hélium fúzió is beindul a magban, melyben szén keletkezik, de a külső héjban továbbra sem szűnik meg a hidrogén fúziója. A csillag összehúzódik, némileg forróbb lesz, luminozitása is csökken.  Miután a hélium is elfogy az addigra szénben és oxigénben gazdag magban, a fúzió az azt körülvevő külső héjba tevődik át. Az energia nagy része viszont nem itt keletkezik, hanem a külsőbb hidrogén héjban. A csillag külső rétegei ismét felfúvódnak és lehűlnek. Éppen ezért a csillag fényessége ismét megnő, túlszárnyalva a korábbi vörös óriás fázist, színe pedig ismét a vörös felé tolódik.

Ebben az úgynevezett AGB fázisban (Asymptotic Giant Branch – Aszimptotikus óriás ág) a csillagok jelentős mennyiségű tömeget veszítenek az időszakonként eltérő sűrűségű és intenzitású csillagszél révén. Hihetetlen tűnik, de kezdeti tömegüknek akár több mint a felét is elveszíthetik ebben a késői fejlődési szakaszban. Leegyszerűsítve azt mondhatjuk,  hogy ezek a Napnál akár ezerszer is fényesebb vöröses árnyalatú óriás csillagok mintegy ledobják külső rétegjeiket.

A kezdetben nagyságrendileg 10-15 km/s sebességű csillagszél porban gazadag és sűrű (évente mintegy 10-7 naptömeg áramlik ki).  Ezt egy rövid ideig tartó, hirtelen felgyorsuló, intenzív anyagkiáramlás, az úgynevezett szuperszél követi. Lassan feltárul a csillag forró magja, a tömegvesztés mértéke ugyan lassul (10-8 naptömeg évente), de a kiáramlás sebessége megnő. A lassú és sűrű csillagszelet 200-2000 km/s-os gyors, de kis sűrűségű csillagszél váltja fel tehát, mely beleütközik a korábban ledobott, főleg a szuperszél időszakából származó csillagkörüli anyagba. A gyors csillagszél mintegy maga előtt tolva azt, képes sűrű héjat formálni belőle.

A planetáris ködöd csillagászati időskálán mérve roppant gyorsan jönnek létre. Az AGB fázis végén ehhez elég mindössze néhány évszázad. Létezésük pedig alig pár tízezer év. A planetáris ködök szülőcsillagjai nem elég nagytömegűek, hogy magjukban beinduljon a szén és az oxigén fúziója. Idővel a nukleáris fúzió a külső rétegekben is leáll. A csillagszél megszűnik, és lassan a fehér törpe állapotba jut a csillag. Mire ez a folyamat teljesen befejeződik, a planetáris köd elenyészik az űr sötétjében, láthatatlanná válik.

De mitől látható „egyáltalán” a kidobódott anyag? Az anyagkiáramlás első fázisában, a csillagot körbevevő anyagfelhőt protoplanetáris ködnek nevezik, ugyanis még csak visszaveri szülőcsillagának fényét (nincs még gerjesztés, mint a későbbi planetáris köd fázisban). Azonban, a magkörüli vékony hidrogénburokban  még mindig zajlik a hidrogén héliummá történő fúziója. A csillag így egyre forróbb, és forróbb lesz. Mikor a csillag felszíni hőmérséklete átlépi a 30000 K-t, intenzív UV sugárzásával gerjeszteni kezdi a körülötte lévő gázt. A köd többé már nem a csillag fényét veri vissza, hanem „világítani” kezd. Színképét ettől fogva a hidrogén rekombinációs vonalai, és az úgynevezett ütközéssel gerjesztett tiltott vonalak uralják. Eme utóbbiak csak roppant ritka csillagközi gázban jöhetnek létre, ezért hívják tiltott vonalaknak. Ilyen például az OIII (a kétszeresen ionizált oxigén) színképvonala is. Ettől a ponttól beszélünk planetáris ködről.

Az olvasó figyelmébe ajánlom a planetáris ködökről korábban írt összefoglaló cikkemet , amiben a fentebb vázolt folyamatokat részletesebben is ismertetem. Továbbá, átfogóbban foglalkozom a planetáris ködök felépítésének, morfológiájának kialakulásával is.

A fotó és a mögöttes fizika

Azt már tudtam korábbról, hogy az Abell katalógusában szereplő objektumok jellemzően az idősebb, fejlődésben előrehaladottabb állapotát képviselik a planetáris ködöknek. Ennek egyik következménye, hogy felületi fényességük alacsony, és ez az Abell 33 esetében sincs ez másképpen. Elég csak egy pillantást vetni a lenti fotókra, hogy meggyőződjünk arról, mennyire halvány az Abell 33 a Messier 27-hez képest.

Abell-33-vs-M27-SDSS

Balra az Abell 33, jobbra az M27 planetáris köd. Mind a két felvétel az SDSS (STScI Digitized Sky Survey) archívumából származik. Azonos műszerrel, azonos expozíciós idővel készültek. A látómező mérete 30 x 30 ívperc. Az alacsony felületi fényessége miatt az Abell 33 csak halvány derengés a fotón, míg az amatőrcsillagászok által közkedvelt M27 szinte vakít mellette. Forrás: STScI

Éppen ezért, amennyiben lehetőségünk van rá, akkor érdemes keskenysávú szűrőket használni, és hosszú expozíciós idejű elvételeket készíteni. A keskenysávú szűrők, speciális hullámhosszokon, egy igen szűk tartományban engedik csak át a fényt. Pontosabban, az adott hullámhossz és annak néhány nanométeres környezete éri csak el a kamera detektorát. Jól megválasztva tehát a szűrőt (szűrőket), az csak azt a hullámhosszúságú fényt engedi át, amin az objektum maga is sugároz. Mit nyerünk ezzel? A köd nagyobb kontrasztban jelenik meg a szűrt, és ennek következtében sötétebb égi háttér előtt. Jellemzően Hα, Hβ, OIII, SII, NII és egyéb keskenysávú szűrőkkel szoktak dolgozni a csillagászok (a látható fény tartományában). Az amatőrcsillagászok követve ezt a gyakorlatot, nem különben.

Általánosságban elmondható, hogy a különböző keskenysávú szűrős felvételeket összedolgozva, kontrasztos és színes látványát kaphatunk eredményül. Érdemes tudni, hogy ezek mind-mind hamis színes felvételek. Az emberi szem ilyennek sosem látná az objektumokat. Valójában az egyes hullámhosszhoz a képfeldolgozás során rendelünk színeket úgy, hogy annak tartalmát különböző arányokban keverjük bele az egyes színcsatornákba. Vagyis, egy „paletta” szerint „megfestjük” a képeket, vagy éppen „játszunk” az intenzitások arányával (több szűrő esetén). Minden színnek azonban jelentése van. Elárulja, hogy az adott területen milyen az objektum kémiai összetétele.

A Hubble űrteleszkóp felvételeinek jelentős részét szintén keskenysávú szűrőkkel rögzítették (elsődleges a tudományos szempont!), de külön művészeti csoportot kértek fel arra, hogy megalkossák az úgynevezett Hubble palettát. Vagyis, olyan színeket rendeljenek az egyes hullámhosszokhoz, amin köszönhetően a végeredmény a befogadó közönséget lenyűgözi. A Hubble képein a gázködök látvány valós, míg a szín sok esetben emberkéz által alkotott, de mégis csillagászati jelentést hordoz!

Amatőrcsillagász körökben keskenysávú felvételek készítéséhez leginkább  Hα, OIII, SII szűrők az elterjedtebbek. A Hα szűrő a gerjesztett hidrogén fényére van „kihegyezve”. Egészen pontosan, a Balmer-sorozat 656.28 nm-es hullámhosszára. Ilyen hullámhosszúságú foton akkor keletkezik, amikor a hidrogén elektronja a harmadik legalacsonyabb energia szintjéről a másodikra „lép vissza”.  Az OIII szűrő a kétszeresen ionizált oxigén tiltott vonalainak hullámhosszán enged át. Ezebből kettő esik a látható tartományba: 501 nm és 496 nm. Jellemzően az elsőn (és szűk környezetében) engednek át a megvásárolható OIII szűrők. Teljesen hasonló elvek alapján működik az SII, ahol a rekombinálódó ionizált kén „világít”.

De mégis milyen szűrő, illetve szűrők kombinációja a legcélravezetőbb az Abell 33 esetében? Hogy a választ megleljem, a digitális észlelés előtt utána olvastam különböző tudományos cikkekben, hogy mit is érdemes tudni magáról a célpontról. Persze, ha ez embernek van ideje és kedve, akkor próbálkozhat is csak úgy. De engem a leggyorsabban elérhető kontrasztos végeredmény érdekelt. Biztosra akartam menni.

Átböngészve a lentebb felsorolt irodalmakat kiderült, hogy az Abell 33 nemcsak, hogy fejlődésben előrehaladott, öreg és halvány planetáris köd, de szinte kizárólag az OIII tiltott vonalain sugároz. A többi hullámhossz intenzitása igen gyenge ehhez képest (például Hα), vagy éppen nem is sugároz az adott hullámhosszon már. Így jutottam arra az elhatározásra, hogy kizárólag OIII-as keskenysávú szűrőt fogok használni. Azon minden meg fog mutatkozni, amit a használt műszerből én magam ki tudok hozni.

A keskenysávú módszernek van két „mellékhatása”. Az egyik, hogy a széles tartományban sugárzó csillagok fényének tekintélyes részét is levágja. A csillagok így a felvételen kisebbek és halványabbak lesznek. A végeredményben úgy tűnhet, hogy a köd nagyon fényes a csillagokhoz képest. Pedig elég csak a fenti SDSS képre nézni, hogy lássuk ez nem így van. Mondhatjuk, hogy ez a kontrasztnövelés ára. Tekintve, hogy engem a köd szerkezete érdekelt, a csillagok pedig kevésbé, így ennek nem tulajdonítottam különösebb jelentőséget.

A másik „mellékhatás”, hogy az OIII szűrős felvételeket luminance rétegként használva a csillagoknak nem lesz színe. Tulajdonképpen monokróm lenne az egész kép. Ezzel vagy törődik az ember, vagy nem. Az RCW58 Hα képemnél ezzel például nem foglalkoztam. Most viszont felvettem R, G, B szűrős felvételeket, hogy a csillagoknak megjelenje a valós színe. Megjegyzem, hogy ötször rövidebb expozíciók is elegendők voltak a vörös, zöld, kék szűrőkkel, hogy a csillagok fénye a megfelelő intenzitást elérje. Jól mutatja, hogy az OIII szűrő mennyi fényt vág le a csillagok esetén.

A végeredmény végül egy OIII-R-G-B kép lett, ahol az OIII réteg lett a fényréteg (luminance réteg). Továbbá az OIII felvételeket megfelelő arányban beolvasztottam a kés és a zöld színcsatornába a köd esetében. Így nyerte el azt a kékes-türkizkékes színt, ami nagyjából megfelel az 501 nm-es fény színének. A csillagok színe viszont a színszűrős (nem keskenysávú) felvételekből származó kalibrált szín. Ahogy fentebb is utaltam rá, ez bizony hamis színes kép a cél érdekében, ahol a köd színe a lehető legjobban „imitálja a valóságot”. (De bármilyen más színe is lehetne akár.) A morfológia viszont valós. Ezek a struktúrák az Abell 33-ban azok, melyek a kétszeresen ionizált oxigén tiltott színképvonalának hullámhosszán derengenek az űr sötétjében.

Abell 33

Az Abell 33 az Északi Vízikígyó (Hydra) csillagkép területén található. Megfigyelésére a késői téli és a tavaszi hónapok a legmegfelelőbbek. A horizont feletti legnagyobb magassága hazánkban 39.5-41 fok körül alakul. (A déli országrész lakói vannak némileg kedvezőbb helyzetben.) Mivel nem emelkedik túlságosan magasra, így érdemes delelés környékén elcsípnünk, ha okuláron keresztül szeretnénk megpillantani.

Abell-33-map4

Az Abell 33 az Északi Vízikígyó (Hydra) csillagkép területén található.

Hogy milyen látványban is lehet részünk? Miként és milyen műszerrel is érdemes megfigyelnünk? Álljon itt egyik amatőrcsillagász társam vizuális megfigyelése a Magyar Csillagászati Egyesület és a Meteor folyóirat észlelési archívumából:

Sánta Gábor 2009 március 26-án (23 óra UT) ezeket írta a planetáris ködről:

„8 cm-es lencsés távcső, 40x nagyítás, OIII szűrő: A pontos hely ismeretében ”mintha” felderengene.

25 cm-es Newton-távcső, OIII szűrő: Könnyedén látszó, hatalmas méretű (5′) fénykorong, peremén egy 8-9m-s csillag ül, mely nehezíti észlelését. Néha a planetáris csillag felöli 1/3-a a peremen fényesebbnek tűnik.”

Abell33-SantaG-cut

Sánta Gábor rajza az Abell 33-ról (2009. április 25.)

Alapvetően, legalább 10-15 cm-es távcső és OIII szűrő szükséges a köd vizuális megfigyeléséhez. 30 cm fölötti átmérő esetén (természetesen kellően sötét égen) szűrő nélkül is jó az esélyünk a megpillantására. Érdemes felkeresni, mert viszonylag ritkán észlelt, és különleges égi csemege.

De folytassuk tovább az Abell 33-mal való ismerkedést. A köd peremén látható HD 83535 kékes árnyalatú fényes csillag különös megjelenést kölcsönöz az objektumnak. Éppen ezért gyakran emlegetik Eljegyzési Gyűrű ködként, vagy Gyémánt Gyűrű ködként is. (Megjegyzem, hogy Gyémánt Gyűrű ködként az Abell 70 planetáris ködre is szoktak hivatkozni.) Bármilyen romantikusak is, de természetesen ezek nem hivatalos nevek. A fényes csillagnak semmi köze a planetáris ködhöz, és mindössze az előtérben helyezkedik el. Csak a véletlen játéka ez az egész.

A köd közepén látható csillag az, aminek sokkal nagyobb figyelmet érdemes szentelni. Ez ugyanis maga a szülőcsillag. Vagyis, annak a maradványa. Színképe, de kimondottan annak abszorpciós vonalai nagyon hasonlítanak a fehér törpe csillagoknál megfigyelhetőkre. Még egy bizonyíték, hogy az Abell 33 az idősebb planetáris ködök közé tartozik. Központi csillaga igen előrehaladott állapotban van azon a fejlődési úton, hogy elérje a fehér törpe stádiumát. Az O(H) színképtípusú csillag nem magányos azonban. Az ismert vizuális kettőscsillagok közé sorolják. (Bár e tekintetben minden kétséget nem zártak még ki teljesen.) A központi csillagot, a K2 (K3V) színképtípusú hűvösebb társától 1.82 ívmásodperc választja el. A valóságban ez nagyságrendileg 2000 CsE távolságot jelent. (1 Csillagászati Egység  eredeti definíciója szerint a Nap és a Föld átlagos távolsága, de az IAU új definíciója szerint 149 597 870 700 méter) Összehasonlításképpen a Neptunusz, vagyis a nyolcadik legtávolabbi bolygó a Naprendszerben nagyjából 30 CsE-re kering a Naptól.

Az Abell 33-ra nem véletlenül esett a választásom. Már a látható fény tartományában is meglepő hasonlóságot mutat az M97-tel (NGC 3587-tel), vagy ismertebb becenevén a Bagoly-köddel.

Abell-33-M97

Balra a kis 10 cm-es lencsés távcsővemmel 2014/2015 telén készített fotó az M97-ről, avagy a Bagoly-ködről (UMA-GPU APO Triplet 102/635 – SXVR-H18 CCD kamera)

Jobbra az 51 cm-es tükröstávcsővel, 2019 elején készített fotóm az Abell 33-ról (CDK Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI-PL6303E CCD kamera)

Bár a fotók között van különbség az akkori és a mostani képfeldolgozási gyakorlatom, továbbá a két műszer teljesítőképességének köszönhetően, mégis jól látszik bizonyos hasonlóság az M97 és az Abell 33 között.

García-Díaz és munkatársainak figyelmét sem kerülte el ez a meglepő hasonlóság miközben alaposan vizsgálatnak vetették alá az M97-et. Felfigyeltek arra, hogy nemcsak az Abell 33, de a K 1-22 (ESO 378-1) és az Abell 50 mintha egyetlen család tagjai lennének. Belekapaszkodva a Bagoly-köd elnevezésbe, a planetáris ködök új osztályát vezették be. Megalkották a bagolyalakú ködök (strigiform nebulae) osztályát. Az elnevezést az állatrendszertanból kölcsönözték, ahol a bagolyalakúak (Strigiformes) vagy közismert nevükön a baglyok a madarak osztályának egyik rendje. A csillagászok is emberek, és látszólag szeretnek játszani a szavakkal. A jövő majd eldönti, hogy mennyire terjed el ez az elnevezés a csillagászok körében. Én mindenesetre használni fogom a továbbiakban.

De lássuk, hogy mi a jellemzője ennek az osztálynak, ami García-Díaz és kutatótársai szerint egyelőre négy tagot számlál (a cikk írásakor). Először is a spektroszkópiai vonalaiknak az alakja és morfológiájuk meglepően hasonló.

A központi csillagjaik luminozitása nagyjából százszorosa a Napénak, míg effektív felszíni hőmérsékletük 100 ezer K körüli. A globális tágulási sebessége ezeknek a planetáris ködöknek a 30-40 km/s tartományba esik. Nem az első eset, hogy csillagászok egy csoportba rakták őket. Korábban már Pereyra és szerzőtársai (2013) mind a négyet a HE (Highly Evolved) planetáris ködök, vagyis fejlődésben nagyon előrehaladott állapotúak közé sorolta. Mit jelent ez? Azt, hogy ebben a késői állapotban a csillagszél már nagyon gyenge, vagy már le is állt. A centrális csillag luminozitása gyorsan hanyatlik, miután a hidrogén égető héjban leállt a fúzió. A köd gerjesztése megszűnőben. Talán már meg is történt a rekombináció. Mivel a köd tágulásának időskáláját meghaladja a csillag kihűlésének időskálája, a csökkenő sűrűség miatt a főbb héjai a ködnek újra a reionizáció állapotába lépnek. Azonban, a külső halókban még most is zajlik a rekombináció.

Az Abell 33 és a K1-22 esetében tudható, hogy kettőscsillagok és a tagok között nagy a szeparáció. Az Abell 50 esetében egyáltalán nem sikerült második csillag jelenlétét kimutatni. Az M97 esetében vannak ráutaló nyomok a közeli infravörös tartományban, de teljesen bizonyosat a mai napig nem tudunk. Ha van is társa eme utóbbi kettőnek, akkor is az Abell 33-hoz és a K1-22-höz hasonlóan nagy lehet a keringési távolság. S éppen ezért, a társcsillag vajmi kevéssé befolyásolhatja ezen típusú planetáris ködök formavilágát. Legfeljebb a belső turbulens vidékeken.

Az Abell 33, akárcsak a többi bagolyalkatú dupla héjas szerkezetű. Ám ellentétben a fiatal planetáris ködökkel, ahol a belső héj a keskenyebb, és a külső a kiterjedtebb. Itt pont fordítva van. A belső héj a vastagabb és a diffúzabb, míg a keskeny külső héj sokkal strukturáltabb.

A ködökben látható sötét foltok egyaránt egybeesnek az optikai tartományban és a közép infravörös tartományban. Ez azt jelenti, hogy ezek valódi üregek, és nemcsak a ködben lévő por miatt látszik sötétebbnek ezeken a területeken a négy objektum. A legvalószínűbb magyarázat létezésükre, hogy a korábbi gyors csillagszél vájta a ködbe ezeket az üregeket, ami mára már megszűnt. Ezek az üregek tehát relikviák abból az időből, amikor még sokkal nagyobb volt a luminozitása a központi csillagnak, és a csillagszél is sokkal erősebb volt.

Ugyan ez a legvalószínűbb magyarázat, de a bagolyalkatú ködök kialakulásának pontos mikéntje koránt sem tisztázott még. A legnagyobb problémát éppen az üregek jelentik bennük. A modellek amik a legtöbb esetben működnek itt csődöt mondanak. Az üregek peremén nem figyelhető meg felfénylés, ami viszont egyértelmű jele lenne egy táguló lökéshullámnak, ami elszívja erről a területről a gázt. Pedig pontosan ezt várnánk, ha aktív csillagszél vagy kollimált kiáramlás okozta volna a kialakulásukat. Ráadásul multipolárisak az üregek, ami újabb problémát vet fel. Talán a mágneses térrel ez magyarázható lenne, de maradjunk abban, hogy erősen sántítanak az erre épülő elképzelések. Túlságosan komplikált mágneses tért kell ugyanis feltételezni hozzá.

NGC2392-eskimo_hst_big

Az NGC2392 (Eszkimó-köd). Figyeljük meg a táguló buborékokat a Hubble űrtávcső felvételén. Talán éppen az ehhez hasonló képződmények válnak később az Abell 33-ban és társaiban megfigyelhető üregekké. Kép forrása: NASA/STScI

Alternatív magyarázat lehet, hogy a csillag korábbi fejlődési állapotának emlékét őrzik. Vagyis, már eleve a csillagszél által tágított héjak is aszimmetrikusak voltak. Több olyan planetáris ködöt is ismerünk (NGC2392, NGC6543, NGC7009), ahol igen elnyúlt, a csillagszél hatására gyorsan táguló peremű héjak figyelhetők meg a lassabban táguló külső héjak belsejében. Elképzelhető, hogy a gyors csillagszél megszűnése utáni fejlődése ezeknek a struktúráknak választ adhat az üregek kérdésére. De még mindig ott vannak az M97 belsejében megfigyelhető, a fák ágaihoz hasonlóan elágazást mutató üregek. Miként jöttek létre az elágazások?

M97-Ha-3D

Az M97 Hα képe balra felül. Tőle jobbra felül szintetikus Hα képek láthatók, melyek az alsó sor multipoláris, tripoláris, és bipoláris modelljeiből származnak. Vagyis, az alsó sor 3D-s üregmodellje alapján, ilyennek kellene látnunk az M97-et. Hasonló modellek alkothatók a többi bagolyalkatú ködre, így az Abell 33-ra is. Forrás: García-Díaz és mások.

Bár némileg különböznek a bagolyalkatú ködöktől, de vannak más jelöltek is, melyek talán éppen ezeknek a planetáris ködöknek a megelőző állapotában vannak. Ilyen például az NGC1360. Abban hasonlít az említett csoporthoz, hogy az ionizált gázban kevéssé kontrasztos elágazó üregrendszer figyelhető meg, ami nagymértékben aszimmetrikus. Ugyanakkor, a központi csillag sokkal nagyobb limunozitású (ez négyezerszerese a Napénak), és maga a köd sokkal elnyúltabb. Az NGC1360 hosszanti tengelye mentén gyorsan mozgó anyagcsomók figyelhetők meg a fő ködön kívül, míg kevéssé ionizált csomók az egyenlítője körül. Ez talán annak a jele, hogy a központi csillagnak van társa, s valamikor közös gázburok vette kettőjüket körül.

NGC1360-Capella

NGC1360 – Elképzelhető, hogy ez a köd képviseli a bagolyalkatú planetáris ködök megelőző fázisát. Kép szerzői: Dietmar Böcker, Ernst von Voigt, Stefan Binnewies, Josef Pöpsel

Ha kettős rendszereben az egyik csillag fejlődése során felfúvódik, és kitölti saját Roche-térfogatát, vagy csak intenzív csillagszele révén az AGB fázisban sok anyagot veszít, és ez tölti ki az említett térfogatot, akkor megindul az anyag átáramlása a társra.

Roche-lobes-corrected

Kettőscsillagok esetén megvan az a térrész, amit az adott égitest gravitációja ural. Ezt Roche-térfogatnak nevezik. Ami azon kívül kerül az akár el is hagyhatja a rendszert, vagy a páros körüli pályára állhat. A belső (L1) Langrange-ponton keresztül azonban anyag áramolhat át az egyik Roche-térfogatból a másikba. Az eredeti ábra forrása: Wikipedia.org (az eredeti ábra hibás volt, így módosítottam)

Bizonyos esetben azonban nem jut el az AGB társ összes anyaga a kísérőjére, hanem gázfelhő formájában veszi körül a párost. Közös gázburokkal körülvett kettőscsillagoknak (common envelope binary systems) nevezik az ilyen rendszereket. (Megjegyzés: A gázburok más ütemben rotál, mint a benne található kettőscsillagok. Ez különbözteti meg ezeket a kettősöket az érintkező kettős rendszerektől.)

Mik ezek a bizonyos estek? Közös gázburok olyankor alakul ki kettőscsillagok körül, ha az egyik komponens valamilyen okból nagyon gyorsan fújódik fel, vagy a két csillag közötti szeparáció nagyon gyorsan ütemben csökken.

De hogyan történik mindez? Ezeknél a párosoknál is, amikor a felfúvódó donor kitölti a Roche-térfogatot, megindul az anyagátadás. Közben tömege csökken, a Roche-térfogata zsugorodik. Így még jobban kitölti a térfogatot. Gyorsul az anyagátadás üteme, gyorsul a Roche-térfogat kitöltése (az folyamatosan megy össze), és így tovább. Egy megszaladó dinamikusan instabil anyagátadás valósul meg a kettős rendszerben. Adott esetben a „fogadó” oldali csillag már nem is tudja begyűjteni az összes gázt, és ezért közös gázburok alakul ki a páros körül. A gázburok fékező hatást fejt ki a kettős rendszerre. A csillagok energiát veszítenek, és közelebb kerülnek egymáshoz, ami szintén maga után vonja a Roche-térfogat zsugorodását, s így az anyagátadás fokozódását. A keringésből származó „lopott” energia felfűti és kitágítja a közös burkot. Idővel a donor felfúvódása abbamarad, a közös burok pedig tágulva elhagyja a rendszert. (Az is előfordulhat, hogy a kettős tagjai végül összeolvadnak, de e helyütt ezzel most nem foglalkozom.)

Akár közös burok veszi körül a párost, akár sem, amikor a Roche-térfogat kitöltésekor az anyagátadás megvalósul, akkor a gáz nem közvetlenül zuhan a második csillagra, hanem úgynevezett akkréciós korongot formál körülötte, s így befelé spirálozva éri el a csillag felszínét. Az ilyen akkréciós korongok gyakori sajátossága a forgástengellyel párhuzamos kifújások (jet) a csillagnál. Amennyiben a korong még precessziós mozgást is végez (imbolyog), az epizodikus kifújások dugóhúzó, vagy akár multipoláris mintázatot rajzolnak a térben.

Prescessing-jets

Az imbolygó, epizodikus kifújások (jet-ek) dugóhúzó, vagy akár multipoláris mintázatú üregeket is fújhatnak a korábban kidobódott, táguló gázba. Forrás: ESO/L. Calçada

Talán a bagolyalkatúak üregei is hasonlóan jöttek létre, már amennyiben azok központi csillagjának ténylegesen van egy kellően szoros közelségben lévő társa. Ha így is van, a folyamat részletei továbbra sem ismertek pontosa. Nem beszélve arról, hogy csomóknak egyelőre nyomát sem találták a megvizsgált bagolyalkatúak körül.

Mi tehát a konklúzió az Abell 33 és társainak esetében röviden összefoglalva? García-Díaz és munkatársai szerint annyi bizonyos, hogy az üregek igenis valósok. Peremükön nem figyelhető meg felfénylés. A központi csillagról az anyagkiáramlás (csillagszél) már nagyon gyenge, vagy mára meg is szűnt. Ezekből következik, hogy az üregeket nagy valószínűséggel a korábbi erős csillagszelek vájták ki, még a központi csillag megelőző nagy luminozitású fázisában. Ám az üregek erősen aszimmetrikus mivolta, feladják a leckét a ma elfogadott planetáris ködök kialakulásával és fejlődésével kapcsolatos modelleknek. Hogy fény derüljön a konkrét mechanizmusokra, mindéképpen további alaposabb vizsgálatokra lesz szükség ezen osztály tagjainak és azon jelölteknek az esetében, melyek jó eséllyel az ezt megelőző planetáris köd állapotot képviselik. A tudomány már csak így működik.

Felhasznált irodalom:

Abell, G. O: Properties of Some Old Planetary Nebulae

Orsola De Marco: The Origin and Shaping of Planetary Nebulae: Putting the Binary Hypothesis to the Test

J. P. Phillips: Planetary nebula distances re-examined: an improved statistical scale

Weidmann Walter A., Roberto Gamen: Central Stars of Planetary Nebulae: New spectral classifications and catalogue

R. Jacob, D. Schoenberner, M. Steffen: The evolution of planetary nebulae. VIII. True expansion rates and visibility times

Haywood Smith, Jr: On the distances of planetary nebulae

Dimitri Douchin, Orsola De Marco, D. J. Frew, G. H. Jacoby, G. Jasniewicz, M. Fitzgerald, Jean-Claude Passy, D. Harmer, Todd Hillwig, Maxwell Moe: The binary fraction of planetary nebula central stars – II. A larger sample and improved technique for the infrared excess search

W. Weidmann, R. Gamen, D. Mast, C. Fariña, G. Gimeno, E. O. Schmidt, R. P. Ashley, L. Peralta de Arriba, P. Sowicka, I. Ordonez-Etxeberria: Towards an improvement in the spectral description of central stars of planetary nebulae
Ma. T. García-Díaz, W. Steffen, W. J. Henney, J. A. López, F. García-López, D. González-Buitrago, A. Aviles: The Owl and other strigiform nebulae: multipolar cavities within a filled shell

Planetáris ködök

NGC1514-LRGB-20161104-0039-sx-bin2-360s-TTK

NGC1514 – planetáris köd a Bikában

2016-11-04, 2016-11-22 – Göd

24 x 360 sec L (Bin2), 10 x 360 sec R (Bin2), 10 x 360 sec G (Bin2), 10 x 360 sec B (Bin2)

300/1200 Newton távcső – Paracorr Type2 kóma korrektor – eredő fókusz 1380 mm

SkyWatcher EQ-6 Pro GoTo mechanika

SXVR-H18 CCD kamera, Hutech IDAS P2 LPS filter és Baader RGBL fotografikus szűrőszett

Ezekkel a szavakkal jellemezte anno William Herschel, a ζ Persei-től nem egészen 3.5 fokra található NGC1514 planetáris ködöt (fenti kép), ami valójában már a Bika csillagkép területén található:

„Egyedülálló jelenség! Egy nagyjából 8 magnitúdós csillag halványan fénylő légkörrel, melynek körkörös az alakja és 3 ívperc az átmérője. A csillag pontosan középen van és a ködösség körülötte nagyon halvány és olyannyira egyenletes, hogy úgy vélem nem is csillagok alkotják. Nem lehet kétséges a kapcsolat a csillag és a légkör között.”

Akkoriban általánosan elfogadott vélekedés volt, hogy minden köd csillagokra bontható, és ez csak távcső kérdése. Azonban Herschel-t pár planetáris köd megjelenése ebben elbizonytalanította, és közéjük tartozott az NGC1514 is. Szintén Herschel volt az a személy, aki először használta a planetáris köd kifejezést a Macskaszem-köd, hivatalos nevén az NGC6543 esetében, melynek megjelenése szerinte az Uránuszra hajazott. Az elnevezést aztán a többi csillagász is átvette. Annyira megragadt a szaknyelvben, hogy még akkor sem változtatták meg, amikor már biztosan tudható volt, hogy a planetáris ködök és a bolygók között semmiféle kapcsolat sincsen. A planetáris ködök létezése, az életük végéhez közelítő közepes tömegű csillagoknak köszönhető. Közepes tömeg alatt a 0.8 és 8 naptömeg közötti tartomány értendő. A továbbiakban csakis ezekkel foglalkozom majd, és nem térek ki sem a kisebb, sem a nagyobb tömegűekre.

Evolutionary_track_1m-5m

Közepes tömegű csillagok fejlődési útvonala a Hertzsprung-Russel diagramon. Main Sequence – Fősorozat, Subgiant Branch – Szubóriás ág, Giant Branch – Óriás ág, Horizontal Branch – Horizontális ág, Asymptotic Giant Branch – Aszimptotikus óriás ág, Instabilty Strip – Instabilitási sáv

Ábrák forrása: Wikipedia.org

A csillagok életük jelentős részét a Hertzsprung-Russel diagram úgynevezett fősorozatán töltik, miközben magjukban a hidrogén héliummá fúziónál. E folyamatban keletkező energiának köszönhetően képes dacolni a gravitációval. Leegyszerűsítve, a kifelé ható sugárnyomás akadályozza meg, hogy saját gravitációja összeroppantsa a csillagot. Ez a harc születésüktől fogva zajlik, s egészen halálukig, az energiatermelő termonukleáris folyamatok megszűnéséig tart. A hidrogénkészletek azonban nem tartanak örökké. Szerencséjükre a magban zajló hidrogén fúziója nem túlélésük egyetlen kulcsa. Sorsuk azonban így is beteljesül.

A Nap tömegének nagyságrendjébe eső, a fősorozatot elhagyó csillag esetén a hidrogén fúzió már régen nem a magban zajlik. Ekkora, a hidrogén héliummá történő átalakítása már a magot körülvevő külső héjba tevődik át, melynek következtében a csillag felfúvódik, és külső része lehűl, így jut el a vörös óriás fázisba. Majd miután a magban a hőmérséklet eléri a 100 millió fokos nagyságrendet, beindul a hélium fúziója. Ez a folyamat a kék szín irányába tolja a csillag fényét. Hogy mennyire, ez nagy részben a fémtartalomtól függ. (A csillagászok minden elemet a hidrogénen és a héliumon túl a periódusos rendszerben fémnek neveznek. Egy csillag fémtartalmát általában a Naphoz szokták hasonlítani a kutatók. A világegyetem története folyamán, a csillagoknak hála folyamatosan dúsult fémekkel. Az újabb és újabb csillaggenerációk egyre több fémet tartalmaztak, így minél alacsonyabb fémtartalmú egy csillag a Naphoz képest, annál ősibb objektum.) A horizontális ág tagjai a magjukban már héliumból szenet hoznak létre. Ennek az ágnak a csillagai kis fémtartalmú ősi, kisebb tömegű csillagok. A Naphoz hasonló fémtartalmú, 1-2 naptömegű csillagok nem „foglalják el” a horizontális ágat, csak némileg válnak forróbbá, miközben luminozitásuk csökken. Ezek alkotják az úgynevezett vörös kupac (Red Clump a fenti ábrán) csillagait a Hertzsprung-Russel diagramon. A 2-8 naptömegűek viszont kissé nagyobb kitérőt tesznek a kék szín irányába, felszíni hőmérsékletük is jobban megemelkedik. Ezek a kék hurok (Blue Loop a fenti ábrán) csillagai. Azonban, e csillagok életében ez mindössze egy rövidke epizód.

Miután a hélium is elfogy az addigra szénben és oxigénben gazdag magban, a fúzió az azt körülvevő külső héjba tevődik át. Az energia nagy része azonban nem itt keletkezik, hanem a külsőbb hidrogén héjban. A csillag külső rétegei ismét felfúvódnak és lehűlnek. Ennek köszönhetően a csillag fényessége ismét megnő, túlszárnyalva a korábbi vörös óriás fázist, színe pedig ismét a vörös felé tolódik. A csillag elfoglalja helyét az aszimptotikus óriás ágon (AGB fázis). Ugyan a valamivel nagyobb tömegű (2-8 naptömeg közötti) csillagok némiképp más utat járnak be, de nagy vonalakban hasonló folyamatok zajlanak le azoknál is.

Az AGB fázisban a csillagok jelentős mennyiségű tömeget veszítenek a magból a felszínre emelkedett szén, oxigén és egyéb nehéz elemeknek köszönhetően porban gazdag, 10-15 km/s sebességű, sűrű csillagszél révén. Ez évente mintegy 10-7 naptömeget jelent. Ezt egy rövid ideig tartó, hirtelen felgyorsuló, intenzív anyagkiáramlás, az úgynevezett szuperszél követi. Ennek a folyamatnak a végére már szinte csak a lecsupaszított, szénben és oxigénben feldúsult forró mag marad hátra. A csillagot körbevevő anyagfelhőt ebben az állapotban protoplanetáris ködnek nevezik, ugyanis még csak visszaveri szülőcsillagának fényét (nincs még gerjesztés, mint a későbbi planetáris köd fázisban).

A magot vékony hidrogénburok veszi körül, amiben még mindig zajlik a hidrogén fúziója héliummá. A csillag így egyre forróbb, és forróbb lesz. (Balra mozogva a Hertzsprung-Russel diagramon.) A tömegvesztés lelassul évi 10-8 naptömegre. A lassú és sűrű csillagszelet 200-2000 km/s-os gyors, de kis sűrűségű csillagszél váltja fel, mely beleütközik a korábban ledobott, főleg a szuperszél időszakából származó csillagkörüli anyagba. A gyors csillagszél mintegy maga előtt tolva azt, képes sűrű héjat formálni belőle.

Mikor a csillag felszíni hőmérséklete átlépi a 30000 K-t intenzív UV sugárzásával gerjeszteni kezdi a körülötte lévő gázt. A köd többé már nem a csillag fényét veri vissza, hanem „világítani” kezd. Színképét ettől fogva a hidrogén rekombinációs vonalai, és az úgynevezett ütközéssel gerjesztett tiltott vonalak uralják. (Eme utóbbiak csak roppant ritka csillagközi gázban jöhetnek létre, ezért hívják tiltott vonalaknak. Ilyen például az OIII színképvonala is.) Ettől a ponttól beszélünk planetáris ködről.

Alapvetően, az előbb említett különböző típusú anyagkiáramlások bonyolult kölcsönhatása az, mely meghatározza a planetáris köd felépítését, szerkezetét. Hihetetlen tűnik, de kezdeti tömegüknek akár több mint a felét is elveszíthetik a csillagok késői fejlődési fázisukban. Illetve, az esetenként akár 100000 K-nál is nagyobb felszíni hőmérsékletű központi csillag intenzív UV sugárzása teszi a ködöt „láthatóvá”.

Azt mindenképpen ki szeretném emelni, hogy az AGB fázisban történő anyag kibocsájtás, tömegvesztés pontos megértése még várat magára. Sok minden nem teljesen világos még a csillagászok előtt.

A planetáris ködök csillagászati időskálán mérve roppant gyorsan jönnek létre. Az AGB fázis végén ehhez elég mindössze néhány évszázad. Létezésük pedig alig pár tízezer év. A planetáris ködök szülőcsillagai nem elég nagytömegűek, hogy magjukban beinduljon a szén és az oxigén fúziója. Idővel a nukleáris fúzió a külső rétegekben is leáll. A csillagszél megszűnik, és lassan a fehér törpe állapotba jut a csillag. Mire ez a folyamat teljesen befejeződik, a planetáris köd elenyészik az űr sötétjében, láthatatlanná válik.

A fehér törpék esetében az úgynevezett elfajult elektrongáz nyomása dacol gravitációval. Ez a kvantummechanikai eredetű nyomás csakis a sűrűségtől függ, a hőmérséklettől egyáltalán nem – ellentétben az ideális gázokkal -, s egészen 1.44 naptömegig (Chandrasekhar-határ) képes egyensúlyban tartani a csillagot.

A fentebb ismertetett, úgynevezett kölcsönható csillagszél modellel tehát nagyszerűen megmagyarázható, hogy miként keletkeznek a sűrűbb héjak a lassan haldokló csillag körül. Azonban a legtöbb planetáris köd egyáltalán nem gömbszimmetrikus. Tekintélyes hányadukra például sokkal inkább jellemző valamiféle tengelyes szimmetria (bipolárisak, esetleg multipolárisak). Csak hogy két példát említsek azok közül, melyeket korábban már megörökítettem, sem az NGC6302, de még csak M57 sem gömbszimmetrikus.

ngc6302-lrgb-20140414-ttk-1

NGC6302 planetáris ködről már elsőre látszik, hogy sokkal inkább valamiféle tengelyes szimmetria jellemző rá, még ha az nem is oly tökéletes. Bíbor csápjait messzire nyújtja az űrben. A központi részen két fénykaréj fordít egymásnak hátat, így téve még hangsúlyosabbá a homokóraformáját az objektumnak. A bipoláris planetáris ködök gyönyörű példánya. (A szerző saját felvétele.)

M57-LRGB-20140505-TTK

Az M57 felépítése is valami mást takar. (A szerző saját felvétele.)

Hogyan értelmezhető e planetáris ködök szerkezete? Egyes elképzelések szerint, már az AGB fázisban, a forgó csillagról kiáramló lassú csillagszél sem gömbszimmetrikus, az a csillag egyenlítőjénél sűrűbb, míg a pólusok irányában ritkább. A csillag körül, annak egyenlítőjének a síkjában, tórusz alakú sűrűsödés alakul ki. A későbbi fejlődési állapotban meginduló gyors csillagszél, így könnyebben el tud szökni a pólusok irányába, és ott messzebbre jutva, létrehozza a bipoláris planetáris ködökre jellemző homokóraformát (pillangóformát). Az, hogy milyennek látjuk ezeket a ködöket, az nagyban függ attól, hogy milyen irányból tekintünk rájuk, ahogy ez a lenti ábra is szemlélteti.

planetaris-kodok-persp

Az, hogy a bipoláris planetáris köd megjelenése gyűrűre, vagy inkább homokórára emlékeztet, az attól függ, hogy milyen irányból tekintünk rá. Forrás: http://astro.u-szeged.hu/oktatas/galaktikus/34planetaris_nezet.html

Csakhogy, az elméleti megfontolások arra engednek következtetni, hogy az AGB fázisban a csillag forgása ahhoz nem elég gyors, és a mágneses mezeje sem elég erős, hogy működhessen a modell.  Ráadásul a planetáris ködök formavilága roppant változatos. Van, ami bár közel gömb alakú, de belsejében furcsa struktúrák figyelhetőek meg. Van ahol több héjból áll a köd. Egyeseknél jet-ek (kilövellések) láthatóak. Olyan planetáris ködök is vannak, ahol csak úgy értelmezhető a megfigyelhető látvány, hogy a csillag „imbolygott” (precesszió) az anyagkibocsájtás közben.

