NGC2442 – A kobra és a titkai

NGC2442-LRGB-20180115-T30-300s-TTK

NGC2442 (balra) a PGC21457 (jobbra) társaságában

iTelescope.net T30 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI-PL6303E CCD kamera

A felvételek 2016-02-05 és 2018-01-18 között készültek – Siding Spring Observatory – 34 x 300 sec L, 10 x 300 sec R,G,B

(Kép orientációja: észak alul, kelet jobbra) 

Mindig is lenyűgözött az NGC2442 morfológiája, így azóta rajta volt a digitális észlelési listámon, amióta csak belevágtam asztrofotózásba. Tekintve, hogy ez a spirális szerkezetű galaxis a déli Repülő Hal csillagkép (Piscis Volans, röviden ma már csak Volans) területén található, így hazánkban sosem emelkedik a horizont fölé. Ezért döntöttem úgy, hogy távcsőidőt bérlek az iTelescope-nál. Az ausztráliai obszervatóriumuk (Siding Spring Observatory) közel fél méter átmérőjű tükrös távcsövét választottam a múltbéli tapasztalatok alapján. Megjegyzem, hogy a cirkumpoláris (mindig a helyi horizont fölött látható) csillagrendszer még ott is csak kb. 51° magasságba emelkedik maximum, így igyekeztem a delelés környékén fotózni. Előre elkészítettem a script-eket, így a felvételek készítését teljesen automatikusan hajtotta végre a távcső. Nem valami nagy ördöngösség ez, a webes felületükön pár kattintással össze lehet rakni. Kell a célpont neve vagy koordinátája. Meg kell adni az expozíciók hosszát, azok darabszáma, monokróm CCD esetén a használni kívánt szűrők. Egyéb beállításokra is van lehetőség. Ilyen például a fókuszálás gyakorisága (bár ezt magától is rendszeresen elvégzi, ha változik a hőmérséklet, vagy szűrőváltás történik), legyen-e vezetés (a mechanikák elméletileg maguktól is képesek vezetés nélkül is 5-10 percen keresztül követni a célpontot az égen), történjen-e bolygatás (dithering) a felvételek között, stb. Belegondolva, nem nagyon van ez másként a saját távcsövünk esetében sem, azok is félig meddig robotok ma már. A különbség csupán annyi, hogy az iTelescope.net esetében szolgáltatást veszünk igénybe. Nekem ez kényelmes, praktikus, és mivel távoli hozzáférésről van szó (nincs utazás!), így időt is takarít meg. De persze döntse el mindenki saját maga!

A déli pólushoz közeli NGC2442 galaxis, az ausztrál égen cirkumpoláris Repülő Hal (Volans) csillagképben. Forrás: ESO, IAU, Sky & Telescope

A képhez a felvételek közel 2 éves időintervallumban készültek. Meg kell mondjam, nem így terveztem. Történt ugyanis, hogy 2016 februárjába elszúrtam a koordináták megadását. Teljesen banális módon nem vettem figyelembe a téglalap alakú látómező égi tájolását. A felvételre nem pontosan az, továbbá nem pontosan úgy került, ahogy azt én elképzeltem. A saját balgaságom annyira felbosszantott, hogy inkább belevágtam az NGC3201 gömbhalmaz fotózásába, mely a következő célpont volt a sorban. Az expozíciók eredményét azonban nem töröltem le.

2017/2018 tele nem volt bőkezű a derült, mély-ég megfigyelésre is alkalmas éjszakák tekintetében. Saját távcsövem már több hónapja arra várt, hogy újra kitoljam az udvarra. Januárban eszembe jutott a „2016-os fiaskó”. Felvetődött bennem a folytatás gondolata. A korábbi bosszúság már a múlt halványuló emléke volt csupán. Megnéztem, hogy mit is lehetne kihozni az adott helyzetből. Arra jutottam, hogy egyszerűen majd más lesz a kivágás. Ennek felismeréséhez 1 perc sem kellett. Nem is értettem, miért reagáltam anno túl a dolgot. Az NGC2442 és a PGC21457 galaxisok úgyis rajta lesznek a képen, és amúgy is ezek köré szerettem volna a látványt „szervezni”. Akkor meg? Nem változtattam a programon, hagytam lefutni ugyanazokkal a koordinátákkal, csupán a színszűrős felvételek elkészítését adtam hozzá. 2018 áprilisának utolsó hetében pedig végre lett időm, hogy az egyik este feldolgozzam a felvételeket.

Közelebbi törpe vagy távolabbi óriás?

Amennyiben felütünk néhány régebben kiadott könyvet, vagy egy-egy régebbi cikket elolvasunk az interneten, akkor azzal találkozunk, hogy az NGC2442 távolsága 50-54 millió fényév. (Az interneten a szerzők gyakorta egyszerűen csak átveszik az adatokat egymástól, így akár még friss cikkekben is előfordulnak ezek a számok). Ezek a régebben elfogadott értékek javarészt még a múlt században végzett, az úgynevezett Tully-Fisher relációt felhasználó méréseken alapultak (például R. B. Tully: Nearby Galaxy Catalog, 1988).

A Spirál és lentikuláris galaxisoknál használható módszer lényege nagyon röviden annyi, hogy a viszonylag könnyen mérhető galaxison belüli sebességekből meghatározható a galaxis luminozitása, és ebből pedig távolsága. Ugyanis, a galaxis csillagainak dinamikáját a galaxis tömege határozza meg, mely pedig összefüggésben áll annak luminozitásával. Az így kapott luminozitást felhasználva a látszólagos fényesség ismeretében a távolság már meghatározható. (Elliptikus galaxisok esetén a Tully-Fisher reláció nem használható.)

Időközben a műszerek és a vizsgálati módszerek azonban jelentősen fejlődtek. Így például Tully és munkatársai is új katalógust publikáltak 2009-ben, melyben az NGC2442 távolságát is felülvizsgálták. Újabb eredményeik alapján 70 millió fényév (21.5 Mpc) a galaxis távolsága.

Pár évre rá a sors újabb „mérőpálcát” adott a csillagászok kezébe. Az Ia típusú szupernóvák úgynevezett sztenderd gyertyák a csillagászatban. De mik is ezek az objektumok? Alapvetően két elképzelés uralkodik erről a csillagászatban Az egyik vezető elmélet szerint a robbanásra akkor kerül sor, amikor a fehér törpe kísérőjétől elegendő anyagot gyűjtött ahhoz, hogy tömege átlépje a kritikus Chandrasekhar-határt (1.44 naptömeg). A másik elmélet szerint két fehér törpe kering egy kettős rendszerben, egymáshoz folyamatosan közeledve. Míg végül egymásba spiráloznak, és ekkor történik az Ia típusú szupernóva-robbanás. Sokáig úgy tűnt, hogy a megfigyelések majd eldöntik a kérdést, de egyre inkább valószínű, hogy egyetlen modell nem írja el ezeket, feltételezhetően legalább két altípusból állnak. (Akit a téma részletesebben is érdekel, annak a Magyar Csillagászati Egyesület hírportálján megjelent ismeretterjesztő cikket ajánlom a figyelmébe.

Mivel roppant fényesek, így igen-igen távoli galaxisokban is megfigyelhetők. Mindenféle típusú galaxisban elfordulnak. Ráadásul, csillagászati értelemben viszonylag gyakori jelenségről van szó, mivel jellemzően egy-egy Tejútrendszer méretű galaxis életében átlagosan 1000 évente következik be Ia típusú szupernóva-robbanás. Figyelembe véve a megfigyelhető galaxisok roppant nagy számát, bizonyos megfontolások szerint havonta (nagyságrendileg) 12+ ilyen robbanást kell látnunk. Természetesen, amennyiben megfelelő rendszerességgel képesek vagyunk pásztázni az egész égboltot. De mitől sztenderd gyertyák, és hogyan használhatók a távolság kiszámítására? Az Ia típusú szupernóvák maximális fényessége nem egyezik meg teljesen. Azonban, Mark Phillips, Mario Hamuy több közreműködő kutatóval együtt kimutatta, hogy a kisebb maximális fényességűek gyorsabban fényesednek fel, majd gyorsabban el is halványodnak, míg a fényesebbek lassabban halványodnak (Phillips relationship). Maximális fényességük és fénygörbéjük karakterisztikája között kapcsolat van tehát. Nem kell mást tenni, mint a halványodás lefolyását megfigyelni (mennyit halványodott az első 15 napban), és ebből (egyéb korrekciók után) már kellő pontossággal meghatározható az abszolút fényességük. (Az abszolút fényesség megmutatja, hogy milyen fényes lenne az adott objektum, ha az 10 pc távolságra lenne tőlünk.) A látszólagos fényesség és az abszolút fényesség ismeretében a távolságuk pedig már kiszámítható. (Azonos abszolút fényesség esetén, a látszólagos fényesség a távolság négyzetével fordítottan arányos.)

Némileg árnyalja a képet, hogy a módszer a „normál” Ia típusú szupernóvák esetén működik csak. Az esetek 70%-ban tehát használható, de vannak „renitensek” az Ia-k között, akik jól láthatóan kissé másként is viselkednek. De, ahogy fentebb is utaltam rá, egyre világosabban látszik az, hogy az Ia típusra nem tekinthetünk többé teljesen homogén halmazként. Ez persze nem ássa alá magának a módszernek a használhatóságát. A „normál” Ia típus tagjai továbbra is hatalmas messzeségből látszódó, jól meghatározható abszolút fényességű objektumok. Megfelelő sztenderd gyertyák, afféle „kozmikus méterrudak”.

Igen, jól sejti az olvasó. Az NGC2442-ben is sikerült ilyen robbanást elcsípni.  Libert A. G. Monard (ismertebb néven Berto Monard) 2015 márciusában fedezte fel, a később SN2015F-ként katalogizált Ia típusú szupernóvát. Monard az AAVSO prominens tagja, ismert változócsillag észlelő (MLF névkóddal). Igaz, hogy amatőrcsillagász (vagyis nem csillagászként végzett), azonban tagja a Nemzetközi Csillagászati Uniónak is. Az SN2015F alapján a galaxis távolsága (a használt szűrők függvényében) 69-71 millió (21.2-21.8 Mpc) fényévnek adódott. Ahogy a ezt a mérést taglaló cikk szerzői, R. Cartier és munkatársai is megjegyzik, ez igen jó egyezik Tully 2009-es eredményeivel.

A Changsu Choi and Myungshin Im (Seoul National University) készítette animáció az SN2015F feltűnését és elhalványodását mutatja be. A szerzők szintén az iTelescope egyik műszerét vették igénybe tudományos megfigyeléseikhez. Céljuk a szupernóva fényességváltozásnak nyomon követése volt.

Adam G. Riess és munkatársai az NGC2442 távolságát egy harmadik, a Cepheida változócsillagokon alapuló módszer segítségével is meghatározták. Henrietta Swan Leavitt még 1912-ben felfedezte fel a Cepheida-k fényváltozási periódusa és abszolút fényessége között fennálló kapcsolatot, miután a Nagy Magellán-felhő Cepheida változóiról készült több száznyi fotólemezt áttanulmányozta. E csillagok szintén sztenderd gyertyának tekinthetünk, vagyis ezek is jól használhatók távolságmérésre. A Cepheida periódusából adódik, annak abszolút fényessége. Ennek, és a mért látszólagos fényességnek a birtokában a távolság már meghatározható. A kutatók valójában a Hubble-állandó értékének bizonytalanságát igyekeztek leszorítani. Olyan galaxisok voltak a célpontjaik melyben korábban már detektáltunk Ia típusú szupernóvát, továbbá megfelelnek annak a kritériumnak, hogy a Hubble űrtávcső képes ezeket csillagokra bontani. De legalábbis a Cepheida változóik azonosíthatók. Reiss és kutató társai 65.5 millió fényévben (20.1 Mpc) határozták meg az NGC2442 távolságát. Ez a csillagászatban még mindig elég jó egyezésnek számít a fenti három adattal.

Most már válaszolhatunk a fejezet címében szereplő kérdésre. Látszólagos méretére 5.5 x 4.9 ívpercet ír a NED (NASA/IPAC Extragalactic Database), azonban a SIMBAD (SIMBAD Astronomical Database) az infravörös megfigyelések alapján 6.2 x 5.4 ívpercet közöl. Ezekkel az értékekkel, illetve a fent felsorol három távolságadattal számolva a galaxis átmérője 100-130 ezer fényév körül lehet. A felvételen tehát egy a Tejútrendszerünkhöz hasonló, nagyobb méretű spirál galaxis látható.

Az NGC2442 megjelenéséről, avagy megannyi nyitott kérdés

NGC2442-LRGB-20180115-T30-300s-TTK-label

Az NGC2442 mellett a felvételemen látható három fényesebb galaxis. A háttérben még több érdekes galaxis is megbújik, de ezekről a cikkben nem teszek említést.

(Kép orientációja: észak alul, kelet jobbra)

Az NGC2442 kampóra emlékeztető formájára már felfedezője, John Herschel is utalt. Később aztán a csillagrendszerre akasztották a Húskampó galaxis elnevezést. Jómagam sokkal jobban kedvelem azt a hasonlatot, ami a galaxist áldozatát üldöző (PGC21457) kobrának tekinti. A képet én is ennek megfelelően forgattam el, vágtam ki. Persze bárki bármi mást is láthat benne, és ha esetleg mindössze csak magát a galaxist, az is teljesen rendjén van.

Az NGC2442 látványos megjelenését kétségtelenül a külső deformált spirálkarjainak köszönheti. Belül a spirál karok a galaxis centrumát igen szorosan ölelik körbe. Ezzel olyan benyomást keltve, mintha óriási északkeleti-délnyugati orientációjú küllője lenne a csillagrendszernek. Igaz, hogy az NGC2442 küllős spirál galaxis, azonban a valódi küllő csak 66 ívmásodperc hosszú, és keleti-nyugati irányban döfi keresztül a magvidéket. Ha már az apró struktúráknál tartunk, akkor megemlítendő, hogy a magot elliptikus alakban molekula felhők és csillagkeletkezési régiók veszik körbe (circum-nuclear ring). Ennek az ellipszisnek a nagytengely körülbelül 12.5 ívmásodperc, orientációja pedig megegyezik a küllőjével.

NGC_2442-HST-1-740px

A Hubble űrtávcső felvétele az NGC2442-ről, mely a saját fotómnál is jobban mutatja a centrum körüli vidéket.

Felhívnám az olvasó figyelmét a magtól srégen jobbra lent lévő háttér galaxisra, melyet az NGC2442-őn keresztül láthatunk. Meglepő ugye, hogy ennyire átlátszók a galaxisok? A figyelmesebbek a saját felvételemen is felfedezhetik ezt, bár ott közel sem ennyire szembetűnő. Én el is siklottam volna felette, ha korábban már nem láttam volna ezt a fotót. Egyszerűen csak az NGC2442 struktúrájának részeként tekintettem volna rá. Aki nagyon szemfüles, az több ilyet galaxist is találhat a Hubble fotóján.

Forrás: NASA és ESA

A küllő végéből kiinduló két kar az első 2 ívpercet követően teljesen aszimmetrikussá válnak. Az északi elnyúlt kar a markánsabb. Érdemes megfigyelni, hogy a prominens porsávok miként ágaznak el benne, és hogy kifelé tartva miként vesz 90 foknál is „élesebb kanyart”. A déli kar már korántsem ennyire karakteres, bár szélesebb. Itt a porsávok pedig roppant kaotikus mintázatot mutatnak. Ez a kar kívül 180 fokban fordul vissza, majd egyre kevésbé feltűnő jelenség.

De mi ennek a különös aszimmetriának az oka? Minek köszönheti ez a galaxis különös megjelenését?

Az NGC2442 az LGG 147 kompakt galaxiscsoport legnagyobb tagja. A csoporthoz még vagy egy tucatnyi kisebb galaxis tartozik. Teljesen kézenfekvő ötlet, hogy a csoport valamelyik másik galaxisát gyanúsítsuk meg azzal, hogy valamikor a múltban megközelítette az NGC2442-őt. Ilyen közeli találkozók alkalmával a két galaxis közötti gravitációs kölcsönhatás közben fellépő árapályerők erősen megtépázzák a résztvevő galaxisokat. Ezek az erők akár teljesen el is torzíthatják a galaxisok eredeti alakját. Csillagjaiknak egy része szétszóródhat a galaxisok közötti űrben. De hasonló sorsra juthat a bennük lévő intersztelláris médium is akár. Az árapály erők azonban nem csupán pusztítani képesek, de teremthetnek is. A gázfelhőkben olyan lökéshullámok keletkezhetnek, melynek hatására megindul azok csillagokká tömörülése. Felfokozott csillagkeletkezés veheti kezdetét a galaxisok egyes területein.

Chris Mihos és Greg Bothun 1997-ben tették közzé tanulmányukat melyben az NGC2442 megfigyelhető tulajdonságaiért a PGC21457 (AM 0738-692) galaxist tették felelőssé. Ha megnézzük eme utóbbi csillagrendszert, akkor valóban annak is szemmel láthatóan torzult az alakja. Valamit szemmel látni nem feltétlenül elég! Alapos morfológiai és kinematikai vizsgálatnak vetették alá az NGC2442-őt. Illetve, numerikus szimulációkat futtattak. Modellezték, ahogyan a két galaxis megközelíti egymást, kölcsönhat, majd eltávolodik egymástól. Találtak is olyan megoldást, ami az NGC2442 legtöbb tulajdonságát egészen jól megmagyarázta. Arra a következtetésre jutottak, hogy a találkozóra valamikor 150-250 millió évvel ezelőtt kerülhetett sor. Továbbá, a modelljük szerint az északi kar kialakulásában sokkal inkább a két galaxis közötti gravitációs kölcsönhatás játszotta a fontosabb szerepet, mintsem a spirál galaxisok karjait megformáló sűrűséghullám. Nem is klasszikus értelemben vett spirálkar tehát, hanem úgynevezett árapály-csóva (tidal tail). Amennyiben valóban erről van szó, az jól megmagyarázza a prominens porsáv létét, a felfokozott csillagkeletkezést, és e terület különös színképprofilját. A déli kar sokkal diffúzabb a gáz itt kevésbé tömörült össze.

A karok kinézete, kinematikája egyaránt a randevú históriáját mesélik el. Mikor a PGC21457 megközelítette az NGC2442-őt, akkor korongjának hozzá közelebbi oldalán az árapályerők nyíróhatása igen jelentős volt, igy a két galaxis közötti ideiglenesen kialakuló árapály-híd (tidal bridge) csillagai és gázfelhői hamar szét is szóródtak. Ezzel ellentétben a korong túloldala valamivel enyhébb, de még mindig elég effektív árapályhatásnak volt kitéve. Így itt egy sokkal koherensebb árapály-csóva alakult ki. A szimuláció szerint a kis galaxis az NGC2442 déli részét közelítette meg a legjobban. Mivel a korong külső része mára szignifikánsan elfordult, így ez a pont átkerült az északkeleti részre (a Földről tekintve a galaxisra). A két szerző még arra is jóslatot adott, hogy az NGC2442 és a PGC21457 nagyjából 3 milliárd év múlva egy végső találkozás folyamán összeolvad majd.

Az NGC2442 és a PGC21457 (AM 0738-692) galaxisok kölcsönhatását modellező numerikus szimuláció képkockái. Forrás: Chris Mihos és Greg Bothun

Az NGC2442 és a PGC21457 (AM 0738-692) galaxisok kölcsönhatását modellező numerikus szimuláció vizualizációja. Forrás: Chris Mihos és Greg Bothun

Chris Mihos és Greg Bothun modellje látszólag választ ad a feltett kérdésre. Van azonban némi bökkenő. Először is a PGC21457 nem mutatja egyértelmű jelét annak, hogy ő lenne a tettes. Nemhogy ez a galaxis nem, de semelyik sem az NGC2442 környékén. Természetesen lehet, hogy a lövés eldördült, de akkor kellene lennie füstölgő puskacsőnek is. Egyelőre ilyet nem találtak a csillagászok. Találtak azonban valami egészen mást.

A századforduló környékén zajlott a HI Parkes All Sky Survey (HIPASS) projekt. Célja a semleges hidrogén feltérképezése volt a 21 cm-es hullámhosszon. Korábban nem volt olyan jellegű program, ami ezen a hullámhosszon a teljes déli égboltot lefedte volna. A felmérés kiterjedt egészen az északi ég +25 deklinációig. Ehhez az ausztráliai 64 méter átmérőjű Parkes rádiótávcsövet, vagy becenevén „A Tányért” használták a csillagászok. A projekt egyik legérdekesebb felfedezése a HIPASS J0731-69 gázfelhő az NGC2442 közelében. Kinematikáját tekintve leginkább egy diffúz gázáramláshoz hasonlít. Az objektumban egyetlen csillag sincs, így az az optikai tartományban nem is látható. 1 milliárd naptömegű semleges hidrogéngázról van szó. Ez a tekintélyes mennyiség nagyjából harmada az NGC2442 teljes atomos gázkészletének.

NGC2442 - HIPASS - 0103099v1.f1

A HIPASS program keretében felfedezett HIPASS J0731-69 óriási gázfelhő, ami valaha talán az NGC2442 része lehetett. Forrás: Stuart D. Ryder és mások

Stuart D. Ryder és csapata, 2001-ben az Astrophysical Journal-ban megjelent cikkében azt feltételezi, hogy ez a hatalmas mennyiségű atomos hidrogéngáz mind az NGC2442-ből származik. De hogyan történhetett ez? Ryder-ék körül járták azt a lehetőséget, miszerint egy másik galaxissal történt kölcsönhatás tépte ki a gázt „a horgos” galaxisból. Kompakt galaxiscsoportokban egyáltalán nem ritkák az ilyen események. Esetenként, akár 100 ezer fényév hosszúságú árapály-csóvák is megfigyelhetők. Gondoljunk csak a tavaszi égbolt egyik látványosságára! A Leo hármasban (Leo triplet: M65, M66, és NGC3628) pont ilyen jelenség figyelhető meg, ami akár amatőrcsillagász műszerrel is lefotózható. Ne feledjük azonban, hogy a HIPASS J0731-69 felhőt esélyünk sincs megpillantani, az csak a rádiótartományban sugároz (eddigi ismeretek szerint).

A galaxisok közötti interakción alapuló elképzelést több dolog is bizonytalanná teszi, ugyanakkor nem elvetendő az ötlet. Sajnos a HIPASS adatai kevéssé adekvátok ahhoz, hogy eldönthető legyen egyetlen gázfelhőről van-e szó, vagy felhők csoportjáról. A felmérésből azt sem lehet egyértelműen kijelenteni, hogy van-e anyaghíd, ami összeköti az NGC2442-vel. Természetesen ismert volt a szerzők számára Chris Mihos és Greg Bothun szimulációja. Azonban, kevéssé tartották valószínűnek, hogy a PGC21457 (AM 0738-692) valaha ennyi gázt tartalmazott volna, vagy éppen ekkora mennyiséget képes lett volna kiszakítani az NGC2442-ből. Ez a galaxis „túl ártatlan ahhoz”. Ha már csillagrendszerek gravitációs csatájáról van szó, akkor csak sokkal masszívabb jelöltek jöhetnek szóba. Talán az NGC2443 elliptikus galaxis északnyugatra. Talán az NGC2397 és NGC2397A párosa. Talán. Ennek megerősítéséhez, ahogy fentebb is utaltam rá, ezeknek a galaxisoknak is mutatni kellene valami olyan tulajdonságot, ami a múltban lezajlott kölcsönhatásra utal. Ilyenről pedig egyelőre nem tudni.

Ryder és csillagászkollégái szerint azonban felvetettek egy másik eshetőséget is, amivel az NGC2442 torzult alakját és a HIPASS J0731-69 felhő létezését esetleg meg lehet magyarázni. A galaxisok közötti tér sem teljesen üres. Több halmaz esetében igen forró (10-100 millió K) gáz tölti azt ki (IGM – Inter Galactic Medium). Ennek azonban 10-4-10-2 elektron/cm3, vagyis extrém alacsony a sűrűsége. Sok-sok nagyságrenddel kisebb, mint a galaxisok atomos hidrogénjének sűrűsége, ami 0.2-100 atom/cm3. Elsőre azt gondolhatnánk, hogy a halmazban mozgó galaxisokra nincs hatással a roppant ritka gáz. Több galaxishalmaz megfigyelése azonban azt mutatta, hogy miközben a galaxisok ebben a gázban mozognak, torlónyomás lép fel, ez pedig képes letépni a csillagrendszer korongjának külső területeiről a csillagközi anyagot (Ram Pressure Stripping). Hasonlóan ahhoz, ahogy a menetszél kerékpározás közben lefújja az ember fejéről a sapkát. Ehhez nem kell más, csak az, hogy a galaxis relatív nagy sebességgel mozogjon a halmazon belül, és elég sűrű legyen a halmazon belüli gáz.

Több példát is felsoroltak a szerzők. Szerintük az NGC2276, NGC4273, NGC7421, NGC4388, NGC4654, NGC4522 esete ékesen bizonyítja, hogy érdemes foglalkozni a kérdéssel. Több esetben a Föld körül keringő műszerekkel is sikerült kimutatni a röntgentartományban a halmazon belüli gázt, bár ahogy szerzők is megjegyzik, ez azért nem minden esetben annyira nyilvánvaló. Ahogy a felvételeken is látható, az NGC2442 korongjának északi része elég éles határvonalú, míg a délkeleti, délnyugati rész igen diffúz. Ez a Hα keskenysávú felvételeken még sokkal nyilvánvalóbb. Ebből arra lehet következtetni, hogy a csillagrendszer mintegy „keresztülfúrja” magát az intergalaktikus gázon. Amennyiben tényleg helyes az elképzelés, akkor az északi kar képviseli azt az NGC2442 előtti lökéshullámot (orr-hullám, bow shock), ami a korong anyagának és a galaxisok közötti gáz ütközésének következménye. Hogy könnyebben elképzelhessük az egészet, tekintsünk a galaxisra, mint egy csónakra. A csónak orra az északi kar keleti részénél van (a képen a galaxis centrumától jobbra és le). A csónakkal ellentétben a galaxis korongja viszont forog, ami a lökéshullámot elnyújtja, és a gáz az északi kar mentén áramlik a galaxis „mögé”. A HIPASS J0731-69 tulajdonképpen a galaxis „mögött” húzódó gázáramlat, ami akár talán teljesen le is szakadhatott róla. Korábbi megfigyelések eredményei (Houghton 1988), mely a galaxisban a semleges hidrogéngáz mozgására vonatkoztak, alátámasztani látszanak ezt a teóriát.  Pontosabban, akár ezzel is magyarázhatók. A ROSAT HRI felvételein, vagyis a röntgentartományban viszont alig látszik az NGC2442, nem is beszélve bármiféle forró gázról a környékén.

Bár nem történt meg az egész galaxis molekuláris gázainak feltérképezése (12CO emissziós vizsgálat), de úgy tűnik, hogy az jelentős koncentrációt mutat az északi kar keleti részén, ahol az visszahajlik. Tekintve, hogy a molekuláris gáz inkább a galaxis korongjára jellemző, így bármiféle aszimmetria annak eloszlásában, az az árapály elképzelés malmára hajtja a vizet. Továbbá, a csillagászok tapasztalata alapján a torlónyomás (ram pressure) a molekuláris hidrogént inkább összetömöríti, míg az atomos hidrogént pedig kisöpri a galaxisból. Az atomos és molekuláris gáz aránya az NGC2442-ben viszont teljesen közel áll ahhoz, ami az ilyen típusú (Sbc) galaxisoknál megszokott.

Mit lehet ezek fényében mondani? Pillantson csak az olvasó újra ennek a résznek a címére! Elképzelhető, hogy az NGC2442 felépítése annak köszönhető, hogy korábban valamelyik környékbeli galaxis megközelítette. Hogy melyik, abban nem lehetünk egyelőre biztosak. Azonban, nem zárható ki, hogy a galaxisok között lévő gázzal való ütközés formálta ilyenre az alakját. Konkrét válaszok helyett – kevés biztos akad, inkább azt szerettem volna megmutatni, hogy miként működik a csillagászat tudománya. Megfigyelés és analitikus gondolkodás folyamata ez. Ebben az esetben is van még bőven feladvány. Újabb megfigyelésekre, újabb megfontolásokra lesz még szükség.

Az NGC2442-nek nemcsak a megjelenése lenyűgöző, hanem az is, ahogy egyelőre féltve őrzi titkait. Én mindenesetre továbbra is figyelni fogom a vele kapcsolatos újabb fejleményeket. A fotó elkészítésével még nem ért véget a kettőnk közötti „affér”.

Felhasznált irodalom:

Chris Mihos, Greg Bothun: NGC 2442: Tidal Encounters and the Evolution of Spiral Galaxies

S. D. Ryder, B. Koribalski, L. Staveley-Smith, V. Kilborn, D. Malin, G. Banks, D. Barnes, R. Bhatal, W. de Blok, P. Boyce, M. Disney, M. Drinkwater, R. Ekers, K. Freeman, B. Gibson, P. Henning, H. Jerjen, P. Knezek, M. Marquarding, R. Minchin, J. Mould, T. Oosterloo, R. Price, M. Putman, E. Sadler, I. Stewart, F. Stootman, R. Webster, A. Wright: HIPASS Detection of an Intergalactic Gas Cloud in the NGC 2442 Group

J. Harnett, M. Ehle, A. Fletcher, R. Beck, R. Haynes, S. Ryder, M. Thierbach, R. Wielebinski: Magnetic fields in barred galaxies III: The southern peculiar galaxy NGC 2442

Anna Pancoast, Anna Sajina, Mark Lacy, Alberto Noriega-Crespo, Jeonghee Rho: Star formation and dust obscuration in the tidally distorted galaxy NGC 2442

https://arxiv.org/abs/1009.1852

Adam G. Riess, Lucas M. Macri, Samantha L. Hoffmann, Dan Scolnic, Stefano Casertano, Alexei V. Filippenko, Brad E. Tucker, Mark J. Reid, David O. Jones, Jeffrey M. Silverman, Ryan Chornock, Peter Challis, Wenlong Yuan, Peter J. Brown, Ryan J. Foley: A 2.4% Determination of the Local Value of the Hubble Constant

R. Cartier, M. Sullivan, R. Firth, G. Pignata, P. Mazzali, K. Maguire, M. J. Childress, I. Arcavi, C. Ashall, B. Bassett, S. M. Crawford, C. Frohmaier, L. Galbany, A. Gal-Yam, G. Hosseinzadeh, D. A. Howell, C. Inserra, J. Johansson, E. K. Kasai, C. McCully, S. Prajs, S. Prentice, S. Schulze, S. J. Smartt, K. W. Smith, M. Smith, S. Valenti, D. R. Young: Early observations of the nearby type Ia supernova SN 2015F

 

NGC185 elliptikus törpegalaxis és gömbhalmazai

NGC185-LRGB-20170730-0142-sx-bin2-360s-TTK

NGC185

2017-07-30, 2017-08-21, 2017-08-25 – Göd

21 x 360 sec L (Bin2), 10 x 360 sec R (Bin2), 10 x 360 sec G (Bin2), 10 x 360 sec B (Bin2)

300/1200 Newton távcső – Paracorr Type2 kóma korrektor – eredő fókusz 1380 mm

SkyWatcher EQ-6 Pro GoTo mechanika

SXVR-H18 CCD kamera, Hutech IDAS P2 LPS filter és Baader RGBL fotografikus szűrőszett

Nagyon is jól emlékszem az estére, amikor az első felvételeket rögzítettem ehhez a fotóhoz. Az amúgy sem hosszú nyári éjszaka nagy részét azzal töltöttem, hogy ismerkedtem a nemrég beszerzett Stralight Xpress Lodestar X2 Autoguider vezető kamerámmal és a PHD2 programmal. A Lacerta MGEN standalone autoguider-t, mely évekig szolgált, ezzel a felállással váltottam ki. Már vészesen közeledett a hajnali 2 (NYISZ), mikor úgy éreztem, most már tényleg minden rendben, és nem kívánok már többet foglalkozni a hosszabb expozíciók készítéséhez elengedhetetlen vezetéssel. Elégedett voltam a beállításokkal, a PHD2-ről pedig éppen eleget tudtam már. Volt még idő pirkadatig, és mivel eleget szereltem, kábeleztem, teszteltem a rendszert ezen az estén, úgy éreztem, jár nekem némi jutalom. Különben is jobban szeretem, ha én dolgoztatom a műszereket, és nem ők engem. Igaz, meghálálják a törődést.

Az elmúlt években az érdeklődésem egyre jobban a galaxisok és a gömbhalmazok felé fordult. Ó, nem mintha a többi, a Naprendszer határain túli úgynevezett mély-ég objektum nem lenne érdekes és csodálatos! Nagyon is az! Egyszerűen csak engem eme két objektum típus megismerése, megfigyelése, esetleges megörökítése lelkesít a legjobban. Nyilván mások preferenciái eltérők, de így van ez rendjén. És akkor még a Naprendszer béli égitesteket nem is említettem. Mostanában egyre gyakrabban kapom magam azon, hogy holdas éjszakákon kint vagyok az udvaron, és távcsővel fürkészem kísérőnket, mint kezdetekben. Néha még képet is készítek egy-egy alakzatról a felszínén.

Visszatérve a galaxisokra és a gömbhalmazokra, akkor hajnal felé az a gondolatom támadt, hogy miért ne lehetne ötvözni a kettőt. Legyen a célpont valamelyik „szomszédos” csillagrendszer és annak gömbhalmazai! Az Androméda, a Cassiopeia csillagképek és ezek környezet már elég magasan járt az égbolton ahhoz, hogy a megfelelő jelölt fényképezésébe belevágjak. Hamar leszűkítettem a kört, mert a városi égbolt, a távcsövem látómezője, és az átlátszóság behatárolta a lehetőségeimet. Érdekes, hogy a légköri nyugodtság a szokásoshoz képest egészen jó volt. Választhattam volna a 2.5 millió fényévre lévő Androméda-galaxist (M31) és a gömbhalmazait is akár, de ennek 3.167° × 1° kiterjedése miatt mozaik felvételeket kellett volna készítenem. Elhessegettem ezt a gondolatot. Az elmúlt években egyébként is sok szép észlelés és fotó készült róla. Az Andromédának több tucatnyi szatellit galaxisa van azonban, melyek közül akadnak olyanok, amik amatőr műszerekkel is megfigyelhetők. Nem egynek pedig régóta ismert több gömbhalmaza.

Az NGC147 és az NGC185 elliptikus törpegalaxisok között vívódtam. Ezt a kettő, az M31-et kísérő csillagrendszert 58′ választja el egymástól az égen, de a valóságban is csak nagyjából 300 ezer fényév (kb. 93 kpc) a köztük lévő távolság. A látszólagos közelségük miatt gyakorta egyetlen fényképen szokták megörökíteni ezeket a rövidebb fókuszú amatőr távcsövekkel. Az én műszeremmel viszont nem lehet ekkor égterületet átfogni. Választanom kellett. Az NGC185 távolsága 2.02 millió, míg az NGC147 távolsága 2.3 millió fényév. Az NGC185 valamivel közelebb van tehát. Mondhatnánk, hogy némileg több az esély a részletek megörökítése tekintetében. Valójában azonban nem ez volt az egyetlen szempont, hogy az NGC185 mellett tettem le a voksomat. A két törpegalaxis egészen más megjelenésű és felépítésű. Régebbi vizuális megfigyeléseim alapján még jól emlékeztem rá, hogy az NGC185 felületi fényessége számottevően nagyobb, mint az NGC147 galaxisé, így a fényszennyezett égen az előbbi lefényképezése jóval több sikerrel kecsegtetett.

NGC185-map4

Az NGC185 a Cassiopeia csillagképhez tartozó égboltterületen látható, nagyjából „félúton” helyezkedik el az Androméda csillagkép és a Cassiopeia jellegzetes „W” alakot formáló csillagai között. Vagy, ha úgy tetszik, akkor „félúton” az Androméda-galaxis és a Cassiopia Shedar nevű csillaga között. Az Androméda-galaxishoz nemcsak látszólag, de valójában is közel van. A két galaxis távolsága 600 ezer fényév (181 kpc).

Továbbá, ahogy Walter Baade is írta a múlt század negyvenes éveiben: „Az NGC185 egyike azon elliptikus ködöknek, ahol a fényelnyelő anyag jelenléte teljesen nyilvánvaló. Két ilyen sötét köd is van az NGC185 centrumának közelében.”. Ezek az én felvételemen is jól láthatók, egy markáns és egy jóval kevésbé sötét ív formájában. A semleges hidrogén megfigyelésével kapcsolatos vizsgálatok alapján ma már tudjuk, hogy az NGC185 gázkészlete közel 300 ezer naptömeg. Az infravörös tartományban készült felvételek tanúsága szerint pedig nagyjából 5000 naptömegnyi por van jelen ebben a galaxisban. Ezzel szöges ellentétben, az NGC147-ben nincs számottevő, azaz észlelhető mennyiségű por és gáz. Ez volt az a másik különbség a két galaxis között, ami még vonzóbbá tette számomra az NGC185-öt.

Meg kell mondjam, hogy ezek a látszólagosan kicsiny porívek számomra különösen izgalmassá teszik ezt a galaxist. Jogosan merül fel a kérdés, hogy miként lehetséges a csillagközi por és a gáz jelenléte az NGC185-ben, míg a tőle nem is oly távoli NGC147 szegényes intersztelláris médium tekintetében. A legvalószínűbb magyarázat, hogy más evolúciós utat jártak be, mivel eltérő az M31 körüli pályájuk konfigurációja. Az NGC147-et a múltban sokkal gyakrabban és nagyobb mértékben érintette az M31 gravitációs hatása. Pályáján közel kerülve az Androméda-galaxishoz, az óriás spirális csillagrendszer kiszakította belőle a port és a gázt. Míg az NGC185 keringési periódusa elég nagy ahhoz, hogy az Androméda-galaxissal csak kevesebb számú „gravitációs csatát vívott”. Továbbá, pályájának pericentruma távolabb esik az Androméda-galaxistól, mint az NGC147-é, így ezek a „csaták” kevésbé voltak intenzívek. Összességében, mivel az az NGC185 csak ritkábban, és kevésbé közelítette meg az M31-et, így megőrizhette por és gáz készleteinek bizonyos részét.

Az NGC185 „felülete” nem véletlenül kelt a fotómon szemcsés zajos benyomást. Ez nem a felvételek rögzítésének, illetve a feldolgozásuknak a hibái. 300 mm átmérő és 1380 mm (a korrektor miatt) fókusztávolság esetén a galaxis fotografikusan már mutatja a csillagokra való bontás legelső jeleit. Ezt igyekeztem finoman még szembetűnőbbé tenni a kép kidolgozásakor. (Az általam használt PixInsight csillagászati képfeldolgozó program ehhez remek eszközökkel van felvértezve.) Már a megtisztított és összeadott képet először látva olyan benyomásom támadt, mintha az okuláron keresztül egy már a csillagokra bontás határán lévő halvány, „grízes” gömbhalmazt néznék. Bár a felvételemen már látszik „valami”, de többnyire ez összeolvadó csillagok fénye. Ahhoz, hogy ez a galaxis valóban teljesen csillagjaira essen szét, ennél azért tekintélyesebb átmérőre és jóval hosszabb fókuszra van szükség. Mondjuk a Hooker távcsőre, amivel több mint hét évtizeddel a saját felvételem előtt ez először sikerült. Néhány gondolat erejéig tekerjük most vissza az idő kerekét!

Walter Baade a II. világháborús elsötétítések miatt kiváló körülmények között dolgozhatott a világ akkor legjobb távcsövével. A Mount Wilson-on álló 100 hüvelykes távcsőre ma is legendaként tekintenek a csillagászok. Baade minden korábbinál nagyobb határfényességű képeket készített az Androméda-galaxisról, és igen meghatározó felismerést tett: a galaxis különböző területeire más-más típusú csillagok a jellemzők. Míg a karokban a kékes fényű csillagok domináltak a felvételein, addig a magvidéken a vörösebb, és halványabb csillagok. Bevezette a csillagpopulációk fogalmát. A fémekben gazdag csillagokat az I. populációba, míg a fémekben szegényeket II. populációba sorolta. A csillagászok minden elemet a hidrogénen és a héliumon túl a periódusos rendszerben fémnek neveznek. Az 1940-es évek igen termékenyek voltak a csillagászat terén. Nemcsak a megfigyelő csillagászat élte a forradalmát, de a kutatók addigra megértették a csillagok energiatermelési folyamatait. A csillagok belső felépítésével és fejlődésükkel kapcsolatos első számítások is ehhez az évtizedhez köthetők. Még ha csak a kezdetekről is beszélünk. Idővel világossá vált a csillagászok számára mi is okozza a kémiai összetétel különbségét a populációk között. Egy csillag fémtartalmát általában a Naphoz szokták hasonlítani a kutatók. A világegyetem története folyamán, a csillagoknak hála egyre dúsabb lett fémekben. Az újabb és újabb csillaggenerációk egyre több fémet tartalmaztak, így minél alacsonyabb fémtartalmú egy csillag a Naphoz képest, vélhetőleg annál ősibb objektum. A Baade féle populációk tehát csillaggenerációk, ahol az I. populáció a fiatalabb, a II. populáció pedig az idősebb csillagok tartoznak. Igaz, hogy napjainkra ezt a csoportosítást már tovább finomították, és nem csak két populációról szoktak beszélni, de a felismerés jelentőségéből ez mit sem von le. Sőt, Baade munkássága nemcsak a galaxisok csillagösszetételéről alkotott elképzeléseket változtatta meg, de a Világegyetem méreteivel kapcsolatosakat is.

A szomszédos óriás spirál galaxis, az M31 csillagait korábban már Edwin Hubble is tanulmányozta a 100 hüvelykes Hooker távcsővel.  Hubble Cepheida típusú változócsillagokat keresett az Androméda-galaxisban, hogy meghatározhassa annak távolságát.

Henrietta Swan Leavitt még 1912-ben felfedezte fel a Cepheida-k fényváltozási periódusa és abszolút fényessége között fennálló kapcsolatot, miután a Nagy Magellán-felhő Cepheida változóiról készült több száznyi fotólemezt áttanulmányozta. E csillagok úgynevezett standard gyertyaként használhatók a csillagászatban távolságmérésre. A Cepheida periódusából adódik, annak abszolút fényessége. Ennek, és a mért látszólagos fényességnek a birtokában a távolság pedig már meghatározható.

Hubble-nek sikerült is azonosítania ilyen típusú változócsillagokat az M31-ben. A periódus-fényesség relációjuk felhasználásával bizonyította 1926-ban, hogy az Androméda-galaxis a Tejútrendszeren kívül elhelyezkedő önálló csillagváros, és ezzel pontot tett egy régóta húzódó vita végére. Azt is fontos megemlíteni, hogy Hubble még pontatlanul, csak 1.5 millió fényévet kapott a galaxis távolságára. Mostani ismereteink szerint ez 2.54 millió fényév. Csak Baade jött rá később, így Hubble még nem tudhatta, hogy bár a Cepheida változóknak mind a két populációban vannak képviselőik, ezeknek azonban némileg eltérő a periódusa és fényessége közötti összefüggés (a két populáció Cepheida változói eltérő fényességűek). Az Univerzum „hirtelen nagyobb lett”, az Androméda-galaxis pedig „távolabb került” tőlünk.

Baade vizsgálatai nemcsak az M31-re, de annak két kísérő galaxisaira is kiterjedt 1943-ban. Az M32, illetve az M110 törpe galaxisok különálló csillagai is szépen látszottak a Hooker távcsővel készült fotólemezeken. Itt is sikerült kimutatnia a két jól megkülönböztethető populáció jelenlétét. Illetve megfigyelései megerősítették, hogy ezek egyértelműen az M31 szatellit galaxisai. Bár ezt addig is sejtették a csillagászok, mert az M31-hez hasonlónak találták a radiális sebességüket, és gömbhalmazaik látszólagos mérete is összemérhető volt az Androméda-galaxis gömbhalmazaiéval. Azonban az a tény, hogy a legfényesebb csillagok látszólagos fényessége nagyon hasonló az M31-ben, az M32-ben és az M110-ben még jobban alátámasztotta ezt.

De nem állt meg ennél a két törpe méretű csillagrendszernél, és az az NGC185-ről és az NGC147-ről is készített felvételeket. A két galaxis csillagait tanulmányozva megállapította, hogy érdekes módon az NGC147 csak II. populációba tartozó csillagok alkotják. Az NGC185 esetében viszont érdekes dolgot sikerült konstatálnia: bár a csillagok itt is túlnyomórészt II. populációjúak, de a centrum környékén talált egy tucatnyi kék színű csillagot, melyek az I populációt reprezentálják ebben a galaxisban. Mondhatjuk, hogy ez meghökkentette, mindenesetre speciálisnak (peculiar) jelölte meg a galaxist. Úgy gondolta, hogy az NGC185 csillagkeletkezési folyamatai sajátságosak lehettek.

M. Geha és munkatársai a Hubble űrtávcsővel 2009/2010 telén vizsgálták a környező törpegalaxisokat, és munkájuknak hála ma már többet tudunk az NGC185 csillagkeletkezési történetéről. De miért foglalkoztatja ennyire például az NGC185 a csillagászokat? (Az említett tanulmánynak része az NGC147 is, ezzel az objektummal e helyütt most nem foglalkozom). Az elliptikus törpegalaxisok jobbára, ha nem szinte kizárólagosan, galaxishalmazokban, galaxis csoportosulásokban fordulnak elő. Éppen ezért a környezeti hatások roppant fontos szerepet játszottak kialakulásukban és fejlődésükben. E galaxisok morfológiája azonban olyan sokszínűséget mutat, hogy manapság sem lehet leírni kialakulásukat egyetlen folyamattal. Ugyan mások már korábban tanulmányozták például a Fornax és Virgo halmaz törpegalaxisait, de ezek oly messze vannak, hogy igazán pontosan nem sikerült megállapítani, hogy mennyi bennük az öreg és középkorú csillagok aránya, és a csillagkeletkezési történetükre sem derült fény. A Lokális Csoportban három olyan elliptikus törpegalaxis is van (M110/NGC205, NGC185, NGC147) melyek alapvetően hasonló tulajdonságokat mutatnak, mint a távolabbi galaxishalmazok törpéi. Ami pedig a legfontosabb, ezek kellően közel vannak ahhoz, hogy a Hubble űrtávcső csillagokra bontsa őket, oly módon, hogy még a fősorozat csillagai is részletesen tanulmányozhatóvá váljanak, és nemcsak az ezeknél jóval fényesebb óriás ágak csillagai. Így ez a három csillagrendszer kitűnő terepet nyújt az elliptikus törpegalaxisokkal kapcsolatos vizsgálatokhoz. Mondhatjuk, hogy a mai műszerezettég mellett ezek jelentik a belépőt a megismerésükhöz.

A kutatók programjuk során fotometriai vizsgálatoknak vetették alá az NGC185 csillagait, és felvették annak szín-fényesség diagramját (Color Magnitude diagram – CMD), mely tulajdonképpen a klasszikus Hertzsprung-Russel diagram (HRD) „gyakorlatias” változata. A vízszintes tengelyen két különböző szűrővel mért fényesség értékek különbsége (jelen esetben HST ACS F606W-F814W) van feltüntetve a színképosztály helyett. A függőleges tengelyen pedig ezek közül az egyik színszűrővel (HST ACS F606W szűrő) felvett fényességérték szerepel.

NGC185-CMD2

Az NGC185 szín-fényesség diagramja. A fekete pöttyök az NGC185 három külön területén megfigyelt csillagokat reprezentálják. A vörös pöttyök azok a csillagok melyek spektrumát a Keck/Deimos programban vették fel. Az ábra jobb felén az egyes fényességekhez tartozó hibahatárok vannak feltüntetve (1 sigma error bars). Forrás: M Geha és mások

A csillagok egy részét spektroszkópiai elemzésnek is alávetették földi óriástávcsövekkel (Keck/DEIMOS study of Local Group dEs), vagyis információt nyertek a csillagok kémiai összetételéről (fémtartalmáról). Ez utóbbi elengedhetetlen volt, mivel fel akarták térképezni, hogy tulajdonképpen hányféle korosztály található a galaxisban. Ne feledjük, ahogy fentebb már említettem, az újabb csillaggenerációk már a korábbiak által legyártott elemekkel beszennyezett gázfelhőkből alakultak ki. Továbbá, az azonos tömegű, de különböző kémiai összetételű csillagok más-más fejlődési utat járnak be a szín-fényesség diagramon. Ez pedig fontos tényező, amikor a csillagfejlődési elméleteket felhasználva megpróbálják a csillagászok adott csillagok halmazának korát meghatározni úgynevezett izokron illesztésével. Az izokron a csillagfejlődésben használt kifejezés, mely a szín-fényesség diagramon az azonos korú csillagokat összekötő görbét jelöli. Tekintve, hogy az egyszerre született, vagyis azonos fémtartalmú, illetve azonos kémiai összetételű csillagok megfigyelhető fejlődési állapota csak a kiindulási tömegtől függ, és mivel a masszívabb csillagok gyorsabban fejlődnek, így adott időpillanatban minden csillag meghatározott helyet foglal el a szín-fényesség diagramon. Más-más kémiai összetételekhez azonban más-más izokron tartozik.

csillaghalmazok_kora

Az egyszerre született (azonos fémtartalmú!) csillagok megfigyelhető fejlődési állapota csak a kiindulási tömegtől függ. A nagyobb tömegű fényesebb és forróbb csillagok hamarabb elhasználják hidrogén készleteiket, és elhagyják a fősorozatot. Az idő előrehaladtával már csak a kisebb tömegű, és kevésbé fényes csillagok maradnak a fősorozaton. Ahogy idősödik az adott csillaggeneráció, annál lejjebb tolódik az a pont (Turn Off Point) a fősorozaton, ahol a csillagok „elkanyarodnak” az óriás ág felé, így az adott generáció kora meghatározható. Az Myr millió évet, a Gyr milliárd éveket jelent. Animáció forrása: http://astro.berkeley.edu/~dperley/univage/univage.html

A kutatók végül arra pontra illesztették az eltérő kémiai összetételhez, és azon belül a különböző korú csillagokhoz tartozó izokronokat a szín-fényesség diagramon, ahol a fősorozaton a csillagok elkanyarodnak az óriás ág felé (Turn off point). A vörös kupacra (Red Clump – RC az ábrán), illetve a horizontális ágra való illesztést végül elvetették, mert ezeket nem tudtak kellően megbízhatóan modellezni. (A vörös óriás ágat elhagyó csillagokkal, vagyis a magjukban már héliumot égető csillagokkal kapcsolatos modellekben még akadnak kérdőjelek.) A legmegfelelőbb izokronokat alkalmazva, illetve a modellezett szín-fényesség diagram alapján pedig levonták a következtetéseiket.

NGC185-CMD-izokron-modell2

Balra a megfigyeléseken alapuló Hess diagramja az NGC185-nek. A Hess diagram a csillagok előfordulásának relatív sűrűségét ábrázolja a Hertzsprung-Russell diagram különböző szín-fényesség pozícióiban. Figyeljük meg a Hess diagramon az illesztett izokronokat (Padova csillagfejlődési modell alapján képzettek). A színek a különböző fémtartalmakhoz tartoznak: [Fe/H] = −2 (zöld), −1 (kék) és 0.0 dex (vörös). Adott kémiai összetételhez, három különféle csillagkorhoz tartozó izokron került illesztésre. Ezek rendre 2, 8 és 12 milliárd év.

Jobbra a modellezett csillagkeletkezési történetek közül a megfigyelésekre legjobban illeszkedő szintetikus csillagpopulációkból képzett szín-fényesség diagramja az NGC185-nek.

A sárga szaggatott vonaltól balra eső, továbbá fölötte lévő területeket a csillagászok nem vették figyelembe az illesztéskor.

Forrás: M Geha és mások

Az NGC185 csillagainak 70%-ka legalább 12.5 milliárd éves. A maradék nagyobb része pedig valamikor 8 és 10 milliárd évvel ezelőtt formálódott. A galaxisban a csillagkeletkezés legalább 3 milliárd éve leállt, de legalábbis csillagainak 90%-át biztosan legyártotta akkora a galaxis. „Baade kék csillagai” pedig egy nem túl szignifikáns csillagkeletkezési hullámban születtek, mely a galaxis centrumának 650 fényéves (200 pc) környezetében zajlott 100 millió éve.

Fontos megjegyezni, hogy míg a Tejútrendszer és az Androméda-galaxis nagyobb luminozitású törpegalaxisait főleg idős és középkorú csillagok keveréke alkotja, addig érdekes módon az NGC185 inkább a Sextans és a Draco törpékre hasonlít, ahol az ősi csillagok jelentősen dominálnak a középkorúakhoz képest. A Sextans törpe esetében bizonyosnak látszik, hogy csillagait körülbelül 600 millió éves időskálán gyártotta le, és az egész folyamat véget ért nagyjából 12.9 milliárd éve, mivel a II. típusú szupernóvák egyszerűen kisöpörték a gázkészleteket ebből a galaxisból. Ez hamarabb megtörtént, minthogy befejeződött volna a Világegyetem reionizációs korszaka, tehát maga a galaxis fosszília ebből a korból. Csakhogy az NGC185-ben a csillagok össztömege (vizsgálati módszertől függően) 100-700 millió naptömeg körül mozog. Ez a Sextans és a Draco törpékénél hozzávetőlegesen 100-szor nagyobb, így valószínűtlen, hogy rá is hasonló csillagkeletkezési forgatókönyv lett volna az érvényes. Nem beszélve arról, hogy még mindig található benne intersztelláris anyag, ellentétben a másik kettővel. Sokkal valószínűbb, hogy az Androméda-galaxissal történt közelebbi találkozások vezényelték a születési hullámokat, illetve a csillagok keletkezésének elcsendesülését. Ennek megerősítéséhez mindenesetre még részletes sajátmozgás vizsgálatokra van szükség a jövőben, hogy a radiális sebességekkel együtt felrajzolhassák a csillagászok az NGC185, és a többi szatellit 3D-s mozgását az M31 körül.

Az NGC185 több olyan objektum típus is található, amelyet általában amatőrcsillagászként előszeretettel figyelnénk meg ha ezek a közelben lennének, és nem egy másik galaxisban. Mivel az NGC185-ben rengeteg a fejlődésben előrehaladott, a fősorozatot már régen maga mögött hagyó csillag, így bővelkedik hosszú periódusú változócsillagokban (90-800 napos periódus). Az ismert Míra, félszabályos, az szabálytalan (irreguláris) változók száma 513-ra rúgott 2011-ben. De planetáris-köd jelöltekből is akad jónéhány. Sőt a galaxis centruma környékén egy öreg szupernóva-maradvány is található, melyet az OIII (kétszeresen ionizált oxigén) vonalak hiánya miatt talán nem is kollapszus-szupernóva (core collapse supernova) hozott létre, hanem úgynevezett Ia típusú szupernóva. Ugyan ezekről amatőrcsillagász műszeremmel le kell mondanom, de még mindig ott vannak az NGC185 gömbhalmazai. Még akkor is, ha nem többek apró fényfoltocskáknál.

NGC185-LRGB-20170730-0142-sx-bin2-360s-TTK-label4

Az NGC185 gömbhalmazai. Történeti okokból az FJJ VI-ot is feltüntettem, de arról a Hubble űrtávcsővel történt vizsgálatok megállapították, hogy távoli elliptikus galaxis. A PAN-N185 pedig viszonylag friss felfedezés (J. Veljanoski és munkatársai, 2013.)

Valószínűleg nem lepem meg az olvasót azzal, hogy az NGC185 első két gömbhalmazát még Baade fedezte fel 1944-ben. Paul W. Hodge 1974-ben újabb hárommal gyarapította a törpegalaxis körül ismert halmazok számát. Holland C. Ford, George Jacoby és David C. Jenner a NGC185 és az NGC47 planetáris ködjeiről írt munkájuk appendixében a Baade és Hodge által felfedezett halmazok listáját még újabb néggyel egészítette ki, ám Hodge egyik halmazát elhagyták a sorból (Hodge 2), mivel az nem bizonyult gömbhalmaznak. A későbbiekben a csillagászok átvették Fordnak és munkatársainak nomenklatúráját, akik I-VIII-ig számozták a halmazokat, és a későbbi szakirodalmakban már FJJ I-VIII névvel hivatkoztak rájuk. Douglas Geisler és munkatársai 1999-ben számoltak be az IAU az évi szimpóziumára készült publikációjában az NGC185 (és az M110/NGC205) törpegalaxisok gömbhalmazaival kapcsolatos, a Hubble űrteleszkóppal végzett vizsgálatainak első eredményeiről. Az FJJ VIII-at leszámítva az összes többit egyenként megvizsgálta, és az FJJ VI kivételével mindegyikről megerősítette, hogy azok valóban gömbhalmazok. Az FJJ VI-ról azonban kiderült, hogy valójában egy távoli elliptikus galaxis. Geisler csapata, a Hubble WFPC2 kamerájának hála, bámulatos felbontást tudott elérni. Az 1999-es tanulmányban például bemutatták az FJJ V (előzetes, még korrekciókra szoruló) szín-fényesség diagramját, de már a másik két halmazzal kapcsolatban is voltak eredményeik. Már akkor megállapították, hogy ezek a gömbhalmazok a szín-fényesség diagram szerint szinte csak idős csillagokból állnak. Legalábbis a felső aszimptotikus óriás ágon a csillagok hiánya arra utalt, hogy a középkorú csillagok aránya elenyésző lehet. A spektroszkópiai elemzések pedig azt mutatták, hogy fémekben szegények az NGC185 gömbhalmazai. Mára ezek az észrevételek az összes többi esetében is megerősítést nyertek.

Az NGC185 ismert gömbhalmazainak sorát (a cikk írásának pillanatában) a Pan-Andromeda Archaeological Survey (PAndAS) keretében felfedezett PAN-N185 zárja. Bár halványabb, mint a többiek, de a felvételemen mégis látszik. Hogy miért nem akadták rá eddig? Egyszerűen korábban nem kerestek ilyen távolságban gömbhalmazt az NGC185 körül. Igazából pont a PAandAS mutatott rá, hogy például az M31 halója sokkal távolabbra terjed ki, mint az korábban gondolták a csillagászok. Érdemes tehát gömbhalmazokat keresni az adott galaxis centrumától távolabb is.

Vannak még terveim az NGC185-tel kapcsolatban. Igen, még készíthetnénk több felvételt mondjuk jobb átlátszóságú égbolt esetén. Vagy magam mögött hagyva a kisvárost, elmehetnék sötétebb ég alá, hogy ott folytassam. De minek? Az NGC185 főbb vonásai és gömbhalmazok már látszanak a fotón. A terv pedig pontosan ez volt. Sokkal inkább vágyom arra, hogy egy 50-60 cm tükör átmérőjű távcsővel a saját szememmel is lássam a gömbhalmazokat. Tudomásom van arról, hogy vannak olyan szerencsés amatőrcsillagászok akiknek ez már megadatott. Én is szívesen tartoznék közéjük!

Az NGC185 gömbhalmazainak égi koordinátái, fényessége, és a távolságuk alapján kalkulált abszolút fényessége.

ID  RA(J2000)  Dec. (J2000)  V0  MV0  
  (h m s)  (d m s)  (mag)  (mag) 
FJJ I  00 38 42.7  +48 18 40.4  17.70 ± 0.03  −6.26 
FJJ II  00 38 48.1  +48 18 15.9  18.00 ± 0.03  −5.96 
FJJ III  00 39 03.8  +48 19 57.5  15.99 ± 0.173  −7.97 
FJJ IV  00 39 12.2  +48 22 48.2  17.37 ± 0.02  −6.59 
FJJ V  00 39 13.4  +48 23 04.9  16.12 ± 0.02  −7.84 
FJJ VII  00 39 18.4  +48 23 03.6  18.10 ± 0.02  −5.85 
FJJ VIII  00 39 23.7  +48 18 45.1  17.04 ± 0.01  −6.92 
PA-N185  00 38 18.8  +48 22 04.0  18.41 ± 0.01  −5.55 

Felhasznált irodalom:

H. C. Ford, G. Jacoby, D. C. Jenner: Planetary nebulae in local group galaxies. IV – Identifications, positions, and radial velocities of nebulae in NGC 147 and NGC 185

Doug Geisler, Taft Armandroff, Gary Da Costa, Myung Gyoon Lee, Ata Sarajedini: HST Color-Magnitude Diagrams of Globular Clusters in NGC 185 and NGC 205

Jenny C. Richardson, Mike J. Irwin, Alan W. McConnachie, Nicolas F. Martin, Aaron L. Dotter, Annette M. N. Ferguson, Rodrigo A. Ibata, Scott C. Chapman, Geraint F. Lewis, Nial R. Tanvir, and R. Michael Rich: PAndAS’ Progeny: Extending the M31 dwarf galaxy cabal

D. Lorenz, T. Lebzelter, W. Nowotny, J. Telting, F. Kerschbaum, H. Olofsson, H.E. Schwarz: Long-period variables in NGC147 and NGC185

J. Veljanoski, A. M. N. Ferguson, A. P. Huxor, A. D. Mackey, C. K. Fishlock, M. J. Irwin, N. Tanvir, S. C. Chapman, R. A. Ibata, G. F. Lewis, A. McConnachie: Newly-Discovered Globular Clusters in NGC 147 and NGC 185 from PAndAS

D. Crnojević, A. M. N. Ferguson, M. J. Irwin, A. W. McConnachie, E. J. Bernard, M. A. Fardal, R. A. Ibata, G. F. Lewis, N. F. Martin, J. F. Navarro, N. E. D. Noël, S. Pasetto: A PAndAS view of M31 dwarf elliptical satellites: NGC147 and NGC185

M. Geha, D. Weisz, A. Grocholski, A. Dolphin, R. P. van der Marel, P. Guhathakurta: HST/ACS Direct Ages of the Dwarf Elliptical Galaxies NGC 147 and NGC 185

Roya H. Golshan, Atefeh Javadi, Jacco Th. van Loon, Habib Khosroshahi, Elham Saremi: Long period variable stars in NGC 147 and NGC 185. I. Their star formation histories

Jeff Kanipe and Dennis Webb: Annals of the Deep Sky, Volume 4 (ISBN-13: 978-1942675051)

M. Bettinelli, S. L. Hidalgo, S. Cassisi, A. Aparicio, G. Piotto: he star formation history of the Sextans dwarf spheroidal galaxy: a true fossil of the pre-reionization era

NGC6769, NGC6770, NGC6771 – Kölcsönható galaxisok a déli Páva csillagképben

NGC6769-70-71-LRGB-20170725-T30-300s-TTK

NGC6769 (jobbra felül), NGC6770 (balra felül), NGC6771 (alul) – Kölcsönható galaxisok a Pávában

iTelescope.net T30 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI-PL6303E CCD kamera

2017-07-25, 2017-07-26 – Siding Spring Observatory – 38 x 300 sec L, 10 x 300 sec R,G,B

Folytatva az észlelőprogramom

A Hickson68 kompakt galaxiscsoportról készült felvétel és cikk után még nagyobb késztetést éreztem arra, hogy további csoportokat, halmazokat, illetve kölcsönható galaxisokat keressek fel. Mivel láttam, hogy 25-30 cm-es távcsövekkel, és 1 métert meghaladó fókusztávolsággal már minden gond nélkül be lehet lépni a távoli, a pár ívperces, vagy annál is kisebb látszólagos méretű csillagrendszerek világába, folytatni kívántam a vadászatot.

Természetesen senki ne számítson arra – én sem számítottam -, hogy a mai modern földi vagy akár űrtávcsövekkel fel lehet venni a versenyt a részletek tekintetében. Ahogy azonban mondani szoktam, nem egy ligában játszom velük. Különben sincs semmiféle verseny, csupán a megélt öröm egy-egy izgalmas részlet megpillantásakor. Még akkor is, ha ezek elnagyoltak a professzionális műszerekkel készült felvételekhez képest. Érdemes-e egyáltalán kicsiny csillagrendszereket fotózni 20-25 cm-nél kisebb apertúrájú, és 1 méternél rövidebb fókuszú távcsövekkel? Természetesen! Tapasztalatból mondom. Bár a nagyobb, kétségtelenül jobb, azonban le szeretném azt is szögezni, hogy nincs semmiféle ökölszabály arra nézve, hogy milyen mérettartomány fölött érdemes nekiállni. Nincs eget rengető különbség például a hazánkban közkedvelt 200/800-as, 200/1000-es Newton távcsövek és az én 300/1200-as (korrektorral 300/1380) Newton távcsövem között. Pláne, ha a felvétel készítésének körülményeit is figyelembe vesszük (légkör állapota, fényszennyezettség). Azért az is igaz, hogy az általam korábban használt UMA-GPU APO Triplet 102/635 nem éppen az apró galaxisok részleteinek feltárására tervezték. Az máshol jeleskedik.

Visszatérve az észlelési programomra, hosszasan tanulmányoztam az Arp és a Hickson katalógusokat, böngészőben pedig nézegettem az SDSS felvételeit. Mennyire más időket élünk ma, mikor a teljes égboltról készült felvételek könnyen elérhetőek az Interneten keresztül! Illetve, a katalógusok is csak egy kattintásnyira vannak. Az elektronikus változatai a katalógusoknak azért is nagyszerűek, mert könnyen lehet bennük feltételek szerint keresni, szűrni. Sorban gyűltek az északi vagy éppen a déli féltekről látható kölcsönható galaxis párok, triók. Olyan célpontokat választottam ki, amik számomra legalábbis izgalmas megjelenésűek, de ami még ennél is többet nyomott a latban, amin keresztül folytatni tudom a kölcsönható galaxisokkal és úgy álltalában a galaxisokkal kapcsolatos cikksorozatomat. Vagy egyszerűen csak írhatok arról, ami éppen foglalkoztat, de valamennyi köze azért van a csillagászathoz.

Már csak a derült éjszakára vártam idehaza, illetve foglaltam távcsőidőt az iTelescope.net hálózatán. Eme utóbbi esetben el is készítettem előre a script-eket, melyeket már csak a futásra vártak. Nem valami nagy ördöngösség ez, a webes felületükön pillanatok alatt le lehet gyártani ezeket.

A napok teltek, észak volt dél ellenében, de ezúttal dél nyert. 2017. július 25-én derült volt az ég Siding Spring hegyei (Ausztrália) felett. Idehaza az ebédszünetemben a képernyőt bámultam éppen (tudom, nem egészséges), és azon vacilláltam, hogy melyik programot indítsam majd. Végül Arp egyik katalógusából (H. Arp, B. F. Madore and W. Roberton: A Catalogue of Southern Peculiar Galaxies and Associations) az AM 1914-603-ra esett a választásom, vagyis az NGC6769, az NGC6770 és az NGC6771 galaxisokra. Ennél minden fentebb megfogalmazott feltétel teljesült, ráadásul a déli égbolton lévő Páva csillagképben még nem fotóztam semmit.

Felfedezések, elnevezések, és az emberi fantázia

Hajlamosak vagyunk különböző alakzatokba belelátni dolgokat. Az emberi elme egyik érdekes sajátossága ez. Ha már csillagászatról van szó, akkor ott vannak nagyszerű példának a csillagképek. Az idők folyamán mennyi mindennel megtöltötte képzeltünk az eget! Az európai kultúrában az északi égboltot görög mondák hősei és különös teremtményei népesítik be, bár akad pár kivétel is. Többek eredete, a görögöket megelőző korokba vezethető vissza, egészen az ősi Mezopotámiáig.

Az európai ember nemcsak átvett csillagképeket, de újakat is alkotott, mikor a XV. században kezdetüket vették a nagy földrajzi felfedezések. Jobbára kereskedelmi expedíciók voltak ezek. Ugyan Kínával és Indiával korábban is kereskedett Európa, de a megerősödött Oszmán birodalom csak magas vámokért cserébe engedte folytatni ezt a tevékenységet. Európa alternatív útvonalak keresésébe kezdett. Mozgatórugó volt az úgynevezett aranyéhség is. A keleti portékákért arannyal ezüsttel fizetett a kontinens, az arany bányák pedig már kimerülőben voltak. Szükség volt hát új lelőhelyekre.

E törekvések sikeréhez kellett a reneszánsz is. Az emberek nyitottak lettek, kíváncsiak. Ráébredtek, hogy az egyház nem ad minden kérdésre választ. Visszanyúltak az ókori bölcsek tanaihoz, mely szerint megfigyeléssel megismerhető a világ. Előkerült újra a gömb alakú Föld elképzelése. Térképek, földgömbök készültek ennek szellemében. Itt megemlítendő Paolo dal Pozzo Toscanelli firenzei csillagász híres világtérképe (1474), ami már gömb alakúnak tekinti bolygónkat. Illetve, sokan nagy jelentőséget tulajdonítanak Martin Behaim nürnbergi tudós, a térképészet és a navigációs eszközök (asztrolábium) fejlesztése terén végzett munkáinak. Behaim neve azonban talán a legismertebb, a máig fennmaradt első földgömbök egyikéről (Erdapfel 1490-1492).

Behaims_Erdapfel

Martin Behaim földgömbje, az „Erdapfel”. A felvételen Eurázsia látható. Mivel Kolombusz csak később tért haza felfedező útjáról, így a gömbön Európa nyugati oldala, és Ázsia között még üres az óceán. A kép forrása: Wikipedia

A tudomány és a technika fejlődését Nyugat-Európában elősegítette a XV. századra megerősödő gazdaság is. Ennek volt köszönhető az is, hogy a részben arabok által közvetített ismeretek, és azok továbbfejlesztése révén megszülethetett az új hajótípus, a karavella. E nélkül talán sosem hajózhatott volna túlságosan messze a kor embere a partoktól, de így már biztosabban kimerészkedhetett a nyílt óceánokra. A tájékozódást a tengereken, a szintén az araboktól átvett iránytű segítette. A pontos helymeghatározáshoz pedig nélkülözhetetlen volt a gnomon, majd az asztrolábium, később pedig a Jákob-pálca. Ezek sorban váltották egymást, mígnem az 1700-as évek első felében megjelent a szextáns. Ugyan a korábban említett csillagászati eszközökkel meg lehetett határozni a földrajzi szélességet, de a földrajzi hosszúság kérdése már problémás volt. Kapaszkodót jelentett a Holdnak egy adott csillaghoz képest megmérni a pozícióját, amit csillagászati almanachok közöltek a greenwichi középidőben. A helyi időt, azonban ismerni kellett. Ezt a legtöbbször szintén csillagok kelésével, vagy éppen nyugvásával határozták meg. A navigátor a csillagászati almanachban lévő és a mért értékekből kiszámított az időkülönbséget. A helymeghatározásban tehát a dátum és az idő pontos ismerete is igen fontos volt, így az időmérő eszközöket is egyre tökéletesítették. Igazi áttörést a tengerészeti kronométerek megjelenése jelentette. A Föld forgása alapján 1 óra időkülönbség 15° földrajzi hosszúság különbséget jelent (24 óra az 360°). A kronométer használatával megállapíthatóvá vált egy ismert földrajzi hely ideje (jellemzően Greenwech) és az aktuális tartózkodási pontnál érvényes helyi idő közötti különbség. Ehhez a kronométert csak induláskor be kellett állítani az ismert földrajzi hely idejére. A kronométer használatát már 1530-ban felvetette a holland Gemma Frisius, és ugyan Christiaan Huygens – aki az ingaórát is feltalálta -, 1675-ben megalkotta az első tengerészeti kronométert, azonban hiába próbálta az ingát lendkerékkel és rugóval helyettesíteni, az a gyakorlatban pontatlannak bizonyult. Egészen az 1700-as évek közepéig kellett várni, amikor John Harrison elkészítette az első tengeren is működő kronométereit az angol kormány által kiírt pályázatára. Több változatot is készített az évtizedek folyamán, néha teljesen áttervezve az előzőt. Ezek egyre pontosabbak és pontosabb voltak.

ZAA0037

John Harrison legtökéletesebben sikerült tengerészeti kronométere a H4. Egészen az elektronikus oszcillátorok elterjedéséig használták. Ránézésre egy nagyra nőtt zsebóra benyomását kelti. Néhány történész szerint a Brit Birodalom a nagyságát ennek a szerkezetnek is köszönheti. A kép forrása: National Maritime Museum, Greenwich, London

A felfedezésre váró idegen világokhoz, az európai ember számára idegen déli égbolt csillagai vezették el a hajósokat. A tengeri tájékozódást is segítendő új csillagtérképek születtek, és egyben új csillagképeket alkotott az emberi fantázia, de már nem kimondottan csak a mítoszok alapján. A déli ég megtelt egzotikus állatokkal, és a kor technikai vívmányaival. Ezért találkozhatunk a déli égen például Christiaan Huygens tiszteletére az Ingaóra (Horologium), vagy az Oktáns (Octans), a Kemence (Fornax), a Légszivattyú (Antila) csillagképekkel. Így kerültek az égre a „déli madarak” is, vagyis a Főnix (Phoneix), a Daru (Grus), a Tukán (Tucana), és a Páva (Pavo) csillagképek. Eme utóbbi területén található a fotómon látható galaxishármas.

Grus-Bayer-Uraniometria

Johann Bayer csillagtérképének, az Uranometria-nak (1603) az úgynevezett „déli madarakat” ábrázoló lapja. A Páva (Pavo) csillagkép a jobb felső sarokban látható.

Ezek a csillagképek először Petrus Plancius és Jodocus Hondius által készített éggömbön jelentek meg 1598-ban (valószínűleg Pieter Dirkszoon Keyser és Frederick de Houtman megfigyelései alapján).  – Kép forrása: U.S. Navy Library

Ma összesen 88 csillagkép létezik az égbolton, melyeket még 1922-ben ismert el hivatalosnak a Nemzetközi Csillagászati Unió (International Astronomical Union, IAU). Vajon milyen csillagképek születnének manapság? Korunknak is megvannak a magunk hősei, legyenek azok valósak vagy kitaláltak, és jelenünk jobban bővelkedik új technikai vívmányokban, mint az azt megelőző századok. A csillagképek bár elfogytak, de ott vannak a távcsővel látható objektumok, amik szintén megmozgatják az emberek fantáziáját. Több halmaznak, aszterizmusnak (csillagalakzatoknak, melyek csillagai között nincs fizikai kapcsolat), ködnek, galaxisnak számos „beceneve” van. