Clavius az árnyékban

Hold-Clavius_arnyekban-20170306-15L-TTK

Clavius az árnyékban – 2017-03-06 20:06:30 CET (19:06:30 UT) – Göd – 5000 frame-ből a legjobb 300

152/1500 akromatikus lencsés távcső, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera, direkt fókusz, Astronomik ProPlanet-742 CCD szűrő

(A Hold déli pólusa a képen felül van.)

Emlékszem még, mennyire csodáltam gyermekkoromban, mikor a bűvészek hatalmas dolgokat tüntettek el, vagy éppen varázsoltak elő. Ezek az emberek az illúzió és a figyelemelterelés művészei. Még ha hihetetlen is, de lenyűgöző a szemfényvesztés. Nem lehet csak úgy elővarázsolni az ebédlőasztalt, eltüntetni az autót, de még csak egy épület sem válhat semmivé az orrom előtt! Pár évtizeddel később, noha már tudom, hogy miként működik egy-egy trükk, még mindig képes elbűvölni az adott mutatvány.

Őseinket a természet jelenségei ugyanúgy lenyűgözték, mint engem gyermekként az illuzionisták. Ők is megfigyelték és keresték a magyarázatokat. A misztikumot idővel felváltotta a tudás. A természet szabályok, törvények szerint játszik. De ennek felismerésétől még nem hiszem, hogy a természet varázsa szertefoszlott volna. Rám bizonyosan hat.

Nem kétséges, hogy a csillagászati bemutatók egyik legnagyobb sikert arató célpontja a Hold. Fényes, közel van, így rengeteg részlet látható rajta. Nem kell tapasztalt megfigyelőnek lennünk ahhoz, hogy elsőre nyilvánvaló legyen a látvány. (Azért vannak nehezen észrevehető részletek bőséggel.) A Polaris Csillagvizsgálóban, vagy éppen a saját műszereimmel megmutatva a Holdat az érdeklődőknek, azok arcára szinte mindig kiül a csodálkozás. Kimondottan akkor, ha ez az első alkalom, hogy ilyen „közelről” láthatják. Amiket közben mondok nekik, csupán topán, valahonnan a távolból jut el hozzájuk. Messze vagyok, lelkük kint jár az űrben. A megértés csak kullog a tapasztalás után. De ez már csak így van.

Ma már tudjuk, hogy a Holdnak nincs saját fénye, csupán a Nap fényét veri vissza. A Föld körül keringve, a Nap, a Föld, és a Hold egymáshoz viszonyított pozíciója folyamatosan változik, ez az egyszerű oka a fázisainak. Ha csak feltekintünk az égre, napról-napra láthatjuk, ahogyan megtelik, vagy éppen elfogy. Azonban, ha távcsövön keresztül szemléljük, a fény és az árnyék játéka akár órák alatt is jelentősen átrajzolhatja a felszíni alakzatok megjelenését. Az adott pillanatot tulajdonképpen nem is olyan egyszerű elcsípni.

Holdfazisok

A Hold fázisváltozásai. Forrás: wikipedia.hu – Orion 8 (CC BY-SA 3.0)

A 225 km átmérőjű Clavius-kráter egyike a Hold legnagyobb krátereinek.  Ősi, majdnem 4 milliárd éves becsapódás emléke, mely a nektári időkben (3.92 – 3.85 milliárd évvel ezelőtt) történt a késői nagy bombázáskor. Ekkor, több nagyobb méretű meteor, illetve kisbolygó csapódott a Holdba. Ezek, még a Clavius-nál is nagyobb, és mélyebb sebeket ejtettek a felszínén. Ilyen seb a Mare Nectaris medencéje is, melyről az előbb említett holdbéli geológiai korszak kapta a nevét, s mely korszakot a Mare Imbrium medencéjének létrejötte zárt le. Az óriási medencéket később a felszínre törő bazalt láva elöntötte, ezzel leradírozva, elrejtve a korábbi becsapódásokat. A Clavius-kráter azonban a Hold felénk néző oldalának déli felföldjén található, így ez a sors ezt, és egész környezetét is elkerülte. Sűrűn kráterezett vidéken fekszik, ahol egymás írták felül az újabb és újabb becsapódások. A Clavius sokat erodálódott az évmilliárdok alatt a mikrometeoroknak, és a kisebb-nagyobb becsapódásoknak köszönhetően. Ezek nemcsak a falait, de a belsejét sem kímélték. A pusztulás azonban lehet szép is. A déli falán ülő Rutherfurd-krátertől induló félköríves kráterlánc a Clavius „védjegye”. Nem is csoda, hogy a közel fél Magyarország méretű kráter szinte vonzza a megfigyelő tekintetét. A kráter sajátossága továbbá, hogy peremei nagyjából a környezet magasságába esnek, abból csak alig emelkednek ki. Ezért fallal körbevett depressziónak (walled depression) is nevezik az szakirodalmakban. Kivételt képez ez alól a keleti fal, mely a krátert körülvevő táj fölé emelkedik.

Clavius crater - LROC

A Clavius-kráter a Lunar Reconnaissance Orbiter (LRO) felvételén. (A fotón észak felül van). Kép forrása: NASA

Összességében „a bűvésznek” ennyi csak a trükkje. E dolgok összjátékától működik „a varázslat”. Napkeltekor a keleti fal már fényben fürdik, de a kráter belsejét még tökéletes sötétség borítja. Csak a Clavius körbefutó, és az azon trónoló kráterek pereme világít itt-ott. A félköríves kráterlánc magasabbra törő falainak karimái pedig kísértetiesen derengenek a koromsötét kráterbelsőben. A részletek még bujkálnak, a hatalmas kráter még rejtegeti pompáját. A lepel azonban hamarosan lehullik, ahogy a Nap magasabbra emelkedik a Hold egén.

Korábban már sokszor gyönyörködtem ebben a látványban, nem egyszer éppen akkor, mikor a Polaris látogatóinak tartottam bemutatót. Kicsit mindig más és más volt. Készültem a felvételre. Planetárium programokkal határoztam meg, hogy mikor kerül sor az újabb „előadásra”, hogy én is feltétlenül ott lehessek. Azon a hétfőn végre az égiek is kegyesek voltak hozzám. Az, hogy a nyugodtság nem volt éppen a legjobb, cseppet sem érdekelt akkor már.

Clavius_big_label2-cut1-s1

További „árnyékos” kráterek neve a terminátor közelében. (A teljesség igénye nélkül.) Ezek is mutatósak, de egyik sem ér fel a Clavius „sötét teknőjével”. Legalábbis a felvétel pillanatában.

Clavius_on_The_Moon-20170306

A fenti felvétel a Hold (hozzávetőlegesen) megjelölt területéről készült.

M1 – A Rák-köd

M1-LRGB-20131201-TTK

M1 – Rák-köd (A 2013-ban készült felvételek 2015-ös feldolgozása.)

2013-10-29, 2013-12-01 – Göd – 70 x 55 sec L és 61 x 55 sec R, G, B

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera, Astronomik RGBL fotografikus szűrőszett

(A bejegyzés a Magyar Csillagászati Egyesület havi folyóiratában, a Meteorban (2017/01. 8-19.) megjelent cikk bővebb, helyenként átdolgozott elektronikus változata.)

Sok-sok ezer évvel ezelőtt egy csillag, melynek tömege sokkalta nagyobb Napunkénál, lassan kifogy üzemanyagkészletéből. Még küzd a gyilkos gravitációval, és a különböző, egyre rövidebb ideig tartó fúziós folyamatok során egymás után hozza létre a nehezebb elemeket. A folyamat azonban a vasnál elakad: ennél nehezebb elemek már nem jöhetnek létre fúzió révén. Energia-utánpótlás hiányában a csillagot utoléri a végzete, elindul a megállíthatatlan kollapszus. Anyaga a mag felé kezd zuhanni, nincs már sugárnyomás, amely ezt megakadályozhatná. A külső rétegek hatalmas nyomása „belepréseli” az elektronokat az atommagokba, így a csillag magjában neutronok keletkeznek. Miközben összeroskad a csillag forgása egyre gyorsul. A neutronokban feldúsuló magban a nyomás hirtelen megnő, és a bezuhanó anyag mintegy visszapattan az összepréselhetetlen neutronmagról. Pusztító lökéshullám indul el kifelé, amely gyorsan energiát veszít, és épp ezért ez még önmagában nem lenne elég a kataklizmához. Ugyanakkor, a nagyságrendileg 100 milliárd K felforrósodó magban neutrínók keletkeznek, és megindul kifelé egy 1046 J energiájú neutrínózápor. Máig nem teljesen tisztázott módon a neutrínók által elszállított energia 1%-kát elnyeli a kifelé tartó lökéshullám, s így bekövetkezik a gigászi szupernóva-robbanás. Az ilyen típusú robbanásokat az összeomló csillagmag miatt kollapszus-szupernóváknak (core collapse supernova) is nevezik.

A csillag anyagának jelentős része szétszóródik, miközben a korábbi energiatermelő folyamataiban született elemeket juttat a környezetébe. Olyanokat, melyek nélkül nem létezhetne élet, de eme kis kékes színű kőzetbolygó, a Föld sem. Maga a szupernóva-robbanás olyan extrém magas hőmérséklettel és nyomással járó körülményeket hozott létre, hogy az úgynevezett neutronbefogásos folyamatokban a vasnál nehezebb elemek is létrejöttek, s melyek egy része szintén szétterült az űrben. Régebbi elképzelések szerint az ilyen kataklizmák voltak azok, melyek beszennyezték a kozmoszt a vasnál nehezebb elemekkel. Azonban manapság már más a csillagászok álláspontja.  Az újabb elméleti megfontolások a neutroncsillagokat tekintik ezek egyik fő forrásnak. Ami még ennél is fontosabb, a megfigyelések is ezt támasztják alá. (A neutroncsillagokról később még szó lesz.)

A robbanás helyén, az égbolton a Messier 1 ködössége látható, melyet szokás Rák-ködként is emlegetni. A kidobott anyag még ma is hatalmas, 1500 km/s sebességgel tágul. Az expanziót akár a saját szemünkkel is láthatjuk, ha bő évtizedes különbséggel készült felvételeket hasonlítunk össze.

A Rák-köd 1999 és 2012 közötti tágulásának mértéke.

 A fentebb vázolt események a Földtől kb. 6500 fényévre történtek. Amikor a fotonok útnak indultak, lassan véget ért az emberiség történetének legelső, és egyben leghosszabb szakasza: az őskor. A Földet már benépesítettük, és gazdálkodni kezdtünk. Lassanként általánosan elterjedt a fémek használata, azoké amelyeket egy másik, több milliárd évvel ezelőtti szupernóva-robbanás szórt szét a világűrben.

1054-ben kínai csillagászok az egyik nyári estén az eget tanulmányozva, éjfél után felfigyeltek egy vendégcsillagra (ko-hszing), mely az általuk Tien-kuan-nak nevezett csillag közelében tűnt fel. Fényességével túlragyogta a Jupitert és a Vénuszt. Sokáig látható maradt még a nappali égen is. A szupernóva feltűnésének írásos emléke a császári főcsillagásznak, Jang Vej-tö-nek hála maradt reánk, aki a vendégcsillag megjelenését arra használta fel, hogy a Szung-dinasztiára és császárra nézve igen hízelgő jóslatot adjon, méltatva az uralkodó bölcsességét és nagyságát.

Jang Vej-tö leírását azonban nem szabad készpénznek venni. Ambiciózus talpnyaló hírében állt, amit jól tükröz maga a jóslat, illetve annak egy kiragadott részlete: „… azt jelenti, hogy él egy nagyon bölcs, és erényes személy ebben az országban.” Az új csillagot fényes sárgának írta le, ami valós is lehet, de nem szabad elmennünk amellett a tény mellett sem, hogy a Szung-dinasztia fő színe a sárga volt. Csak abban lehetünk biztosak, hogy 1054. július 4-én tűnt fel a Tien-kuan-hoz közel, és 1056. április 17-én vesztették szem elől.

A dinasztiával kapcsolatos feljegyzések elemzése nem volt könnyű feladat. A kínaiak nem az általunk ismert nyugati csillagképeket használták. Továbbá meg kellett fejteni az égi koordináta-rendszerüket, és a távolságok leírására használt mértékegységeket. Végül sikerült kibogozni a szálakat, és meghatározni, hol is volt látható a jelenség.

A sinológusok nagy bizonyossággal megállapították, hogy a Tien-kuan a ma ζ Tauri-nak (dzéta Tauri-nak) nevezett csillag. Tehát a vendégcsillag a Bika csillagkép szarvának közelében tűnt fel, méghozzá a Szung-dinasztia krónikái alapján attól délkeletre. A közelséget több leírás is említi, azonban egy 1345-ös változat a Szung-évkönyvben konkrétan pár hüvelyk távolságot állapít meg. Más korabeli kínai csillagászati megfigyelések alapján egy hüvelyk alatt körülbelül 0,1 fokot értettek. Amennyiben a néhányat 3-nak, 4-nek, esetleg 5-nek tekintjük, akkor durván fél fok választotta el a ζ Taurit és a feltűnt égitestet.

De mit is láttak valójában? Mivel a csillag kifejezést igen változatosan használták, így alaposan körbe kellett járni azt a kérdést, hogy valójában nem üstökösről volt-e szó. Semmilyen üstökösökkel kapcsolatos jellemzőt nem sikerült azonban felfedezni a leírásokban. Nem említenek sehol sem csóvát. Márpedig a fényes szabadszemes üstökösök egyik legfőbb ékessége a látványos csóva. Illetve, a csillag nem változtatta a helyzetét az égen, ahogyan azt az üstökösök teszik.

Miután a helyet az égen már azonosították, és kizárták a fényes üstökös lehetőségét már csak azt kellett eldönteni, hogy nóva, vagy szupernóva tűnt-e fel 1054-ben. Az tudható volt, hogy 23 napon át nappal is látszott. A fényessége -4 és -5 magnitúdó lehetett. Ahhoz, hogy nóva lehessen azok tipikus fénygörbéi (a legfényesebbekre a meredek felfutás, majd gyors lefutás jellemző) alapján 60 fényéven belül kellett volna lennie, máskülönben nem ragyoghatott volna három hétig ezen a fényességen. Statisztikai vizsgálatok azt mutatják, hogy átlagosan 30000 évenként következik be nóva robbanás hozzánk ilyen közel. Tehát az esélyek inkább a nóva ellen szóltak. Ráadásul ebből a távolságból a Hold fényével kellet volna ragyognia, amit biztosan szintén megemlítettek volna. Továbbá, ha nóva lett volna a feltűnt csillag, akkor valahol lennie kellene egy vörös óriás és egy fehér törpe párosnak is, mely előfeltétele egy ilyen nóva-robbanás bekövetkezésének. Alkalmas jelöltet azonban nem találtak.

Maradt tehát az a magyarázat, hogy 1054-ben szupernóva-robbanást figyeltek meg a kínai császár csillagászai. A szupernóvák fénygörbéjének karakterisztikája más, mint a nóváké. Abszolút fényességük is nagyobb. Így a néhányszor 1000 fényév távolságban felrobbanó szupernóva látszó fényességének görbéje sokkal jobban illeszthető a leírásokra. Nem beszélve arról, hogy nagyobb valószínűséggel következik be ilyen távolságban szupernóva-robbanás, minthogy 60 fényéves körzetben feltűnjön egy nóva. A nagytömegű csillag halálakor bekövetkező „tűzijáték” során hatalmas mennyiségű gáz lökődik ki, melynek sugárzása hosszú évezredekig megfigyelhető marad. Ha tehát ez a magyarázat helytálló a vendégcsillag mibenlétét illetőleg, akkor lennie kell megfigyelhető maradványnak is!

Messier 1, avagy a Rák-köd

John Bevis orvos és műkedvelő csillagász 1731-ben ködös objektumra bukkant a Bika csillagképben, melyet Uranographia Britannica égbolttérképén is feltüntetett. Tőle teljesen függetlenül, Charles Messier újra felfedezte, majd később katalógusában az 1. sorszámot adta neki. Innen az Messier 1 (M1) elnevezés.

uranographia-britannica-bull

John Bevis az Uranographia Britannica égbolttérképén is feltüntette az szupernóva-maradványt. Forrás: https://listoffigures.wordpress.com/

Messier a mai értelemben vett megfigyelő csillagász volt. Nem sokat foglalkozott matematikával, ugyanakkor megbízott mások elméleti munkáiban. Korábban Edmund Halley kiszámította, hogy az 1531-ben, 1607-ben és az 1682-ben feltűnt üstökös egy és ugyanaz. Ahhoz, hogy elméletét ellenőrizze felkérte a csillagászokat, hogy 1758 vége felé legyenek résen, mert az üstökös újra megjelenik. Igaza is lett. Messier és munkaadója Joseph-Nicolas Delisle szerette volna learatni az újrafelfedezés babérjait. Messier azonban nem Halley, hanem Delisle számításait követve kereste az üstököst. Valószínűleg nagyon megörülhetett, amikor az 1758-as De La Nux üstököst követve rálelt a ζ Tauri közelében a kis ködösségre 1758. augusztus 28-án. Csalódottan kellett azonban tapasztalnia, hogy az nem mozdult el az égen, így nem lehetett üstökös. Végül nem Messier, hanem egy német földműves, Johann Georg Palitzsch vette észre először a Halley üstököst 1758 karácsonyán. Messier csak 1759-ben lelt rá. Ráadásul Delisle nem is hagyta rögtön bejelenteni, mert az ő számításai szerint nem ott kellett volna lennie a Halley-nek. Akárhogy is esett, Messier hamarosan korának kiemelkedő üstökös vadászává vált, és az M1 fontos szerepet játszott abban, hogy összeállítsa katalógusát.

Az idők folyamán több híres csillagász is észlelte a ködöt. Külön meg kell azonban említeni William Parsonst, ismertebb nevén Lord Rosse-t (Rosse harmadik grófját), akitől a Rák-köd elnevezés származik.

william-parsons-crab-nebula

Lord Rosse rajza a Rák-ködről 36 hüvelykes távcsővel készült 1844 körül. Forrás: https://listoffigures.wordpress.com/

Többé nem készült olyan rajz, amin a köd rákszerű lenne, de az elnevezés megmaradt. Lord Rosse 1845-ben megépítette 72 hüvelykes (1.83 m) tükrös távcsövét. A „Leviatánnál” egészen a XX. század elejéig nem is készítettek nagyobb átmérőjűt. A Rák-ködöt ezzel is megfigyelte, és ekkor már egészen más megjelenésűnek találta. Az óriási távcsőben kibontakozó látványt R.J. Mitchell rajzolta le. Ezen, olyan részletek is felfedezhetőek, amelyek a mai fotókon is látszanak. Ilyen például az én felvételemen is látszó kis fekete öböl.

william-parsons-crab-nebula-2

R.J. Mitchell rajza a Rák-ködről, melyet Lord Rosse 72 hüvelykes távcsövével készített 1855-ben. Jól látható a kis fekete „öböl”. Forrás: https://listoffigures.wordpress.com/

Lord Rosse leírása arról is árulkodik, miként vélekedtek akkoriban a ködökről: „…különlegesen elrendezett, jól kivehető fonalakat látunk… Nagyobb felbontás valószínűleg további fonalakat is kihozna, s akkor a köd közönséges halmazformát öltene.” Abban az időben úgy gondolták, hogy minden köd csillagokból áll, és csak elegendően nagy távcsőre van szükség ahhoz, hogy valamennyit felbontsák. Még sok évtizednek kellett eltelnie ahhoz, hogy a csillagászok felismerjék valódi természetét.

A Rák-köd és a modern asztrofizika

C. O. Lampland fejéből pattant ki az ötlet 1921-ben, hogy összehasonlítsa a Lowell Obszervatóriumban a korábbi 8 évben készült felvételeket a Rák-ködről. Így felfedezte, hogy az évek alatt az M1 egyes részei elmozdultak. John C. Duncan volt az, aki végül felismerte, hogy a köd tágul. Hogy mióta? Erre a kérdésre Edwin Hubble is kereste a választ. Feltételezte, hogy az objektum egy pontból indult ki, és az expanzió egyenletes. Számításai szerint a tágulás 900 évvel ezelőtt vette kezdetét.

Ezt a tudományos felismerést, és a korábbi kínai feljegyzéseket összevetve elmondható, hogy anno 1054-ben nagy valószínűséggel azt a szupernóvát látták feltűnni az égen, melynek maradványa az M1. Mire fel mégis az előző mondatban megbújó piciny bizonytalanság? A Rák-köd dzéta Tauritól mért távolsága és iránya nem illeszkedik pontosan a korabeli beszámolókban olvashatókéra. Több helyen is biztosan említik a kínaiak, hogy fél fokra, délkeletre volt a feltűnt csillag a Bika szarvától. Valójában azonban 1.1 fokra és északnyugatra van a Rák-köd ettől a csillagtól. Mivel oldható fel ez az ellentmondás? Elképzelhető, hogy egyszerűen a Szung-dinasztia évkönyveiben a Történeti Hivatal elírt valamit, illetve felcserélhették a két csillag pozícióját. Máig vannak azonban olyan szkeptikus kutatók, akik szerint vitatható az M1 és 1054-ben megjelent vendégcsillag kapcsolata. Tovább lehet azonban érvelni a kapcsolat mellett. Először is, nincs más erős rádióforrás a közelben. Továbbá, ha az M1 nem az 1054-es szupernóva-maradványa, akkor Duncan és Hubble eredményei szerint 100 éven belül két szupernóvának is fel kellet volna lángolnia az ég látszólag közel azonos területén. Mekkora ennek a valószínűsége? Roppant kicsiny. Ha mégis így történt, miért nincsenek feljegyzések a 100 éven belüli másik fényes vendégcsillagról? Ez hát az oka, hogy némi bizonytalanságot belecsempésztem e bekezdés első mondatában.

A spektroszkópia elterjedésével új fejezet kezdődött a csillagászatban. Korábban vajmi keveset tudtunk a távoli égitestek összetéte­léről, az ott uralkodó fizikai viszonyokról. A Messier 1-ről készült első színképek meghökkentőek  voltak. Az addig vizsgált ködökre pusztán az azokat alkotó elemek gerjesztett atomjainak ujjlenyomatai, az emissziós vonalak voltak a jellemzőek – szinte nem is állt a spektrumuk másból. Azt viszonylag korán felismerték a csillagászok, hogy ezt a gerjesztést egy-egy forró csillag intenzív ultraibolya sugárzása okozza. A Rák-köd esetében azonban az emissziós vonalak egy határozott folytonos háttéren, kontinuumon voltak megfigyelhetőek. Mintha két színkép rakódna egymásra. Hamar kiderült, hogy a köd szerkezetét tekintve két eltérő részből áll: az amorf eloszlású gázból, mely ovális alakot kölcsönöz a Rák-ködnek, és a filamentek szövevényes hálózatából. A filamentek, a köd rostokra emlékeztető, 11000 – 18000 K hőmérsékletű, ionizált gázokat tartalmazó struktúrái, melyektől a színkép emissziós vonalai származnak, a ködöt kitöltő amorf gáz pedig a kontinuum forrása. Azonban azt, hogy pontosan miként jön létre a folytonos háttér, vagyis honnan származik a köd fénye, sokáig homály fedte.

A fizikából az ismeretek, mint összerakásra váró puzzle darabjai hevertek az asztalon. Végül 1953-ban Joszif Szamuilovics Sklovszkij volt az, aki az egyes elemeket egységes képpé állította össze.

Még 1948-ban, a rádiócsillagászat hőskorában egy ausztrál kutatócsoport négy fényes rádióforrást fedezett fel az égen, melyből az egyik a Taurus A nevet kapta. Később szintén ez a csapat egy kezdetleges interferométerrel 7 ívperc pontossággal behatárolta a sugárzás irányát, mely az M1-hez igen közel esett. A Taurus A lett az első, Naprendszeren túli diszkrét rádióforrás, melyet optikai tartományban is azonosítottak. A csillagászokat meglepte, hogy az optikai tartományban nem is olyan fényes Rák-köd a Nap után az egyik legerősebb rádióforrás az égen. Az ausztráliai kutatók 1952-ben a rádióforrás méretét is megmérték, és rá egy évre az első rádiótérképet is elkészítették. Ezen a durva térképen a rádióforrás főbb alakzatai meglepően hasonlítottak az optikai tartományban látott képhez. Arra az összefüggésre is rájöttek a kutatók, hogy a Rák-köd (és több más rádióforrás) rádiósugárzásának intenzitása a frekvencia függvényében logaritmikus skálán egy egyenes vonalat ad. Joszif Sklovszkij szovjet csillagász pedig megmutatta, hogy a köd rádiósugárzásáért az úgynevezett szinkrotronsugárzás a felelős.

Egy ideje már ismert volt a fizikus előtt, hogy a közel fénysebességgel mozgó (relativisztikus) töltött részecskék sebességvektoruk megváltoztatása közben szinkrotronsugárzást bocsájtanak ki. Úgy is megfogalmazhatjuk, hogy amikor a töltött részecskét a mágneses tér gyorsítja, a gyorsulás következményeként az sugározni kezd. A mágneses térben végzett körmozgás folytonos gyorsulásnak számít. A ködben lévő mágneses tér erővonalai körül spirálozó elektronokkal pedig pontosan ez történik.

Szinkroton-rot1-cut1-s1

A közel fénysebességgel, a mágneses erővonalak körül spirális pályán mozgó elektronok keskeny nyalábban szinkrotron sugárzást bocsájtanak ki. Ez a sugárzás polarizált, vagyis a látóirány mentén kitüntetett a rezgés síkja. Forrás: Simon Mitton – A Rák-köd (Az ábra jogvédelem alatt áll, az a szerző külön írásos engedélyével került felhasználásra.)

Sklovszkij a mechanizmust kiterjesztette az optikai tartományra is, és azt mondta, hogy nem atomi átmenetekből származik a Rák-köd színképének folytonos része, hanem azt is szinkrotron sugárzás okozza. Vagyis, a mágneses térben őrült sebességgel körtáncot lejtő, nagy energiájú mozgó elektronoktól származik a köd fénye (pontosabban a kontinuum része), míg a „gyengébb” elektronoktól a köd rádiósugárzása.

Az igazán jó elmélet nemcsak megmagyaráz dolgokat, hanem jóslatokat is ad. Sklovszkij megjósolta, hogy a köd fényének részlegesen polarizáltnak kell lennie. A szinkrotron sugárzás sajátossága, hogy polarizált. Pár évvel később megfigyelésekkel igazolták Sklovszkij teóriáját, és annak jóslatait. Először Viktor Alekszejevics Dombrovszkij, majd tőle függetlenül Mikheil Alexandresz dze Vashakidze mutatta ki a Rák-köd fényének polarizáltságát. Majd 1955-ben a Palomar-hegyen, az ötméteres teleszkóppal Walter Baade készített ragyogó felvételsorozatot. A polarizációs szűrőt forgatva változtak az alakzatok, s volt olyan fényes terület is, ami szinte el is tűnt!

Polarizacio-rot1-cut1-s1

A polarizált fény és a polarizációs szűrű szemléltetése. A polarizációs szűrőn teljes áteresztés akkor történik, ha az áthaladó fény polarizációjának síkja a szűrőével egybeesik. Amennyiben a két sík egymásra merőleges, akkor a szűrő nem ereszti át a polarizált fényt. Forrás: Simon Mitton – A Rák-köd (Az ábra jogvédelem alatt áll, az a szerző külön írásos engedélyével került felhasználásra.)

A polarizációs vizsgálatok révén tökéletesen feltérképezhetővé vált a ködben a mágneses tér szerkezete, ugyanis a polarizáció síkja merőleges a mágnese térre. Kiderült, hogy a Messier 1 megjelenése erős kapcsolatban áll a mágneses térrel. Az erővonalak a különböző öblök szélén, szálak mentén futnak, és a filamentek körül tekerednek.

Később kimutatták, amit a szinkrotronsugárzási elméletek is megjósolták, hogy a Rák-köd egyben erős röntgenforrás is az égen. Nem volt egyszerű a pontos irányt és a röntgensugárzás szerkezetét meghatározni. Az első áttöréseket 1964-ben érték el, amikor az M1 röntgen jeleinek változását figyelték a kutatók, miközben a Hold elfedte azt.

Bár most csak az optikai, a rádió és a röntgen tartományokról beszéltem, mert történeti síkon igyekszem mozogni, de elmondható, hogy a szinkrotronsugárzás a felelős a köd teljes spektrumban kibocsájtott sugárzásának igen jelentős részéért. A relativisztikus elektronok idővel energiát veszítenek, egyre „fáradnak”. Kezdetben a gamma, a röntgen, majd az optikai, az infravörös, míg végül a rádiótartomány „megszólaltatásáért” felelősek. Pontosan kiszámítható, hogy mennyi idő alatt „fáradnak” el ezek az elektronok. Például a röntgen szinkrotronsugárzás nagyjából egy év alatt kihunyna, ha nem lenne valamiféle energiautánpótlása. Ennyi idővel a robbanás után a köd ilyen formájában már régen nem is létezhetne. Kell hogy legyen valami hajtómotor a ködben! Sokáig ez volt a Rák-köddel kapcsolatos egyik legnagyobb talán. Tudták már, hogyan világít, de mi táplálja energiával? Honnan származik a mágneses tér?

Crab_Nebula_in_Multiple_Wavelengths

Az M1 látványa különböző hullámhosszakon. Balról jobbra a tartományok: rádió, infravörös, optikai (látható), ultraibolya, röntgen, és gamma.

Pulzár a Rák-ködben

Az első pulzárokat 1967-ben fedezték fel egy szinte teljesen véletlen eseménynek köszönhetően. A Napból kiáramló csillagszélnek köszönhetően egy távoli rádióforrás sugárzása gyorsan fluktuál, amikor az a Naphoz közel látszik az égen. A jelenséget interplanetáris szcintillációnak nevezik. Ez nagyjából hasonló jelenség, mint ahogyan a csillagok fénye a Föld légkörének köszönhetően pislog, vagyis a szcintillál. Ez a jelenség pedig kitűnően felhasználható kompakt rádióforrások keresésére, ugyanis minél kisebb az objektum, annál erősebb a véletlen fluktuáció jelensége. 1967. augusztus egyik éjszakáján úgy éjfél körül arra lett figyelmes Jocelyn Bell Burnell, hogy valami megmozgatta a voltmérőt. Ekkor a Nap jóval a látóhatár alatt tartózkodott, így nem tűnt valószínűnek, hogy ezt interplanetáris szcintilláció okozta volna. Kezdetben valami földi eredetű zavarra gyanakodtak, de 1967. november 28-án igazolást nyert, hogy valóban az űrből származó szabályos pulzusok sorozatát észlelték. Ezt a dátumot tekinthetjük az első pulzár (CP1919 / PSR J1921+2153) felfedezésének.

First_Pulsar

Az első pulzár felfedezése. A felső képen a pulzár jele csak éppen megkülönböztethető a szcintillációktól. Az alsó nagyobb sebességű grafikonon viszont világossá vált, hogy az észlelt zörej valójában periodikus pulzációk sorozata volt (P≈1.3 másodperc). Forrás: Jocelyn Bell Burnell és Antony Hewish.

Jocelyn Bell Burnell posztgraduális hallgató volt, akinek Antony Hewish volt a témavezetője. A felfedezést bejelentő cikken 5 szerző neve olvasható. Elsőként Hewish, másodikként Bell, és így tovább.  Antony Hewish 1974-ben megosztott Nobel-díjat kapott Martin Ryle-lal a rádió apertúra szintézis kidolgozásáért, és a pulzárok felfedezésében játszott szerepükért. Ez volt az első olyan fizikai Nobel-díj, melyet csillagászati kutatásért osztottak ki. Személy szerint én kifogásolhatónak tartom a döntést, hisz végső soron Jocelyn Bell Burnell volt, aki ráakadt a pulzárra, és aki annak alapos elemzésében szintén kulcsszerepet játszott.

Az első pulzárt, nagyon hamarosan újabbak felfedezése követte a rádiótartományban. Ezek közül a következő mérföldkövet a Vela csillagképben található hatalmas szupernóva-maradványban talált pulzár (PSR J0835-4510) jelentette. Ez volt az első kapocs az ilyen maradványok és a pulzárok között. Ekkortól szisztematikusan keresni kezdték a szupernóva-maradványokban a pulzárokat. Alig egy évvel később 1968. november 9-én sikeresen azonosították a Rák-köd pulzárját is, mint 33 milliszekundumos pulzárt. A milliszekundumos pulzárok felfedezése eldöntött egy fontos asztrofizikai kérdést is. Ugyan voltak már elméleti elképzelések a neutroncsillagokról, de kezdetben fehér törpék rezgésével próbálták magyarázni a pulzusokat. A milliszekundumos pulzárok esetében az elmélet azonban csődöt mondott, mert ilyen gyors rezgés már nem volt leírható a rezgési modellekkel. Maradtak a neutroncsillagok, mint lehetséges magyarázat. A mai definíció értelmében, a milliszekundumos pulzárok 1-10 milliszekundumonként bocsájtanak ki egy pulzust. Azonban, a Kis Róka (Vulpecula) csillagképben található PSR 1937+21 katalógusjelű pulzár felfedezéséig (1982) a Rák-köd pulzárja volt az ismert leggyorsabb.

A pulzárok rádiótartományban észlelhető lüktetését próbálták detektálni optikailag is, ami nem volt egyszerű feladat. Végül 1969-ben siker koronázta az erőfeszítéseket, és kimutatták a pulzusokat több független módszerrel is optikai tartományban. Igazolást nyert tehát, hogy a fotómon is kivehető, a köd szívében elhelyezkedő kettős délkeleti csillaga pislog, méghozzá ugyanabban az ütemben, mint a rádiótartományban.

M1-LRGB-20131029-cutlab

A pulzár a saját felvételemen.

M1-pulzar

A pulzár „lüktetése” az optikai tartományban.

Ugyancsak 1969-ben az MIT egy rakétát lőtt fel, mely repülése alatt egy órán keresztül vizsgálta a Rák-ködöt a röntgen tartományban, és ott is sikeresen kimutatták a pulzusokat.

A csillagászokat kezdetben nagyon meglepte a pulzusok pontossága. Elsőre úgy tűnt, hogy egy hihetetlen pontos órára leltek az égen. Azonban további megfigyelések felfedték, hogy a pulzár lassul, naponta 38 nanomásodperccel nő a periódusa. Mintha valami folyamatosan csapolná az égi óra energiáját. Ráadásul a periódusváltozás ütemében is találtak változást. Sőt nemcsak lassul az űrbe küldött pulzusok üteme, hanem néha egy időre fel is gyorsul. Ezt a jelenséget glitch-nek nevezték el. A pulzár idővel visszanyeri az eredeti ütemét, és folytatódik lassulás. Az elsőre atomórákkal vetekedő pulzárokról kiderült, hogy bizony az óra késik, és néha még rakoncátlankodik is.

Neutroncsillag a ködben

Ugorjunk egy kicsit vissza az időben. 1932-ben felfedezik a neutront. Az elméleti fizikusok azonnal rá is vetették magukat. Nem sokkal később (1934) Baade és Zwicky már neutroncsillagokról beszél. 1939-ben Zwicky azt állítja, hogy a neutroncsillagok szupernóva-robbanások eredményei. Szerinte a Rák-ködben is lennie kell egynek. Még fel sem fedezték az első igazán gyors pulzárokat, amikor Gold arról ír 1968-ban, hogy gyorsan forgó neutroncsillagok sugárzó nyalábjai küldik a jeleket az űrbe, hasonlatosan egy világítótoronyhoz. (Ugye még emlékszik arra az olvasó, hogy a nagy riválist, a rezgő fehér törpék elméletét éppen a nagyon gyorsan pulzáló pulzárok ütötték ki a nyeregből?) Ő már ekkor megjósolja, hogy a pulzusoknak folyamatosan lassulnia kell, ahogy a neutroncsillag energiát veszít, és a forgása lassul. Nem telt el sok év, és a szupernóva-maradványok, a pulzárok és az azt magyarázó lassulva forgó neutroncsillagok elmélete találkozott. De ez csak újabb hosszú út kezdetét jelentette csupán.

Mindmáig rengeteg a bizonytalanság a neutroncsillagok elméletét illetően, de néhány dolog azért elég biztosnak látszik. Mivel halott csillagról van szó, így a gravitációnak nem a sugárnyomás, hanem a degenerált „neutrongáz” nyomása áll ellen. Ez a kvantummechanikai eredetű nyomás nem függ a hőmérséklettől, mint az ideális gáz esetén, hanem csakis a sűrűségtől. Nagyjából 2.16 naptömegig tudja megakadályozni az égitest összeroppanását, amennyiben nem forgó neutroncsillagról van szó. Mivel forognak, ezért ennél kb. 20%-kal nagyobb lehet tömegük felső határa. A tömeg alsó határára pedig a Chandrasekhar határ, mely a fehér törpék elméletileg megengedett legnagyobb tömege, vagyis 1.4 naptömeg. A Messier 1 neutroncsillaga például 1.4 naptömegű. Külön érdekesség, hogy eddig még nem találtak 2 naptömegnél nagyobb tömegű neutroncsillagot, illetve 5 naptömegnél kisebb tömegű fekete lyukat. Ez utóbbiak akkor keletkeznek, amikor már semmilyen „kvantummechanikai nyomás” nem képes legyőzni a gravitációt. Miért nem találtak eddig 2 és az 5 nap tömeg közötti csillagmaradványokat? Pontosan ma sem tudja senki. A kutatók azonban lázasan dolgoznak azon, hogy fogást találjanak a problémán, és ezt az űrt mindenféle elképzelt egzotikus objektummal töltötték ki. Ilyen például a kvark csillagok gondolata. Teóriáik megerősítése azonban egyelőre még várat magára.

A neutroncsillagok átmérője mindössze 20 km körüli. A sűrűségük az előző adatok tükrében óriási. Az átlagsűrűségük 4 x 1017 kg/m3 és 6 x 1017 kg/m3 közé esik. Felszíni hőmérsékletük igen tág határok között változik. A Rák-köd fiatal neutroncsillaga 1.6 millió K felszíni hőmérsékletű, s éppen ezért intenzíven sugároz a röntgen tartományban. A centrumában azonban, még ennél is pokolibb a forróság, ott a számítások szerint 300 millió K uralkodik. A neutroncsillagok hőmérséklete idővel csökken. A középkorú, néhányszor 100 ezer éves példányok felszíni hőmérséklete már csak a fele a fiatalokénak. Nagyjából millió évvel a szupernóva-robbanás után a termális sugárzásukat már nem lehet detektálni a röntgen tartományban. Ekkora nagyjából már csak 100 ezer K uralkodik a felszínükön, mely aztán újabb néhány millió év elteltével néhányszor 10 ezer K-ra csökken.

De hogyan keletkeznek a pulzusok? Hogyan működteti a ködöt a Rák-köd belsejében lévő neutroncsillag? Az impulzus megmaradás törvényének értelmében a csillag forgása felgyorsul az összeroppanáskor. Innen származik az eszeveszett pörgés. Megmarad azonban a mágneses fluxus is. A mágneses tér így a csillag sugarának négyzetének inverzével arányosan fog erősödni. Így lehetséges az, hogy a 20 km-es kiterjedésű neutroncsillagoknak akár 108 Tesla erősségű mágneses terük is könnyedén lehet. Összehasonlításképpen ez az érték a Föld esetén 10-5 Tesla, míg a Nap esetén kb. 10-2 Tesla. Gondoljunk csak bele, hogy egy másodpercenként 30-szor körbeforduló roppan erős mágneses tér micsoda elektromos teret tud létrehozni. A Földön található részecskegyorsítókat üzemeltető kutatók biztosan irigykednek erre a kozmikus laboratóriumra. A neutroncsillag relativisztikus sebességre gyorsítja a töltött részecskéket, melyek energiájukkal táplálják a ködöt és biztosítják a fényét, létrehozva a szinkrotron sugárzást.

Moving heart of the Crab Nebula

A Rák-köd központi része a Hubble űrtávcső felvételén. A jobb oldali csillag az üregben a neutroncsillag, melyet a táguló gáz vöröses filamentjei, mint rostos cafatok vesznek körbe. A kékes derengés pedig az erős mágnese térben közel fénysebességgel spirálozó elektronok gerjesztette szinkrotron sugárzástól származik. Forrás: NASA és ESA

Changes_in_the_Crab_Nebula

A neutroncsillag a Rák-köd szíve. A Hubble űrtávcső felvételsorozatán jól látszik, ahogy az alakzatok nagyjából 4 hónap alatt megváltoznak a ködben. Forrás: a képen feltüntetve.

Egy másik, de szintén a mágneses térrel összefüggő mechanizmusnak köszönhetően – tudniillik a forgástengely és a mágnesen pólusok nem esnek egybe – a pólusoknál létrejövő sugárzási nyaláb minden egyes fordulatkor végigsöpör az űrön, és elérheti Földünket is. Ezért foghatjuk az elektromágneses sugárzás több tartományában is a pulzusokat. Alapvetően ez teszi a Rák-köd neutroncsillagát pulzárrá. Az, hogy a pólusoknál pontosan miként keletkeznek a sugárzó területek, illetve hogy a felszíntől milyen távolságra, az még mindig vita tárgyát képezi. Az egyik legelfogadottabb nézet szerint a pólusok környékén a mágneses mező roppant erős elektromos teret hoz létre, mely a neutroncsillag felszínéről is képes elszakítani elektronokat vagy éppen elektron és pozitron párokat képezni. Megindul az elektromos töltések áramlása, és az erővonalak mentén óriási kisülések keletkeznek. Tulajdonképpen a folyamatos villámlásszerű jelenség statikus elektromágneses zaja ér el minket a neutroncsillag minden egyes fordulatakor.

pulsar

A pulzár modellje: a mágnesen pólusok nem esnek egybe, a pólusoknál létrejövő sugárzási nyaláb minden egyes fordulatkor végigsöpör az űrön, és eléri Földünket. Forrás: NRAO

A neutroncsillagok belső felépítéséről inkább csak sejtéseink vannak. A különféle elképzelések részletezésére ehelyütt nincs lehetőség, ezért most csak vázlatos ismertetésre szorítkozom. Az erős gravitáció, a roppant sűrűségük és az erős mágneses tér bizarr szerkezetet eredményez. Ezen égitestek légköre az átmérőjéhez képest roppant vékony, esetleg néhány tucat centiméter, de legfeljebb pár méter lehet mindössze. Ugyan még „normális” anyagú gázok alkotják, de az egyes példányoknál más, és más összetételt sikerült detektálni. A nagyjából három évszázados, így viszonylag fiatal Cassiopeia A szupernóva-maradvány belsejében lévő neutroncsillag légköre például szénben gazdag, Míg más esetekben a neutroncsillag spektrumában inkább a hidrogén és a hélium a domináns. Ez talán a korbeli, hőmérsékletbeli, és kialakulásuk körülményeiből fakadó különbségekből is adódik. Ha létezne olyan cím, hogy a legsimább felületű égitest, akkor a neutroncsillagok jó eséllyel pályázhatnának rá. Az erős gravitáció a legkisebb egyenetlenségeket is kisimítja. A külső 1 km-en fémes tulajdonságú szilárd szerkezetre emlékeztető kérgük lehet. A kéreg felső részében, még egyáltalán nem a neutronok a dominánsak. „Hétköznapi” atommagok, talán éppen vas atommagok alkotnak rácsszerkezetet, melyet elektronok tengere jár át. A neutroncsillag belseje felé haladva, ahogy a sűrűség növekszik, egyre több és több neutron, melyek normál körülmények között amúgy elbomlanának (példának okáért a szabad neutron felezési ideje mindössze 611.0±1.0 másodperc). Először az atommagok dúsulnak fel neutronokban. Majd a nagy mennyiségben keletkező neutronok miatt a nukleáris kölcsönhatás már nem képes összetartani az atommagokat, és megkezdődik a neutroncsepegésnek nevezett folyamat. Ennek eredményeként már szabad neutronokkal is találkozhatunk. De a felszín alatti mélység növekedésével maguk az atommagok is eltorzulnak, pálcikaszerűvé válnak. A kéreg alatt, szupravezető és szuperfolyékony (nincs ellenállása a mozgással szemben) többségében neutronokból álló zóna található. Ez a „nukleáris kotyvalék” a szabad neutronok mellett, még mindig hozzávetőlegesen 5-10%-ban szabad elektronokból, protonokból és atommagokból is áll.  Még mélyebben, a belső magban, ahol már az atommagok sűrűségét is meghaladja a sűrűség, még ennél is furcsább körülmények uralkodhatnak. Itt talán már kvarkos állapotban van az anyag.

neutron_star_struct1

„Tipikus neutroncsillag” elméleti modellje. Jobb oldalon a sugár km-ben, bal oldalon pedig a sűrűség került feltüntetésre.

Mint minden modell, ez is megfigyelések alapján konstruált és megfigyelésekkel ellenőrizhető. A csillagmaradvány forgásának lassulása, a pulzusokban jelentkező apró szabálytalanságok, a neutroncsillagok lehűlésének üteme mind-mind árulkodik annak belső felépítéséről.

Persze ezek értelmezése nem egyszerű feladat. Hadd ragadjam ki a korábban említett glitch-eket példaként. A pulzációs periódus megugrása nagyon rövid idő alatt zajlik le, de nagyjából egy hónap is szükséges, míg visszaáll az eredeti ütem, és a lassulás folytatódik. Ez is arra enged következtetni, hogy a neutroncsillagnak szuperfolyékony a belseje. Érdekes, hogy öreg pulzároknál nem fordul elő glitch. Így talán azok belső felépítése már eltér a fiatalokétól, vagy csak már más állapotban vannak.

Régebbi elképzelések szerint, az apró felgyorsulások a neutroncsillagok kérgében keletkező repedések következményei. Mivel az apró égitest gyorsan forog így alakja nem gömbszimmetrikus. A szilárd kéregbe pedig „belefagy” a csillag alakja, vagyis a kidudorodás az egyenlítőjénél. Ahogy a forgás üteme lassul, úgy a csillag egyre kevésbé lesz lapult. A deformáció megrepeszti a kemény kérget, a dudor laposodni kezd. A kéreg sugara csökken, így az impulzus-megmaradás törvénye értelmében a kéreg forgása felgyorsul. A forgás üteme pedig azért áll lassan vissza, mert a neutroncsillag belseje szuperfolyékony, így a külső szilárd kéreg hosszú idő alatt tudja csak azonos sebességre hozni a belső részeket, hogy aztán a forgás lassulása folytatódjon. A megfigyelésből tehát modell alkotható a neutroncsillag felépítésére, illetve annak működésére. A baj csak az, hogy időközben kiderült (más neutroncsillagokkal kapcsolatos megfigyelések alapján is), hogy ez az elképzelés hibás. A gyorsulások alaposabb vizsgálata megmutatta, hogy ez a mechanizmus nem tud elég energiát átadni, és nem is írható le vele pontosan a jelenség karakterisztikája. (Ettől függetlenül manapság is még szembejön velem sok helyen ez az elképzelés ismeretterjesztő könyvekben, és internetes oldalakon.) Az újabb kifinomultabb modellek már abból indulnak ki, hogy a neutroncsillagok mágneses mezeje nem képes behatolni a szuperfolyékony anyagba. A mágneses mező viszont áthalad a neutroncsillagon, ami pedig csak úgy lehetséges, ha normál anyagú örvények haladnak keresztül a szuperfolyékony belsőn. Ezen örvények tengelye közelítőleg párhuzamos a forgástengellyel. Az örvények raktározzák az impulzusmomentumot, mintegy őrizve annak az időszaknak a forgási energiáját, amikor a neutroncsillag még gyorsabban forgott. Ezek a belső képződmények a külső rétegek anyagával is kapcsolatban állnak, mintegy hozzájuk kapcsolódnak. A külső rétegekről időnként örvények válnak le, és halnak el miközben a csillag az alacsonyabb impulzusú (lassabb forgású) állapotra „hangolódik”. Az örvények átrendeződése közben energia szabadul fel, ami, csak ha egy ideig is, de felpörgeti a külső részeket. Ez maga a glitch jelensége. Amint létrejön az új forgási egyensúly, az örvények ismét hozzákapcsolódnak a külső réteghez.

A példával csak azt szerettem volna megmutatni, hogy adott jelenség miként magyarázható, és abból milyen következtetéseket lehet levonni a neutroncsillag belső szerkezetére vonatkozóan. Arra is rá szerettem volna világítani, hogy nem minden modell állja ki az újabb megfigyelések (esetleg újabb elméleti megfontolások) próbáját. Az újabb, több paramétert figyelembevevő teória pedig már kissé más képet fest erről az objektum típusról és annak működéséről. Összességében elmondható, hogy még mindig nincs sziklaszilárd elképzelése a csillagászoknak arról, hogy egészen pontosan milyen is a Rák-köd neutroncsillaga, és hogyan is működik. Az viszont bizonyos, hogy forgó dinamóként hozza létre azt a csodát, melyet megfigyelhetünk, miközben energiát veszít, és amiért lassul a forgása.

Kétségtelenül akad még megválaszolatlan kérdés, de a Rák-köd és a benne található neutroncsillag tanulmányozásával rengeteg ismerethez jutottak a kutatók a szupernóva-maradványokkal kapcsolatban. A kínai császári udvar főcsillagásza biztosan nem sejtette 1054-ben, hogy az akkor megpillantott vendégcsillag sok évszázaddal később milyen fontos szerepet fog majd betölteni a világmindenség megismerésében. Jóslatai erről nem szóltak.

A polarizáció megfigyelése amatőrcsillagászati módszerekkel

A cikk írása közben ötlött fel bennem a gondolat, hogy milyen remek dolog lenne megismételni Walter Baade megfigyeléseit. Nem voltak nagyratörő terveim, csupán szerettem volna én is kimutatni a Rák-ködben a fény polarizációját, és így közvetve a szinkrotronsugárzást. Milyen nagyszerű is lenne, ha a polarizáció síkjának változása révén láthatnám a szupernóva-maradványban tekergőző mágneses teret! Vajon lehetséges ez? Baade mégis csak 5 méteres teleszkópot használt a vizsgálatok során.

A képrögzítési technológia nagyon sokat fejlődött az elmúlt évtizedekben. A mai DSLR gépek és CCD-k „érzékenysége” messze felülmúlják a régi fotólemezekét. Ebben bízva másnap este felhívtam Szeri László barátomat, és felvetettem neki az ötletet. Egyáltalán nem kellett győzködnöm, rögtön felcsigázta az észlelési terv. Annak tudatában raktuk le a telefont, hogy másnapig még több technikai problémát meg kell oldanunk, illetve megegyeztünk abban, hogy elfogadjuk, ha semmi használható eredménnyel nem jár a megfigyelés. Akkor is tegyünk próbát!

Mivel biztosra akartam menni, ezért hivatásos csillagász véleményét is szerettem volna kikérni. Azonnal felhívtam Kiss Lászlót, aki arra biztatott, hogy hajtsuk végre a tervet, és pár hasznos tanáccsal is ellátott.

Másnap munka után azonnal Kiskunfélegyháza felé vettem autóval az irányt. A csomagtartóban pihent más hasznos aprósággal a hétköznapi fotózásban használt Hoya gyártmányú polarizációs szűrőm. Volt bennem némi szkepticizmus a szűrővel kapcsolatban. Sok sikeres, és nekem tetsző felvételt köszönhettem ennek a szűrőnek, de eddig csak nappali fénynél kellett helytállnia. Egyre az járt a fejemben, hogy vajon csillagászati célokra is megfelel-e majd a minősége. Két előnye viszont volt Szeri László csillagászati célokra szánt szűrőjével szemben: a mérete, és az a képessége, hogy játszi könnyedséggel lehetett elforgatni, miután megfelelően rögzítettük.

A megbeszélt péntek 18 órai időpontban már ott toporogtam Laci barátom kapuja előtt. A csillagok szépen ragyogtak az égen, de a nyugodtság szemmel láthatóan nem volt a legjobb. Kísérletre jó lesz! Kicsit melegedtünk még a konyhában, míg elkészült a kávé, és amíg a gyerekek elmajszolták a kis csokoládét, amit „TTK bácsi” Mikulása idén kicsit korábban küldött. Majd irány a műhely.

Először meg kellett oldani a polarizációs szűrő elhelyezését a fényútban. Az idők folyamán gondosan felépítettet és precízen beállított optikai elrendezésén Laci nem igazán szerette volna változtatni. Szerencsére a „Nagy Newton” kihuzatában lévő „CCD-szűrőváltó-szűrőváltó-korrektor” felépítmény végén éppen volt megfelelő menet. Ide az a menetes sötét kupak szokott kerülni, mely a dark képek készítésekor megakadályozza a fény bejutását a CCD-be. Laci a kupakot kivágta, majd ebbe ragasztotta bele ügyesen a szűrőt. Ügyelnie kellett, hogy az a megfelelő síkban álljon, és a külső gyűrűjével továbbra is forgatható maradjon.

A szűrő kiindulási pozíciójának a Rák-köd hosszanti tengelyét választottuk, majd 45 fokonként kívántuk elforgatnia szűrőt. Igen ám, de a szűrő három méternél is magasabban lesz, a távcsőtubus belsejében. Még ha el is érjük, akkor is vakon kell majd forgatni. Laci ezt a problémát is megoldotta. Ragasztóból gumók kerültek 45 fokonként a forgatógyűrűre, a 0 fokot (a gyártó jelölése alapján) kis fémgyurmával „jelölte meg”. Majd behunyt szemmel következett a megoldás tesztelése. A „vakteszt” után kinyitottuk a kis csillagvizsgálót, amiben Laci főműszere türelmesen várakozott. A szokásos rutinok után, Laci beállította a Rák-ködöt. A szűrőt addig nem is szereltük be. Ez annak volt betudható, hogy előzőleg ugrattam Lacit. Vajon milyen hangja lehet a főtükrön koppanó szűrőnek? Ha már beesett, akkor hogyan szedjük ki majd belőle? Melyik fekete festék a legalkalmasabb a kipattant tükördarab javítására? Biztosra mentünk! Már ha lehet azt biztosnak nevezni, hogy a szűk helyen egy hosszú kitolható létrán állva a magasban, egyáltalán nem kapaszkodva sehová, benyúlva a tubusba, megpróbálja az ember vakon becsavarni a szűrőt. Laci pont ezt a bravúrt hajtotta végre. A nem éppen veszélytelen műveletet a polarizációs szűrő minden egyes elforgatáskor meg kellett ismételni.

Izgatottam vártuk az első nyers kép megszületését. Ezt a képet aztán elosztottuk a korábbi polarizációs szűrő nélkül készült nyerssel, és azonnal látszott a két kép közötti különbség. Nagy volt az öröm! Azért minden kétségünk még nem szállt el. Elindítottuk az első szekvenciát, és magára hagytuk a távcsövet a feladatával. Az időt főleg a műhelyben melegedve múlattuk, néha pedig ránéztünk a kertben felállított, Laci által csak „quadokli”-nak becézett 150 mm-es objektívekkel felszerelt 4 fényképezőgépre, mely szorgalmasan készítette a felvételeket az égbolt kiszemelt területéről.

Elkészült az első széria. Laci újra a magasba mászott a létrán, és 45 fokban elforgatta a szűrőt. Megint csak lélegzetvisszafojtva vártuk az első képet. A 45 fokos nyers képet elosztottuk a korábbi 0 fokos képpel, és azonnal láttuk, hogy érdemes folytatni a munkát. Első ránézésre látszott a polarizációs szűrő elforgatása után, hogy a köd bizonyos területeinek intenzitása megváltozott. Látva, hogy eredményes lesz a kis projektünk, folytattuk a munkát, rögzítettük a 45 fokban, a 90 fokban, és a 135 fokban elforgatott szűrővel is felvételeket.

Majdnem hajnali három óra volt, mire roppant fáradtan hazaértem Kiskunfélegyházáról, de másnap megegyeztünk abban Lacival, hogy nagyon is jó móka volt az észlelés. Kellene még több ehhez hasonló! Már csak a felvételek feldolgozása volt hátra, melynek eredménye lent látható.

M1-P_P

Először a Rák-köd hosszanti tengelyével párhuzamosan beállított polarizációs szűrővel felvett, úgynevezett 0 fokos összegzett képpel osztottuk el az ahhoz képest 45, 90, 135 fokban elforgatott szűrővel készített összegzett képet. A felső sorban a kétféle nyersanyagokból összegzett képek hányadosai, alattuk wavelet transzformációk segítségével kibontott belső részletek láthatóak. Ennek a módszernek köszönhetően, jól látszanak a szűrő elforgatásából származó különbségek. Mindez pedig annak a következménye, hogy a köd fénye polarizált, ráadásul az egyes területein eltérő szögű a polarizáció síkja.

A felvételek 458/1900 Newton-távcsővel, Atik 11000 CCD-vel készültek. Szekvenciánként: 10 x 3 perc (bin2).

M1-P_L

Ezen a verzión a Rák-köd polarizációs szűrő nélküli felvételeiből összegzett képpel osztottuk el a különböző irányokban elforgatott polarizációs szűrővel felvett nyersanyagból összegzett képeket. A felső sorban a kétféle nyersanyagokból összegzett képek hányadosai, alattuk wavelet transzformációk segítségével kibontott belső részletek láthatóak. Itt is jól látszanak a különbségek. Ez alapján is elmondható, hogy a köd fénye polarizált, ráadásul az egyes területein eltérő szögű a polarizáció síkja.

A felvételek 458/1900 Newton-távcsővel, Atik 11000 CCD-vel készültek. Szekvenciánként: 10 x 3 perc (bin2).

Összességében, amatőrcsillagászati módszerekkel mi is megállapítottuk, hogy a köd fénye tényleg polarizált! Saját szemünkkel láttuk a szinkrotron sugárzást akcióban, „megragadtuk” a mágneses erővonalakat! Olyan élmény volt ez nekem, mint mikor először szórtam vasport a mágnes köré fizika órán. Érdekes, és lenyűgöző volt megpillantani az amúgy szemünk számára láthatatlant, személyesen működésben látni a természetet.

 

Felhasznált irodalom:

Simon Mitton: A Rák-köd (ISBN 963 281 332 4)

Werner Becker: Neutron Stars and Pulsars (ISBN 978-3-540-76965-1)

J. Craig Wheeler: Kozmikus katasztrófák (ISBN 9633686822)

Wynn C.G. Ho, Craig O. Heinke: A Neutron Star with a Carbon Atmosphere in the Cassiopeia A Supernova Remnant

W. Becker, B. Aschenbach: ROSAT HRI Observations of the Crab Pulsar: An Improved Temperature upper limit for PSR 0531+21

C. M. Espinoza,A. G. Lyne, B. W. Stappers, M. Kramer: A study of 315 glitches in the rotation of 102 pulsars

M56

M56-20140724-TTK

M56

2014-07-24 – Göd – 51 x 55 sec Light és 15 x 55 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera

„Csillagok nélküli köd, mely halvány.” Így írt az M56-ról Charles Messier. Valójában, az M4 kivételével a 29 általa katalogizált gömbhalmaza közül egyet sem tudott csillagokra bontani, mivel távcsöveinek teljesítménye messze elmaradt a mai műszerek mögött.

Az M56 a Lant csillagképben található, nagyjából félúton a Hattyú Albireo (β Cygni) és a Lant Sulafat (γ Lyrae) nevű csillagait összekötő egyenes mentén.

M56-map1-label

Az M56 az Albireo (β Cygni) és a Sulafat (γ Lyrae) nevű csillagokat összekötő egyenes mentén található.

Távcsövünkben állítsuk be a fényes Albireo-t (β Cygni), majd miután megcsodáltuk a megunhatatlan aranysárga és kék komponensekkel rendelkező kettőscsillagot, induljunk is tovább a Sulafat (γ Lyrae) irányába. Az M56 felé vezető úton először a 2 Cygni 4.95 magnitúdós csillag mellet haladunk el, majd a látómezőben feltűnik az 5.85 magnitúdós vöröses fényű HIP 94630 katalógusjelű csillag. Ettől egy kicsit vissza, az Albireo felé, alig félfoknyira található maga az M56.

M56-map2

Az M56-ra ráakadhatunk a HIP 94630 katalógusjelű csillagtól alig félfoknyira az Albireo irányába.

Az M56 látszólagos mérete az égen, az általam korábban fotózott gömbhalmazokhoz (M3, M13, M15, M92, NGC104 – 47 Tuc) képest viszonylag kicsi, mindössze 7ˊ 6˝. De nemcsak látszólagos méretben, fényességében is elmarad mögöttük. A halványabb Messier katalógusbeli gömbhalmazok közé tartozik, fényesség mindössze 8.3 (V) magnitúdó. Kicsiny felületi fényessége ellenére megigéző a látvány, ami az okuláron keresztül fogadja a megfigyelőt, ugyanis a Naprendszer és az M56 térbeli elhelyezkedésének köszönhetően, a Tejút megannyi csillaga mögött láthatjuk. A halmaz mindössze 4800 fényévvel helyezkedik el a galaxis síkja fölött, míg tőlünk mért távolsága 32900 fényév. Vagyis valamivel éppen a galaxis síkja fölött, és messzebbre helyezkedik el tőlünk, mint a Tejút centruma.

M56-Tejut-C

Az M56 tőlünk 32900 fényévnyi távolságra van. A galaxis fősíkjától 4800 fényévre, északra helyezkedik el. A galaxis centrumától mért távolsága 31500 fényév.

Ez a 84 fényév átmérőjű és 230000 naptömegű gömbhalmaz azonban sokkal különlegesebb, mint azt az okuláron keresztül megpillantva elsőre gondolnánk.

Pörgessük vissza az idő kerekét egészen az ősrobbanást követő első pár másodpercig. Ekkor vette kezdetét az úgynevezett ősi nukleonszintézis (primordial nucleosynthesis, Big Bang nucleosynthesis), melyben összeálltak a legkönnyebb atommagok. Ebben a folyamatban a hidrogén atommagjából kiindulva, mely tulajdonképpen egyetlen proton, a következő elemek atommagjai jöttek létre: deutérium (H-2 kis mennyiségben), hélium (főleg He-4 és kis mennyiségben He-3), és a lítium (Li-7 nagyon kis mennyiségben). Létrejött még két radioaktív izotóp atommagja is, vagyis a tríciumé (H-3) és berilliumé (Be-7), de ezek instabilak lévén héliummá (He-4) és lítiummá (Li-7) bomlottak el. Az egész folyamat az ősrobbanást követő 10 másodperc és 20 perc között történt a ma elfogadott modellek szerint. Innentől kezdve egészen az első csillagok megszületéséig állandó volt a világegyetem kémiai összetétele. A csillagok energiatermelését biztosító fúziós folyamatok azonban ezt megváltoztatták, illetve ezek hozták létre az előbb felsoroltaknál nehezebb elemeket egészen a vasig bezárólag. Az ennél nehezebb elemek szupernóva robbanások termékei. A haldokló csillagok csillagszelükkel, a nagytömegű csillagok a szupernóva robbanások révén pedig igen hatékonyan szennyezték be az univerzumot. A földi élet nélkülözhetetlen eleme, a szén is a csillagokban keletkezett. Az általunk belélegzett oxigén szintén. Az esküvők egyik elmaradhatatlan kelléke, a karikagyűrű aranya pedig szupernóva robbanás terméke.

A csillagászok minden elemet a hidrogénen és a héliumon túl a periódusos rendszerben fémnek neveznek. Egy csillag fémtartalmát általában a Naphoz szokták hasonlítani a kutatók. A világegyetem története folyamán, a csillagoknak hála folyamatosan dúsult fémekkel. Az újabb és újabb csillaggenerációk egyre több fémet tartalmaztak, így minél alacsonyabb fémtartalmú egy csillag a Naphoz képest, annál ősibb objektum.

A Tejútrendszer 150 ismert gömbhalmazzal rendelkezik, de a valódi szám 180 körül lehet. A gömbhalmazok igen ősi objektumok. A legfiatalabb is legalább 8-10 milliárd éves. A gömbhalmazok fémtartalom vizsgálata rámutatott egy érdekességre. A kutatók megállapították, hogy a gömbhalmazok kora sem teljesen egységes galaxisunkban, vagyis meghatározott korcsoportokról lehet beszélni. Bizonyos elképzelések szerint egyes halmazokat a Tejútrendszer bekebelezett azok szülő galaxisával együtt. Ebben a galaxisban máskor és másképpen történt a gömbhalmazok kialakulása, ez pedig magyarázhatja a koruk közötti eltérést.

Az M56 fémtartalma még a gömbhalmazok között is igen alacsonynak számít. Már ez is arra utal, hogy igen idős. De nem ez az egyetlen kézzelfogható bizonyíték a korát illetően.

A gömbhalmazok korát a HRD (Hertzsprung-Russel Diagram) alapján becsülik meg a csillagászok. A halmaz tagjai jó közelítéssel egyszerre keletkeztek. A nagyobb tömegű fényesebb és forróbb csillagok hamarabb elhasználják hidrogén készleteiket, és elhagyják a fősorozatot. Az idő előrehaladtával már csak a kisebb tömegű, és kevésbé fényes csillagok maradnak a fősorozaton. Minél idősebb egy halmaz, annál lejjebb tolódik az a pont (Turnoff point) a fősorozaton, ahol a csillagok „elkanyarodnak” az óriás ág felé. Felrajzolva a HRD-t egy adott halmazra, az előbb említett pontnak a meghatározásával, továbbá felhasználva a csillagfejlődési elméleteket, megbecsülhető a halmaz kora.

turnoff_point

Egy hipotetikus gömbhalmaz Hertzsprung-Russel diagramja. Rajta azzal a ponttal (turnoff point), ahol a csillagok „elkanyarodnak” az óriás ág felé.

Több kutató csoport is végzett kormeghatározási vizsgálatot az M56 esetében. Az egyes csapatok más-más eredményeket publikáltak, melyek alapján azt lehet mondani, hogy a gömbhalmaz kora 13 és 13.7 milliárd év közé tehető. Összehasonlításképpen a világegyetem korát 13.8 milliárd évre becslik a kozmológusok. Az M56 egy döbbenetesen öreg, a központja felé csak mérsékelten sűrűsödő, kis fémtartalmú gömbhalmaz. A közös csillagbölcsőben született csillagmatuzsálemek itt vannak viszonylag közel, így nem is kell nagyon messzire pillantanunk ahhoz, hogy következtetéseket vonjunk le az univerzum fejlődésével kapcsolatban. Egészen pontosan, a nagyon távoli, és éppen ezért fiatalnak látszó objektumok vizsgálata mellett, a közeli igen idős objektumok is rengeteg információt hordoznak a világegyetem fejlődésével kapcsolatban.

Ezzel azonban még nem merült ki az M56 érdekességeinek sora. A gömbhalmaz a galaxis centruma körül retrográd pályán mozog, vagyis keringési iránya ellentétes a galaxis korongjában található csillagok keringési irányával. Alaposan megvizsgálva pályájának tulajdonságait, a csillagászok arra a következtetésre jutottak, hogy az M56 nem is a Tejútrendszerben született. Csillagászati értelemben nem sokkal az ősrobbanás után, egy másik galaxisban sűrűsödött össze az a hatalmas méretű gázköd, melynek folyományként megszülettek csillagai. Később ez a galaxis kölcsönhatásba került a Tejútrendszerrel, és galaxisunk egyszerűen felfalta, magába olvasztotta.

Mi vett arra rá, hogy éppen az M56-ről készítsek felvételt 2014. július 23/24. éjszakáján, már jóval éjfélen túl? Az, hogy az M56 Messier katalógusának talán az egyik legöregebb objektuma, továbbá valószínűleg valaha egy másik galaxisban született, roppant izgalmassá tette számomra ezt a gömbhalmazt. Ezen túl nekem esztétikai élményt is jelentett az, ami a hivatásos csillagászoknak nehézséget okoz, miszerint az előtércsillagok sokaságától nem könnyű megkülönböztetni a halmaztagokat. Nekem azonban nem kellett megkülönböztetni, elég volt csak gyönyörködni a látványban.

Az M56 megragadott, így még 24 óra sem telt el, és az idei Meteor Távcsöves Találkozó (MTT2014) első estéjén, újra távcsővégre került. Mennyivel pompásabb volt Tarján ege alatt a látvány, mint az otthoni fényszennyezett égen! Távcsövemet, mintha kicserélték volna. Ilyenkor mindig elszomorít, hogy a fényszennyezés mennyi élménytől fosztja meg az égbolt csodái iránt érdeklődő embert. Ebbe pedig nem szabad beletörődni. Igenis tenni kell, hogy ezek a csodák (is) megmaradjak gyermekeinknek.

NGC6781

NGC6781-20140626-TTK

NGC6781

2014-06-26 – Göd – 100 x 55 sec light és 15 x 55 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera

NGC6781-LRGB-20140828-TTK

NGC6781 – LRGB változat

2014-06-26 – Göd – 100 x 55 sec light és 15 x 55 sec dark

2014-07-26 – Tarján (MTT2014) – 41 x 55 sec R

2014-08-28 – Göd – 42 x 55 sec G, B

Ahogy az év telik, és egyre jobban belehaladunk a nyárba, a tavasszal magasan látható csillagképeket lassan letaszítja trónjáról a Hattyú (Cygnus), a Lant (Lyra) és a Sas (Aquila) triumvirátusa. Június végén az udvaromról belátható vastagszárú T alakú égbolt részt a meridiántól keletre ezek a csillagképek uralják.

A Hattyún és a Sason hömpölyög keresztül a nyári Tejút ezüstös sávja. Sötét fényszennyezéstől mentes égbolton, már maga ez a látvány is megkapó. Az embert arra készteti, hogy távcsövet ragadjon és felkeresse a sok csodás objektumot, melyet a galaxisunk síkja ebbe az irányba rejt. Csillaghalmazok, ködösségek, szupernóva maradványok, planetáris ködök, kettőscsillagok, változócsillagok.

2014. június 26-án azonban egészen mást forgattam a fejemben. Nem indultam hosszú éjszakai túrára az égen, hogy egyenként felkeressem az érdekes látnivalókat. Napnyugta után egy átvonuló hidegfrontot követő éjszaka vette kezdetét, és immáron harmadjára próbáltam szerencsét ebben az évben egy hőn áhított planetáris köd megörökítésével. Korábbi próbálkozásaimat az időjárás sorra meghiúsította. Mire érdemleges mennyiségű felvételt készíthettem volna, addigra mindig beborult. A hidegfront elvonult, maga mögött derült eget, de nyugtalan légkört hagyott hátra. Ezen körülmények között rögzítettem az első 100 darab 55 másodperces expozíciót Luminance szűrőn keresztül, melyből elkészítettem a fentebb látható monokróm képet.

A NGC6781 planetáris köd a Sas (Aquila) csillagképben található. Az amatőrcsillagászok által viszonylag ritkán észlelt és meglepő módon kevésbé ismert planetáris köd. Már akkor felvettem észlelési listámra, amikor elkezdtem saját kis projektemet, melyben a Gyűrűs-köd (M57) alteregóit kívántam lencsevégre kapni. Eddig csak egyetlen objektumot teljesítettem, a Déli Gyűrű-köd néven is ismert NGC3132-t. Ez a felvétel nem saját felszerelésemmel készült, hanem az Ausztráliában található Siding Spring Observatory 32 cm-es Ritchey-Chretien tükrös távcsövével, távészleléssel. A projektet mindenképpen szerettem volna folytatni, azonban most a saját távcsövemen és az északi égbolton volt a sor. Fontos megemlíteni, hogy az alteregók kiválasztásánál csak ahhoz ragaszkodtam, hogy a planetáris ködök megjelenése hasonlatos legyen az M57-hez a fényképeken. Az nem volt kizáró ok, ha a hasonlóság csak látszólagos, és a ködök szerkezete a valóságban eltérő.

Az NGC6781 otthonunktól valahol 2300 és 2900 fényév közötti távolságra van, és a galaxis centrumához közelebb helyezkedik el. Újabb vizsgálatok eredményei a 2600-2700 fényéves távolságot valószínűsítik.

NGC6781-galaxis-m2

Az NGC6781 elhelyezkedése a galaxisban. Napunkat a sárga pötty jelöli, míg a bekarikázott kék pötty az NGC6781 planetáris köd helyét jelöli.

Az NGC6781 látszólagos mérete az égen 1.8 ívperc. Alig valamivel nagyobb, mint ismertebb rokona, a Gyűrűs-köd (M57). 11.4 magnitúdós vizuális fényességével azonban elmarad mögötte.

Rátalálni nem túlságosan bonyolult. Kiindulásnak használhatjuk a δ Aquilae nevű csillagot. Innen kell még megtennünk nagyjából 3.5 fokot. Ez nem is nagy távolság.

NGC6781-map1-a

A Sas csillagképben található NGC6781-hez a δ Aquilae-től 3.5 fokra található.

A csillagtérképen az ember könnyen alkothat mindenféle alakzatot, melyeket felhasználva eljuthat a célhoz. Én is így tettem, megalkottam a saját egyszerű négyszögekből és ívekből álló mintázataimat, és végignavigáltam az NGC6781-hez a δ Aquilae-től.

NGC6781-map2-a3

Az általam konstruált alakzatok, és a lépések a δ Aql-tól az NGC6781-ig

NGC6781-map3

Az NGC6781 közvetlen környezete. Ezen a térképen is könnyen felfedezhető az előző térképen berajzolt kis négyszög alakzat.

Miért kézzel állítottam be, amikor távcsövem mechanikája GoTo megoldással felszerelt, és elég lett volna az objektum nevét megadni? Akkor éppen ehhez volt kedvem. Ma már én is ritkán állok rá manuálisan egy célpontra a fényképezésre használt műszeremmel. A gyakorlatból azonban nem jöttem ki. Az egyedül töltött éjszakáknak mindig elmaradhatatlan része, hogy 20×60-as binokulárommal pásztázzam az eget, miközben a felvételek készülnek. Nem tudok csak ott ülni magányomban, és nem törődni a felém boruló csillagos éggel. Egyszóval rendszeresen végzek „gépesítés” nélküli csillagtúrákat. Aznap este arra éreztem késztetést, hogy a régi klasszikus utat válasszam, és saját kezűleg cserkésszem be az NGC6781-et.

Amikor egy planetáris ködre pillantunk távcsövön keresztül, valójában Napunk távoli jövőjét is tanulmányozzuk. A körülbelül 0.8 és 8 kiindulási naptömeggel rendelkező csillagok életük javarészében a magfúzió révén hidrogénből héliumot hoznak létre. A Nap esetében ez a szakasz a modellek szerint körülbelül 10 milliárd év. A felszabaduló energia biztosította sugárnyomás az, ami ellensúlyozza a gravitációt. Ezen csillagok több milliárd évig ebben az egyensúlyi, stabil állapotban léteznek. Miután elfogy a hidrogén készlet, az összehúzódó magban a hőmérséklet a korábbi 15 millió fokról 100-200 millió fokra emelkedik. A hidrogén fúziója a magot körülvevő külső héjakba tevődik át, míg a magban beindul a hélium fúziója. Mindeközben a csillag felfúvódik, külső rétegei lehűlnek. Napunkból is így lesz majdan vörös óriás csillag nagyjából 5 milliárd év múlva. A csillagok életük vége felé a vörös óriás fázisában (pontosabban az AGB fázisban) a csillagszél révén történő anyagvesztés, majd a külső rétegek ledobásával hozzák létre a planetáris ködöket. A táguló gázt a hátramaradó kompakt és forró akár 100000 K felszíni hőmérsékletű központi csillag UV sugárzása gerjeszti, miközben lassan a fehér törpe állapotba jut a csillag, mivel nem elég nagy a tömege a szén és oxigén fúziójához. A fehér törpék még több 10 milliárd évig sugározzák elraktározott energiájukat az űrbe. Energiát már nem termelő Föld méretű lassan hűlő csillagtetemek. Ehhez képest a planetáris ködök kérészéletűek és mindössze pár 10000 évig létező képződmények a haldokló csillagok körül. Ez lesz hát Napunk sorsa is. Érthető hát, hogy a csillagászok nagy figyelmet szentelnek ennek az objektum csoportnak. Az NGC6781 és társai nagyszerű lehetőséget biztosítanak arra, hogy a csillagászok ellenőrizzék és pontosítsák a csillagfejlődés eme késői szakaszával kapcsolatos modelleket.

A fenti életpályát futotta be az NGC6781 központi csillaga is, melynek kiindulási tömege 1.5±0.5 naptömeg volt, mielőtt vörös óriássá fújódott volna fel, és elvesztette volna külső rétegeit. Mostani tömege 0.6±0.03 naptömeg. A központi csillag roppant forró, effektív felszíni hőmérséklete 110000 Kelvin fok. A planetáris köd kialakulása 20000-40000 éve vehette kezdetét. Valamikor akkor, amikor őseink elindultak világhódító útjukra Afrikából.

A planetáris ködök az elektromágneses spektrum széles tartományában sugároznak. A felvételemen azonban ennek csak egy kis szeletét láthatjuk, az optikai tartományt. A csillag UV sugárzása által gerjesztett régiók optikai tartományban történő megfigyelése közel sem tárja fel a köd összes titkát. Az objektumok bizonyos területei láthatatlanok maradnak. Az űrtávcsövek felbocsájtásával azonban szélesre tárult az az ablak, amin keresztül megfigyelhetjük őket. Elérhetővé vált a röntgen, és a távoli infravörös tartomány. Tanulmányok új generációja jelent meg az elmúlt évtizedben, melyek nagyban építenek az űrtávcsövekkel végzett megfigyelésekre, és melyek elvezettek a köd igazi szerkezetének megértéséhez.

A felvételemet megnézve első pillantásra az látszik, hogy egy halvány viszonylag egységes felszínű gyűrű alakú ködről van szó. Ez a megjelenése annak is köszönhető, hogy az NGC6781 egy koros planetáris köd. Alaposabban megnézve azonban feltűnik, hogy valójában nem egy gyűrűről van szó. Helyenként az ugyanis kettős. A morfo-kinematikus vizsgálatok, melyek a molekulák színképvonalainak elemzésén alapszik, továbbá a foto-ionizációs modellek mind arra mutatnak, hogy a köd alakja egy középen összeszűkölő hengerre hasonlít.

NGC6781-3D

Az NGC6781 3D-s modellje

Ennek a formának a hosszanti tengelye 23 fokos szöget zár be a látóirányunkkal. Az NGC6781 a bipoláris planetáris ködök családjába tartozik, fényes központi tórusz (fánk alakú) régióval.

Az NGC6781-gyel egy újabb taggal bővült a Gyűrűs-köd alteregó gyűjteményem. Hogy mennyire tökéletes a hasonlóság? Ennek eldöntését az olvasóra bízom. De talán nem is ez az igazán fontos, hanem inkább az, hogy az ember amatőrcsillagászként, a saját szórakoztatására, valamiféle észlelőprogramot rak össze, és e mentén végzi megfigyeléseit.

M57-alteregok05

Az M57 és alteregói. Balról jobbra: M57 (Gyűrűs-köd), NGC3132 (Déli Gyűrűs-köd), NGC6781

M3

M3-LRGB-20140604-TTK

M3 – LRGB változat

2014-06-04 – Göd – 84 x 14 sec Luminance, 20 x 14 sec R, 20 x 14 sec G, 20 x 14 sec B és 15 x 14 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera, Astronomik RGBL fotografikus szűrőszett

Az M3 gömbhalmazt 1764. május 3-án fedezte fel Charles Messier a Vadász Ebek (Canes Venatici) csillagképben. Arra készültem, hogy napra pontosan 250 évvel később készítek is egy felvételt erről a csodás halmazról. Az ember hiába tervez azonban, az időjárás a nagyobb úr. A felhők fölött nincs hatalmam, így belenyugodtam abba, hogy ebből már nem lesz kerek évfordulós felvétel.

Az M3 felfedezése után Messier életében is jelentős fordulat állt be. Még 1758. szeptember 12-én fedezte fel az M1-et (Rák-köd), majd két év telt el a második objektumig, mely a Vízöntő (Aquarius) csillagképben található M2 gömbhalmaz volt. Ezután újabb évek teltek el, mire az M3-at felfedezte. Ez volt az első olyan objektuma, melyet valóban ő pillantott meg először és nem újrafelfedezésről volt szó. Innentől kezdve felgyorsultak az események, és a következő 7 hónapban feljegyzésre került még 37 objektum. Mi lehetett ennek az oka? Miért fedezett fel az első 6 évben csak hármat? Miért volt annyira termékeny az ezt következő 7 hónap? A lehetséges válaszok megfogalmazásához fontos tudni, hogy 1758 és 1764 között 5 üstököst is felfedezett. Valószínű, hogy ezekkel az általa kezdetben üstökösnek vélt objektumokkal már mind találkozott ebben a roppant aktív megfigyelői periódusában. Később pedig visszatérhetett azokhoz, melyeket első megpillantáskor még üstökösnek vélt, hogy feljegyezze pozíciójukat, leírást készítsen, és katalógusba foglalja azokat. Az is hozzátartozik az igazsághoz, hogy amikor egyre másra akadt rá olyan dolgokra az égen, melyekről kiderült, hogy mégsem üstökösök, elhatározta, átnézi mások korábban összeállított katalógusait is. Így próbálta elkerülni, hogy valami megtévessze a Naprendszer csóvás vándorainak keresése közben. Átnézte Hevelius, Halley, Maraldi, de Cheseaux, LeGentil, és Lacaille katalógusait. Ezeket az objektumokat is szerepeltette saját katalógusában, ha az megfelelt annak a kritériumnak, hogy ködös volt a megjelenése. Természetesen arról is készített feljegyzést, ha nem találta meg valamelyik objektumát az előbb felsorolt katalógusoknak. Talán tudományos karrierjének emelkedése is nagy szerepet játszott abban, hogy 7 hónap alatt háromtagúról negyvenesre hízott a katalógusa. 1764-ben a Tudományos Akadémia tagságára jelölték, 1765-ben Királyi Természettudományos Társaság tagjának választották. 1769-ben megtalálta a C/1769 P1 fényes periodikus üstököst.  Még ebben az évben a Svéd Akadémiának is tagja lett. Viszonylag rövid idő alatt az akkori csillagászati élet ismert szereplőjévé vált. Az a tény, hogy elismert csillagász lett, minden bizonnyal újabb felfedezésekre és publikációkra buzdította. Így került kiadásra katalógusának első fele 1770-ben, mely az 1764-ig katalogizált 40 objektumát tartalmazta, és még plusz öt könnyen láthatót, melyet mások fedeztek fel.

Messier még ködös objektumként írta le a gömbhalmazt:

„A ködöt a Bootes és Hevelius egyik Vadász Ebe között fedeztem fel. Nem tartalmaz csillagokat. Közepe ragyogó, fénye fokozatosan csökken, kör alakú.”

Az írások tanúsága szerint 1784 környéke volt azaz év, amikor William Herschel először csillagokra bontotta. Így ő látta először a halmazt saját mivoltában, vagyis a központja felé sűrűsödő csillagok sokaságaként.

Távcsőben az M3 véleményem szerint az M13 után a második leglátványosabb gömbhalmaza az északi égboltnak. Talán csak azért keresik fel kevesebben, mert egy árnyalattal nehezebb rátalálni az M13-hoz képest. Pedig valójában nem is ördöngösség. A gömbhalmaz 6.2 magnitúdós és 18 ívperces méretet szoktak rá megadni, ebből a fényes mag úgy 5-6 ívperc körüli. Amatőr műszerekkel körülbelül 12 ívmásodpercesnek látszik. Ezen tulajdonságainak köszönhetően biztosan felismeri az ember, amikor távcsövével célhoz ér. A legegyszerűbb, ha az Arcturus-tól (α Boo) egy képzeletbeli egyenes mentén elindulunk a Cor Caroli (α CVn) felé. Már majdnem félúton ráakadunk erre a feltűnő gömbhalmazra. Akár egy binokulárral is megpróbálkozhatunk a megkeresésével. Saját tapasztalatom szerint, egy 10×50-es, vagy 20×60-as binokulárral kicsiny ködös csillag benyomását kelti. Saját távcsövem keresőjében szintén ilyen a megjelenése. Eltéveszthetetlen.

M3-id

Az M3 az Arcturus-tól (α Boo) egy képzeletbeli egyenes mentén a Cor Caroli (α CVn) felé majdnem félúton található.

Tejútrendszerünkben, a galaxis síkjától 31600 fényévnyire, északra helyezkedik el, míg annak magjától durván 38800 fényév választja el. Mi, amikor távcsővel szemléljük, akkor 33900 fényévnyi távolságba tekintünk, és egyben ugyanennyi évet vissza a múltba.

M3-mw

Az M3 elhelyezkedés a galaxisban. A kis sárga pötty a Napunkat, a kékkel bekarikázott sárga folt az M3-at jelöli.

Az M3 a Tejútrendszer nagyjából 150 ismert gömbhalmaza közül az egyik legnagyobb tömegű és egyben az egyik legfényesebb is. Gondoljunk csak bele, hogy ilyen távolságból is 6.2 magnitúdósnak látszik. Ebből kiszámolható, hogy -8.93 magnitúdós az abszolút fényessége. Olyan, mintha 300000 Nap fényével ragyogna. A kutatók szerint nagyjából félmillió csillagból áll.

Az M3 mérete körülbelül 180-220 fényév. A méretét több módszerrel is megpróbálták meghatározni. Ez egyfelől a távolság és az égen látszó méret ismeretében számolható ki. Nézzük először is a látszólagos méret kérdését. Elsőre fel sem merül az emberben, hogy ez egyáltalán tényleg kérdés lehet. Pedig nem is olyan egyszerű meghatározni mekkora is a kiterjedése egy gömbhalmaznak az égen. Csak nézzünk rá a felvételemre. Hol a pereme? Fontos megemlítenem, hogy ezen a teljes gömbhalmaznak csak egy része látszik, az valójában ennél nagyobb. A külső csillagok már beleolvadnak nálam a háttérbe. De a jelenség fellép nagy távcsövek esetén is, csak ott a magtól távolabb vesznek bele a halmaztagok az égi háttérbe. Ennek az a magyarázata, hogy a halmaz külső részén a csillagok sűrűsége már extrém módon lecsökken a belsőbb régióhoz képest. Ahhoz, hogy a halmaz külső leghalványabb tagjait is azonosítani lehessen, profi távcsövek, hosszú expozíciós idő és kifinomult módszerek kellenek. A különböző vizsgálatok alapján valahol 18 ívperc körül lehet az M3 látszólagos mérete, de van olyan kutató, aki 20 ívpercet mond a saját megfigyelései és mérései alapján. A méretet tekintve azért a különböző eredmények jó egyezéseket mutatnak. Nézzük a távolság kérdését. Az M3 is, akár a többi gömbhalmaz, bővelkedik RR Lyrae változócsillagokban. Ezen halmazváltozóknak is nevezett csillagok pulzációs periódusa és abszolút fényességük között pedig reláció áll fent, így tökéletesek távolság meghatározására, akár csak a Cepheida változók. Amennyiben e változócsillagok segítségével meghatároztuk a távolságot, már csak egyszerű matematika a látszó méretből a valódi méret kiszámítása.

A másik módszer a méret meghatározására azon alapszik, hogy a kutatók megpróbálják megmondani, mekkora régióban uralkodik a gömbhalmaz gravitációs tere. Az ezen kívül eső csillagok már meg tudnak szökni a halmazból. Pontosabban, a galaxis árapály keltő hatása révén ezt le tudja szakítani a halmazról. Az M3 igen elnyúlt pályán (e=0.55) kering a galaxis centruma körül annak a halójában. Keringése folyamán, a legtávolabbi pontján 66000 fényévre kerül a galaxis magjától és 49000 fényévre is eltávolodik a galaxis síkjától. Pályájának legközelebbi pontja a galaxis magjához pedig 22000 fényév. E közelség esetén a legkisebb az a térfogat, ami felett a gömbhalmaz gravitációja uralkodik, vagyis amiben még képes megtartani a csillagait. Ennek a területnek az átmérője számítások szerint ilyenkor valamivel kevesebb, mint 200 fényév. Ebből az következik, hogy az M3 mérete valamivel 200 fényév alatt lehet.

Az 500000 csillag tehát közel 200 fényéves területen oszlik el. A csillagok sűrűsége pedig folyamatosan csökken a gömbhalmaz magjától távolodva, ahogy ezt már fentebb is írtam. A halmaz magja roppant sűrű és viszonylag kicsi. Mérések szerint az átmérője 10-20 fényév nagyságrendbe esik. A halmaz tömegének viszont közel a fele ezen a területen összpontosul. Irdatlan zsúfoltság van a halmaz belsejében. A gömbhalmazokat éppen e tulajdonságuk alapján is osztályozzák. Van, amelyiknek iszonyúan sűrű magja és diffúz a halója, míg másoknak egyáltalán nincs is diszkrét, sűrű magja. A 12 fokozatú Shapley–Sawyer osztályozásban, mely a halmaz csillagainak koncentrációján alapszik, az M3 középen helyezkedik el. Besorolása: VI.

Az M3 egy igen idős objektum, kora becslések szerint 8-10 milliárd év. A gömbhalmazok korát a HRD (Hertzsprung-Russel Diagram) alapján becsülik meg. A halmaz tagjai jó közelítéssel egyszerre keletkeztek. Arról, hogy mit is jelent a „jó közelítés”, egy kicsit később még szó lesz. A nagyobb tömegű fényesebb és forróbb csillagok hamarabb elhasználják hidrogén készleteiket, és elhagyják a fősorozatot. Az idő előrehaladtával már csak a kisebb tömegű, és kevésbé fényes csillagok maradnak a fősorozaton. Minél idősebb egy halmaz, annál lejjebb tolódik az a pont a fősorozaton, ahol a csillagok „elkanyarodnak” az óriás ág felé. Felrajzolva az M3 esetén a HRD-t rögtön szembetűnő, hogy a jelentősebb fényességű nagytömegű csillagok már mind elfejlődtek a fősorozatról. Ezeknél, a csillag energia ellátását már rég nem a magban zajló hidrogén héliummá történő átalakítása szolgálja. Azoknál az óriásoknál és szuperóriásoknál, ahol még mindig hidrogénből héliumot gyárt a csillag, az már nem a magban, hanem külsőbb héjakban történik, melynek következtében a csillag felfúvódik, és külső része lehűl. Ezek a képen a fényes narancs és vörös színű domináns csillagok. A horizontális ág tagjai pedig a magjukban már héliumból szenet hoznak létre. Ez a folyamat a kék szín irányába tolja a csillag fényét. Az óriások és a horizontális ág között van egy rés, ahol a már korábban megemlített RR Lyrae csillagok találhatóak. A rés azért van, mert a két állapot között csillagászati értelemben a csillagok hamar keresztüljutnak. Az RR Lyrae váltózó csillagok magjában már javában folyik a hélium szénné alakítása.

M3_HRD-label-cut

Az M3 Hertzsprung-Russel diagramja. A fősorozat, az óriás ág, a horizontális ág, és a kék vándorok régióját nyíllal jelölve. Az RR Lyrae változókat a kék pöttyök jelölik.

Az M3-ban összesen mintegy 200 darab változócsillagot azonosítottak. Ez a szám több mint akármelyik másik gömbhalmazban azonosítottak száma. Az M3 a nagy gömbhalmazok közé tartozik, de ebben egyértelmű rekorder. Számomra ez a téma különösen érdekes, mert amatőrcsillagászként évekig követtem csillagok fényének a változását. Vagy, ahogy az amatőr szleng említi: változóztam. Bár RR Lyrae típusúakkal nem foglalkoztam, mert azok megfigyelése inkább a hivatásos kutatók profiljába vág.

M3-variables

Az M3 változócsillagai – az animációt egy éjszaka 4 különböző időpontjában készült felvételeiből rakták össze. Minden időpontban 3 szűrőn keresztül (BVI) rögzítettek felvételeket, és ebből készült a színes kép (Krzysztof Stanek, Andrew Szentgyorgyi – Publikáció: Joel Hartman)

De nemcsak ezzel tart rekordot. A halmaz igen érdekes objektumai a kék vándorok. Ezek a csillagok nagyon nem illenek bele abba a képbe, amit a halmaz esetén a felrajzolt HRD-t tanulmányozva a csillagok fejlődéséről megállapítottak korábban. Ezek a fősorozat közelében abban a tartományban találhatóak, ahonnan korábban a nagytömegű kékes csillagok már régen elfejlődtek. Létezésükre a ma elfogadott egyik magyarázat, hogy ezek halmaztagok összeolvadásával jönnek létre. Így lehetséges csak, hogy sokkal nagyobb a felszíni hőmérsékletük (kékebbek), mint az azonos fényességgel rendelkező halmaztagoké. Életpályájuk egészen más lett ennek köszönhetően, mint a halmaz kialakulásakor létrejött fősorozatbelieké.

Pontosan nem ismeretes még ma sem, hogy a galaxisok fejlődésében milyen szerepet is töltenek be a gömbhalmazok és kialakulásuk pontos körülményét is homály fedi. Egyelőre nem ismerünk olyan gömbhalmazt, amiben ma is aktív csillakeletkezés zajlik. Régebben úgy kezelték őket, amiben minden csillag egyszerre keletkezett. Közben a kutatók felfedezték, hogy bizonyos gömbhalmazok nem is egy nemzedék csillagaiból állnak. Van olyan példánya ezen objektumoknak, melyeknél az első nemzedék után 100 millió évvel alakult ki a következő. Ezt a csillagok fémtartalmának vizsgálatával állapították meg. A később létrejöttek már tartalmazzák a korábbi generációk halálakor szétszóródó anyagot, így az azok által legyártott fémeket is, tehát nagyobb a fémtartalmuk. Ráadásul jellemzően külsőbb és elliptikusabb pályán mozognak a gömbhalmazon belül a kissé fiatalabb csillagok (aki azért így is elég idősnek számítanak).

A fémtartalom vizsgálata egy másik érdekességre is rámutatott. A fémtartalom alapján azt is megállapították a kutatók, hogy a gömbhalmazok kora sem teljesen egységes galaxisunkban. Itt jól meghatározott korcsoportokról lehet beszélni. Bizonyos elképzelések szerint egyes halmazokat a Tejút bekebelezett azok szülő galaxisával együtt. Ebben a galaxisban máskor és máképpen történt a gömbhalmazok kialakulása, ez pedig magyarázhatja a koruk közötti eltérést. Az M3 ebben is különleges, ugyanis a magasabb fémtartalmú gömbhalmazokhoz tartozik.

Remélem, hogy ezzel a rövid ismertetővel sikerült felkeltenem az olvasó érdeklődését a gömbhalmazok iránt. Amellett, hogy impozáns megjelenésűek, asztrofizikájuk is roppant érdekes. Már több évszázada figyeljük őket, de bőven akad még rejtély körülüttök. Ráadásul az M3 abba a mély-ég kategóriába tartozik, hogy az általam készített kép megtekintése után sem okoz majd csalódást egy közepes amatőrcsillagász műszer okulárjába pillantva. Ugyan a teljesen kerek 250 éves évfordulóról lemaradtam, továbbá 2014. június 4-én lehetett volna nyugodtabb és átlátszóbb a légkör, mégsem bánom, hogy aznap este a távcsövemet az M3 felé fordítottam. Jó volt a felvételek készítése közben elmélkedni egy kicsit a gömbhalmaz „viselt dolgairól”.

M3-20140604-TTK

M3 – monokróm változat

2013-06-04 – Göd – 84 x 14 sec Luminance és 15 x 14 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera

NGC5907

NGC5907-20140519-TTK

NGC5907

2014-05-19 – Göd – 42 x 86 sec light és 15 x 86 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera

NGC5907-LRGB-20140702-TTK

NGC5907

2014-05-19 – Göd – 42 x 86 sec light és 15 x 86 sec dark

2014-07-02 – Göd – 37 x 86 sec R és 15 x 86 sec dark

2014-07-04 – Göd  – 38 x 86 sec G, 39 x 86 sec B és 15 x 86 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera, Astronomik RGBL fotografikus szűrőszett

2014. május 19-én, miután leszállt az éjszaka, vizuális távcsöves túrába kezdtem a Sárkány (Draco) csillagképben. Már hónapok óta nem barangoltam az égnek ezen a területén. A hatalmas kígyószerű sárkány mitológiai alakja hosszasan tekeredett az égbolton. Szépen ragyogott a 14 fő csillaga. Igaz, hogy mindössze két csillaga fényesebb 3 magnitúdónál, de ettől függetlenül nem mondanám, hogy egy jellegtelen halvány csillagkép. Sőt! Cirkumpoláris csillagkép, így mivel sosem nyugszik le, egész évben tanulmányozható. Azonban az égen való elhelyezkedése miatt, miszerint egy félkörívben öleli körbe a Kis Medve csillagképet, és így a pólust, inkább a tavaszi, nyári és őszi hónapokban szoktam felkeresni. Mindez attól is függ, hogy melyik részén helyezkedik el a kiszemelt objektum, és az a rész mikor áll magasan a horizont fölött. A csillagkép bővelkedik látnivalókban. Legyen szó galaxisról, planetáris ködről, kettős csillagról és ne feledkezzünk meg a változócsillagokról sem.

Egymás után kerestem fel a galaxisokat, és azon töprengtem, hogy melyikről is készítsek felvételt. Több izgalmas jelölt is akadt. Végül az NGC5907 került kiválasztásra. Ezen az éjszakán L szűrőn keresztül készült felvételekből raktam össze a fent is látható monokróm változatot. Július elején újra visszatértem a galaxishoz. 2014. július 1/2. éjszakáján R szűrőn, majd 2014. július 3/4. éjszakáján G és B szűrőn keresztül rögzítettem felvételeket. A fent látható színes (LRGB) változat a három éjszaka felvételeinek felhasználásával készült.

Halvány, 11 magnitúdós galaxisról van szó. A katalógusok szerint 12.3 x 1.8 ívperc a látszólagos mérete az égen. Majdnem pontosan az élével fordul felénk. Megjelenése miatt, nagyon találóan, gyakran hasonlítják egy késpengéhez vagy egy szilánkhoz. A spirál galaxisok általában már csak ilyenek. A korongjuk vastagsága kicsi a galaxis átmérőjéhez képest. Ez alól nem kivétel Tejútrendszerünk sem. Véleményem szerint egy spirál galaxis porsávok szabdalta oldalnézete legalább olyan impozáns tud lenni, mint amikor nagyjából merőleges látunk rá egyre, és spirálkarjaiban gyönyörködhetünk.

Első ránézésre tipikusnak mondhatnánk ezt a 40 millió fényévre lévő csillagvárost. De csak első ránézésre. Már vizuálisan is látszott, hogy a legtöbb spirál galaxistól eltérően az NGC5907 egyáltalán nem rendelkezik markáns központi dudorral. Jegyezzük meg az NGC5907-nek ezt a tulajdonságát, mert egy kicsit később még előkerül majd. Arra, hogy milyen is oldalnézetből egy jellegzetes központi dudor egy spirál galaxis estén jó példa a szintén a majdnem pontosan az élével felénk forduló NGC891.

Az éléről látszó NGC891, mely a legtöbb spirál galaxishoz hasonlóan, markáns dudorral rendelkezik.

2013-08-30 – Göd – 72 x 86 sec light és 15 x 86 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera

De a legmeglepőbb tulajdonságára csak akkor derül fény, ha roppant hosszú expozíciós idők keretében tekintünk az űr mélységeibe, és nem foglalkozunk azzal, hogy közben a galaxis fénye beleég a végső felvételbe. Ha ezt megtesszük, akkor valami igazán meglepőt láthatunk a galaxis körül: hurkokat.

bbro_ngc5907

Az NGC5907 és a galaxist körülölelő hurkok David Martınez-Delgado felvételén (BlackBird Remote Observatory)

Ezek a hurkok (loops) csillagfolyamok, vagyis olyan csillagok áradata, melyek ezeken a különös pályákon járják táncukat a galaxis magja körül és nem a galaxis korongjában, magja környékén, vagy éppen a halóban. Létezésük egy újabb bizonyítéka annak, hogy a galaxisok világa nem statikus, ahogyan egy évszázada még gondolták, hanem igen csak viharos, mely ütközésekkel és összeolvadásokkal tarkított. A hurkok létrejötte galaxisok kölcsönhatásnak köszönhető. Rögtön két magyarázat is kínálkozik a hogyanra.

Az egyikben egy kisebb tömegű galaxis ütközik oly módon a nagyobb társával, ebben az esetben az NGC5907-tel, hogy annak korongján többször keresztülhatol, miközben a nagyobb megkopasztja azt. A pályája metszi a nagyobb galaxis korongját, újra és újra keresztülhatol ezen a síkon. Pályáján gázt és port veszít, illetve csillagainak egy részét. Amennyiben ez a magyarázat a helyes, akkor a jóslatok szerint a végén csak egy mag marad hátra a kisebbikből. Ezen csillagok ugyanis gravitációsan sokkal kötöttebbek, így nehezebb ennek a formációnak a szétszakítása.

A másik esetben a két ütköző galaxis tömege hasonló. Miközben a két galaxis egy nagyobbá olvad össze, csillagok dobódhatnak ki, melyek létrehozzák ezeket a hurkokat.

Az első esetben találnunk kellene egy lecsupaszított galaxis magot. Ilyet egyelőre nem találtak. A másik esetben pedig sokkal nagyobb felfordulást kellene látnunk, ha az NGC5907-re tekintünk. Nehéz eldönteni, hogy mennyire lehetett egyenlőtlen a küzdelem, pedig fontos kérdés ez. Miért? Ma úgy gondolják a kutatók, hogy a nagyobb galaxisok mind ütközések, és kannibalizmus révén jöttek létre. Igen, még a Tejútrendszer is. Egyre több nyomát találják ezeknek a folyamatoknak, ahogy műszerek, illetve a kutatási módszerek egyre kifinomultabbá válnak. A mi galaxisunk esetén is sikerült azonosítani ilyen csillagáramlatokat. Az egyik ilyen annak a folyománya, hogy a Tejút éppen elfogyasztja a Sagittarius törpe galaxist.  Összefoglalva, fontos ezen a galaxisok fejlődése szempontjából kulcsszerepet játszó folyamatoknak a megértése.

Mit lehet azonban tenni, ha nem találjuk a Szent Grált? Tovább kell keresni, és ehhez segítségül hívhatóak a számítógépek. Egészen pontosan a szuperszámítógépek, melyek nagy számítási teljesítménye elegendő, bonyolult és sokparaméteres feladatok megoldására. Fel kell hát állítani a megfelelő szereplőket a színpadra, kezdő paramétereket választani és indulhat a tánc. A végén a kapott eredményt össze kell vetni a megfigyelhetővel. Leegyszerűsítve így végeztek szimulációkat az NGC5907 esetén is.

A kutatók három csoportba osztották az ütközéseket aszerint, hogy milyen volt a kiindulási tömegarány. Nagyobb ütközésnek nevezték el a 3:1-5:1, míg közepesnek az 5:1-12:1, és kisebbnek a 12:1-nél kezdődő tartományt. Majd megnézték, hogy a szimuláció eredménye megfelel-e annak, amit tapasztalunk. Kijön a hurok alakja, mérete, excentricitása, láthatósága, az anyag eloszlása? Az ütközés után meddig észlelhető még a hurok? Milyen gázeloszlást kapunk eredményül? A galaxis korongjának, halójának, magjának és a központi dudornak a kapott paraméterei leírják, vagy legalább közelítenek az észlelthez? Ezután összegezték az eredményt, és megpróbálták kiválasztani a legvalószínűbbet. Egyik modell sem fedte le ugyanis tökéletesen a valóságot. A legjobban a 3:1-5:1 tartomány illeszkedett gázban gazdag kiinduló galaxisokat választva. Azonban nem igazán sikerült reprodukálni egy vékony galaktikus diszk által uralt, és központi dudortól mentes galaxist a végeredményben. Emlékszik az olvasó? Említettem, hogy ez még fontos lesz. A hurokok egészen pontos geometriája sem jött ki. Azért azt el kell mondanom, hogy ezek csak egyfelől fakadnak a felhasznált modellből. Úgy igazságos, ha azt is kihangsúlyozom, hogy rengeteg a bizonytalanság az NGC5907 alapvető paraméterei között is. Csak egyet kiragadva, ilyen például a galaxis távolságának 30%-os bizonytalansága. Ennek következtében a barionos tömeg is bizonytalanul ismert. Ez pedig a modell pontatlanságához vezet, és így tovább. Említést érdemel még az is, hogy az elektromágneses spektrum különböző tartományaiban más és más képet fest a galaxis. Az egyikben vékonyabb, a másikban vastagabb a korong. Valljuk be, nemcsak a modell felállítása és a szimuláció jelentett kihívást, de a kapott eredmény összevetése a valósággal is. A kérdés nincs lezárva, mindössze kiválasztottak egy igen valószínű forgatókönyvet. Ez azonban már önmagában is egy fontos eredmény. Természetesen a kutatások folynak tovább.

Végezetül, érdemes megnézni egy kis videót a szimulációról:

Mindig lenyűgöz, hogy miféle események zajlanak a kozmoszban, és párért csillagászati értelemben elég csak a szomszédba tekinteni, vagy körülnézni házunk táján. Az pedig külön öröm, ha az előadás egy jelenetét vagy annak egy mutatós részletét saját távcsövemmel is elcsíphetem.

M57

M57-LRGB-20140505-TTK

M57 (Gyűrűs-köd)

2014-05-05 – Göd – 82 x 22 sec Luminance, 63 x 22 sec R, 63 x 22 sec G, 63 x 22 sec B és 15 x 22 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera, Astronomik RGBL fotografikus szűrőszett

A Gyűrűs-ködként is ismert M57 planetáris ködre könnyen ráakadhatunk a Lant csillagképben. A hangszer testét alkotó 4 fényesebb csillag egy paralelogrammát formáz. Ennek az alakzatnak a két csillaga, vagyis a Sulafat (γ Lyr) és a Sheliak (β Lyr) között helyezkedik el nem egészen félúton ez a mély-ég objektum.

Lyra01

A Lant (Lyra) csillagkép, és benne az M57.

A planetáris ködre Antoine Darquier de Pellepoix francia csillagász akadt rá 1779-ben. Majd nem sokkal később, tőle teljesen függetlenül, honfitársa Charles Messier is felfedezte 1779. január 31-én, miközben üstökösökre vadászott az égen. Messier katalógusában az 57. sorszámmal szerepel.

A felvételemen is jól látható központi csillag létezéséről először Friedrich von Hahn német csillagász számolt be 1800-ban. Ez után évtizedek teltek el úgy, hogy megerősítést nyert volna felfedezése. Honfitársunk Gothard Jenő 1886-ban egy 26 cm-es tükrös távcsövet használva, egészen pontosan egy 260/1967-es Newton-távcsővel, a világon elsőként sikeresen megörökítette a köd központi csillagát. Hogy mennyire más idők voltak ezek, mi sem bizonyítja jobban, hogy Gothard beszámolói szerint már 1885-ben is próbálkozott a 14.8 magnitúdós csillag lefényképezésével, de csak egy év múlva koronázta siker fáradozásait. A viszonylag érzékelten fotólemezek korában vitathatatlanul hatalmas eredmény volt, amit elért. Nagyságrendekkel többet kellet exponálnia, mint nekem 128 évvel később. Nálam már egyetlen 22 másodperces nyers felvételen jól látható a központi csillag. Azonban ehhez kellet az amatőrcsillagászok körében az utóbbi 10 évben elterjedt digitális technika. Bizony nem is olyan régen, még komoly kihívásnak számított Gothard Jenő eredményének a megismétlése amatőr felszerelésekkel.

De mit is takar a planetáris köd elnevezés, és honnan származik? Mielőtt erre a kérdésre válaszolnék, térjünk egy kicsit vissza a felfedezőkhöz, és a beszámolóikhoz.

Antoine Darquier de Pellepoix a következőket írta az M57-ről:

„Tudomásom szerint még senki sem akadt rá erre a ködre. Jó távcsőre van szükség a megfigyeléséhez. Semmilyen már ismert ködre nem hasonlít. Megjelenése emlékeztet a Jupiterére. Tökéletes kör az alakja és nagyon éles a pereme. A központi rész valamivel sápadtabb fényű, mint a felület többi része.”

Charles Messier pedig így számol be felfedezéséről:

„Egy halmaz a Gamma Lyrae és Béta Lyrae között, melyet akkor fedeztem fel, amikor az 1779-es üstököst kerestem, és ami ennek közelében haladt el. Kerek fényfolt benyomását kelti, amit apró csillagok alkotnak, azonban még a legjobb távcsövekkel is lehetetlen megkülönböztetni azokat. Csak gyanakodhatunk, hogy tényleg ott vannak.”

Még a XIX. században is általánosan elfogadott vélekedés volt, hogy minden köd csillagokra bontható, és ez csak távcső kérdése. Azonban Herschel-t pár planetáris köd megjelenése ebben elbizonytalanította. Herschel volt az a személy, aki először használta a planetáris köd kifejezést. Úgy vélte ezek újonnan kialakuló bolygórendszerek. Az elnevezést aztán átvettették a csillagászok. Annyira megragadt, hogy még akkor sem változtatták meg, amikor kiderült, hogy nem égitestek születéséhez, hanem éppen halálához vezető út egy állomását jelentik ezek a ködök. A körülbelül 0.8 és 8 kiindulási naptömeggel rendelkező csillagok a vörös óriás fázisában (AGB fázisban) a csillagszél révén történő anyagvesztés, majd a külső rétegek ledobásával hozzák létre a planetáris ködöket. A táguló gázt a hátramaradó kompakt és forró akár 100000 K felszíni hőmérsékletű központi csillag UV sugárzása gerjeszti, miközben lassan a fehér törpe állapotba jut a csillag, mivel nem elég nagy a tömege a szén és oxigén fúziójához. Mire ez a folyamat teljesen befejeződik, a planetáris köd elenyészik az űr sötétjében, láthatatlanná válik.

A Gyűrűs-köd tőlünk durván 2300 fényévre található. A távolsága még manapság is viszonylag pontatlanul ismert. Az égen 1.5 x 1 ívperc a látszólagos mérete, így valós mérete olyan 1.3 fényév körül lehet. Mivel már évtizedek óta rendelkezésre állnak nagyfelbontású felvételek a ködről, így megállapítható, hogy minden évszázadban körülbelül 1 ívmásodpercet tágul a köd. Nagyságrendileg 6-8 ezer éves lehet ez a képződmény.

hs-2013-13-e-web_print

Az M57 3D-s modellje

A planetáris ködök morfológiájáról már írtam korábban. Most kizárólag az M57-re koncentrálnék. Az M57 is, több planetáris ködhöz hasonlóan, bipoláris struktúrával rendelkezik. Ahogy fentebb is írtam a köd anyaga a központi fehér törpe csillag erős UV sugárzásának köszönhetően sugároz, az gerjeszti. Minden színért egy más kémiai elem a felelős. A köd főgyűrűje (main ring) jól látható az én felvételemen is. Ennek vöröses színe az ionizált nitrogénnek (N II tiltott vonalak – 654.8 nm és 658.3 nm) és a gerjesztett hidrogénnek (Balmer vonalak – 656.3 nm) köszönhető. Ez a vörös peremű fánk, vagy tórusz alakú terület, melyre majdnem merőlegesen látunk rá. Ezt a tórusz alakú területet oxigén tölti ki. Az oxigén emissziós vonalainak (495.7 nm és 500.7 nm) a zöldes szín köszönhető. A központi rész kékes színéért pedig a hélium (He II – 469 nm) emissziós vonalai tehetők felelőssé. A hélium a gyűrűre merőleges hossztengelyű lebenyben (Lobe) található, mely egy rögbi labda alakjára hasonlít. Ezek eddig mind megfigyelhetőek az én felvételemen is. A további struktúrák bemutatásához már egy a Hubble űrtávcső (Hubble Space Telescope) és a Nagy Binokuláris Távcső (Large Binocluar Telescope) felvételeinek kombinációjából kapott képre van szükség.

hs-2013-13-c-web_print

Az M57 a Hubble űrtávcső (Hubble Space Telescope) és a Nagy Binokuláris Távcső (Large Binocluar Telescope) felvételeinek kombinációjából kapott képen.

A felvételen, a gyűrű belső karimájában szabálytalan alakú sötét, sűrű anyagcsomók figyelhetőek meg. Ezek a csomók annyira sűrűk, hogy ellenállnak a központi csillag erős sugárzása okozta eróziónak. Olyan szerkezetet kölcsönöznek a ködnek, mintha bicikli küllők lennének benne. A csápok akkor alakultak ki, amikor a ledobott forró gázok nekiütköztek a korábban ledobott hidegebb gázoknak. A küllőknek a folytatása a főgyűrűn kívül is látható, mintha dárdák döfnék keresztül azt. Létezésük árnyékhatásnak köszönhető, melyben a sötét csomók árnyékolják a csillag sugárzását.

Végezetül a külső gyűrűk, melyek az én felvételemen szintén nem láthatóak, akkor jöttek létre, amikor a gyorsabban mozgó gáz beleütközött a korábban ledobott lassabban mozgóba.

Végezetül pedig érdemes megnézni az alábbi rövid kis videót, melyet a NASA publikált. Az angolul esetleg nem beszélő olvasó, a fentiek végigolvasása után is bizonyosan képet kap az M57 térbeli szerkezetéről.

2014. 05. 04/05 éjszaka

Az éjszaka első felét a Hold tanulmányozásával töltöttem. Az átlátszóság kitűnő volt, a nyugodtság azonban nem. Tipikus hidegfront átvonulást követő éjszaka vette kezdetét napnyugta után. Miután a Hold lenyugodott, az átlátszóság is romlani kezdett. Nem maradt más választásom, mint tesztfelvételek készítése. Ilyenkor sosem fejezek be egy témát, csak különböző beállításokkal készítek nagyjából 10 fotót a lehetséges jövendőbeli célpontjaimról. Azt is megpróbálom megállapítani, hogy mennyire merészkedhetek közel Budapest fénykupolájához. Ilyenkor mindig elszomorodom, hogy a déli egem szinte teljesen odavan.

Éjfél után viszont kezdtem elunni a dolgot. Ekkor jutott eszembe, hogy már május van, és bizony egy éve kezdtem el az asztrofotózást.  Az egyik első mély-ég objektum, amit megpróbáltam megörökíteni több-kevesebb sikerrel az a Gyűrűs-köd volt. Ezen az estén az ég állapota közel sem volt ideális, de ennek ellenére szerencsét próbáltam. Ezúttal a színek felvétele volt a fő cél, egy LRGB fotót szerettem volna készíteni. 22 másodperces expozíciós időt választottam, és készítettem 82 darab Luminance, 63 darab R, 63 darab G, és 63 darab B szűrős felvételt. Napokig nem vettem elő az anyagot, mert az ég miatt semmi jóra nem számítottam. Végül csak feldolgoztam.

Az M57 volt az első mély-ég objektum, amit távcsövön keresztül megmutattak nekem még az Uránia Csillagvizsgálóban, a nyolcvanas években. Az M57 ott volt az első objektumok között, amiről felvételt készítettem. Ezzel az M57 fotóval pedig asztrofotózással töltött első évemet ünnepelem. Egy torta ez, amit saját magam sütöttem, de egy szeletet szívesen megosztok bárkivel. Tudom, nem tökéletes. Sokat kell még tanulnom. De remélem ez az első év csak a kezdet, és még sokáig „rongálhatom” az eget így vagy úgy.

Az Europa árnyéka a Jupiteren – 2014. 04. 07.

jupiter-europa_arnyek-2014-04-07-23_15_19-ttk

A képen balról jobbra: Europa árnyéka a Jupiteren, Europa, Io, Ganymedes.

2014-04-07 23:15:19 (2014. 04. 07. 21:15:19 UT) – Göd – 1000 x 0.035331 sec

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera, okulár projekció – 10mm Baader Hyperion, Astronomik ProPlanet-742 CCD szűrő

jupiter-europa_arnyek-2014-04-07-23_15_19-loop-ttk

A videón az Europa árnyékának vonulása látható a Jupiteren 2014. 04. 07. 23:15:19 (2014. 04. 07. 21:15:19 UT) és 2014. 04. 08. 00:45:25 (2014. 04. 07. 22:45:25 UT) között.

2014. április 7. estéjén arra készültem, hogy megfigyelem és felvételeket is készítek arról az eseményről, ahogyan az Europa nevű hold árnyéka végigvonul a Jupiter korongján. Ugyan a jelenséget sikerült majdnem a végéig nyomon követni, azonban az erősen hullámzó párás légkörnek köszönhetően az elkészült videók első egyharmada finoman szólva nem lett a legjobb. Mire az árnyék megtette útjának harmadát legalább a Jupiter körüli fényudvar megszűnt egy időre. A nyugodtság viszont egyáltalán nem lett jobb. Sőt, ahogy a Jupiter lassan lejjebb ereszkedett az égen, a helyzet még fokozódott is. A megfigyelésnek egy szép tujasor vetett véget.

Egy darabig úgy voltam vele, hogy megtartom szép emléknek ezt a közel 3 órát. Aztán másnap este elkezdtem nézegetni, hogy mit lehet kihozni az elkészített felvételekből. Nem voltam elégedett a képekkel, de a használhatóbbakat összeraktam, ha már órákon keresztül 5 percenként videó felvételek készítésével töltöttem az időmet.

Akármilyen is lett a végeredmény, nem bántam meg, hogy aznap este kint voltam, és végignéztem az előadást.

M108

m108-20140329-ttk

M108

2014-03-29 – Göd – 90 x 86 sec light és 15 x 86 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera

Folytatva tavaszi túrámat az égbolton az M108-nál állítottam meg a távcsövemet, hogy felvételeket készítsek a Messier katalógus 40 galaxisának következő tagjáról, és még másról is, de erről majd kicsit később. Ez a galaxis eredetileg nem volt része a katalógusnak. Az első kiadás ugyanis mindössze az M1-től az M45-ig tartalmazta az objektumokat. A legvégső, Messier által kiadott lista, végül 103 objektumot sorolt fel. Későbbi korok csillagászainak köszönhető az, hogy ma 110 objektumot tartalmazó katalógusként ismerjük. Owen Jay Gingerich több csillagászattörténeti könyv szerzője, foglalkozott Charles Messier életével és munkásságával. Messier feljegyzéseiben talált két objektumot, melyeket Messier kollégája, Pierre Méchain fedezett fel. Ezek pedig nem szerepeltek Messier eredeti katalógusában, noha Méchain révén tudott róluk. Ez a két galaxis a NGC3556 és NGC3992 katalógus számon volt ismert az NGC-katalógusban. Gingerich kutatásainak köszönhetően, így az NGC3556 M108-ként, az NGC3992 M109-ként került be utólag a katalógusba.

A Nagy Medve csillagképben, a Marek (Béta UMa) nevű csillagtól alig másfél foknyira található a galaxis. Az említett csillagot nagyon könnyen beállíthatjuk távcsövünkben, hogy innen tovább evezzünk az M108 irányába. Maga a galaxis 10.1 magnitúdós, roppant halvány a Messier objektumok között. Ahhoz, hogy foltos részleteit vizuálisan feltárja az én 10 cm-es műszeremnél mindenképpen nagyobb távcsövet és az aznap esti égnél sokkal tisztább, átlátszóbb, és igazán sötét eget javaslok. Az én műszeremben csak egy halvány, hosszúkás foltként mutatkozott meg ezen az éjjelen. A galaxisnak nem volt éles pereme, és bár a közepe felé folyamatosan fényesedett, nem volt egy egyértelmű csúcspont, nem látszott magszerű képződmény. Kisebb nagyítással, és megfelelő látómezővel nagyszerű párost alkot a Bagoly-köddel (M97), ugyanis távolságuk 48 ívperc. Csak az okuláron keresztül szemlélhettem a látványt, ugyanis kamerámmal a látómező durván 30 ívperc, így nem kerülhettek egy felvételre. (Később, egy másik kamerával sikerült valóra váltani ezt a vágyamat, és elkészítettem az M108 és az M97 közös fotóját.)

A kamerával természetesen nem versenyezhet az emberi szem. A fotón már szépen megmutatkozik a galaxis síkja mentén végigvonuló, kusza porsávok szerkezete, és a fényes csillagkeletkezési régiók világító felhői. A fények és árnyékok e játéka a galaxisban, foltokként láthatóak egy nagyobb távcsőben jó égen, ha nem is ilyen élesen.

Az M108 tőlünk való távolsága 45 millió fényév. Az Ursa Major Csoportnak egyik legfényesebb és legnagyobb tagja. A Tejútrendszert is tartalmazó Lokális Csoportnál néhányszor nagyobb ez a galaxis csoportosulás, és ahhoz hasonlóan gravitációsan, a nemrég felfedezett Laniakea szuperhalmazhoz kötődik. (A Laniakea szuperhalmazról részletesebben is írtam az NGC891 galaxisról szóló leírásomban.)

Lokalis_Csoport_koruli_halmazok

A szomszédságunkban elhelyezkedő galaxishalmazok, galaxis csoportosulások térbeli helyzete.

Ha már az Ursa Major halmazt a mi Lokális Csoportunkhoz hasonlítottuk, akkor hasonlítsuk össze az M108-at és a Tejútrendszert. Keressünk hasonlóságokat, és különbségeket.

Vajon egy súlycsoportba tartoznak? A rendelkezésünkre álló kutatási eredmények szerint a két galaxis mérete nagyjából azonos. Kettő 100000 fényév átmérőjű spirál galaxisról van szó tehát. De mi a helyzet a tömegükkel? Az M108 tömege csak valahol a Tejút tömegének harmada és fele között lehet.  A mi galaxisunk jóval robusztusabb.

A központi fekete lyukak területén viszont az M108 elviszi a pálmát, ugyanis nemcsak a Tejút büszkélkedhet egy hatalmas tömegű (kb. 4 millió naptömeg) fekete lyukkal a magjában. A Chandra űrtávcső röntgen tartományban történt megfigyelései alapján az M108-nak is van ilyen. Méghozzá durván 6-8-sor nagyobb a tömegű a miénknél. Becslések szerint ez a behemót 24 millió naptömegű. Ezzel a tömeggel a központi fekete lyukak között a középkategóriába tartozik.

Ezzel még nem merítettük ki azonban ennek a majdnem éléről látszó galaxisnak és a Tejútnak a hasonlatosságait. Mind a két galaxis küllős spirál galaxis. Az M108 típusa SB(s)cd. Hogyan nézhet ki egy ilyen küllős spirál galaxis, ha nem az éléről látnák? Ehhez Adam Block az NGC578-ról készült felvételét hoznám fel példának.

ngc578_SB_s_cd_example-Adam_Block

Az NGC578 Adam Block felvételén, mely szintén egy SB(s)cd morfológiai besorolású galaxis.

Valami hasonló képet mutatna az M108 is, ha nagyjából merőlegesen látnánk rá.

Még 1979-ben a Tejútrendszer HI (atomos hidrogén) területeinek a 21 cm-es hullámhosszon történt felmérése közben fedeztek fel a galaxis síkjától távolodó szálas szerkezeteket. A felmérést a Nagy Magellán-felhőben a hatvanas években talált hatalmas HI üregek miatt végezték el. Ahogy folytatták a kutatásokat a Tejútrendszerben, találtak újabb alakzatokat, melyek legtöbbször táguló üregekre, héjakra, hurkokra emlékeztettek. A legtöbbször az angol nyelvű szakirodalomban összefoglalóan csak HI supershell (HI szuperhéjnak) nevezik ezeket. A 80-as évek közepétől világossá vált, hogy bizony más gázban gazdag spirál galaxis is rendelkezik ilyen, akár több 10000 fényév kiterjedésű folyamatosan táguló struktúrával. Ez a méret igen jelentős az egyes galaxisok átmérőjéhez képest. Innentől kezdve folyamatosan keresték az újabb, és újabb jelölteket. Találtak is bőven. Egyetlen probléma volt csak és van a mai napig is, hogy pontosan megmagyarázzák mik is ezek. Az elképzeléseknek se szeri se száma. Egy biztos, hogy szuperhéjak tágulásukhoz hatalmas energia szükséges. Van olyan elképzelés, hogy az intergalaktikus térből beáramló gáz és a galaxis kölcsönhatása a hajtómotor. Vannak, akik heves csillagkeletkezés hatásának tudják be, melyek később nagyszámú szupernóva robbanást generálnak. Szerintük ezek fújják a hatalmas héjakat és alakítják a struktúrákat. Mások szerint az aktív galaxisokra jellemző rádió jet a felelős ezért. Ezen elmélet szerint ez az aktivitás időszakos, periodikus. Így nem kell feltétlenül ilyen aktív jet-et tetten érnünk akkor, amikor ezeket a hatalmas héjakat megfigyeljük. Ezen elmélet kidolgozói úgy vélik, hogy ez a periodikusság a különböző buborékok korában is tetten érhető. Vannak, akik szerint gamma felvillanások (GRB) közben felszabaduló energia indítja el a buborékok tágulását. A kérdés még ma sem tisztázott, de azt sejtik a kutatók, hogy a galaxisok fejlődésében nagy jelentőséggel bírnak ezek a képződmények. Az M108 maga is rendelkezik hatalmas szuperhéjakkal. Maga a galaxis elszigetelt. Ez azt jelenti, hogy nincs olyan galaxis, amivel éppen kölcsön hatna úgy, hogy ez befolyásolja a benne megfigyelhető jelenségeket. A hatalmas héjak létrejöttét, fejlődését egyedül maga a galaxisban lejátszódó események befolyásolhatják csak. Ráadásul majdnem pontosan éléről látunk rá az M108-ra, mely révén sokkal könnyebben nyomon követhető a héjak mozgása a csillagvároson belül. Ennek köszönhetően e héjak kutatói előszeretettel választják ki célpontnak. Így vált az évek során az M108 a HI szuperhéj kutatások egyik fontos „csataterévé”. Átnézve a különböző tanulmányokat azt lehet elmondani, hogy egyik elmélet sem magyarázza meg pontosan, az összes ilyen szuperhéj létezését és viselkedését magában az M108-ban. Van olyan, ami egyértelműen csillagkeletkezési területekhez köthető, de vannak olyan nagyobb, kiterjed HI struktúrák, amelyek nem. Erre pár tanulmány szerzője fel is hívja a figyelmet. További megfigyelésekre van szükség. Így lehet csak majd a teóriákat megerősíteni vagy megcáfolni. Ez az, ahogy a modern tudomány működik. Megfigyelésekre alapoz, felépít egy modellt, majd ellenőrzi azt, hogy összecseng-e más megfigyelésekkel. Illetve megpróbálja tetten érni a modell jóslatait. Egy biztos a hatalmas táguló gázhéjak jelen vannak ezekben a galaxisokban, és a kutatóknak még bőven adnak majd munkát a jövőben.

Ezt a munkát azonban meghagyom a szakembereknek, én csak egyszerűen tovább gyönyörködöm az ég csodáiban, és igyekszem követni az ezekkel kapcsolatos kutatásokat a magam műkedvelő szintjén.

Kvazárok és távoli aktív galaxis magok

Még az M51-ről készült felvételemhez írt cikkben elmélkedtem arról a kérdésről, hogy mi milyen messze van. Csak emlékeztetőül ott a következővel kezdtem az eszmefuttatást:

Kisfiam tett fel egyszer egy érdekes kérdést: Apa, meddig látunk el a távcsöveddel? Érdekes kérdés, és nem lehet rá egyszerűen válaszolni. Őszintén érdeklődő gyermeki kérdés ez, és nem tudtam elintézni egyetlen mondatban. Pedig nagyon igyekeztem, mert a gyermekek másik jellemző vonása, hogy a túlságosan bonyolult messziről induló válaszok esetén hamar elvesztik azt a bizonyos érdeklődésüket.

A kérdés már egy jó ideje ott bolyong a fejemben. Talán azért, mert erre a kérdésre nemcsak ő, hanem én is szeretném tudni a választ, talán már gyermekkorom óta. A kérdés inspirált, és elkezdtem vizsgálni annak a lehetőségét, hogy miként örökíthetnék meg minél távolabbi, és távolabbi objektumokat a saját amatőrcsillagász felszerelésemmel.

Több felvételemen is láthatóak háttérben galaxisok a kiszemelt célpont mellett, melyek sok esetben az adott objektumnál, legyen az akár egy galaxis, sokkal messzebb vannak. Például ezen a felvételen maga az M108 45 millió fényévre van, míg akár 500 vagy 800 millió fényévről is látszanak halványan galaxisok. A még távolabbiak fénye azonban, lassan belevész a háttérbe. Ha ennél is távolabbra szerettem volna tekinteni a kertemből, valami nagyon nagy energiakibocsájtással rendelkező égitestet kellett választanom. Szerencsére a világegyetem, rendelkezésemre bocsájtott ilyen távoli roppant fényes világítótornyokat a kvazárok és aktív galaxis magok képében.

A kvazárok története 1962-ben kezdődött Maarten Schmidt munkásságának köszönhetően, aki a 3C 273 rádióforrást csillagszerű objektumokként azonosította. Később újabb, és újabb ilyen azonosítások következtek, amikor a csillagászok elkezdték a rádióforrások optikai tartományban történő keresését. Jó pár rádióforrás helyén egy furcsa kékes színű csillagot találtak. Angol elnevezésüket is ennek köszönhetik: quasi-stellar radio source, magyarul csillagszerű rádióforrások, melyet később már csak a rövidített quasar formában használtak. Nyelvünkben fonetikusan honosodott meg: kvazár. Az igazi meglepetés akkor következett, amikor megállapították, hogy a galaxisunkon túl, hihetetlen távolságban vannak. A színképekben tapasztalt vörös eltolódás mértéke ugyanis igen nagy volt. Ez azzal magyarázható, hogy a világegyetem tágulásának köszönhetően ezek az objektumok hatalmas sebességgel távolodnak tőlünk. A Doppler-effektus pedig a vörös szín irányába tolja a vonalakat.  A távolódás sebességének mértéke pedig a távolsággal arányos (Hubble-törvény), így ezeknek az objektumoknak több milliárd fényéves távolságban kellett lenniük a számítások szerint. Ebből pedig az következett, hogy óriási mennyiségű energiát sugároznak ki, méghozzá csillagászati értelemben roppant kis területről.

A kvazárok az optikai tartományban sajátos spektrumokat mutatnak, így később már rádióforrás nélkül is elkezdtek rájuk vadászni a kutatók. Kiderült, hogy nem is minden kvazár sugároz a rádió tartományban. Valójában csak 10% az, ami igen. A kvazár szót azonban továbbra is megtartották. Pontosabban bevezették a rádió tartományban csendes kvazár, angolul radio-quiet quasar (RQQ) kifejezést is.

Kiderült továbbá, hogy színképük alapján rokonságban állnak a Seyfert galaxisokkal, melyek aktív galaxis maggal (Active Galactic Nucleus – AGN) rendelkeznek, sőt a rádió galaxisok, és a blazárok is ennek a családnak a tagjai. A ma elfogadott modellek szerint a felsorolt objektumok magjában egy szupermasszív központi fekete lyuk található, melynek tömege a pár milliótól több milliárd naptömegig terjedhet. Ezek a fekete lyukak próbálják elfogyasztani a környezetükben található anyagot. Az étekként szolgáló anyag akkréciós korongot formál, melyet kívülről sűrűbb lassabban keringő gázfelhők vesznek körül. Az akkréciós korong anyaga miközben befelé örvénylik, egyre gyorsabban mozog, és felhevül. A mozgási energiájának pedig egy jelentős része elektromágneses sugárzássá alakul. Továbbá a mozgási energia egy része biztosítja a töltött részecskék relativisztikus (közel fénysebességre) történő gyorsítását. Az akkréciós korongra merőleges, a forgástengellyel párhuzamosan plazmából álló jet-ek jönnek létre, melyben az említett részecskék kifelé haladva spiráloznak, miközben szinkrotonsugárzást bocsájtanak ki. A jet-ek mérete hatalmas is lehet, elérhetik akár a több millió fényévet is. Ehhez képest maga a belső szerkezet, vagyis a korong és az azt körülvevő gázfelhők fényéves nagyságrendbe esnek. Emlékeztetőül a Tejútrendszer átmérője 100000 fényév.

Az, hogy a galaxis magját miként látjuk, milyen objektumként soroljuk be, attól függ csak, hogy a jet milyen irányba mutat. Leegyszerűsítve, ha pontosan felénk mutat az egyik jet, akkor blazárként jelenik meg az objektum. Ha a jet szöge egy kisebb szöget zár be a látóirányunkkal, akkor kvazár vagy Seyfert I típusú galaxis figyelhető meg.  Amennyiben oldalról látjuk a jet-et, akkor rádió galaxisként, vagy Seyfer II típusú galaxisként észleljük.

agn_tipusok

A dolog ennél azért összetettebb, de erre most itt nem térnék ki. A lényeg, hogy azonos motor működteti ezeket az aktív galaxis magokat, melynek során oly hatalmas mennyiségű energia szabadul fel, hogy a kertből egy amatőr felszereléssel milliárd fényévekről esélyem lehet elcsípni a sugárzásukat.

Átnéztem a tél végén, tavasszal észlelhető kvazárok listáját. Sokáig kerestem a megfelelőt. Egy kvazár mégis mindössze csak egyetlen halvány csillagocska felvételen. Persze így is büszke tulajdonosa lehetek egy felvételnek, melynek egyik pontjára akár milliárd éveket is utazott a fény. Ez azért mégiscsak izgalmasan hangzik! De hogyan lehetne az izgalmakat tovább fokozni? Arra gondoltam, hogy átnézem észlelési terveimet, és kiválasztok egy olyan objektumot, amit egyébként is meg szerettem volna valamikor örökíteni, továbbá van legalább egy kvazár, vagy AGN a közelében. Kritérium volt még az is, hogy magasan látszódjon a horizont felett az objektum, hogy a légkör és fényszennyezés hatása kevésbé érvényesüljön. Így tavasszal a Nagy Medve csillagkép és környezete nagyszerűen megfelel ennek a kritériumnak, legalábbis az észlelőhelyemről. Továbbá ebben az irányban szabadon kilátunk a galaxisunkból. Így végül innen választottam jelölteket a listámról. Már csak át kellett néznem egyenként a környezetüket, hogy akad-e ott kvazár vagy AGN. Korábbi felvételeim során szerzett tapasztalataim alapján kizártam azokat, melyek 19 magnitúdósak vagy annál halványabbak voltak. A legnagyobb égterület, amit felszerelésemmel meg tudok örökíteni, 30 ívperc alatt van egy kicsivel. Végül az M108 mellett döntöttem, mert ott annak esélyét is megláttam, hogy a 10 magnitúdós galaxis mellett be tudok cserkészni négy ilyen roppant távoli objektumot is a távcső megfelelő beállításával, és még a galaxis is középre kerül. Sikerült is lefotóznom mind a négyet.

 m108-20140329-ttk-qso-rqq-agn

Objektum magnitúdó z (vöröseltolódás) visszatekintési idő típus
SDSS J111036.95+555144.1 18.2 1.351418 +/- 0.000461 8.7 milliárd év QSO
SBS 1107+557 18.3 0.392637 +/- 0.000353 4 milliárd év AGN1
SBS 1108+560 16.9 0.768267 +/- 0.000359 6.5 milliárd év AGN1
SDSS J111132.12+553240.2 18.6 1.003890 +/- 0.000524 7.5 milliárd év RQQ

A z a mérhető vörös eltolódást jelenti. A visszatekintési idő pedig, amennyi év alatt a fény elért hozzánk. A legközelebbi csillagról a fény 4 év alatt ér ide, azaz mondhatjuk azt, hogy távolsága 4 fényév. Hasonlóan, kiszámíthatjuk, hogy egy z vöröseltolódású galaxisból kibocsátott fény mennyi ideig utazott, ami a fényidőtávolság, vagy visszatekintési időből származó távolság definiálását teszi lehetővé.

Anélkül, hogy az olvasónak bármit is kellene erről tudnia, de persze szabadon utánanézhet, a távolság kiszámításánál a kozmológiai korrekcióban a következő értékek kerültek felhasználásra: H = 73.00 km/sec/Mpc, Ωmatter = 0.27, Ωvacuum =  0.73

(A kozmológiában egy vöröseltolódáshoz többfajta távolság típus tartozik. Erről Dr. Kiss László írt egy remek összefoglalót pár éve az MCSE oldalán.)

Aznap este sikerült lencsevégre kapni a gyönyörű M108-at, de megörökítettem még két aktív galaxist (AGN1), egy rádió tartományban csöndes kvazárt (RQQ), és egy kvazárt (QSO).

Had válaszoljak hát fiam kérdésére most tényleg egy mondatban. Ha az objektum elég fényes, akkor 8.7 milliárd fényévre is ellátok. A fény, amikor útjára indult onnan, a Föld még csak nem is létezett, és én ezt a fényt most rögzíthettem.

M51 (Örvény-köd) és az NGC5195

 m51-20140327-ttk

M51 (Örvény-köd) és az NGC5195

2014-03-27 – Göd – 90 x 55 sec light és 15 x 55 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera

M51-LRGB-20140427-TTK

M51 (Örvény-köd) és az NGC5195

2013-03-27 – Göd – 90 x 55 sec light és 15 x 55 sec dark

és

2014-04-27 – Göd – 62 x 55 sec R, 63 x 55 sec G, 54 x 55 sec B és 15 x 55 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera, Astronomik RGBL fotografikus szűrőszett

Ritkán szoktam ilyen kifejezéssel élni egy égi objektum esetén, de az M51 (NGC5194) az égbolt egyik ikonikus galaxisa. Egyszer érdemes lenne egy felmérést végezni, hogy a csillagászati könyvek mekkora százalékában szerepel a fotója. Amennyiben lesz egyszer időm, akkor végignézem a polcomon sorakozó nagymennyiségű könyvet, és elkészítem a saját statisztikámat. Nagy összegben mernék fogadni, hogy jelentős százalékról lehet szó. Arra is nagyobb összeget mernék tenni, hogy a nem kimondottan csillagászati érdeklődésű, de azért a tudomány iránt fogékony emberek közül a legtöbben már látták a fotóját. A galaxis bizonyosan igen előkelő helyet foglal el az amatőrcsillagász bakancslistán is. Egy objektum, ami a legtöbbünknél a látni kell, észlelni kell kategóriába tartozik. E fotó elkészítésének egyik fő mozgatórugója is ez volt. De azért volt ott más is.

A tavasz közeledtével a Nagy Medve (Ursa Major) csillagkép, és ennek részeként, a Göncölszekér egyre magasabbra emelkedik az esti égen. Kitűnő lehetőséget biztosítva, hogy megfigyelhessük azt a sok égi csodát, ami ebben és a környező csillagképekben található. Azért hangsúlyoztam ki a környező csillagképeket, mert az M51 nem a Nagy Medve csillagkép, hanem a Vadászebek (Canes Venatici) területén helyezkedik el. Azonban én mindig a Göncölszekér rúdjának a végétől (Éta UMA), arab nevén az Alkaid nevű csillagtól szoktam elindulni, a Vadászebek legfényesebb csillagának, a Cor Caroli-nak az irányába. Innen ugyanis alig 3.5 fokra található nagyjából az előbb említett egyenes mentén. Könnyen ráakadhatunk, mert már a 9×50-es keresőtávcsövemben is látható a 8.4 magnitúdós galaxis sejtelmes halvány pacaként. Tehát akár binokulárral is felkereshetjük megfelelően sötét ég alatt, de arra ne számítsunk, hogy már egy ekkora távcsővel is megcsodálhatjuk a spirálkarokat. Inkább kisebb halvány ködösség formájában fog megjelenni. Vizuálisan az én 10 cm-es távcsövemmel már látszik ködös kiterjedése. Az alakja határozott, de pereme beleolvad az égi háttérbe. Régebben sokat észleltem Ráktanyán egy 44.5 cm-es Dobson távcsővel, melyet Szitkay Gábor jólelkűségének köszönhetően használhattunk a hegyen. Ej, mennyi különleges mély-ég csodát megmutatott ott Bakos Gáspár nekem, miközben én változócsillagokat észleltem. De visszatérve az eredeti témához, emlékszem, hogy a sötét égen ebben műszerben miként pompáztak az M51 varázslatos spirálkarjai, és hogy látszott az egyértelmű összeköttetés a galaxis és társa között. Rendelkezzünk akármekkora műszerrel, könnyű azonosíthatósága miatt bátran ajánlom az égbolttal csak most ismerkedőknek a felkeresést, mert az önmagunknak való felfedezés örömét élhetjük át, még akkor is, ha nem mi vagyunk az elsők.

A galaxis felfedezője Charles Messier, akinek katalógusában az 51-es sorszámot kapta. Messier saját maga 1773. október 13-án talált rá az égbolton. Az NGC5195-re, az M51 társára, azonban csak évekkel később (1781) akadt rá Pierre Méchain. Ő Messier-vel közösen végezte az égbolt átfésülését üstökösök után kutatva, és katalogizálva azokat a mély-ég objektumokat, melyek összetéveszthetőek voltak a csóvás vándorokkal. Az ő műszereik még nem mutatták meg az objektum igazi arcát. Az csupán ködös foltokként jelent meg a távcsőben. William Parsons, ismertebb nevén Lord Rosse volt, aki felismerte spirális szerkezetét a XIX. század derekán. Ez az objektum volt a spirális ködök csoportjának elsőként megtalált képviselője.

m51-lord_rosse

Lord Rosse (William Parsons) rajza az M51-ről.

A XIX. században egészen a XX. század elejéig vita tárgyát képezte, hogy mik is pontosan ezek az objektumok és hol helyezkednek el. A kérdést végül 1926-ban Edwin Hubble döntötte el, amikor Cepheida változókat sikerült azonosítani eme spirális ködökben. Az említett változók periódus és fényesség relációját felhasználva megállapította, hogy bizony ezek a Tejútrendszeren kívül elhelyezkedő önálló távoli csillagvárosok, galaxisok.

Egy pillanatra álljunk itt meg. Kisfiam tett fel egyszer egy érdekes kérdést: Apa, meddig látunk el a távcsöveddel? Őszinte gyermeki kérdés, és nem tudtam egyetlen mondatban válaszolni. Megint az attól függ kezdetű mondattal láttam neki a magyarázatnak és igyekeztem rövidre és érthetőre fogni. Ez többé-kevésbé sikerült csak. Tényleg, milyen messze tekintünk akkor, amikor az M51-et beállítjuk a távcsőben?

Gondolhatnánk, hogy erre a tudomány egzakt választ ad napjainkban, amikor már közel 100 éve Hubble megállapította, hogy a galaxisok túl vannak a Tejútrendszer határain. Hiába vannak gyakran egymásra épülő távolság meghatározási módszerek a csillagászok kezében, erre nem tudunk tökéletesen pontos választ adni még ma sem. Az egyes módszerek némileg eltérő eredményeket adnak. Ezen módszerek tökéletesítése és azok kalibrációja folyamatos munkát ad a csillagászoknak, és a szakemberek meg is tesznek mindent, hogy megalkothassák a „kozmikus méterrudat”.

Valójában különböző távolságmérő rudak sokaságáról kell beszélni. Különböző távolságskálán más és más módszer használható. Szerencsés esetben kettő vagy több módszer átfed egy adott távolságot lehetőséget adva a módszerek, illetve távolságindikátorok pontosítására, kalibrációjára. Az egyik legalapvetőbb mérési eljárás a trigonometrikus parallaxis. Többször megmérve egy viszonylag közeli csillag pozícióját egy év folyamán azt tapasztaljuk, hogy az megváltozik. A csillag elmozdulni látszik a távolikhoz képest. Az elmozdulás ciklusa pedig pontosan egy év, ami alatt a Föld egyszer megkerüli a Napot. A Föld ugyanis egy nagyjából 300 millió kilométeres nagytengelyű ellipszis pályán mozog, és kissé más irányból nézünk a csillagot a pálya különböző pontjain. Az égi látszólagos elmozdulás szögét megmérve, a Nap és Föld távolságot ismerve, kiszámolható a csillag távolsága trigonometrikus alapismeretek birtokában.

parallaxis

Az évi parallaxis jelensége.

A csillagászatban a fényév helyett éppen ezért vezették be a parszek (pc) távolsági egységet. 1 parszek 3.26 fényév. Egy parszek (pc) távolságra van tőlünk az az objektum, melyből merőleges rálátás esetén a földpálya sugara éppen 1 ívmásodperc szög alatt látszik.

A módszernek az szab határt, hogy mekkora a legkisebb szög, amit még ki tudunk mérni. A Földön a légkör is akadályt gördít elénk, így 1989-ben pályára állították a Hipparcos űreszközt mely 120000 csillag parallaxisát mérte meg nagy pontossággal, és még további egymillió csillagról gyűjtött adatokat. A Hipparcos 0.001 ívmásodperc pontossággal tudott mérni. 2013 decemberében sikeresen felbocsájtották a Gaia űrszondát. Ennek az eszköznek 1 milliárd csillag pozíciójának megmérése és elmozdulásának detektálása lesz a feladata. A pontossága 0.000001 ívmásodperc. Ezerszer nagyobb, mint a Hipparcos szondáé volt. Pár éven belül rengeteg pontos távolság adat birtokában leszünk a Tejútrendszerben található csillagok esetében. A mérési módszerek „Szent Grálja” ez, ugyanis pusztán szögmérés, és nem egyéb asztrofizikai összefüggéseken, relációkon illetve tapasztalati összefüggéseken alapszik.

Ahhoz, hogy galaxisok távolságát megmondhassuk, további módszereken keresztül vezet az út. A teljesség igénye nélkül megemlítenék párat.

Itt van például a már fentebb is említett Cepheida változók periódus és abszolút fényesség relációja. A periódusból megkapható az abszolút fényesség. Ennek és a mért látszólagos fényesség birtokában a távolság megmondható. Ehhez csak ilyen változókat kell találnunk egy távoli galaxisban. Még a mai műszerekkel sem egyszerű csillagokra bontani a távolabbi galaxisokat. Van a Cepheida pulzáló változókkal egy másik probléma is. Ezek nagytömegű, és ezért rövid életű csillagok egyik fejlődési fázisát képviselik. Így csak olyan galaxisokban találhatunk ilyeneket, melyekben még ma is aktív csillagkeletkezés zajlik. Ezért például elliptikus galaxisokban erre nem sok esélyünk van. Itt más módszerhez kell folyamodnunk. Ebben az esetben a Cepheida változóknál kisebb tömegű, és ezért hosszabb életű csillagok egy késői fejlődési stádiumát jelentő RR Lyrea változócsillagok után kell kutatnunk. Az RR Lyrae váltózó csillagok a magjában már javában folyik a hélium szénné alakítása. Pulzációs periódusuk és abszolút fényességük között pedig reláció áll fent, így tökéletesek távolság meghatározására, akár csak a Cepheida változók. Az RR Lyrae típusú csillagok nem olyan fényesek, mint a Cepheida típusúak, így nehezebb azonosításuk, csak közelebbi elliptikus galaxisok esetén használhatóak.

A szupernóvák azonban roppant fényesek és messzire ellátszanak, és az Ia típusúak abszolút fényessége az őket létrehozó fizikai folyamatoknak köszönhetően állandó. Leegyszerűsítve nincs más hátra, mint a látszólagos fényességet megmérni, és már meg is tudtuk a távolságot. Ehhez azonban el kell csípnünk egy ilyen robbanást. Ezért (is) örülnek a csillagászok minden egyes extragalaktikus szupernóvának. Ezek ugyanis nagyban hozzájárulhatnak egy galaxis távolságának pontosításához.

Egy másik módszer a Tully-Fisher reláció használata (elliptikus galaxisok esetén nem használható, csak spirális és lentikuláris galaxisoknál), mely egy tapasztalati összefüggés a galaxisok luminozitása és a galaxis rotációs görbéjének amplitúdója között. A részletekbe nem nagyon elmerülve, arról van szó, hogy a viszonylag könnyen mérhető galaxison belüli sebességekből meghatározható a galaxis luminozitása, és ebből pedig távolsága. Ugyanis, a galaxis csillagainak dinamikáját a galaxis tömege határozza meg, mely pedig összefüggésben áll annak luminozitásával. Az így kapott luminozitást felhasználva a látszólagos fényesség ismeretében a távolság már meghatározható.

Elliptikus galaxisok esetén is van azonban egy tapasztalati törvény, melyet Faber-Jackson relációnak neveznek. Itt is az a lényeg, hogy valami viszonylag könnyen mérhető tulajdonságból következtetünk a galaxis távolságára. Az elliptikus galaxisok központi csillagainak látóirányú sebesség diszperziója spektroszkópiai módszerekkel (Doppler-effektus) meghatározható. Majd a Faber-Jackson tapasztalati relációt felhasználva megkapjuk a galaxis abszolút fényességét. Ebből és a látszólagos fényességből már meghatározható az elliptikus galaxis távolsága.

A felsorolásom közel sem teljes, és valójában csak egy rövid betekintést szerettem volna nyújtani a módszerek tárházába. Léteznek még további megfigyeléseken alapuló tapasztalati összefüggések is, illetve műszereink működéséből fakadó módszerek, például a felületi fényesség fluktuáció módszere, melyek felhasználhatóak a távolság meghatározására bizonyos esetekben. A téma iránt érdeklődök, bőséges szakirodalmat találhatnak az interneten, akár magyar nyelven is.

Ha több módszer is van, és ebből pár átfed közös tartományokat, akkor mégis mire fel a bizonytalanság? A legtöbb módszernek magának is van egyfajta bizonytalansága, hibája. A Cepheida változók esetén ez 7-15% attól függően, hogy milyen messze van a galaxis. Az Ia szupernóvák módszere az egyik legpontosabb, de itt is 5%-os hibával kell számolni. Mivel a legtávolabbi mérésekre használható módszerek a közelebbi távolságokra működőkre épülnek, azokhoz kalibráltak, így a statisztikai és szisztematikus hibák egymásra rakódnak. Nem kell hát csodálkozni azon, hogy a csillagászatban ritkán érhető el az a pontosság, mint a tudomány más területein.

Mielőtt a távolság kérdését lezárnám, büszkeséggel had említsek meg egy tanulmányt, mely sok magyar kutató nevével jegyzett: J. Vinko, K. Takats, T. Szalai, G. H. Marion, J. C. Wheeler, K. Sarneczky, P. M. Garnavich, J. Kelemen, P. Klagyivik, A. Pal, N. Szalai, K. Vida: Improved distance determination to M51 from supernovae 2011dh and 2005cs.

A szerzők az M51-ben történt két szupernóva robbanás alapján határozták meg a galaxis távolságát. Az egyik szupernóva 2005-ben (SN 2005cs) míg a másik 2011-ben (SN 2011dh) tűnt fel ebben a csillagvárosban. Ők eredményül 8.4 +/- 0.7 Mpc, vagyis 27.4 millió +/- 2.3 millió fényév értéket kaptak. Ez elég jól egyezik más módszerekből kapott távolságadatokkal. Meg kell jegyeznem azonban újfent, hogy más és korábbi módszerek eredményei ehhez az értékhez képest +/- 10 millió fényéves tartományban szórnak. Az M51 példáján keresztül is látszik, hogy a távolság meghatározása keményebb dió a csillagászatban, mint az ember azt elsőre gondolná.

Visszatérve az eredeti kérdésre, fiamnak ebben az esetben azt mondanám, kerülve a fenti hosszas eszmefuttatásokat, hogy az M51 nagyon durván 27 millió fényévre van. Ily messzire tekintettem aznap hajnali egy előtt nem sokkal. Ez irdatlan nagy távolság, azonban közelinek számít a látható világegyetem méreteihez képest. Szinte csak a nem túl távoli kozmikus szomszédhoz kukkantottam át.

A „szomszédban” pedig két ütköző galaxis, az M51 (NGC5194) és az NGC5195 látvány fogadja az észlelőt. Az M51-et találó néven Örvény-ködnek vagy Örvény-galaxisnak is nevezik. Mérete, a távolság adatok függvényében, valahol 50 és 75 ezer fényév körül lehet. Tömegét 160 milliárd naptömegre becslik. A két roppant határozott markáns spirálkar a központi régióból indul ki. Felépítése miatt a grand design spiral galaxy csoportba sorolják. (Igazán jó magyar fordítást még mindig nem találtam.) Ha alaposan szemügyre vesszük ezeket a karokat, akkor látható, hogy helyenként kissé torzultak, és igen aktív csillagkeletkezés zajlik bennük. Ezek a kisebb, és a találkozásnak köszönhetően rendkívül deformált NGC5195 gravitációs hatásának köszönhetőek. A két galaxis deformitásának mértéke alapján arra lehet következtetni, hogy az M51 jóval nagyobb tömegű a partnerénél. Az ütközés körülbelül fél milliárd éve kezdődött meg. A kisebb galaxis éppen távolodik tőlünk, miután keresztülhatolt az M51 látóirányunkra merőleges korongján. A gravitációs kapocsnak köszönhetően még visszatér majd, és megpróbál újra átkelni az M51 galaktikus síkján. Néhány 100 millió év múlva, és pár ilyen keringővel később az összeolvadás befejeződik majd.

De vizsgáljuk meg egy kicsit alaposabban mi is zajlik ebben a két galaxisban. Korábbi cikkeimhez hasonlóan itt is az elektromágneses spektrum különböző tartományaiban készült felvételeket hívom segítségül.

m51_xray

Az M51 (NGC5194) és az NGC5195 a röntgen tartományban – Chandra űrtávcső

A Chandra űrtávcső felvételén megfigyelhetőek a fekete lyukkal rendelkező kettős rendszerek (apróbb pöttyök), illetve a galaxisok magjában található nagytömegű központi fekete lyukak által kibocsájtott röntgensugárzás (két nagy fehér folt). Az, hogy az M51 magjában egy szupermasszív fekete lyuknak kell lennie, már az optikai tartományban készült felvételek alapján is sejthető. A mag roppant fényes. A saját felvételem készítésekor is úgy igyekeztem beállítani a kamera paramétereit, hogy a mag ne égjen be durván. Egy Seyfert II típusú galaxisról van szó, mely aktív galaxis maggal (Active Galactic Nucleus – AGN) rendelkezik. Ezen magok által kisugárzott nagymennyiségű energia, pedig egy ott elhelyezkedő szupermasszív fekete lyuk jelenlétével magyarázható. A képen látható halványabb kiterjedt foltok pedig felhevült gázfelhők, melyek a lágy röntgentartományban sugároznak.

m51-uv

Az M51 (NGC5194) és az NGC5195 ultraibolya tartományban – GALEX felvétele

Az ultraibolya tartományban készült felvételen jól látszik a spirális galaxisban nemrég megszületett nagytömegű forró kék csillagok sugárzása. Csillagászati értelemben ezek igen rövid ideig, mindössze pár millió évig élnek. Létezésük a most is zajló igen intenzív csillagkeletkezésnek a biztos jele. Ahogy fentebb is írtam, az M51-ben a heves csillagkeletkezés az NGC5195 gravitációs hatásának köszönhető. Érdemes megfigyelni, hogy az NGC5195 csak egy halvány vöröses foltocska. Szinte alig látszik. Ebben a galaxisban nem zajlik csillagkeletkezés. Ennek oka, az ehhez szükséges anyag hiánya, melyre két magyarázat kínálkozik. Valaha formás elliptikus galaxis volt, s mint az ilyenekben a csillagok gyártása már régen leállt. A másik lehetséges magyarázat, hogy az ütközésben elvesztette az ehhez szükséges készleteit.

m51-infra

Az M51 (NGC5194) és az NGC5195 az infravörös tartományban – Spitzer űrtávcső

Végezetül vessünk egy pillantást a Spitzer űrtávcső infravörös tartományban készült felvételére. A kék szín az idősebb hidegebb csillagok infravörös sugárzását jelöli. Míg a vörös a csillagászati értelemben meleg csillagközi por sugárzását jelöli. Így a vörös területek reprezentálják azokat a területeket, ahol a csillagok következő generációja fog megszületni az M51-ben. Itt is jól látható, hogy az NGC5195-ben már nincsenek csillagok keletkezésére alkalmas környezetek.

Ha nekem is szabad egy hasonlattal élnem, akkor az M51 és az NGC5195 olyan, mint Stan és Pan. Meglepően különböző karakterek, de együtt igen látványosat alakítanak.

2014. március 26/27. éjszaka

Már hetek óta vártam a megfelelő derültet, mígnem 2014. március 26-án 21 óra környékén kiderült. A felhők elvonultak végre, és csillagos eget hagytak maguk mögött. Villámgyorsasággal és hatalmas lelkesedéssel pakoltam ki a távcsövemet. Mire mindent beállítottam, és a távcső már csak a bevetésre várt, a semmiből megint felhők jelentek meg. Olyan érzésem volt, hogy mind a négy égtáj felől támadnak, majd a fejem felett összezáródott a felhőpaplan. Csalódottságom határtalan volt, ugyanis ezen a héten nem ez volt az első alkalom. Pár nappal korábban már alkalmam volt összerakni, majd 20 perccel később szétszedni a felszerelést. Aznap viszont nem így tettem. A házba beballagva hosszasan szemléltem a műholdfelvételeket. Elhatároztam, hogy várok. Bár egy roppant hosszú és fárasztó munkanap volt mögöttem, de nem adtam fel. Olvasással ütöttem el az órákat, miközben néha kikandikáltam. Éjfél után a felhők, ahogy jöttek, el is mentek. Az ég már közel sem volt olyan nagyszerű, volt valami furcsa opálossága. Vakargattam a fejem, mert az előre eltervezett célpont fotózása már kútba esett. Túl halvány volt ahhoz, hogy ilyen égen megpróbálkozzam vele. A Göncölszekér éppen a zenit közelében tartózkodott. Jött hát az elhatározás. Egyszer úgyis szerettem volna egy elfogadható fotót készíteni az M51-ről. Ott volt az a bizonyos amatőrcsillagász, vagy asztrofotós bakancslista. Az Örvény-köd egy látványos, viszonylag fényes és asztrofizikai szempontból is érdekes objektum. Most pedig a zenit közelében szinte kínálta magát hívogatóan. Ráfordítottam hát a távcsövet, készítettem pár próbafelvételt. Az ég nem volt igazán jó, ez a képeken is látszott, de hajlandó voltam kompromisszumot kötni a cél érdekében, és egy kicsit visszavettem az expozíciós időből. Megkezdtem a felvételek készítését, miközben azon töprengtem, mit is kellene majd írni erről a nagyszerű galaxisról és társáról. 90 darab nyers kép elkészítését adta nekem a sors, mert azután lehelet finom fátyolfelhők úsztak be az egemre.

Úgy érzem mégsem volt hiábavaló a virrasztás, mert jutalmam egy újabb megörökített nagyszerű objektum lett. Saját Messier katalógusom újabb taggal gyarapodott. Ez a kép közel sem biztos, hogy a végső változat. Talán exponálok még hozzá hosszabban is, talán készítek LRGB változatot. De annyi más érdekes látványt tartogat még az égbolt, így lehet, csak később térek vissza rá. Meglátjuk. Talán jöhetne a következő pont a bakancslistán.

2014. április 27/28. éjszaka

20 nap telt el úgy, hogy egyáltalán észlelésre alkalmas lett volna az éjszakai égbolt lakóhelyemen. Ezen a vasárnapon viszont végre szép volt az idő. Kellemesen sütött a nap, lehetett kertészkedni és a gyerekekkel játszani a kertben. A szél elég intenzíven fújt. Mókás volt, ahogy kislányom haját kócolta, de azért titkon reménykedtem, hogy napnyugtára elcsendesedik, az ég pedig derült marad.

Mivel már nem sötétedik korán, így nyugodtan csináltam végig az esti szertartást a három gyermekkel. Miután mindenki ágy közeli helyzetbe került, kipakoltam. Ujjongtam, mert derült maradt, és a szél is elállt. Mire azonban teljesen besötétedett, az átlátszóság durván leromlott. A nyugodtság korábban sem volt valami fergeteges. Nem volt más választásom, mint a pocsékká vált égen keresni egy célpontot megfelelő magasságban, és reménykedni benne, hogy a helyzet nem lesz rosszabb. Ekkor ötlött a fejembe, hogy talán itt lenne az ideje színeket adni az egy hónappal korábban készült M51 felvételemhez. Bármely más esetben, ha csak úgy este 11 körül kitekintettem volna az égre, akkor talán a felszerelést sem pakolom ki. Az ínséges idők után viszont igen elszánt voltam. Végül 62 darab R szűrős, 63 darab G szűrős és 53 darab B szűrős felvételt készítettem. Mindegyik expozíció 55 másodperces volt.

Az éjszakának több tanulsága is volt:

  • Végre nem kellet masszívan felöltözni. A 10 fok körüli hőmérsékletet szinte melegnek éreztem a korábbi hónapok éjszakáihoz képest.
  • Sose feledd megjelölni, és felírni a kamera állását egy felvétel után! Ez korábban elmaradt, és a végső képet nagyon meg kellett vágnom, mert az RGB felvételek elforogtak az L-hez képest. Erre mostmár valami alkalmatosságot is fogok eszkábálni.
  • A harmatsapka sem véd a végtelenségig. Hajnalra minden úszott, és a távcső objektívje elkezdett párásodni. Ezért készült összesen csak 53 darab B szűrős felvétel.
  • 2 óra alvás után nem túl vidám végigdolgozni egy napot.

Tanulságok ide, tanulságok oda. Körülmények ide, körülmények oda. Most azt gondolom, hogy megérte az élmény. E sorok írása közben már kipihentem egy kissé magam, így megint izgatottan várom az újabb derült eget.

Kívánok derült eget nektek is!