A világegyetemben a csillagok nagyjából fele nem magányos. Körülbelül 50 ± 10 % egyedüli, 38 ± 10 % kettős, 8 ± 3 % hármas, 3 ± 1 % többes rendszer tagja. A csillagászok joggal feltételezték, hogy a planetáris ködök szülőcsillagainál sincs ez másképpen.

The Frosty Leo Nebula

Az IRAS 09371+1212 planetáris köd (Frosty Leo Nebula) szerkezete arról árulkodik, hogy szülőcsillaga nem magányos. Forrás: ESA/Hubble – NASA

És valóban! Az esetek felében – ahol sikerült megfigyelni a központi csillagot -, azt találták a csillagászok, hogy az nem magányos. Alapvetően tehát szülőcsillaguk UV sugárzása a felelős e ködök fényéért, azonban a szerkezetük kialakításában kulcsszerep jutott a társcsillagnak. Hogyan?

Két mágnesezett és egymás körül keringő csillag egymásra gyakorolt hatását egyelőre nem lehet egzakt módon kiszámítani, mindössze kvalitatív képe van csak a csillagászoknak a dologról. Úgy látszik azonban, hogy a kísérőcsillag segít a mágneses mező fenntartásában. Továbbá, a keringésből származó perdület egy részét a gerjesztő csillagra juttatva felgyorsíthatja annak forgását. Mégis csak lehetséges tehát, amennyiben kettőscsillagról van szó, hogy már eleve az AGB fázisban sérül a gömbszimmetria. A kettősségnek köszönhetően mégiscsak működhet az elképzelés, miszerint a csillag egyenlítőjénél sűrűbb, míg a pólusok irányában ritkább a lassú csillagszél, illetve a szuperszél.

Másfelől, mivel a kettős rendszer tagjai a közös tömegközéppont körül keringenek, így a kiáramló csillagszél „megkavarodik”. A ledobott héjak összenyomódnak a keringés irányában, az anyag a vezető oldalon jobban összesűrűsödik, majd a köd tágulásával a „mintázat” felfúvódik. Ez a jelenség megmagyarázza, hogy miért látunk több planetáris ködben is spirális mintázatot.

R_Sculptoris_ALMA_data_visualisation

Az ALMA (Atacama Large Millimeter Array) milliméteres/szubmilliméteres tartományban működő rádiótávcsövek hálózatából álló rendszer felvétele az R Sculptoris félszabályos változócsillagról, mely egy AGB fázisban lévő vörös óriás csillag. A csillakörüli anyag különös mintázatát valószínűleg a „láthatatlan” kísérőjének köszönhető. Az R Sculptoris pályája különböző pontjain „pöfögte le” magáról külső rétegeket, miközben a kettős rendszer a közös tömegközéppont körül keringett.  Forrás: ALMA (ESO/NAOJ/NRAO)

Kettőscsillag alkotta rendszerekben más egyéb folyamatok is alakíthatják a planetáris köd szerkezetét. Talán a legkülönösebb mintázatokat az egymáshoz viszonylag közel keringő kölcsönható kettősök hozzák létre.

Mindkét tag esetén megvan az a térrész, amit az adott égitest gravitációja ural. Ezt Roche-térfogatnak nevezik. Ami azon kívül kerül az akár el is hagyhatja a rendszert, vagy a páros körüli pályára állhat. A belső (L1) Langrange-ponton keresztül azonban anyag áramolhat át az egyik Roche-térfogatból a másikba. Amennyiben az egyik csillag társa fejlődése során felfúvódik, és kitölti saját Roche-térfogatát, vagy csak intenzív csillagszele révén az AGB fázisban sok anyagot veszít, és ez tölti ki az említett térfogatot, akkor megindul az anyag átáramlása a társra.

Roche-lobes-corrected

Az ábra a Roche-térfogatot szemlélteti. Az L1 a szövegben is említett belső Langrange-pont. Az eredeti ábra forrása: Wikipedia.org (az eredeti ábra hibás volt, így módosítottam)

Bizonyos esetben azonban nem jut el az AGB társ összes anyaga a kísérőjére, hanem gázfelhő formájában veszi körül a párost. Közös gázburokkal körülvett kettőscsillagoknak (common envelope binary systems) nevezik az ilyen rendszereket. (Megjegyzés: A gázburok más ütemben rotál, mint a benne található kettőscsillagok. Ez különbözteti meg ezeket a kettősöket az érintkező kettős rendszerektől.)

Közös gázburok olyankor alakul ki kettőscsillagok körül, ha az egyik komponens valamilyen okból nagyon gyorsan fúvódik fel, vagy a két csillag közötti szeparáció nagyon gyorsan ütemben csökken. Ezeknél a párosoknál is, amikor a felfúvódó donor kitölti a Roche-térfogatot, megindul az anyagátadás. Tömege csökken, a Roche-térfogata zsugorodik. Így még jobban kitölti a térfogatot. Gyorsul az anyagátadás üteme, gyorsul a Roche-térfogat kitöltése (az folyamatosan megy össze), és így tovább. Egy megszaladó dinamikusan instabil anyagátadás valósul meg a kettős rendszerben. Adott esetben a „fogadó” oldali csillag már nem is tudja begyűjteni az összes gázt, és ezért közös gázburok alakul ki a páros körül. A gázburok fékező hatást fejt ki a kettős rendszerre. A csillagok energiát veszítenek, és közelebb kerülnek egymáshoz, ami szintén maga után vonja a Roche-térfogat zsugorodását, s így az anyagátadás fokozódását. A keringésből származó „lopott” energia felfűti és kitágítja a közös burkot. Idővel a donor felfúvódása abbamarad, a közös burok pedig tágulva elhagyja a rendszert. (Az is előfordulhat, hogy a kettős tagjai végül összeolvadnak, de e helyütt ezzel most nem foglalkozom.)

Akár közös burok veszi körül a párost, akár sem, amikor a Roche-térfogat kitöltésekor az anyagátadás megvalósul, akkor a gáz nem közvetlenül zuhan a második csillagra, hanem úgynevezett akkréciós korongot formál körülötte, s így befelé spirálozva éri el a csillag felszínét. Az ilyen akkréciós korongok gyakori sajátossága a forgástengellyel párhuzamos kifújások (jet) a csillagnál. Amennyiben a korong még precessziós mozgást is végez (imbolyog), az epizodikus kifújások dugóhúzó, vagy S mintázatot rajzolnak a térben. Ennek a jelenségnek egy nagyszerű példája a Fleming 1 planetáris köd.

The planetary nebula Fleming 1 seen with ESO’s Very Large Telescope

A Fleming 1 planetáris köd közepén nem is egy, hanem két degenerált (post-AGB fázisú, ifjú fehér törpe) csillag is található. A kiinduláskor a két csillag tömege igen közel lehetett egymáshoz. Az árnyalatnyival nagyobb tömegű komponens, csillagászati értelemben csak alig valamivel hamarabb érte el a planetáris ködöt létrehozó fejlődési állapot. Nem sokkal később a társa is követte. A különös S mintázatot az AGB csillagról a fehér törpére átáramló anyag formálta akkréciós korong jet-jei alakították ki.  Forrás: ESO (VLT)

A Fleming 1 S alakú mintázatának kialakulását szemléltető video.

Egyre elfogadottabb tehát az a nézet, hogy a gömbszimmetriától való eltérés magyarázata, a központi csillag kettőssége.  A planetáris ködök központi csillagainak hatoda ráadásul nem is kettős, de hármas rendszer tagja. Ilyen esetekben még a tengelyes szimmetria sem teljesül. De mi a helyzet azokkal a ködökkel, amelyek középpontjában magányosnak tűnő csillag csücsül, és mégsem gömbszimmetrikusok? Az elméleti megfontolások szerint nincs szükség feltétlenül csillagkísérőre, hogy működjenek a fentebb vázolt mechanizmusok. Már egy barna törpe társ, vagy akár a csillag bolygórendszere is képes „tönkretenni” a szabályos gömbformát. Napjainkban már több ezer exobolygóról van tudomásunk, s azt is tudjuk, hogy a bolygórendszerek igen gyakoriak a csillagok körül. Mondhatni, szinte nincs is valójában magányos csillag, csupán olyan, melynek nincs csillagtársa.

Ezzel röviden áttekintettem a megfigyelések, következtetések, elméleti megfontolások azon láncolatát, melyek Herschel „planetáris köd definíciójától” a mai, modern képig elvezettek. Igaz, e helyütt csak kialakulásukkal, felépítésükkel foglalkoztam. Azzal is csak vázlatosan. Akit a téma részletesebben is érdekel, annak ajánlom figyelmébe a felhasznált irodalmak listájából Szabados László cikkét. Évtizedek óta nem jelent meg magyar nyelven ahhoz hasonló összefoglaló cikk a planetáris ködökről! Ráadásul (teljesen természetes módon), azokban a korábbi magyar nyelvű cikkekben sok információ mára el is avult.

Külön köszönettel tartozom Szabados Lászlónak a cikk írásakor nyújtott konzultációs lehetőségért!

Felhasznált irodalom:

C. Muthu, B. G. Anandarao: A Spatiokinematic Study of the Planetary Nebula NGC 1514

Michael E. Ressler, Martin Cohen, Stefanie Wachter, D. W. Hoard, Amy K. Mainzer, and Edward L. Wright: The Discovery of Infrared Rings in the Planetary Nebula NGC 1514 During the WISE All-Sky Survey

B. Aryal, C. Rajbahak, R. Weinberger: A giant dusty bipolar structure around the planetary nebula NGC 1514

Henri M. J. Boffin, Brent Miszalski, Thomas Rauch, David Jones, Romano L. M. Corradi, Ralf Napiwotzki, Avril C. Day-Jones, Joachim Koeppen: An Interacting Binary System Powers Precessing Outflows of an Evolved Star

A. Aller, B. Montesinos, L. F. Miranda, E. Solano, A. Ulla: Spectral analysis of BD+30°623, the peculiar binary central star of the planetary nebula NGC 1514

R.H. Mendez, R.P. Kudritzki, M.A. Urbaneja: The two central stars of NGC 1514: can they actually be related?

Szabados László: Planetáris ködök (Meteor csillagászati évkönyv 2017)

Hickson68 (NGC5350, NGC5353, NGC5354, NGC5355, NGC5358) – Paul Hickson interjú

Hickson68-LRGB-20170326-2144-sx-bin2-360s-TTK

A Hickson68 kompakt galaxiscsoport a Vadászebek csillagképben

2017-03-26, 2017-03-28 – Göd

42 x 360 sec L (Bin2), 10 x 360 sec R (Bin2), 10 x 360 sec G (Bin2), 10 x 360 sec B (Bin2)

300/1200 Newton távcső – Paracorr Type2 kóma korrektor – eredő fókusz 1380 mm

SkyWatcher EQ-6 Pro GoTo mechanika

SXVR-H18 CCD kamera, Hutech IDAS P2 LPS filter és Baader RGBL fotografikus szűrőszett

Be kell valljam, hogy 2017. március 26-án kissé felkészületlenül álltam a hátsó udvaron sötétedés után. Több hónapja, hogy távcsövem téli álmát aludta. A tél azonban rég elmúlt, és fejem fölött már ott sötétlett a galaxisoktól hemzsegő tavaszi égbolt. Nem volt az a koromfekete és kristálytiszta, de kisvárosi éghez képest éppen megfelelő. Amúgy is régen rögzítettem felvételeket kerti magányomban az űr valamelyik távoli szegletéről. Ki tudja, mikor lesz a következő alkalom? Miközben a megszokott rutin keretében pólusra álltam, betanítottam a mechanikát, és meggyőződtem róla, hogy a műszer tényleg készen áll a fotózásra, azon töprengtem, hogy mi legyen a kiszemelt célpont. Egyáltalán nem volt semmilyen tervem. Nem készültem.

Pár nappal korábban olvastam egy cikket az arxiv.org-on, mely a galaxisok evolúciójának kérdésével foglalkozott, és amelyben Paul Hickson munkásságára is hivatkoztak. Sok amatőrcsillagász számára ismerős lehet Hickson katalógusa, kimondottan a mély-ég objektumok kedvelőinek. Hickson a Palomar Obszervatórium Égboltfelmérő Programban (Palomar Observatory Sky Survey) készült, vörös színszűrővel rögzített felvételeit fésülte át alaposan, és speciális kritériumok alapján 100 kompakt galaxiscsoportot azonosított. Célja a galaxisok felépítésének és dinamikus fejlődésének tanulmányozása volt, ezek a csoportok pedig kitűnő terepet szolgáltattak ehhez.

35 év telt el, hogy Hickson publikálta a kompakt galaxiscsoportok tulajdonságait taglaló munkáját (Systematic properties of compact groups of galaxies – Hickson, 1982). Ezt újabb felismerésekkel, és ahogy az lenni szokott, újabb kérdések feltevésével egészítette ki az évek során. De nemcsak saját maga, hanem más csillagászok is előszeretettel tanulmányozták ezeket a csoportosulásokat, illetve támaszkodtak eredményeire. Hickson talán máig az egyik legteljesebb és legjobban tanulmányozott mintát állította össze ebben a témában. Kijelenthető, hogy az ő munkásságának is jelentős szerep jutott abban, hogy a csillagászok ma már többet tudnak a galaxisokról, mint évtizedekkel korábban.

Ezekkel a gondolatokkal a fejemben elhatároztam, hogy a célpontom valamelyik Hickson kompakt galaxiscsoport lesz. Végül a Hickson68-ra esett a választásom. Éppen megfelelő pozícióban volt az égen, figyelembe véve a kertet szegélyző fákat, a szomszédok házait, és bizony a fényszennyezést is.

Az öt galaxist tömörítő Hickson68 kompakt galaxiscsoport a Vadász Ebek (Canes Ventaici) csillagkép területén, a Seginus (γ Boo), Alkaid (η UMa) és a Cor Caroli (α2 CVn) háromszög déli oldalának közelében található. Megtalálásukban nagy segítséget jelent a Seginus és a Cor Caroli között félúton lévő 6.5 magnitúdós HD121197 jelzésű csillag. (7.8 fokra a Seginus-tól). Amennyiben ezt sikerült azonosítani, máris az égbolt megfelelő szegletében járunk, ugyanis ez az a vöröses árnyalatú csillag az, ami a felvételemen is a legfényesebben tündököl.

Hickson68-map1

A Hickson68 elhelyezkedése az égen.

A világegyetem tágulásának köszönhetően a galaxisok távolodnak tőlünk, méghozzá annál nagyobb sebességgel, minél nagyobb a távolságuk. Ezt az összefüggést nevezik Hubble-törvénynek. A Doppler-effektus miatt, a távolodó égitest spektrumában a színképvonalak a sebességgel arányosan a vörös szín felé tolódnak. A vöröseltolódást megmérve tehát, kiszámítható a távolodás sebessége. Ebből pedig, az említett Hubble-törvényt felhasználva, következtetni lehet az adott galaxis távolságára. A Hickson68 galaxisainak vöröseltolódása alapján, azok 111-123 millió fényévre vannak tőlünk. Megjegyzem, hogy az egyéb, a vöröseltolódástól független távolságmeghatározási módszerekkel kapott értékek 90 és 120 millió fényév között szórnak. Ez elfogadható egyezésnek számít a csillagászatban. (Én a továbbiakban a csakis a vöröseltolódáson alapuló távolságokat fogom alapul venni.) A hangsúly nem is a pontos távolságon, sokkal inkább a közel azonos vöröseltolódáson van. Vagyis, az öt galaxis ténylegesen közel van egymáshoz, a Hickson68 mind az öt tagját gravitációs kapocs köti össze, és nemcsak véletlenül látszanak azonos irányban. Ilyen véletlenek márpedig előfordulnak. Csak két híres példát említenék: a Stephan-galaxisötös (Stephan’s Quintet), illetve a Seyfert-galaxishatos (Seyfert’s Sextet) egy-egy tagja csak látszólag az adott csoportosulás része. A valóságban hatalmas távolság választja el a többiektől. Továbbá, a Seyfert-galaxishatos hatodik objektuma nem is galaxis, sokkal inkább a galaxisok közötti kölcsönhatás eredményként létrejött úgynevezett árapálycsóva (tidal tail). A csillagászatban is előfordul, hogy nem mindez az, amink elsőre látszik. Azonban, a vöröseltolódásukat megmérve ezek az imposztorok leleplezhetők.

Hickson68-LRGB-20170326-2144-sx-bin2-360s-TTK-label

A Hickson68 mind az öt galaxisa szerepel az NGC katalógusban. A továbbiakban erre fogok hivatkozni.

A Hickson68 öt galaxisa közül az NGC5350 küllős spirál galaxis az egyik legközelebbi. Vöröseltolódása alapján távolsága 111 millió fényév. Bár látszólag csak 3.2 x 2.3 ívperces kis objektum az égen, de a távolság adatok tükrében, az átmérője a Tejútrendszer 100 ezer fényéves átmérőjével vetekszik.

A „kvintettnek”, az égbolton egymáshoz igen közel látszó két galaxisa az NGC5353 és az NGC5354. Mind a kettő úgynevezett lentikuláris galaxis. Ez a típus átmenetet képez a spirál és az elliptikus galaxisok között. A lentikuláris galaxisok alapvetően diszk alakúak akárcsak a spirál galaxisok. Nincsenek azonban spirálkarjaik, a korongban nem figyelhetők meg határozott struktúrák. Jellemző rájuk, hogy a központi dudor a galaxis korongjához képest viszonylag nagyméretű, és meghatározó a galaxis felépítése szempontjából.

Az elliptikus galaxisokat és a lentikuláris galaxisokat gyakran nem is olyan könnyű megkülönböztetni egymástól. A legtöbb esetben, a csillagászok a felületi fényesség profil alapján szokták eldönteni a galaxisról, hogy az melyik típusba tartozik. Ez a profil leírja, hogy miként változik a galaxis fényessége a centrumtól távolodva. A spirál galaxisok, illetve a lentikuláris galaxisok korongjának profilja tipikusan lapos, míg az elliptikusak szferikus része, illetve a lentikulárisok központi dudorának profilja meredek esésű. A gyakorlat azonban sosem ennyire egyszerű, ugyanis lentikuláris galaxisok esetén a központi dudor jellemzően dominánsabb a koronghoz képest. Tipikusan akkor kap a galaxis lentikuláris, és nem elliptikus besorolást, ha felületi fényesség profilja nem írható le egyetlen indexszel (Sérsic index). Vagyis, csak több, különböző meredekségű görbével írható le.

Sersic_models

Felületi fényesség profilok különböző Sérsic index-ek esetén. A vízszintes tengelyen található a centrumtól mért távolság logaritmusa, míg a függőleges tengelyen a felszíni fényesség logaritmusa. Az n=1 a spirál galaxisokat és a lentikuláris galaxisokat, az n=4 az elliptikus galaxisokat írja le jól.

Használatos még, mivel nincs tökéletesen éles határ, ami elválasztaná az elliptikus és lentikuláris galaxisokat, az E/S0 morfológiai típus is. A Hickson68-ban lévő NGC5353 például néhány szerzőnél ilyen besorolású.

Az NGC5353 a fényesebb (ez vizuálisan is jól kiütközik) a kettőjük közül. Halvány kiterjedt halója, ami összeolvadni látszik a NGC5354 galaxiséval, inkább csak a fotókon bukkan elő. Szinte lehetetlen megmondani, hogy mekkora e két galaxis kiterjedése. Véleményem szerint, a legtöbb katalógusban e külső leplek nélküli méretek szerepelnek. Mindenesetre a SIMBAD adatbázisa az NGC5353-ra 3.6 x 1.7 ívperc, míg az NGC5354-re 2.9 x 2.4 ívperc értéket tüntet fel. De térjünk vissza az NGC5353 és az NGC5354 látszólag egymásba olvadó halvány külső részéhez. A vöröseltolódása alapján az NGC5353 111 millió fényévre, az NGC5354 123 millió fényévre van tőlünk. Amennyiben a csillagászok mérései pontosak, akkor a két galaxist nagyjából 12 millió fényév választja el egymástól. Ez összehasonlításként majdnem ötszöröse a Tejútrendszert és az Androméda-galaxist elválasztó távolságnak. Igazából az NGC5350 küllős spirál és az NGC5353 lentikuláris galaxisok nagyságrendekkel közelebb vannak egymáshoz. Ugyanakkor, egyelőre nincs igazán meggyőző bizonyíték arra nézve, hogy a galaxisok szoros kölcsönhatásban állnának egymással. Sem az NGC5350, sem az NGC5353, de még csak az NGC5354 esetében sem figyelhetők meg az interakcióban lévő galaxisokra jellemző vonások. Ilyen például a rotációs görbék két oldala közötti különbség, a csillagok mozgásában lévő „zavarok”. Vagy éppen a csillagok és az intersztelláris anyag eloszlásában mutatkozó eltérések, esetleges árapály csóvák, vagy az infravörös tartományban megfigyelhető sugárzási többlet. Eddig egyiket sem sikerült kimutatni az esetükben. A két lentikuláris galaxis halvány leplének összefonódása tehát perspektivikus hatás csupán. Ezek a csillagrendszerek azonban már önmagukban is érdekesek.

Az NGC5353 és NGC5354 számottevő aktivitást mutatnak a rádiótartományban, illetve az optikai spektrumuk is több kérdést vet fel. Mind a kettő a LINER (Low Ionization Nuclear Emission Region) galaxisok csoportjába tartozik. A LINER-ek a nevüket magjuknak színképe alapján kapták, amiben tipikusan gyengén ionizált atomok (egyszeresen ionizált oxigén, nitrogén, kén, stb.) keskeny vonalai figyelhetők meg, míg az erősen ionizált atomok (például kétszeresen ionizált oxigén) vonalai viszonylag gyengék. A LINER galaxisok közel sem olyan ritkák, mint az elsőre gondolnánk. A megfigyelések azt mutatják, hogy a környezetünkben (486 elemű, legalább 12.5 magnitúdós (BT) galaxismintát tekintve) minden ötödik-harmadik galaxis ilyen. Érdekes, hogy túlnyomórészt inkább elliptikus és lentikuláris galaxisok esetén figyelhető meg ez a jelenség, bár számottevő a spirál galaxisok mennyisége is. Az irreguláris galaxisok között viszont csak elvétve akad ilyen.

Máig vitatott, hogy pontosan miért látjuk ezeket az emissziós vonalakat a LINER galaxisok színképében. Már abban sincs egyetértés a csillagászok között, hogy egyáltalán miként jön létre maga a gerjesztés. Egyesek szerint az intersztelláris gázban terjedő lökéshullámok (shock waves), míg mások szerint a fotoionizáció (intenzív UV sugárzás) okozza azt. Nemcsak az ionizációs mechanizmus kérdésében oszlik meg a kutatók véleménye, de annak forrását illetőleg is.

A csillagászok egyik jelentős tábora szerint, e galaxisok esetében a centrumban tanyázó szupermasszív fekete lyukak a felelősek a gáz gyenge ionizációjáért. Szerintük a kis luminozitású aktív galaxismagok (Low-Luminosity Active Galactic Nuclei – LLAGN), ahová a kevésbé fényes magú Seyfert galaxisok, és a LINER-ek is tartoznak, illetve azok a galaxismagok, melyek színképe a LINER-ek és a HII régiók közt átmenetet mutat, csupán a nagyságrendekkel intenzívebben sugárzó Seyfert galaxisoknak és a kvazároknak a rokonai. Ezen utóbbiak magjában, a szupermasszív fekete lyuk felé áramló anyag akkréciós korongot formál, s miközben befelé örvénylik, egyre gyorsabban mozog és felhevül. A folyamatban a mozgási energiájának egy jelentős része elektromágneses sugárzássá alakul. Az akkréciós korong mindkét oldalán, a forgástengely mentén plazmából álló jet-ek jönnek létre. A jet a fekete lyukhoz közeli erős mágneses térben közel fénysebességre gyorsított, töltött szubatomikus részecskék fókuszált nyalábja. A relativisztikus sebességgel mozgó töltött részecskék a mágneses térben kifelé spirálozva felelősek az úgynevezett szinkrotronsugárzásért. A kis luminozitású aktív galaxismagok hasonlóan működnek e csillagászok vélekedése szerint, csak éppen kevésbé energikusak.  Míg például a kvazároknál a jet-ek hossza elérheti akár a millió fényéves nagyságrendet is, addig a kis luminozitású aktív galaxismagok esetében inkább csak fényéves méretekről lehet beszélni, de extrémebb esetekben is pár száz fényévről. Az eltérések az aktív galaxis magok, és a kis luminozitású aktív galaxismagok között a fekete lyukak tömegére, az anyagbefogás ütemére, az akkréciós korong fizikai paramétereire, illetve a fekete lyukat körbevevő galaktikus környezetre (por és gáz, azok hőmérséklete stb.) vezethetők vissza, hogy csak pár lehetséges okot említsek. Amennyiben tényleg rokoni szálak fűzik őket össze, akkor a LINER galaxisok alkotják az aktív magú galaxisok legnépesebb alosztályát, számuk messze lekörözi a nagyobb luminozitású Seyfert galaxisok és kvazárok számát.

agn_tipusok

Aktív galaxismag sematikus vázlata.

Black Hole – Fekete lyuk, Torus of Neutral Gas and Dust – Ionizálatlan gázok és por tórusza, Accretion Disk – Akkréciós korong, Radio Jet – Rádió Jet

A kétezres évek elején, több más kis luminozitású aktív magú, és „klasszikus” aktív magú galaxissal együtt az NGC5353-at és az NGC5354-et is vizsgálták a VLA (Very Large Array)  és a VLBA (Very Long Baseline Array) rádiótávcső rendszerekkel, hogy pontosabb képet kapjanak arról, hogy mi is történik azok centrumában. Sokuknál sikerült az ezred ívmásodperces felbontást is elérni (VLBA), ami azt jelenti, hogy szub-parszekes skálán (1 parszek körülbelül 3.26 fényév) tudták vizsgálni a galaxisok centrumából származó rádiósugárzást. Kiderült, hogy a két galaxis magja azokhoz a kis luminozitású aktív galaxismagokhoz tartozik, ahol mindössze alig néhány fényév hosszúságú, és görbült a jet. Tehát, nemcsak náluk, hanem más, a kiválasztott mintában szereplő galaxis magjánál is megfigyeltek hasonlót. A legtöbbjük pedig szintén LINER galaxis volt. Az is hozzátartozik az igazsághoz, hogy nem minden LINER esetében tudták ezt kimutatni. Ahol viszont igen, ott úgy tűnik, hogy a jet-ek nem jutnak messze a központi fekete lyuktól. Lehetséges, hogy egyik galaxis esetében sem eléggé kollimált a nyaláb. De az is elképzelhető, hogy a környező anyaggal való kölcsönhatásban egyszerűen csak hamar elveszíti energiájának tekintélyes részét. Ha ez utóbbi a helyes magyarázat, akkor a jet jelentős mennyiségű energiát ad le alig néhány fényéven belül, így lelassítja a gáz beáramlását az akkréciós korongba. Ez pedig kihat a fekete lyuk anyagbefogási ütemére is. Talán éppen ez az oka, hogy kisebb luminozitásuk ezek a magok a többi aktív galaxismaghoz képest. Csakhogy, sok LINER galaxisban aktív magnak semmi nyoma, így vannak, akik nem támogatják ezt a fentebb vázolt elképzelést, vagy kissé árnyaltabban vélekednek róla.

NGC5353-NGC5354-radio_core01-cut1

Balra: Az NGC5353 centrumának rádióképe. A görbült „megnyúlások” a feket lyuktól induló jet-ek, melyek alig pár fényévre jutnak csak el. Forrás: Nagar és mások

Jobbra: Az NGC5354 centrumának rádióképe. Itt is görbületet mutatnak a jet-ek, és hasonlóan rövidek, mint az előző esetben. Forrás: Filho és mások

Egyesek szerint a csillagkeletkezési régiók fiatal, masszív és egyben forró csillagai gerjesztik a gázt. Való igaz, hogy pár LINER galaxis esetében találtak erre utaló jeleket a közeli infravörös tartományban végzett spektroszkópiai vizsgálatok során. De a Spitzer űrtávcsővel is folytattak kampányt a csillagászok, melyben 33 LINER galaxist vetettek alá alapos spektroszkópiai vizsgálatnak a közép infravörös tartományban. Az átfogó minta elemzésével sikerült kapcsolatot kimutatni a fényes infravörös galaxisok (Luminous Infrared Galaxies – LIRGs) LINER emissziója és a csillagkeletkezési aktivitás között. Ezek olyan távoli galaxisok, amelyek főként a Világegyetem abban a korszakában léteztek, amikor a csillagkeletkezési ráta még jelentősen nagyobb volt a ma megfigyelhetőnél. A tömegével születő csillagokat egy ideig még körbevették azok a gázfelhők, amelyben keletkeztek. Az ezekben a felhőkben lévő por a csillagok fényének jelentős részét elnyelte, majd pedig visszasugározta infravörösben. Ezek az intenzív csillagkeletkezést produkáló galaxisok így nem is a látható fényben, hanem sokkal inkább infravörösben igazán fényesek. Innen származik a nevük is. Megjegyzem, hogy aktív galaxismag jelenlétét is detektálták pár esetben. Ellenben, ugyanezen vizsgálat eredményei szerint, a környező normál (nem csillagontó), az infravörösben kevésbé fényes galaxisok LINER emissziója nem a csillagkeletkezésre vezethető vissza. Nem utolsósorban az elliptikus és lentikuláris galaxisokban nem jellemző a masszív és éppen ezért forró fiatal csillagok jelenléte. Ugyanis, ezek csillagászati értelemben rövid ideig, tömegüktől függően mindössze néhány millió, néhány tízmillió évig élnek csak. Ezeknél a galaxisoknál pedig már sokkal régebben véget ért az aktív csillagkeletkezés korszaka.

Vannak olyan csillagászok, akik nem az aktív galaxismagban, vagy éppen az intenzív csillagkeletkezésben látják a megoldás kulcsát. Sőt, éppen ezek hiányával magyarázzák az egészet. Az 1 milliárd évnél öregebb, előrehaladott fejlődési állapotban lévő csillagok, az aszimptotikus óriás ág elhagyása után (post AGB phase) rövid ideig elég forrók ahhoz, hogy képesek legyenek gyengén ionizálni a környező csillagközi gázokat. Az emisszió megfigyelésére pedig azért nyílik egyáltalán lehetőségünk, mert sem az aktív mag, sem a fiatal forró csillagok keltette sugárzás nem ragyogja túl azt. Ez a magyarázat akár működőképes is lehet. Ehhez csak némi gázra és 1 milliárd évesnél öregebb csillagokra van szükség. Ez az elképzelés arra is választ adhat, hogy a LINER-ek miért főként öreg csillagok alkotta masszív galaxisok, amikben már igen kicsi a csillagkeletkezési aktivitás. Ugyanakkor azt se felejtsük el, hogy akadnak aktív magú LINER galaxisok is.

Nem könnyű eldönteni, hogy pontosan melyik teória a helyes, mert oly változatos morfológiájúak, annyira eltérő tulajdonságúak a LINER galaxisok. Könnyen lehet, és éppen e mellett teszik le a voksukat a legutóbb vázolt elmélet képviselői is, hogy az aktív magnak, a fiatal csillagok ionizációs hatásának, és a LINER tulajdonságnak a kérdését teljesen külön kell kezelni. Ez pedig jelentősen átrajzolhatja a galaxisokról alkotott képet, mivel évtizedek óta a LINER tulajdonságot az aktív mag indikátorának tekinti a kutatók jelentős része.

Míg az előző három galaxis a Tejútrendszerhez nagyjából hasonló méretű, addig a 113 millió fényévre lévő NGC5355 átmérője hozzávetőlegesen csak harmada, míg a 115 millió fényévre lévő NGC5358 átmérője valahol a fele és a harmada között van galaxisunkénak. Ezek ketten szintén lentikuláris galaxisok. Azonban, az NGC5358 esetében küllő szerkezet keresztezi a központi dudort, még ha ez így majdnem oldalnézetből nem is tűnik evidensnek elsőre. A galaxis centrumából kiinduló küllő nemcsak a spirál galaxisok „privilégiuma”, a lentikuláris galaxisok esetében is előfordul. Míg azonban az első típus esetében a küllők végéből spirálkarok indulnak ki, addig a lentikuláris galaxisoknak nincsenek karjaik. Az NGC5358 a küllős és küllő nélküli lentikulárisok közötti átmenet képviselője.

Nem tagadom, hogy a tavaszi égen szerényen megbúvó kis halmaz belopta magát a szívembe. Mondom ezt annak ellenére, hogy elég küzdelmes volt a halványabb részletek előcsalogatása, ami a Gödről készült felvételeken szinte alig vált el az égi háttértől. A kép feldolgozásának végén elmorfondíroztam azon, hogy talán 100 millió fényéven túl, valaki a hátsókertjében – ha létezik ott olyan – éppen a Lokális Halmazt vizsgálgatja. Milyen jól nézhet ki onnan tágabb otthonunk! A látványt bizonyára az Androméda-galaxis (M31, NGC 224), és a Tejútrendszer párosa uralja, amihez a Triangulum-galaxis (M33, NGC 598) asszisztál. Vajon nekik is vannak csillagképeik, és mi melyikben lehetünk? Már, ha szintén az optikai tartományban látnak, mint mi. Ha egyáltalán van ott valaki.

Paul Hickson interjú

Azon az estén azt is elhatároztam, hogy rövid interjút készítek Paul Hickson professzorral.

Paul Hickson

Paul Hickson – Fotó: Oscar Saa, CTIO

Először is köszönöm, hogy elfogadta a felkérést!

Miként kezdődött kapcsolata a csillagok világával? Mi volt az első meghatározó csillagászati élménye? Milyen hatások terelték a csillagászat felé?

P.H.: „Amióta csak az eszemet tudom, mindig is érdekelt a fizika és a matematika. Még kisgyermek voltam, mikor a szüleim megajándékoztak egy kis távcsővel. Teljesen lenyűgözött, hogy láthattam vele a Jupiter holdjait, és megfigyelhettem vele a mozgásukat. Később elhatároztam, hogy saját távcsövet készítek. Megtanultam tükröt csiszolni, és elsajátítottam annak módszerét, hogy miként ellenőrizhetem a készülőfélben lévő 8 hüvelykes parabola tükör optikai minőségét.

Az egyetemen fizikára specializálódtam, és csillagászati kurzusokat is felvettem. Szerencsésnek mondhatom magam, hogy később felvettek egy nagyon jó posztgraduális képzésre, ahol rengeteg mindent megtanultam. Az asztrofizikában is itt mélyedtem el igazán.”  

Tanulmányai befejeztével rögtön belevetette magát a galaxisok kutatásába, vagy előtte kipróbálta magát a csillagászat más területein?

P.H.: „A posztgraduális iskolában a doktori értekezésem kozmológiai témájú volt. A galaxishalmazok segítségével vizsgáltam a Világegyetem tágulási ütemének változását. Meglepetésemre az eredmények nem voltak összhangban azzal a várakozással, hogy a tágulás üteme lassul. Azok sokkal inkább támogatták a gyorsulva táguló Univerzum lehetőségét.”

A szerző megjegyzése: Ebben az időben a kozmológiai modellek a világegyetem tágulásának lassulását jósolták. S mint az látható, voltak már jelek a gyorsulva tágulás lehetősége mellett, de a Nobel-díjat érő bizonyosságig 1998-ig kellett várni.

„Mindeközben sok érdekes dolgot megtanultam Doug Richstone és Ed Turner kollégáimtól a sűrű galaxiscsoportok dinamikai problémájával kapcsolatban. Ez keltette fel érdeklődésemet a kis galaxiscsoportok iránt, ekkor vágtam bele tulajdonságaik vizsgálatába.”

Miért érdekesek a kompakt galaxiscsoportok? Mitől különlegesek? Milyen szerepet játszanak a galaxisok evolúciójában? 

P.H.: „Richstone és Turner rájöttek, hogy a galaxisok kompakt csoportjai instabilak. Mivel ezekben a csillagrendszerek igen sűrűn helyezkednek el, így a köztük fellépő erős gravitációs interakciók letépik a galaxisokat körbevevő sötét anyagot. Nagy, egybe függő tengere jön létre a sötét anyagnak. A galaxisok a pályájukon mozogva energiát veszítenek miközben keresztülvágnak ezen, és így viszonylag gyorsan a csoport centruma felé spiráloznak, ahol összeolvadnak. Az ilyen egyesülés a spirál galaxisokat elliptikus galaxisokká alakítja át. Ez az egész felvázolt folyamat a kompakt csoportokban sokkal gyorsabban játszódik le, mint bármely más galaxisok alkotta rendszerben.”

Korábban már mások is készítettek katalógusokat kompakt galaxiscsoportokról, vagy éppen a kölcsönható galaxisokról. Csak, hogy néhányat említsek: Interacting Galaxies (Vorontsov-Velyaminov 1959, 1975), Atlas of Peculiar Galaxies (Arp 1966), Shakhbazian többek közreműködésével 376 új kompakt galaxiscsoportot katalogizált a hetvenes években, és így tovább. Mi késztette arra, hogy ön is összeállítsa a saját katalógusát? Mik voltak azok a kritériumok, amik alapján kiválasztotta a kompakt csoportokat? Miért éppen azokra a kritériumokra esett a választása?

P.H.: „Való igaz, hogy már más gyűjtemények, katalógusok is megjelentek korábban a kompakt galaxiscsoportokkal kapcsolatban. Néhány ezekben szereplő csoport kimondottan híres volt, és olyan galaxisokat is tartalmazott, melyek vöröseltolódása eltért. Azonban, mivel a minták nem voltak homogének, így igazából nehéz volt belőlük bármilyen statisztikai következtetést levonni. Olyan csoportok, mint például a Stephan-galaxisötöse (Stephan’s Quintet) szokatlan természetük miatt szerepeltek a katalógusokban.”

A szerző megjegyzése: A Stephan-galaxisötös (Stephan’s Quintet), illetve a Seyfert-galaxishatos (Seyfert’s Sextet) egy-egy tagja csak látszólag az adott csoportosulás része. A valóságban hatalmas távolság választja el a többiektől. Továbbá, a Seyfert-galaxishatos hatodik objektuma nem is galaxis, sokkal inkább a galaxisok közötti kölcsönhatás eredményként létrejött úgynevezett árapálycsóva (tidal tail). A csillagászatban is előfordul, hogy nem mindez az, amink elsőre látszik. Azonban, a vöröseltolódásukat megmérve ezek az imposztorok leleplezhetők.

„Rájöttem, hogy megfelelő kiválasztási kritériumok kellenek ahhoz, hogy egy katalógus statisztikailag is hasznos legyen. A kritériumokat végül úgy választottam meg, hogy olyan rendszerekre illeszkedjenek, amelyek hasonlatosak a klasszikus kompakt csoportokhoz, mint amilyen például a Stephan-galaxisötös (Stephan’s Quintet), a Seyfert-galaxishatos (Seyfert’s Sextet), és a VV172. Az így kapott katalógus végül tényleg hasznosnak bizonyult. Különösen azért gondolom ezt, mert sok-sok későbbi kutatás célpontjává váltak ezek a csoportok, illetve azok galaxisai. A csillagászok az optikai, infravörös, rádió és röntgen hullámhosszakon is alaposan tanulmányozták őket. Ennek köszönhetően ma más sokkal jobban értjük a kompakt galaxiscsoportok fejlődését, és helyüket a galaxishalmazok általános hierarchiájában.”

Mit érdemes tudni az illusztrációként szolgáló Hickson 68-ról? Van-e valami különlegessége ennek a galaxiscsoportnak a többiekhez képest?

P.H.: „Szép fénykép!”

Köszönöm!

P.H.: „Ez a csoport szokatlan, ugyanis két fényes korai típusú (elliptikus, lentikuláris – S0) galaxis is található benne. Ezekben a csillagrendszerekben már legalább 1 milliárd éve leállt a csillagképződés, így öreg csillagokból állnak. Ezekhez hasonlókat rendszerint a nagy galaxishalmazok centrumában figyelhetünk meg, így jelenlétük egy ilyen kompakt csoportban mindenképpen figyelemfelkeltő. A valószínű magyarázat, hogy ezek valaha gázban gazdag spirál galaxisok lehettek. Azonban, a múltban lezajlott ütközések felmelegíthették a gázt annyira, hogy az kiszabaduljon a galaxisból. Illetve a másik lehetőség, hogy a szintén az ütközésnek köszönhető heves csillagkeletkezés emésztette fel gázkészleteiket.”

Tudomásom szerint ön a csillagászati műszerek területén is elismert szakember. Igazi különlegességnek számítanak a folyékony tükrű távcsövek (Liquid-Mirror Telescopes). Kérem meséljen ezek felhasználási területéről, és tapasztalatairól.

P.H.: „A földfelszíni csillagvizsgálókba és űrbeli felhasználásra tervezett folyékony tükrű teleszkópok (LMT-k) optikai felületét, a kellőképpen sima parabolikus tál tetején lévő vékony higanyréteg képzi. Jellemzően a higany vastagsága mindössze néhány milliméter. A tálat általában üvegszálból, grafitból vagy kevlárból és epoxiból készítik, és nagyon pontos ütemben forgatják a függőleges tengelye körül. A gravitációs és a centrifugális erők kombinációjának köszönhetően, a higany felülete kitűnő optikai minőségű paraboloid alakot vesz fel. Ez a technológia lehetővé teszi, hogy viszonylag alacsony költséggel építhessünk olyan nagy teljesítményű távcsöveket, amelyek mindig csak a zenitbe tekintenek. E távcsövek nagyszerűen alkalmazhatók olyan felmérésekben (surveys), ahol nem szükséges egy adott objektumokra ráállni és követni a műszerrel. A NASA közel egy évtizede működteti 3 méteres folyékony tükrű távcsövét, megfigyelve vele az űrszemetet. Egy 4 méteres folyékony tükrű csillagászati teleszkóp pedig hamarosan működésbe lép az indiai Himalájában, az International Liquid-Mirror Telescope projekt keretében. Immáron több éve annak is, hogy saját kutatócsoportom Vancouver közelében megépített egy ilyen 6 méteres példányt, melyet azóta is használunk. A Nagy Zenit Távcső (Large Zenith Telescope) ötlete a lézeres adaptív optika és a Föld mezoszferikus nátriumrétegének tanulmányozásának céljából született meg.”

A Thirty Meter Telescope már nemcsak egy álom csupán, hanem a megvalósulás útjára is lépett. Milyen potenciál van ebben a távcsőben? Milyen fontos tudományos áttörések elé nézünk ennek a műszernek köszönhetően?

P.H.: Nos, a nagy földi optikai és infravörös teleszkópok következő generációja, mint például a Giant Magellan Telescope (GMT), a Thirty Meter Telescope (TMT) és az európai Extremely Large Telescope (ELT), a közeli bolygórendszerektől kezdve egészen a legtávolabbi galaxisokig tanulmányozni fogja az Univerzumot. Szinte nem is lehet megnevezni egyetlen célt, mert annyi tudományos program kapcsolódik majd ezekhez. Átfogó információk tekintetében, érdemes azonban felkeresni ezen távcsövek weboldalait.

Egyetlen dolgot azonban ki tudnék emelni. Ezek az új távcsövek teljes mértékben az adaptív optikára támaszkodnak. Ez a technológia lehetővé teszi, hogy soha nem látott képminőséget érjenek el. Olyat, mely élességben túlszárnyalja még a jelenlegi űrtávcsöveket is. De az adaptív optika nagy lökést ad a távcsövek érzékenységének is, az adott műszer átmérőjének negyedik hatványával arányosan. Biztosra veszem, hogy számos tudományos áttörés várható, miután ezen óriások hadrendbe állnak.”

Mik a tudományos tervei a jövőre nézve?

P.H.: „Diákjaimmal és kollégáimmal folytatni szeretném a távcsövekhez, csillagászati műszerekhez és az adaptív optikákhoz kapcsolódó projekteket.”

Nekem a csillagászat a hobbim, önnek a munkája. De tudtommal, önnek is van egy különleges szenvedélye: a repülés. Hogyan kezdődött? Miként hódol a repülésnek?

P.H.: „Igen, körülbelül 30 éve vagyok pilóta. A repülést egy motoros Cessna repülőgéppel, valamint Piper Cub-bal kezdtem. Később vezettem Citabria-t és több otthon épített repülőgépet is. Jelenleg egy Zlin 142C Aerobatic Trainer-rel és egy kétmotoros Beach Baron-nal repülök. Kanada nyugati partja gyönyörű terület. A vizek felett és a hegyek között szállni igazi élvezetet nyújt. A repülés szabadságot ad.”

Köszönöm az interjút, és további sok sikert kívánok az életben!

 

Felhasznált irodalom:

P. Hickson: Systematic properties of compact groups of galaxies

P. Hickson: Compact groups of galaxies

Luis C. Ho, Alexei V. Filippenko, and Wallace L. W. Sargent: A Search for „Dwarf” Seyfert Nuclei. V. Demographics of Nuclear Activity in Nearby Galaxies

M. E. Filho, F. Fraternali, S. Markoff, N. M. Nagar, P. D. Barthel, L. C. Ho, F. Yuan: Further Clues to the Nature of Composite LINER/HII Galaxies

Neil M. Nagar, Heino Falcke, Andrew S. Wilson: Radio Sources in Low-Luminosity Active Galactic Nuclei.IV. Radio Luminosity Function, Importance of Jet Power, and Radio Properties of the Complete Palomar Sample

S. Torres-Flores, C. Mendes de Oliveira, P. Amram, H. Plana, B. Epinat, C. Carignan, C. Balkowski: Kinematics of galaxies in Compact Groups. Studying the B-band Tully-Fisher relation

E. Sturm, D. Rupke, A. Contursi, D.-C. Kim, D. Lutz, H. Netzer, S. Veilleux, R. Genzel, M. Lehnert, L.J. Tacconi, D. Maoz, J. Mazzarella, S. Lord, D. Sanders, A. Sternberg: Mid-Infrared Diagnostics of LINERs

Robert L. da Silva, J. Xavier Prochaska, David Rosario, Jason Tumlinson, Todd M. Tripp: Shining Light on Merging Galaxies I: The Ongoing Merger of a Quasar with a „Green Valley” Galaxy

R. Singh, G. van de Ven, K. Jahnke, M. Lyubenova, J. Falcón-Barroso, J. Alves, R. Cid Fernandes, L. Galbany, R. García-Benito, B. Husemann, R. C. Kennicutt, R. A. Marino, I. Márquez, J. Masegosa, D. Mast, A. Pasquali, S. F. Sánchez, J. Walcher, V. Wild, L. Wisotzki, B. Ziegler, the CALIFA collaboration: The nature of LINER galaxies: Ubiquitous hot old stars and rare accreting black holes

L.H.S. Kadowaki, E.M. de Gouveia Dal Pino, Chandra B. Singh: The role of fast magnetic reconnection on the radio and gamma-ray emission from the nuclear regions of microquasars and low luminosity AGNs

H. B. Ann, Mira Seo, and D. K. Ha: A catalog of visually classified galaxies in the local (z ~ 0.01) universe

P. Marziani, M. D’Onofrio, D. Bettoni, B. M. Poggianti, A. Moretti, G. Fasano, J. Fritz, A. Cava, J. Varela, A. Omizzolo: Emission Line Galaxies and Active Galactic Nuclei in WINGS clusters

Mark Bratton: The Complete Guide to the Herschel Objects: Sir William Herschel’s Star Clusters, Nebulae and Galaxies (ISBN-13: 978-0521768924)

Adatok: NED és SIMBAD adatbázisok

NGC2808 – Csillagok generációi a gömbhalmazokban

NGC2808-LRGB-20170220-T32-180s-TTK

Az NGC2808 gömbhalmaz

2017-02-20, 2017-02-21 – Siding Spring Observatory

21 x 180 sec L, 8 x 180 sec R, 8 x 180 sec G, 8 x 180 sec B

iTelescope.net T32 – Corrected Dall-Kirkham Astrograph Planewave 17″ – 43 cm, f/6.8 – FLI Proline 16803 CCD kamera

A képre kattintva, az nagyobb felbontásban is elérhető.

A gömbhalmazokról írt összefoglaló cikkem írásakor merült fel bennem először, hogy felvételt készítsek az NGC2808-ról. A déli Hajógerinc (Carina) csillagképben található, ezért nálunk sosem emelkedik a horizont fölé. A megfigyeléséhez vagy délre kell utazunk, vagy távcsőidőt kell bérelnünk ott. Én eme utóbbi megoldást választottam.

NGC2808-map1

Az NGC2808 a déli Hajógerinc (Carina) csillagképben.

Az NGC2808 a Tejútrendszer ősi csillaghalmazai között is igazi óriásnak számít. Ugyan van nála nagyobb, és masszívabb is akad, de 130 fényéves átmérője és tömege, ami 1.42 milliószorosa Napunkénak, így is messze kimagaslónak számít a gömbhalmazok mezőnyében. Csillagai extrém koncentrációt mutatnak a mag felé. A 12 fokozatú Shapley-Sawyer féle osztályozás szerint, mely a gömbhalmazok előbb említett tulajdonságon alapszik, az I. osztályba tartozik. Nem sok riválisa akad. Csak a hazánkból is megfigyelhető M75 (Nyilas csillagkép), és az NGC7006 (Delfin csillagkép) esetében tapasztalhatunk hasonlót. Ezek viszont fényességben és méretben is elmaradnak tőle. Megjegyzem, hogy talán éppen a csillagok koncentrációja, és a mag döbbenetes fényessége jelentette a legnagyobb nehézséget a kép kidolgozása során. Ennek részleteivel azonban nem untatnám az olvasót.

NGC2808-Tejutrendszer2

Az NGC2808 elhelyezkedése a Tejútrendszerben. Napunkat a kis sárga pöttyjelöli.

Talán már magában az NGC2808 impozáns paraméterei, illetve az ennek köszönhető látványa is izgalmassá tenné a 31300 fényévre (9.1 kpc) lévő, 6.2 magnitúdós gömbhalmazt. Én elsősorban mégsem ezért választottam ki. A gömbhalmazok megismerésében játszott kulcsfontosságú szerepe volt az, ami számomra különösen érdekessé tette.

Sokáig úgy gondolták a csillagászok, hogy a gömbhalmazok csillagjai egyszerre keletkeztek. Kémiai összetételük éppen ezért teljesen homogén. A gömbhalmazok korát, azok Hertzsprung-Russel diagramja (HRD) alapján határozták meg, élve az előbbi feltételezéssel. Az egyszerre született, azonos fémtartalmú csillagok megfigyelhető fejlődési állapota csak a kiindulási tömegtől függ.

A csillagászok minden elemet a hidrogénen és a héliumon túl a periódusos rendszerben fémnek neveznek. Egy csillag fémtartalmát általában a Naphoz szokták hasonlítani a kutatók. A világegyetem története folyamán, a csillagoknak hála folyamatosan dúsult fémekkel. Az újabb és újabb csillaggenerációk egyre több fémet tartalmaztak, így minél alacsonyabb fémtartalmú egy csillag a Naphoz képest, annál ősibb objektum. Kezdetben csak a vas és a hidrogén arányát vizsgálták, és ez alapján vontak le következtetéseket. Később azonban más elemek hidrogénhez viszonyított arányát is elkezdték vizsgálni, amikor arra voltak kíváncsiak, hogy eltérő-e két csillag kémiai összetétele. Mint ezt később látni fogjuk, csak a vas relatív mennyisége nem mindig árulkodó.

A nagyobb tömegű fényesebb és forróbb csillagok hamarabb elhasználják hidrogén készleteiket, és elhagyják a fősorozatot. Az idő előrehaladtával már csak a kisebb tömegű, és kevésbé fényes csillagok maradnak a fősorozaton.

M55HRD-label

Nincs „tipikus” gömbhalmaz, de az M55 Hertzsprung-Russel diagramja jól szemlélteti a szövegben foglaltakat. Main sequence – Fősorozat, Red giant branch – Vörös óriás ág, Horizontal Branch – Horizontális ág, AGB (Asymptotic Branch) – Aszimptotikus óriás ág, Blue stragglers – Kék vándorok, White dwarfs – Fehér törpék

Az ábra forrása: Australia Telescope National Facility (ATNF)

Megnézve egy gömbhalmaz Hertzsprung-Russel diagramját rögtön szembetűnő, hogy a valaha legfényesebb, a Nap tömegét több mint nyolcszorosan meghaladó csillagok mind hiányoznak a fősorozatról. Ezek réges-régen „kihunytak”, miután szupernóvaként lángoltak fel. De a közepes tömegűeket, vagyis a Nap tömegét nagyjából kétszeresen, de maximum nyolcszorosan meghaladó csillagokat sem találjuk már ott. Bennük is leálltak a fúziós energiatermelő folyamatok, ma a gömbhalmazok fehér törpe populációját gyarapítják, hogy aztán sok-sok évmilliárd év alatt nagyon lassan kihűljenek. 10 milliárd év után a gömbhalmazokban – márpedig a Tejútrendszer gömbhalmazai jellemzően ennél is idősebbek -, már csak a Nap tömegével összemérhető, illetve a Nap tömegénél kisebb tömegű csillagok belsejében folyik energiatermelés. Azonban, ezekből is a nagyobb tömegűek magjában már kifogytak a hidrogénkészletek, és így el is hagyták a fősorozatot. Miután a csillag fejlődése során a magban elfogy a hidrogén, ennek héliummá történő átalakítása a magot körülvevő külső héjba tevődik át, és a csillag felfúvódva a vörös óriás állapotba jut. A horizontális ág tagjai a magjukban már héliumból szenet hoznak létre. (Elméleti megfontolások szerint, ehhez legalább nagyjából 0.5 naptömeg szükséges.) Ennek az ágnak a csillagai kis fémtartalmú ősi, kisebb tömegű csillagok. A Naphoz hasonló, vagy csak valamivel kisebb fémtartalmú, és tömegű csillagok nem „foglalják el” a horizontális ágat, csak némileg válnak forróbbá, miközben luminozitásuk csökken. Ezek alkotják az úgynevezett vörös kupac (Red Clump) csillagait a Hertzsprung-Russel diagramon. Miután a hélium is elfogy az addigra szénben és oxigénben gazdag magban, a fúzió az azt körülvevő külső héjba tevődik át. Az energia nagy része azonban nem itt keletkezik, hanem a külsőbb hidrogén héjban. A csillag külső rétegei ismét felfúvódnak és lehűlnek. Ennek köszönhetően a csillag fényessége ismét megnő, túlszárnyalva a korábbi vörös óriás fázist, színe pedig ismét a vörös felé tolódik. A csillag elfoglalja helyét az aszimptotikus óriás ágon (AGB fázis). Innen, ezeknek a csillagoknak útja is a fehér törpe állapot felé vezet, ugyanis már a Napunk tömege is kevés ahhoz, hogy valaha is beinduljon a magjában a szén vagy az oxigén fúziója, nem is beszélve a nála kisebb tömegű csillagokról.

Evolutionary_track_1m.svg

Nagyjából 1 naptömegű csillag fejlődési útvonala a fősorozat után a Hertzsprung-Russel diagramon. A gömbhalmazok ma megfigyelhető, a fősorozatról korábban eltávozott csillagjai is nagyjából hasonló utat járnak be. Jelenleg, tömegüktől függően, a görbe valamelyik pontjának közelében tartózkodnak. A pontos útvonal azonban függ a csillag kémiai összetételétől is.

Ábra forrása: Wikipedia.org

Minél idősebb egy halmaz, annál lejjebb tolódik az a pont (Turn Off Point) a fősorozaton, ahol a csillagok „elkanyarodnak” a vörös óriás ág felé. Felrajzolva a HRD-t egy adott halmazra, az előbb említett pontnak a meghatározásával, továbbá felhasználva a csillagfejlődési elméleteket, izokron illesztésével megbecsülhető a halmaz kora. Az izokron a csillagfejlődésben használt kifejezés, mely a HRD-n az azonos korú csillagokat összekötő görbét jelöli. Évtizedeken keresztül alkalmazták a módszert a csillagászok, és végig egyetlen csillaggenerációt feltételezve, keresték azt „az egyetlen” görbét, mely a legjobban illeszkedik az adott halmaz Hertzsprung-Russel diagramjára. A gömbhalmazokat a csillagfejlődési elméletek tökéletesítésére, tesztelésére, kalibrálására használták, és természetesen használják még a mai napig is. De e halmazok révén a Tejútrendszer és más galaxisok kialakulásával, evolúciójával kapcsolatos elméletek is ellenőrizhetők. Fontos tehát, hogy a csillagászok alaposan ismerjék felépítésüket, tulajdonságaikat.

Mindig is volt azonban egy bizonyos probléma a gömbhalmazok Hertzsprung-Russel diagramjával kapcsolatban, ami nagyon zavarta a csillagászokat, és a múlt század hatvanas éveitől kezdve évtizedeken át nem lelték a megoldását.

Azt viszonylag hamar felismerték (ezt korábban már említettem is), hogy a csillagok „működése”, fejlődése nagyban függ a fémtartalomtól. Némileg más utat jár be a fémekben szegény csillag a HRD-n, mint a fémekben gazdagabb. A fémtartalom a csillag színhőmérsékletére is kihat. A fémekben szegények kékebbek, mint a fémekben gazdagabbak. Éppen ezért a fémekben gazdagabb gömbhalmazoknak általában vörösebbek a horizontális ágon tartózkodó csillagjai. Találtak tehát egy paramétert, amivel a horizontális ágak morfológiájának különbségét magyarázni lehetett. A halmazok horizontális ágán lévő csillagok színeloszlása azonban még így is furcsa devianciát mutatott bizonyos esetekben.

GC_masodik_parameter1-m

Az ábrán fémekben gazdagabb négy halmaz szín-fényesség diagramja (HRD) látható. A vízszintes tengelyen B és V szűrővel mért fényesség értékek különbsége van feltüntetve (ez tekinthető a csillagok színének) a színképosztály helyett. A függőleges tengelyen pedig V színszűrővel felvett fényességérték szerepel. Figyeljük meg, hogy míg a felső kettő horizontális ága csak egy „vörös csonkból” áll, vagyis vöröses árnyalatú csillagok alkotják, addig az alsó kettő horizontális ága, a vörös csillagokat követő résen túl (balra), kékes csillagokban is bővelkedik. Hasonló a fémtartalom, pontosabban a vas hidrogénhez viszonyított aránya, de mégis eltérő a horizontális ág morfológiája. Ábra forrása: C. Sosin és mások.

A csillagászok találtak olyan nagyjából hasonló fémtartalmú, hasonló vas/hidrogén arányú gömbhalmazokat, melyek horizontális ágai meglepően más képet mutattak. Egyeseké vörösebb, másoké inkább kékes árnyalatú volt, de akadtak a kettő között átmenetet képezők is. Mintha ezek nem akarták volna betartani az előbb felvázolt „szabályt”. A kutatók lázasan keresték, hogy a fémtartalom mellett a halmazok milyen más paramétere lehet hatással a horizontális brancs eloszlására. Innen származik a szakirodalomban használt elnevezés is: a második paraméter problémája.

Ennek egy példája látható a fenti ábrán is. A fémekben gazdagabb gömbhalmazok horizontális ágának vörös csillagait tökéletesen le lehetett írni a korabeli csillagfejlődési elméletekkel, melyek már a fémtartalommal is számoltak. A kékes csillagok előtt viszont némileg értetlenül álltak a csillagászok. Ezeknek nem kellett volna ott lenniük, csakis a fémszegény halmazokban tudták értelmezni a jelenlétüket.

A második paraméterre az idők folyamán több jelölt született. Ezek közül nagyon röviden megemlítenék néhányat. Volt, amelyik a fémtartalom mellett, a halmazok korkülönbségét nevezte meg második paraméterként. Sokáig talán ez volt a legnépszerűbb elképzelés. Mások lokális okokra hivatkoztak. Az egyik ilyen szerint a halmazokon belül a csillagok sűrűsége fontos tényező, ez ugyanis indirekt módon kihatással bír a csillagok késői fejlődési állapotában történő tömegvesztésre, amivel pedig megmagyarázható, hogy miért is különbözőek az azonos fémtartalmú halmazok horizontális ágai. Olyan elképzelés is akadt, mely az eltérő szén-nitrogén-oxigén (CNO) tartalmat tette felelőssé. A horizontális ág csillagainak magjában hélium fúzió zajlik, míg az azt körülvevő héjban pedig hidrogén fúzió. Eme utóbbira pedig nagy hatással van, hogy mekkora a szén-nitrogén-oxigén aránya a csillagban (CNO-ciklus). Mivel a szén-nitrogén-oxigén mennyisége a csillagban befolyásolja annak energiatermelését, így nagyban meghatározza, hogy az hol foglal helyet a Hertzsprung-Russel diagram horizontális ágán. Önmagában végül egyik elképzelés sem volt képes megoldani a problémát.

Az NGC2808 szintén a problémás esetek közé tartozott. Már a múlt század hetvenes éveiben ismert volt a tény, hogy horizontális ágát vörös és kék csillagok alkotják, melyeket tekintélyes rés választ el egymástól. A két csoport között teljesen hiányoztak a „köztes színű” csillagok.

A Hubble űrtávcső teljesen új fejezetet nyitott a csillagászatban, így a gömbhalmazok kutatásában is. A Hubble és kamrája (WPFC2 – Wide Field and Planetary Camera 2) olyan jellegű fotometriai vizsgálatokat tett lehetővé, amiről korábban a kutatók még csak nem is álmodhattak. A rendkívül zsúfolt gömbhalmazok fotometriája az akkori földi műszerekkel igencsak nehézkes volt. Pár példány esetében a Hubble-re volt ahhoz szükség, hogy egyáltalán azonosítani lehessen a horizontális ágon a csillagait. Nagy lendülettel vetették tehát bele magukat a csillagászok a munkába, mely az NGC2808 esetében is izgalmas új részleteket tárt fel. Kiderült, hogy a horizontális ág kék oldala kiterjedtebb, mint az korábban gondolták. Az kezdetben vízszintesen indult, majd hosszan lefelé hajlott a HRD-n. Első alkalommal sikerült nyomon követni a horizontális ág kék csillagait egészen 21 (V) magnitúdóig. Ráadásul, a Hubble ultraibolya szűrőjével (F218W, λeff = 2189Å) készült szín-fényesség diagramján a horizontális ág kék része csomósodásokat mutatott. Ebből kettő teljesen egyértelmű volt, míg egy harmadik jelenléte is gyanítható volt az extrém kék végén. Semmilyen mechanizmus nem volt ismert, mely megmagyarázhatta volna ezeknek a csomóknak a létét. Összefoglalva tehát, 1997-re világossá vált, hogy az NGC2808 horizontális ága három elkülöníthető, egy vörös és két kék csoportból áll. Azonban egy negyedik kék csoport létezése sem volt teljesen kizárt. Lassan gyűltek a jelei annak, hogy a gömbhalmazok talán mégsem egyetlen csillaggenerációból állnak. De az igazi áttörésre még várni kellett.

 NGC2808-HST-CMD-97Sosin-m

Balra az NGC2808 szín-fényesség diagramja (HRD) látható. A vízszintes tengelyen B és V szűrővel mért fényesség értékek különbsége van feltüntetve (ez tekinthető a csillagok színének) a színképosztály helyett. A függőleges tengelyen pedig V színszűrővel felvett fényességérték szerepel.

A jobb alsó ábrán külön kiemelésre került az NGC2808 horizontális ágának szín-fényesség diagramja (HRD). A vízszintes tengelyen FUV (ultraibolya) és B (kék) szűrővel mért fényesség értékek különbsége van feltüntetve. A függőleges tengelyen pedig B színszűrővel felvett fényességérték szerepel. A vörös része a horizontális ágnak itt nem látható, ugyanis azok a csillagok túlságosan halványak az FUV szűrős felvételeken. Jobb felső diagramon a horizontális ág kék csillagainak szín szerinti eloszlása látható. Figyeljük meg a csomósodásokat!

Ábra forrása: C. Sosin és mások.

A következő jelentős felfedezésre csak pár évet kellett várni. 2004-ben annak felismerése keltett nagy izgalmat, hogy az ω Centauri (NGC5139) gömbhalmaz fősorozatán, a Hubble űrtávcsőnek hála, sikerült elkülöníteni két különálló csillagcsoportot. Az ezt követő spektroszkópiai analízis is megerősítette azt a tényt, hogy ezek bizony különböző csillaggenerációk. A két csoport fémtartalma különböző volt. Egészen pontosan a második generációra csak olyan izokron illeszkedett, amiben a csillagok héliumban jelentősen gazdagabbak voltak a domináns öregebb populációhoz képest. Ehhez a bravúrhoz egyértelműen az űrtávcsőre volt szükség! Nemsokkal később már legalább három generáció jelenlétét sikerült igazolni a fősorozaton, mely a szubóriás ágon négy különböző brancsra bomlott kora és fémtartalma alapján. Ezek a felismerések megerősítették a gyanút, hogy az ω Centauri talán nem is gömbhalmaz, hanem egy törpe galaxis maradványa.

Kampány indult annak kiderítésére, hogy vajon a Tejútrendszer más gömbhalmazát is több csillaggeneráció alkotja-e. Éppen tíz évvel ezelőtt, 2007-ben jelent meg a tanulmány, aminek a szerzői (G. Piotto és mások) bejelentették, hogy elsőként az NGC2808 esetében siker koronázta próbálkozásukat. Már korábban, 2005-ben megszületett az a felismerés (D’Antona és mások), miszerint a halmaz fősorozata anomális kiterjedést mutat a kék szín irányába. Ebben a fősorozat csillagainak nagyjából 20%-ka volt érintett, így kimondottan ennek a jelenségnek a vizsgálata volt az egyik fő cél. A csillagászok biztosak szerettek volna lenni abban, hogy a vizsgálatuk tárgyát képező csillagok tényleg a halmazhoz tartoznak, és nem előtér vagy háttér csillagok csupán. Éppen ezért, a megfigyeléseiket 18 hónapra nyújtották el, és azt 3 különböző időpontban végezték el. Ez már elég volt ahhoz, hogy a csillagok sajátmozgását figyelembe vegyék. Az elmozdulásuk alapján így el lehetett dönteni, hogy a vizsgált csillag halmaztag-e, vagy sem. Megállapították, hogy az NGC2808 fősorozata egyértelműen 3 különböző csillagpopulációból áll. Ugyanakkor, ezek fémtartalma, pontosabban a vas és a hidrogén aránya nem tér el számottevően, ahogy ezt például az ω Centauri esetében megfigyelték. Jelentősen különbözik azonban az egyes csoportok hélium tartalma.

NGC2808-iso

Az NGC2808 gömbhalmaz fősorozata, amelyben 3 csillagpopuláció is elkülöníthető Piotto és kutatótársainak 2007-es tanulmánya szerint. Az ábrán látható, hogy a fősorozat több izokronnal írható csak le. Ezek az izokronok a csillagok kémiai összetételben (hélium tartalmában) térnek el egymástól. Ábra forrása: G. Piotto és mások

Pár évvel korábban más kutatók (E. Carretta és mások) spektroszkópiai vizsgálatoknak vetették alá az NGC2808 vörös óriás ágát. A nátrium/vas és oxigén/vas arányát vizsgálták és szignifikáns oxigén-nátrium antikorrelációt találtak. A vörös óriás csillagok túlnyomó többségének oxigéntartalma a galaktikus halóra jellemző értéket mutatott. Azonban, kimutatható volt még két másik csoport is: egy oxigénben szegény, és egy oxigénben kimondottan szegény. E mellett marginális eltérést is megállapítottak a vas és a hidrogén arányában az egyes csoportok között. Az oxigénben nagyon szegényekben némileg több volt a vas aránya a hidrogénhez képest, mint a normál mennyiségű oxigént tartalmazókban. Ezt az eltérő héliumtartalomra vezették vissza, ugyanis a héliumtöbblet, erősebbé teszi a fémek vonalait.

Végső konklúzióként az született 2007-ben (G. Piotto és mások), hogy a horizontális ág megfigyelt morfológiája, a fősorozat felépítése, a vörös óriás ág kémiai összetételében tapasztalható különbségek csakis egy módon értelmezhetők: az NGC2808 legalább három, különböző korú csillagok generációjából áll. Az első generációt követő újabbak, már az korábbiak által beszennyezett gázból formálódtak.

Az NGC2808 vizsgálata nem ért véget 10 évvel ezelőtt. A folytatáshoz nagyban hozzájárult a Hubble űrtávcső negyedik szervizmissziója 2009 májusában. Újra használhatóvá vált a WFC/ACS műszer (Wide Field Channel of the Advanced Camera for Surveys), továbbá ekkor helyezték üzembe az új UVIS/WFC3 (Ultraviolet and Visual Channel of the Wide Field Camera 3) eszközt. Az utóbbinak köszönhetően a kutatók nagyobb hangsúlyt fektetettek az NGC2808 csillaggenerációinak ultraibolya tartománybéli megfigyelésére (Hubble Space Telescope UV Legacy Survey of Galactic GCs). Az elektromágneses spektrum ultraibolya régiója kiváló lehetőségeket nyújt az eltérő kémiai összetételű csillagpopulációk tanulmányozására. Azoknak a molekuláknak a sávjai (OH, NH, CH, CN), amelyekből következtetni lehet a csillagok szén (C), nitrogén (N) és oxigén (O) tartalmára az ultraibolya tartományba esnek. A több hullámhosszon elvégzett fotometriai vizsgálatokra, eltérő kémiai összetételt feltételező szintetikus spektrumokra, és nagy felbontású spektroszkópiára épülő eredményeket taglaló cikk 2015-ben jelent meg (A. P. Milone és mások).

NGC2808-HST-CMD-15Milone-1

Az NGC2808 gömbhalmaz szín-fényesség diagramja (HRD). A belső ábrákon a vízszintes és függőleges tengelyeken, a nagy ábrától eltérő, az egyes vizsgálatok szempontjából „legpraktikusabb” hullámhosszokból konstruált szín-fényesség diagrammok láthatók. Balra alul: vörös óriás ág. Jobbra alul: fősorozat. Jobbra felül: szubóriás ág. Már szemmel is látható a többszörös szekvencia jelenléte. Az alapos analízis 5 csillaggeneráció jelenlétét mutatta ki.

Ábra források: A. P. Milone és mások

Kiderült, hogy az NGC2808 felépítése még komplexebb, mint azt korábban gondolták. A vörös óriás ágon 5 populációt sikerült elkülöníteni. Bár a fősorozaton már nem volt ennyire egyértelmű a helyzet, de végül ott is 5 külön populációt találtak. A 2007-es tanulmányban (G. Piotto és mások) kimutatott két kékebb csoport mellett, a fősorozat többséget alkotó vörös csoportot is három részre tudták bontani. Újra megerősítést nyert az is, hogy a horizontális ág kék része 3 populációból áll. Továbbá, konfirmálták más csillagászok 2014-ben publikált (Marino és mások) felismerését, hogy a horizontális ág vörös részét valójában két eltérő kémiai összetételű csillagcsoport lakja (nátriumban gazdag, és nátriumban szegény). De még az aszimptotikus óriás ágon is egyértelműen elkülöníthető volt három populáció.

Összességében tehát elmondható, hogy az NGC2808-ban ma 5 csillaggenerációról van tudomásunk, melyek kémiai összetétele eltérő, vagyis változik populációról, populációra. Azt, hogy az eltérések kimondottan diszkrétek, nem lehet figyelmen kívül hagyni. Az egyes generációk születése is diszkrét kellett, hogy legyen. Az adott generáció csillagai szinte tökéletesen egyszerre keletkeztek. A legelső az ősi gázfelhőből, így annak kémiai összetételét örökölte. Az azt követők pedig már a megelőzők által beszennyezett gázból. Az is tény, hogy a körülbelül 12.5 milliárd éves gömbhalmazban alig néhány 100 millió éve alatt le is játszódtak az epizodikus születési hullámok. Az NGC2808 példája is azt mutatja, hogy a masszív gömbhalmazokban mégis csak maradhat elég gáz az első heves csillagkeletkezés után ahhoz, hogy abból további nemzedékek születhessenek. És nem csak az NGC2808 az egyetlen példa erre.

Sőt, ma már ismerünk olyan gömbhalmazokat is, ahol több generáció él együtt, noha az nem is tartozik az igazán masszívak közé. Ilyen például az M4 és az NGC3201 is. Hogy miképpen lehetséges ez? Hogyan születnek egymást követően az egyes nemzedékek? Ez elég komplex probléma, és még ma is vita tárgyát képezi. Erről egy lehetséges „forgatókönyv” vázlatosan olvasható a gömbhalmazokról írt összefoglaló cikkemben.

Felhasznált irodalom:

Young-Wook Lee, Pierre Demarque, Robert Zinn: The horizontal-branch stars in globular clusters. 2: The second parameter phenomenon

C. Sosin, G. Piotto, S.G. Djorgovski, I.R. King, R.M. Rich, B. Dorman, S. Phinney, J. Liebert, A. Renzini: Globular Clusters Color-Magnitude Diagrams with HST

Craig Sosin, Ben Dorman, S. George Djorgovski, Giampaolo Piotto, R. Michael Rich, Ivan R. King, James Liebert, E. Sterl Phinney, Alvio Renzini: Peculiar Multimodality on the Horizontal Branch of the Globular Cluster NGC 2808

Alistair R. Walker: CCD Photometry of Galactic Globular Clusters V. NGC 2808

E. Carretta, A. Bragaglia, R.G. Gratton, F. Leone, A. Recio-Blanco, S. Lucatello: Na-O Anticorrelation And HB I. The Na-O anticorrelation in NGC 2808

G. Piotto, L. R. Bedin, J. Anderson, I. R. King, S. Cassisi, A. P. Milone, S. Villanova, A. Pietrinferni, A. Renzini: A Triple Main Sequence in the Globular Cluster NGC 2808

Jason Boyles, Duncan R. Lorimer, Phil J. Turk, Robert Mnatsakanov, Ryan S. Lynch, Scott M. Ransom, Paulo C. Freire, Khris Belczynski: Young Radio Pulsars in Galactic Globular Clusters

A. P. Milone, A. F. Marino, G. Piotto, A. Renzini, L. R. Bedin, J. Anderson, S. Cassisi, F. D’Antona, A. Bellini, H. Jerjen, A. Pietrinferni, P. Ventura: The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters. III. A quintuple stellar population in NGC2808

Gömbhalmazok

gombhalmazok4-TTK-cut1

Négy gömbhalmaz fotóm: NGC2808 (jobb felső), M71 (bal felső), NGC3201 (jobb alsó), NGC5466 (bal alsó)

A Tejútrendszer halója

Had invitáljam meg az olvasót, hogy tartson velem egy rövid utazásra galaxisunk halójába. A csillagászok eredetileg a haló kifejezést a Tejútrendszer korongját körbevevő, csillagok alkotta szferoidális (forgási ellipszoid) alakú galaktikus alrendszer megnevezésére használták. Mint később látni fogjuk, az ismeretek bővülésével a kifejezés új tartalommal bővült.

Ahogyan galaxisunk nagyjából 100-120 ezer fényév átmérőjű, és pár ezer fényév vastagságú, jellemzően fiatalabb csillagok lakta vékony korongjának (thin disk), így a halónak sincs éles határa. Csillagainak 90%-a Tejútrendszerünk magjától 100 ezer fényévéves távolságon belül található, ugyanakkor pár objektum távolsága a 200 ezer fényévet is meghaladja.

Öreg, sok milliárd éves csillagok birodalma ez, melyek egy része népes gömbhalmazokba tömörülve rója útját galaxisunk magja körül. A haló objektumai elnyúlt pályákon keringenek, igen változatos hajlásszöggel a galaxis síkjához képest. Jelentős azon objektumok száma, melyek keringési iránya retrográd, vagyis a korong csillagainak keringési irányával ellentétes.

Annak köszönhetően, hogy a halóban a csillagok keletkezése már réges-rég leállt, a csillagok eloszlása, pályája, összetétele (fémtartalma) megőrizte a Tejútrendszer ősi korszakainak emlékét. Ezeket az égitesteket inkább mondhatjuk matuzsálemeknek, mint fosszíliáknak, ugyanis még mindig „élnek”, fejlődnek, változóban vannak.

A haló legősibb ma is létező csillagai mintegy 13 milliárd évvel ezelőtt keletkeztek, szintén ekkortájt alakultak ki az első gömbhalmazok. Talán korábban, mint maga a Tejútrendszer, melynek története egyes elképzelések szerint kicsit később, törpe szferoidális és szabálytalan alakú ős-galaxisok ütközésével és egyesülésével indult. A „galaktikus kannibalizmus” már a kezdetektől fogva fontos szerepet játszott a Tejútrendszer fejlődésében.

A belső haló csillagai pár milliárd évvel fiatalabbak. 11.4 milliárd éve (11.4±0.7 milliárd éve) születtek a fokozatosan összehúzódó hatalmas gázfelhő csomóiból, mely egyre laposabb forgási ellipszoid alakú térrészt töltött ki, ahogy galaxisunk formálódott. Több milliárd évre volt szükség, hogy a Tejútrendszer elnyerje a ma megfigyelhetőhöz hasonlatos formáját. A csillagok, por és gázfelhők alkotta lapos korong körülbelül 9 milliárd éve (8.8 ± 1.7 milliárd éve) létezik mindössze. Az összehúzódó gázt az impulzus megmaradás törvénye szinte tökéletesen kilapította. Ekkora alakult ki egy kitüntetett keringési irány, és rendeződtek egy síkba az égitestek pályái. Miközben az intersztelláris médium, vagyis a por és gázködök, és a belőlük születő csillagok megformálták a korongot, csillagvárosunk elkezdte bekebelezni a környező megmaradt ősi törpe galaxisokat. Így a külső haló tovább dúsult olyan öreg csillagokkal, melyek kevesebb, mint 2 milliárd évvel az ősrobbanás után alakultak ki. A befogott, majd szétszaggatott galaxisok csillagai szétszóródtak, beleolvadtak Tejútrendszerünkbe. Azonban a nagyobb, kompakt struktúrák, mint például a gömbhalmazok, vagy az elnyelt galaxisok magjainak csillagai jó eséllyel együtt maradhattak.

Halo-story2

Galaxisunk kialakulását szemléltető ábra – a: A Tejútrendszer története valószínűleg törpe szferoidális és szabálytalan alakú ős-galaxisok ütközésével és egyesülésével indult, melyek már tartalmazhattak csillagokat. b: Kezdetben a szabálytalan alakú és kaotikus gázfelhőben nem voltak kitüntetett keringési iránya a születő csillagoknak. c: A jelentős tömegűvé duzzadt, összehúzódó felhőben idővel kialakult egy kitüntetett forgási irány, a forgás üteme pedig egyre gyorsult az impulzus megmaradás törvénye értelmében. Az egész folyamat egy lapos forgó korongba terelte a gázt és a port. A később itt keletkező csillagok pályája így már síkban rendeződött, és kis excentricitású (közel kör alakú). Az ábra hiányossága, hogy nem tesz említést a kialakulás közben elnyelt környező törpe galaxisokról. Kép forrása: http://lifeng.lamost.org/

A haló tehát maga is több alrendszerből áll. Csillagaik más korokban, adott esetben különböző eseményeknek köszönhetően jöttek létre. Egy részük pedig eredetileg idegen galaxisokban született. A haló kialakulásának története megmagyarázza, hogy miért nincs kitüntetett keringési iránya, keringési síkja csillagainak és gömbhalmazainak, ellentétben galaxisunk korongjának csillagaival. A retrográd keringési irány kérdése sem okoz különösebb fejfájást, amennyibe ezek az égitestek Tejútrendszerünkön kívül keletkeztek. Bár ez utóbbi tulajdonság, a több részből összeálló kezdeti gázfelhőn belül uralkodó kaotikus állapotok következménye is lehet.

Milkywayhalo

A Tejútrendszer halójának felépítését ábrázoló rajz. – A külső haló (Outer halo) idősebb csillagai kevésbé lapult szferoid térrészt töltenek ki, mint a belső halóé (Inner Halo). A vékony korong (thin disk) geometriája leginkább egy hanglemezre emlékeztet. Átmérője 100-120 ezer fényév, míg az ide tartozó, a haló csillagaihoz képest fiatal csillagok 85%-a egy mindössze 3000 fényév vastagságú térrészben helyezkedik el. Forrás: NASA, ESA, és A. Feild (STScI)

Annak felismerése után, hogy a korongot öreg csillagok és gömbhalmazok veszik körül, még sokáig tartotta magát az a nézet, hogy a haló egyáltalán nem található intersztelláris anyag.

Ez a kép akkor indult gyökeres változásnak, amikor a csillagászok elkezdték feltérképezni a Tejútrendszer és más galaxisok halóját az optikai tartományon túl. A rádiótávcsövekkel a 21 cm-es hullámhosszon vizsgálódva felfedezték, hogy egyes spirál galaxisokban a korongtól több kpc (1pc ≈ 3.26 fényév) távolságban is található gáz. Ezt javarészt atomos hidrogén alkotja (a területek ionizációs foka igen alacsony: 1:10000) némi héliummal, és a héliumnál nehezebb elemekkel szennyezve. Az ilyen gázfelhőket HI régióknak nevezi a szakirodalom, és jellemzően a spirál galaxisok korongjában találhatóak nagy mennyiségben, alapanyagot szolgáltatva a csillagok keletkezéséhez. Mivel a HI területek „igazi” otthona a galaxis vékony korongja (thin disk), így ennek analógiájára megalkották a HI vastag korong (HI Thick disk) fogalmát. A HI vastag korong általában 5-10%-át tartalmazza a csillagváros teljes HI készletének. De előfordulnak igen extrém esetek is. Az NGC891 esetén a HI vastag korong több mint 10 kpc távolságig terjed ki a vékony korongon túlra és az atomos hidrogén 30%-át tartalmazza. A megfigyelések szerint Tejútrendszerünk is rendelkezik HI vastag koronggal, melynek legtávolabbi gázfelhői vertikálisan nagyjából 6-7 kpc távolságra helyezkednek el vékony korongtól.

De honnan származik ez a gáz? Az egyik lehetséges forrás maga a korong. Az úgynevezett galaktikus szökőkút jelenség során por és gáz hagyja el ezt a régiót a galaxis halójába áramolva. A ma széleskörűen elfogadott elképzelések szerint, ez a „párolgás” két mechanizmusnak köszönhető, mely a csillagok születésével és halálával kapcsolatos. Az egyik mozgatórúgó az aktív csillagkeletkezésben születő fényes, forró és nagytömegű csillagok szele, mely hatalmas erővel fújja ki az anyagot. A másik hatás éppen az ilyen nagytömegű és éppen ezért gyorsan fejlődő csillagok tragikus halálát követő szupernóvák fellángolásának köszönhető. Ezek a hatalmas erejű robbanások szintén hozzájárulnak a korongból történő anyag kilökődéséhez. Idővel ezek a hidrogén tartalmú felhők visszahullnak a vékony korongba.

De nemcsak a korong az egyetlen forrása az azon kívül detektált hidrogénfelhőknek. A csillagászokat már régen foglalkoztatta az a probléma, hogy miként képesek fenntartani a spirál galaxisok hosszú időn keresztül a bennük megfigyelhető csillagkeletkezési ütemet. A Tejútrendszerben évente 1-3 naptömegnyi csillag keletkezik. Ha figyelembe vesszük, hogy galaxisunk gázkészlete körülbelül 5.3 x 109 naptömeg, akkor csak a jelenlegi ütemmel számolva is már rég ki kellett volna merülnie a csillagok legyártásához szükséges forrásoknak. Valójában azonban az elmúlt 10 milliárd évben 2-3 faktorral még csökkent is a csillagok születési üteme. A csillagászok elkezdték hát keresni az utánpótlás lehetséges forrásait.

A gyanú először azokra a HI nagy sebességű felhőkre (High-Velocity Clouds: HVC) terelődött, melyeket a 21 cm-es hullámhosszon találtak a galaxis halójában a 1950-es évek közepén. Felfedezésükkor még nem volt pontosan ismert a galaxison belüli elhelyezkedésük, csupán az a furcsaság tűnt fel a kutatóknak, hogy ezek nem vesznek részt a korong rotációjában, továbbá radiális sebességük több mint 90 Km/s-mal eltért a korong rotációjában résztvevő interszteláris anyagétól. Eme utóbbi tulajdonságuk végett kapták a nevüket.

Fémtartalmuk jóval alacsonyabb, mint a Napé. A csillagászok minden elemet a hidrogénen és a héliumon túl a periódusos rendszerben fémnek neveznek. Egy csillag fémtartalmát általában a Naphoz szokták hasonlítani a kutatók. A világegyetem története folyamán, a csillagoknak hála folyamatosan dúsult fémekkel. Az újabb és újabb csillaggenerációk egyre több fémet tartalmaztak, így minél alacsonyabb fémtartalmú egy csillag a Naphoz képest, vélhetőleg annál ősibb objektum. Mivel a korong a haló és a központi dudor után keletkezett, így a galaxison belüli objektumok fémtartalma a korongban a legmagasabb. A HI nagy sebességű a Napnál alacsonyabb fémtartalmából így arra lehet következtetni, hogy ezek a felhők nem a korongból származnak. Úgy tűnt a kutatók tetten érték a hideg gáz beáramlását a Tejútrendszerbe. A felhők tömege azonban túl kevésnek bizonyult, ugyanis évente mindössze 0.1-0.2 naptömegnyi anyagutánpótlás érkezik a korongba, ha csak ezekkel számoltak.

Elméleti megfontolások és távoli galaxisok megfigyelései alapján született meg azaz elképzelés, miszerint nem hideg gáz formájában áramlik be az anyag a Tejútrendszerbe, hanem meleg vagy éppen forró ionizált gázként. Ez a halóba érkezve lefékeződik, lehűl, és „leülepedik” a galaxis korongjában. Először a meleg fázisát sikerült megfigyelni ezeknek a „láthatatlan” felhőknek közvetett módon. A csillagászok megvizsgálták a haló távoli csillagainak színképét az ultraibolya tartományban, és árulkodó abszorpciós vonalakat találtak bennük. Olyan elnyelési vonalak voltak ezek, melyet köztünk és a haló távoli csillaga között lévő 105-106 K hőmérsékletű gáz többszörösen ionizált elemei (Si II, Si III, Si IV, C III, C IV, O VI) hoztak létre.

Halo-gas-opo1126a

Az illusztráció a halóban található gázok viselkedését és azok származását szemlélteti.

A gázok egy része szökőkút szerűen „tör a magasba” a fiatal csillagoknak, és a szupernóváknak köszönhetően a Tejútrendszer korongjából. Ez a gáz később újrahasznosul. – Recycled galactic gas from supernovae

Az intergalaktikus térből nagysebességgel gáz áramlik be, mely lefékeződve, lehűlve a korongba jut. – Very fast clouds from intergalactic space, Decelerating Clouds.

Illusztráció forrása: NASA, ESA, and A. Feild (STScI)

A halóban lévő gáz forró fázisát, annak igen magas hőmérséklete miatt, már nem az ultraibolya, hanem a röntgentartományban kellett keresni. A Chandra, XMM-Newton és a Suzaku röntgen űrtávcsövekkel folytatott kutatások alapján bizonyossá vált, hogy a Tejútrendszer több százezer fényév sugarú, 1-2.5 x 106 K hőmérsékletű, ritka gázfelhőbe burkolódzik. Ennek tömege pedig eléri a 10 milliárd naptömeget, de egyes kutatók a 60 milliárd naptömeget sem tartják kizártnak.

Bár még sok részlet nem teljesen tisztázott, például pontosan miként, milyen mechanizmusok révén jut el a galaxis korongjába a gáz, de nagyon úgy tűnik, hogy a csillagászok meglelték azokat a forrásokat, ahonnan a Tejútrendszer folyamatosan újratölti a korong gázkészletét.

MilkyWayGaseoushalo

Fantáziarajz a galaxisunkat nagyjából 300 ezer fényév sugarú tartományban körülvevő gázról. Látható, hogy az a Nagy Magellán-felhőt (LMC) és a Kis Magellán-felhőt (LMC), vagyis a két legnagyobb kísérő galaxisunkat is beborítja. Forrás: NASA/CXC/M.Weiss, NASA/CXC/Ohio State/A.Gupta és mások.

Miután nagyon röviden áttekintettük a Tejútrendszer halójának kialakulását és felépítését, ideje, hogy a fentieken túl egy kicsit alaposabban megismerkedjünk a gömbhalmazokkal.

Gömbhalmazok

A gömbhalmazok több tízezernyi, több százezernyi, de akár milliónyi csillag (nagyjából) szférikus halmaza. A legnagyobbak átmérője, vagyis az a térrész, ahol a gömbhalmaz gravitációja uralja a teret, akár a 200 fényévet is elérheti.

Bár objektumonként jelentősen eltérhet, de általánosságban elmondható, hogy a csillagok távolsága a gömbhalmazokban nagyságrendileg 1 fényév. A magban azonban ennél is extrémebb a helyzet. Ott két csillag közé éppen beférne a Naprendszerünk. Százszor vagy akár ezerszer közelebb vannak egymáshoz a tagok, mint a Nap közelében a csillagok.

A Tejútrendszer valamivel több, mint 150 ismert gömbhalmazzal rendelkezik, de a valódi számuk 180 körül lehet. Ez sok, vagy kevés? Szomszédunk az Androméda galaxis 500 körüli számmal büszkélkedhet. De ezek a számok meg sem közelítik a hatalmas elliptikus galaxisok gömbhalmaz arzenálját. Maga az M87 13000 ilyen objektummal rendelkezik.

Az első gömbhalmazok felfedezése a XVII. század második feléhez köthető. A legelsőre, ami ma M22-ként ismert, Abraham Ihle (egyes vélemények szerint Hevelius) akadt rá a Nyilas csillagképben. A második Halley nevéhez köthető, aki Szent Ilona-szigetére tett utazása közben ismerte fel, hogy az ω Centauri valójában nem is egy csillag. Ez a gömbhalmaz lett később az NGC5139. Ők még nem ismerték fel ezen halmazok mivoltát. Messier-nek ugyan sikerült az M4-et csillagokra bontani, és ezzel ő volt az első, aki egy gömbhalmaz csillagait nemcsak egybeolvadó foltként láthatta, ennek ellenére a katalógusában szereplő gömbhalmazokat még ő is kör alakú ködökként írta le. William Herschel a távcsöveivel szinte egytől-egyig felbontotta a korábban mások, és az általa felfedezett gömbhalmazokat. A gömbhalmaz kifejezést is ő honosította meg.

Alapos kutatásuk csak a XX. század elején vette kezdetét. Harlow Shapley 1914-től kezdve igen intenzíven foglalkozott a Tejútrendszer gömbhalmazaival. A témában több tucat publikációja jelent meg. Shapley kutatásainak egyik segítője Helen Battles Sawyer volt. A hölgy maga is úttörő szerepet játszott a változócsillagok és a gömbhalmazok kutatásában. 1927 és 1929 között Shapley-vel közösen láttak neki a gömbhalmazok osztályozásának a csillagok koncentrációja alapján. Megalkották a később róluk elnevezett 12 fokozatú Shapley–Sawyer osztályozást (Shapley–Sawyer Concentration Class). A skálán római számokkal jelölik a koncentráció mértékét. Az I. osztályúak a legkoncentráltabbak, míg a XII. osztályba tartoznak a leglazább halmazok.

Az osztályozást hosszú évtizedek során használták és még használják ma is a csillagászok. Nem is olyan régen azonban a gömbhalmazok egy új típusát fedezték fel a csillagászok az NGC5128-ban (Centaurus A), melyeket sötét gömbhalmazoknak neveztek el. Alapvetően érvényes szabály a gömbhalmazokra, hogy a fényesebbek egyben nagyobb tömegűek is, mivel több csillagot tartalmaznak. A sötét gömbhalmazok azonban kilógnak a sorból, ugyanis tömegük jóval nagyobb, mint amit fényességük alapján várhatnánk. A felfedezés viszonylag friss, és egyelőre nincs elfogadható pontos magyarázat a rejtélyre. Természetesen elméletek már most is akadnak, melyek a láthatatlan tömeget igyekeznek megmagyarázni. Elképzelhető, hogy e gömbhalmazok magjai fekete lyukakat, vagy más sötét csillagmaradványokat rejtenek magukban, melyek felelősek lehetnek a tömegtöbbletért. Úgy tűnik azonban, hogy ezzel csak részben lehet megoldani a problémát. Egy másik elképzelése szerint a különös gömbhalmazok a ma még nem igazán értett sötét anyagból tartalmaznak tekintélyes mennyiséget. Ez viszont ellentmond pár ma elfogadott elméletnek, melyek szerint a gömbhalmazokban egyáltalán nincs sötét anyag. A lehetséges magyarázatok egyelőre nem többek, mint spekulációk. A kutatók mindenesetre a jövőben megvizsgálják, hogy más galaxisok is tartalmaznak-e ilyen különös gömbhalmazokat. Mindenesetre javaslat született új osztály bevezetésére. Könnyen lehet, hogy a lassan egy évszázados Shapley-Sawyer osztályozás új kategóriával bővül.

Shapley azonban nemcsak a gömbhalmazok osztályozásával érdemelte ki, hogy megemlékezzünk róla. Ő volt az, aki elsőként megpróbálta meghatározni a gömbhalmazok térbeli eloszlását a galaxisban azok távolságának meghatározásával. A gömbhalmazok bővelkednek RR Lyrae változócsillagokban. Ezen halmazváltozóknak is nevezett csillagok pulzációs periódusa és abszolút fényessége között reláció áll fenn, így tökéletesek távolság meghatározására, akár csak a Cepheida változók. Elég megmérni a periódusukat, amiből meghatározható abszolút fényességük, vagyis milyen fényesek lennének, ha 10 pc távolságba lennének tőlünk. Az látszó fényesség és a számított abszolút fényességből a távolság már meghatározható. Shapley Cepheida változócsillagoknak hitte az RR Lyrae változócsillagokat, melyekről csak később derült ki, hogy valójában halványabbak az előzőknél. Így bár Shapley túlbecsülte a gömbhalmazok távolságát, mégis képet alkotott azok valós térbeli eloszlásáról. Megállapította, hogy a Tejúttól északra és délre azonos a gömbhalmazok eloszlása, azonban az egész égboltra nézve aszimmetrikus. A halmazok erős koncentrációt mutattak a Nyilas csillagkép irányába.

ShapleyGCsm

Shapley vizsgálatai alapján a gömbhalmazok eloszlása. Az origóban a Nap látható, míg a vörös X a Tejútrendszer centrumát jelöli. – Forrás: Prof. Richard Pogge

A kapott távolságadatokból, az eloszlásból meghatározta Tejútrendszerünk dimenzióit, mely nagyobbnak bizonyult, mint előtte gondolták. Feltételezte, hogy a gömbhalmazok nagyjából szférikus eloszlást mutatnak a galaxis centruma körül. Erre alapozva pozíciójuk és távolságuk alapján a Nap galaxis centrumához viszonyított pozícióját is sikerült meghatároznia. Ahogy fentebb is említettem, a távolság adatokat már eleve hiba terhelte, továbbá nem vette figyelembe az intersztelláris por fényelnyelő hatását, ennek ellenére korszakalkotó felismeréseket tett. Kutatásai közelebb vittek minket galaxisunk és benne elfoglalt helyünk megismeréséhez.

Az előző szekcióból megtudhattuk, hogy a gömbhalmazok igen ősi objektumok. A legfiatalabb is legalább 8-10 milliárd éves. A Tejútrendszeren belül gömbhalmazok generációiról lehet beszélni, melyek más időben, különböző eseményeknek köszönhetően jöttek létre. De honnan tudják mindezt a csillagászok?

A gömbhalmazok korát, azok Hertzsprung-Russel diagramja (HRD) alapján határozzák meg. A halmaz tagjai jó közelítéssel egyszerre keletkeztek. Arról, hogy mit is jelent a „jó közelítés”, egy kicsit később még szó lesz. Az egyszerre született (azonos fémtartalmú) csillagok megfigyelhető fejlődési állapota csak a kiindulási tömegtől függ. A nagyobb tömegű fényesebb és forróbb csillagok hamarabb elhasználják hidrogén készleteiket, és elhagyják a fősorozatot. Az idő előrehaladtával már csak a kisebb tömegű, és kevésbé fényes csillagok maradnak a fősorozaton.

Megnézve egy gömbhalmaz Hertzsprung-Russel diagramját rögtön szembetűnő, hogy a valaha legfényesebb, a Nap tömegét több mint nyolcszorosan meghaladó csillagok mind hiányoznak a fősorozatról. Ezek réges-régen „kihunytak”, miután szupernóvaként lángoltak fel. De a közepes tömegűeket, vagyis a Nap tömegét nagyjából kétszeresen, de maximum nyolcszorosan meghaladó csillagokat sem találjuk már ott. Bennük is leálltak a fúziós energiatermelő folyamatok, ma a gömbhalmazok fehér törpe populációját gyarapítják, hogy aztán sok-sok évmilliárd év alatt nagyon lassan kihűljenek. 10 milliárd év után a gömbhalmazokban – márpedig a Tejútrendszer gömbhalmazai jellemzően ennél is idősebbek -, már csak a Nap tömegével összemérhető, illetve a Nap tömegénél kisebb tömegű csillagok belsejében folyik energiatermelés.

NGC5466-HRD1

Az NGC5466 Hertzsprung-Russel diagramja. Main Sequence – Fősorozat, Giant Branch – Óriás ág, Horizontal Branch – Horizontális ág, Asymptotic Branch – Aszimptotikus óriás ág

Az ábra forrása: Alberto Barolo, Mattia Dal Bo, Elisa Naibo

A Nap tömegének nagyságrendjébe eső, a fősorozatot elhagyó csillag esetén a hidrogén fúzió már régen nem a magban zajlik. Ekkora, a hidrogén héliummá történő átalakítása már a magot körülvevő külső héjba tevődik át, melynek következtében a csillag felfúvódik, és külső része lehűl, így jut el a vörös óriás fázisba. A horizontális ág tagjai pedig a magjukban már héliumból szenet hoznak létre. Ez a folyamat a kék szín irányába tolja a csillag fényét. Az óriások és a horizontális ág közötti rés baloldalán találhatóak a már korábban említett RR Lyrae csillagok. Azért van ott a rés, mert csillagászati értelemben, a két fejlődési állapot közötti utat a csillagok hamar bejárják. Ahogy pedig erre az előbb is rámutattam, az RR Lyrae váltózó csillagok magjában már javában folyik a hélium szénné alakítása. Miután a hélium is elfogy, az addigra szénben és oxigénben gazdag magban, a fúzió az azt körülvevő külső héjba tevődik át. Az energia nagy része azonban nem itt keletkezik, hanem a külsőbb hidrogén héjban. A csillag külső rétegei ismét felfúvódnak és lehűlnek. Ennek köszönhetően a csillag fényessége ismét megnő túlszárnyalva a korábbi vörös óriás fázist, színe pedig ismét a vörös felé tolódik. A csillag elfoglalja helyét az aszimptotikus óriás ágon. A gömbhalmazokról készült felvételeken ezek és a korábban említett vörös óriások láthatóak, mint fényes narancs és vörös színű domináns csillagok, meghatározva a halmaz látványát. Ezen csillagok tömege már nem elég nagy, hogy a héliumnál nehezebb elemek fúziója beinduljon. A héjakban is idővel elfogynak a tartalékok, leáll a fúzió. A csillag külső rétegeit a világűrbe pöfékelve megindulnak a fehér törpévé válás útján.

Minél idősebb egy halmaz, annál lejjebb tolódik az a pont (Turn Off Point) a fősorozaton, ahol a csillagok „elkanyarodnak” az óriás ág felé. Felrajzolva a HRD-t egy adott halmazra, az előbb említett pontnak a meghatározásával, továbbá felhasználva a csillagfejlődési elméleteket, megbecsülhető a halmaz kora.

Amennyiben a kedves olvasó még egyszer alaposan megnézi a fenti ábrán a HRD-t feltűnhet neki valami furcsaság, hacsak eddig nem tűnt már fel. A fősorozatot meghosszabbítva ott, ahol az az óriás ág felé elkanyarodik (Turn Off Point), csillagokkal találkozunk a diagramon. (A piros szaggatott vonallal határolt területről van szó). Ezek a csillagok nagyon nem illenek bele abba a képbe, amit éppen az imént vázoltam fel. A fősorozat közelében abban a tartományban találhatóak, ahonnan korábban a nagytömegű kékes csillagok már régen elfejlődtek. Mit keresnek mégis ott, ezek a kék vándoroknak nevezett égitestek?

Létezésükre a ma elfogadott egyik magyarázat, hogy halmaztagok összeolvadásával jönnek létre. Az így keletkező csillag potenciálisan nagyobb tömegű, mint a fősorozaton tartózkodó társaik. A nagyobb tömegű csillagok pedig forróbbak és így kékebbek is. Az ellentmondás ezek fényében mindössze csak látszólagos. Az összeolvadást látszik megerősíteni, hogy jellemzően a gömbhalmaz sűrűbb régiói környékén fordulnak elő. Illetve, sokuk igen gyorsan forog. A leggyorsabban forgók pedig a centrum körül figyelhetőek meg, melyek közül ráadásul néhány igen gyorsan, hiperbola pályán mozog. Ezek sorsa már megpecsételődött, úton vannak, hogy végleg elhagyják a halmazt. A másik favorizált elmélet szerint e csillagokat a kezdetben nagyobb tömegű párjuk hizlalta fel. Mivel a társ nagyobb tömegű volt, így gyorsabban fejlődött. A fősorozatot elhagyva felfúvódott és kitöltötte a Roche-térfogatát, így a ma a kék vándorok jellegzetességeit mutató komponens megszerezhette annak anyagát. Ezt az elméletet látszik alátámasztani, hogy bizonyos kék vándorok felszínének szén és oxigén tartalma jóval kevesebb, mint az szokásos. Ez pedig anyagátadásra utal.

Egyes kutatások arra engednek következtetni, hogy a két mechanizmus akár egyszerre is jelen lehet a gömbhalmazokban. Míg az anyagátadásos „megfiatalodás” inkább a külső régiókra, addig az ütközéses/összeolvadásos keletkezés inkább a halmaz magja környékén lehet jellemző. Az igazság az, hogy nehéz eldönteni, hogy melyik elmélet a helyes. Könnyen lehet, hogy ez a kérdés nem is a gömbhalmazokban dől majd el.

Kék vándorok nyílthalmazokban is előfordulnak. Csillagászok a Hubble Űrteleszkóppal megvizsgálták az NGC188 21 kék vándorát. Miért éppen nyílthalmaz volt a célpont? Mert a gömbhalmazokkal ellentétben nem zsúfolt csillagkörnyezetben kellett elvégezni a megfigyeléseket. Azért választották ezt a nyílthalmazt, mert 7 milliárd éves korával az egyik legöregebb a Tejútrendszerben, s így a kék vándoraik sem annyira „kékek”, megkönnyítve a kísérők kimutatását. Több jelöltről már eleve tudható volt, hogy kettős rendszer része. Az egymáskörül „táncoló” tagok vagy közelednek felénk, vagy távolodnak tőlünk. A spektrumukban pedig mindez megmutatkozik (Doppler-effektus). A kettősség másik jele, hogy a főkomponens spektrumára rárakódik a második tag színképe. Vagyis valójában nem egy, hanem két csillag spektrumát látjuk. Ezek a spektroszkópiai kettőscsillagok. Az izgalmas kérdés a kísérő mibenléte volt. A kék vándorok emissziójában kerestek olyan UV többletet, melyet csak egy fehér törpe társ okozhat, és 7 csillag esetében találtak is ilyet.

A közvetett bizonyítékok mellett, így közvetlen bizonyíték is van már arra, hogy a kék vándoroknak a fejlődésben előrehaladott kísérőik vannak. Ezek a fehér törpék a Nap tömegével nagyjából megegyező, illetve nem sokkal nagyobb tömegű csillagoknak a felfúvódást követő végstádiumai. A fúziós folyamatok már megszűntek bennük, így szép lassan kihűlnek. 7 csillag esetén meglett tehát a társ, akitől korábban a ma kék vándorok „gúnyáját” viselő csillagok anyagot szereztek. A vizsgálati módszer limitációjának köszönhetően az öregebb, 11000 K alá hűlt fehér törpék már nem ragyognak elég fényesen az UV tartományban, így a Hubble-el azokat már nem lehet detektálni. Vagyis, csak az utóbbi 250 millió évben kialakult fehér törpék megfigyelésére volt csupán mód. Mindazonáltal további 7 csillag színképe, és kísérőjének kikövetkeztetett tömege alapján arra gyanakodnak a kutatók, hogy azok körül is fehér törpe kísérő keringhet. Nagyon óvatosan fogalmazva, a következő a konklúziója a publikációnak: a tömegátadásos folyamatok alsó limitje 33% körüli, vagyis legalább a kék vándorok egyharmada köszönheti ennek a létét. Jóval kisebb valószínűséggel ugyan, de ez a limit akár 67% is lehet. Mindenesetre az NGC 188 21 csillagának kutatását még nem zárta le a csapat, és tervezik folytatni a munkát.

Fentebb, elejtettem egy fontos megjegyzést, mely mindenképpen magyarázatra szorul. A gömbhalmazokat sokáig úgy kezelték, amiben minden csillag egyszerre keletkezett. A kutatók azonban felfedezték, hogy bizonyos gömbhalmazok nem is egy nemzedék csillagaiból állnak. Van olyan példánya ezen objektumoknak, melyeknél az első nemzedék után 100 millió évvel alakult ki a következő. De olyan is akad, ahol 3 különböző generációt sikerült kimutatni. Minderre a gömbhalmazok utóbbi időben elvégzett spektroszkópiai és fotometriai elemzése világított rá.

Az első árulkodó jelre a halmaztagok kémiai összetételének vizsgálatakor bukkantak a csillagászok. Egyes gömbhalmazokban különböző hélium és fémtartalmú csoportok jelenlétét sikerül kimutatni, mely nagy valószínűséggel azok különböző életkorából fakad. Ugyanis, a később született csillagok már tartalmazták a korábbi generációk által legyártott elemeket, melyeket azok késői fejlődési fázisukban kibocsájtott csillagszél, illetve a nagyobb tömegűek halálakor bekövetkező szupernóva-robbanások révén juttattak, az akkor még a gömbhalmazokban jelenlévő intersztelláris gázba. Éppen ezért, az ebből a szennyezett gázból születő újabb populációk már héliumban és fémekben jóval gazdagabbak lettek.

Alig pár bekezdéssel feljebb írtam, hogy a gömbhalmazok HRD-je elárulja annak korát. Bár bizonyos kételyek már korábban felmerültek, de szinte egészen a XX. sz. végéig úgy tűnt, hogy a csillagokra egyetlen izokron illeszkedik, vagyis ebből következően csillagai mind egyszerre keletkeztek. Az izokron pedig elárulja, hogy mikor. Az izokron a csillagfejlődésben használt kifejezés, mely a HRD-n az azonos korú csillagokat összekötő görbét jelöli. Főként a műszerek fejlődésének köszönhetően, azonban alaposabb vizsgálatok kimutatták, hogy több esetben a horizontális ág vagy a fősorozat nem reprodukálható csak egyetlen csillagpopulációval, vagyis több izokron fedi csak le a halmazt.  Az izokron elhelyezkedése a HRD-n, illetve az alakja függ a csillagok kémiai összetételétől, ugyanis a más-más összetételű csillagok némileg eltérő utat járnak be fejlődésük során. A halmaz szín-fényesség diagramja, és a spektroszkópiai vizsgálatok együttesen tehát igazolták azt a tényt, hogy pár gömbhalmazban valóban különböző összetételű, ebből következően pedig különböző korú csillagpopulációk élnek együtt.

Bár eddig a gömbhalmazoknak csak egy részekről derült ki, de a kutatók egyre inkább hajlanak arra, hogy szinte minden halmaz tartalmaz kémiai inhomogenitást, csak éppen még nem akadtunk a nyomára. A jövőbeli megfigyelések reményeik szerint el fogják dönteni ezt a kérdést.

NGC2808-3pop

NGC2808-iso

Az NGC2808 gömbhalmaz fősorozatának részlete, amelyben 3 csillagpopuláció is elkülöníthető Piotto és kutatótársainak 2007-es tanulmánya szerint. (A jelölés egy-egy populáció alaposabb vizsgálatnak alávetett csillagát jelöli.) Az alsó ábrán látható, hogy több izokronnal írható csak le a gömbhalmaz fősorozata. Ezek az izokronok a csillagok kémiai összetételben (hélium tartalmában) térnek el egymástól. – Forrás: Piotto és mások, Bragaglia és mások

Az idők során sok titkát feltárták a csillagászok a gömbhalmazoknak. Pontos kialakulásuk azonban a mai napig nem pontosan tisztázott. Az elméletek a megfigyelések mögött kullognak, mivel a gömbhalmazok nem egy jellemzőjére több magyarázat is létezik. A versengő teóriák között pedig adott esetben nem könnyű választani a megfigyelések alapján.

A legtöbb elmélet igyekszik megmagyarázni, hogy miként keletkeztek a különböző csillagpopulációk, illetve próbálják kezelni azt a tényt, hogy miért más és más egy-egy gömbhalmaz felépítése. A megfigyelések folyamatosan egyre finomodnak. A kémiai összetétel vizsgálata a korai modellekben gyakran arra korlátozódott, hogy a fémességet a hidrogén és vas arányaként kezelték. A mai elméletek már a hélium tartalommal, az egyes fémek egymáshoz viszonyított arányával, vagyis a nátrium/vas és oxigén/vas arány alapján az oxigén-nátrium antikorrelációval is számolnak. Természetesen az a tény sem elhanyagolható, hogy a modellek erősen építenek a csillagfejlődési elméletekre, melyek sokat csiszolódtak mára.

A. A. R. Valcarce és M. Catelan modellje arra alapoz, hogy egy gömbhalmaz ma megfigyelhető összetétele nagyban függ attól, hogy mekkora volt a gömbhalmaz progenitorának tömege. Megkülönböztet kis, közepes, és nagytömegűt. A hasonló, csak a kiindulási tömegben eltérő kezdetek után három lehetséges kimenetet írnak le, mely magyarázatot ad a megfigyelhető populációk eloszlására és kémiai összetételére.

Mind a három történet teljesen hasonlóan kezdődik. Az ősi hatalmas gázfelhő gravitációs kollapszusát követően, a ködbe ágyazódva kialakul a csillagok első generációja. A csillagok eloszlása és a kémiai összetételük ekkor még teljesen homogén. Az ősi felhő anyagának 60-80%-a megmarad, nem alakul csillagokká, ugyanis annak tömeg nagy területen oszlik el, így csak újabb lökés, sokk hatására tud benne kialakulni lokális csomósodás. A gáz továbbzuhan a halmaz gravitációs központja felé. Az előbb említett lökés meg is érkezik, amikor az első generáció masszív csillagai elkezdik gyors csillagszél formájában ledobni anyagukat, mely beleütközik a befelé hulló gázba. Egy idő után ez a kidobódó anyag, a csillag tömegétől függően, szinte csak héliumból áll olyan elemekkel szennyezve, melyek részt vettek a csillagban zajló fúzióban, egészen pontosan a CNO, NeNa és MgAl ciklusban. Minden más tekintetben a masszív csillagokból kiáramló csillagszél összetétele megegyezik az ősi gázfelhőjével. Innen a történet háromfelé ágazik.

A kistömegű progentitor nem képes a halmazban tartani az első generáció masszív csillagai által kidobott gázt, a befelé hulló anyag sebessége pedig viszonylag alacsony. Egyszerűen nem jut be az ősi felhőből elég anyag, nem teremtődnek meg a feltételek csillagok keletkezéséhez a mag környékén. Az első generáció nagytömegű csillagainak halálakor fellángoló szupernóvák teljesen kisöprik az ősi gázt, és ezzel együtt a szupernóva-robbanásban a csillagról lelökődött anyag is távozik a halmazból. A második generáció annak a gáznak az összesűrűsödéséből születik meg, melyet korábban a nagytömegű csillagok ledobtak magukról, mikor fejlődésük során az aszimptotikus szuperóriás, illetve aszimptotikus óriás ágon tartózkodtak. A második generáció kémiai összetételét nagyban az első generáció produktumai határozták meg.

progenitor-kicsi

Kistömegű progenitor esetén a gömbhalmaz fejlődése. A vörös pöttyök az első, míg a narancs a második generációt jelöli. A pöttyök mérete a tömegre utal. A nyilak a gáz mozgási irányát jelölik, mérete a sebességre utal, a szín pedig az eredetére. Az ábrán az egyes fázisok időpontja is szerepel. a) Az első generáció keletkezése. b) A lassan befelé áramló gáz gyakorlatilag nem jut el a központig, a masszív első generációs csillagok csillagszele ebben megakadályozza. c) az első generáció szupernóvái által kidobott gáz elszökik a halmazból. d) A gáz összegyűlik az első generáció masszív csillagainak csillagszeléből, melynek intenzív szakasza arra az időre esett, amikor azok az aszimptotikus szuperóriás, illetve aszimptotikus óriás ágon tartózkodtak. e) Kialakul a második generáció. f) Fellobbannak a második generáció szupernóvái, melyek ismét tisztára söprik a halmazt.  g) A napjainkban megfigyelhető kémiai összetétele a halmaznak.

Közepes tömegű progenitor esetén a halmaz mélyebb gravitációs potenciál gödörrel rendelkezik, így a beáramló ősi gáz nagyobb sebességre tud gyorsulni. A masszív csillagok kidobott anyaga bár a külső részeken megpróbál elszökni, addig a halmazban marad, míg az útját álló befelé áramló gázzal együtt a szupernóvák ki nem takarítják. Mindeközben a mag környékén a csillagszél összeütközik az összegyűlő ősi gázzal, és a kinetikus energiából termikus energia lesz. A gáz felfűtődése pedig megakadályozza a csillagok keletkezését.  Később, az első szupernóva-robbanások végül összepréselik a központban lévő gázt, melyből újabb csillagok születnek. A megfigyelések szerint a második generáció héliumban már dúsabb a masszív csillagok ledobott anyagának köszönhetően, azonban fémekben nem annyira gazdag. Mi ennek a második jellemzőnek az oka? Feltételezve, hogy a szupernóva-robbanások majdnem szimmetrikusan történnek, és a maghoz nem túlságosan közel, a halmaz központjában a gáz csak kevéssé dúsul fel fémekben. A szupernóvák anyagának csak kis része keveredik el a magban található gázban. A robbanások emellett ki is söprik a külső részen korábban összekeveredett gázt a halmazból. A közepes tömegű progenitorral rendelkező halmazok még mindig nem elég nagytömegűek ahhoz, hogy képesek legyenek megtartani a szupernóvák kidobott anyagát. A gravitációs potenciálgödör nem elég mély, és kintről befelé áramló gáz sem elég nagytömegű, hogy visszatartsa a robbanások kifelé törő gázait.

Ennek köszönhetően, a később születő harmadik generáció sem lesz túlságosan gazdag fémekben. A modellek szerint nemcsak a szupernóvák anyagát, de a második generáció nagytömegű csillagainak csillagszelét sem képes megtartani a halmaz, az szinte akadálytalanul távozik a környező világűrbe. Az első generáció szupernóváinak hulláma után a centrum felé hulló gáz egyedüli utánpótlása éppen ennek a generációnak a közepes tömegű csillagai. Ezek a csillagok kis sebességű kiáramlás révén veszítenek tömeget. Azonban ezt is hamarosan kisöprik a második generáció szupernóvái. A második nagytakarítás után új gázfelhő kezd kialakulni a centrumban, az első és a második generációs közepes tömegű csillagok által kidobott anyagból. Az ebből keletkező harmadik generáció kémiai összetétele éppen ezért az első és a második generációé közé esik. Amíg van gáztartalék újabb és újabb bár egyre kevésbé népes populációk születhetnek, melyek összetétele egyre jobban hasonlít az első populációéra.

progenitor-kozepes

Közepes tömegű progenitor esetén a gömbhalmaz fejlődése. A jelölések az előző ábra logikáját követik. A vörös pöttyök az első, a kék a második, míg a zöld a harmadik generációt jelöli. a) Megszületik az első generáció. b) A gáz összegyűlik az első generáció csillagainak csillagszeléből és a befelé áramló ősi gázból. c) Az első generáció szupernóvái felrobbannak, mely kiváltja a második generáció születését, és egyben kisöpri azt a gázt, ami nem érte el a magot. d) Az első generációs és második generációs csillagok szupernóva-robbanásai. e) A gáz összegyűlik az első és második generációs az aszimptotikus szuperóriás, illetve aszimptotikus óriás ág csillagainak csillagszeléből. f) A harmadik generáció születése. g) A napjainkban megfigyelhető kémiai összetétele a halmaznak.

A nagyon nagytömegű progenitor esetében a halmaz fejlődése hasonlóan indul, mint a közepes tömegűeknél. A befelé áramló ősi ködből megszületik az első generáció. Mivel ebben az esetben a halmaz még mélyebb gravitációs potenciál gödörrel rendelkezik, mint az előző esetben, így a beáramló ősi gáz még nagyobb tömegben áramlik be és nagyobb sebességre gyorsul. Ez előzőeknek köszönhetően a masszív csillagok kidobott anyaga nem képes eltávozni a rendszerből, így idővel héliumban sokkal dúsabb lesz a környezet, mint az előző esetben. Végül a mag környékén összegyűlő gázban az első generáció szupernóvái indítják be a csillagkeletkezést. A megszülető második generáció csillagai tehát héliumban igen dúsak lesznek, de fémtartalmuk alig haladja meg az első generációét (az előző szekcióban már részletezett okból). Ezekből a halmazokból már a szupernóvák anyaga sem tud eltávozni. Összeütközve a befelé áramló gázzal, elkeveredik vele, miközben késlelteti annak magba áramlását. Kis idő elteltével a fémekben feldúsult gáz, mely a második generáció keletkezése után megmaradt, összegyűlik a mag környékén. A kialakuló felhőbe belekeveredik a második generáció masszív csillagai, és az első generáció masszív és közepes tömegű csillagai által kidobott anyag. Ez a három tényező határozza meg a harmadik generáció kémiai összetételét. Megjegyzem, hogy a megfigyelhető harmadik generáció összetételét a legnehezebb összeegyeztetni az elméletekkel, mert viszonylag sok forrásból származik a kialakulásukban szerepet játszó gázfelhő. A harmadik generáció megszületése után az előzőekhez hasonló újabb ciklus kezdődik. A ciklusok között az egyik jelentős különbség, hogy egyre kisebb tömegűek a csillagok az aszimptotikus szuperóriás, illetve aszimptotikus óriás ágon, melyek kidobott anyaga hozzájárul a következő generáció kialakulásához. A befelé áramló gáz egyre kevésbé szennyezett, mert a kisebb tömegű csillagok által kibocsájtott csillagszél összetétele kevésbé tér el attól, mint amiből kialakultak. A kisebb tömegű csillagok másként „működnek”, mint „fajsúlyosabb” társaik. Ennek következtében, minden egyes új generáció összetétele egyre jobban hasonlít az első generációéhoz.

progenitor-nagy

Masszív progenitor esetén a gömbhalmaz fejlődése. A jelölések az előző ábra logikáját követik. A bordó pöttyök az első, a kék a második, a sárga a harmadik, míg a piros a negyedik generációt jelöli. a)  Megszületik az első generáció. b) A gáz összegyűlik az első generáció csillagainak csillagszeléből és a befelé áramló ősi gázból. c) Az első generáció szupernóvái felrobbannak, mely kiváltja a második generáció születését. d) Összegyűlik az a kevert összetételű gáz, mely az első generációs szupernóvák, az első és második generáció masszív csillagainak csillagszeléből, és a második generáció kialakulása után megmaradt gázból áll. e)  A harmadik generáció születése, miután a szupernóva-robbanások korszaka véget ér. f) Az előző generációk az aszimptotikus szuperóriás, illetve aszimptotikus óriás ágon kibocsájtott csillagszeléből származó anyag összegyűlik. g) A negyedik generáció születése. h) A napjainkban megfigyelhető kémiai összetétele a halmaznak.

A most bemutatott elmélet viszonylag jól leírja, hogy miként alakultak ki a csillagok egyes generációi a gömbhalmazokban. Illetve megmagyarázza a halmazok közötti különbségeket. Természetesen ezzel nem tekinthető lezártnak a gömbhalmazok kialakulásának kérdése. Ennek a modellnek az ellenőrzésével kapcsolatban az egyik felmerülő probléma, hogy nehéz megmondani a gömbhalmazok kiindulási tömeget. Igaz, hogy mostani tömegük elég jól ismert, de a gömbhalmazok tömege a múltban nagyobb volt. Egyrészt a szupernóvák tekintélyes mennyiségű gázt fújtak ki a halmazból. Másrészt az idők során a csillagok egy része kölcsön hatva társaival szert tett a gömbhalmazban érvényes szökési sebességre, így ezek egyszerűen elillantak a halmazból. Harmadrészt a Tejútrendszer gravitációja keltette árapályerők is tekintélyes számú halmaztagot szakítottak ki a gömbhalmazból, miközben az elhaladt a mag közelében, vagy éppen keresztezte a galaxisunk síkját. Milyen jó lenne, ha ismernénk a gömbhalmazok teljes dinamikai történetét! A nehézségek ellenére a szerzőknek végül sikerült becslést adni a kiindulási tömeg alsó határára, a ma megfigyelhető első generációs csillagok, és az azt követő generációk aránya alapján, megvizsgálva azt különböző gömbhalmazokra. Ugyan így lehetségessé vált a modelljük tesztelése, de további kutatásokra lesz majd még szükség, hogy durva becsléseken túl pontosabb kiindulási tömeg birtokában lehessen ellenőrizni ezt az elképzelést.

Remélem, hogy a fenti rövid áttekintésnek köszönhetően sikerült képet alkotnia az olvasónak a gömbhalmazokról és azok lakóhelyéről, és a jövőben újra velem tart majd egy-egy rövid ismertetés erejéig. A csillagos ég bővelkedik a látnivalókban.

Felhasznált irodalom:

E.F. del Peloso, L. da Silva, G.F. Porto de Mello, L.I. Arany-Prado: The age of the Galactic thin disk from Th/Eu nucleocosmochronology III. Extended sample

Jason Kalirai: The Age of the Milky Way Inner Halo

Antonino Marasco: The Gaseous Halo of The Milky Way

A. Gupta, S. Mathur, Y. Krongold, F. Nicastro, M. Galeazzi: A huge reservoir of ionized gas around the Milky Way: Accounting for the Missing Mass?

Matthew A. Taylor, Thomas H. Puzia, Matias Gomez, Kristin A. Woodley: Observational evidence for a dark side to NGC 5128’s globular cluster system

Alberto Barolo, Mattia Dal Bo, Elisa Naibo: Photometric analysis of the globular cluster NGC5466

G. Piotto, L. R. Bedin, J. Anderson, I. R. King, S. Cassisi, A. P. Milone, S. Villanova, A. Pietrinferni, A. Renzini: A Triple Main Sequence in the Globular Cluster NGC 2808

Raffaele Gratton, Eugenio Carretta, Angela Bragaglia: Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters

A. A. R. Valcarce, M. Catelan: Formation of Multiple Populations in Globular Clusters: Another Possible Scenario

Natalie M. Gosnell, Robert D. Mathieu, Aaron M. Geller, Alison Sills, Nathan Leigh, Christian Knigge: Implications for the Formation of Blue Straggler Stars from HST Ultraviolet Observations of NGC 188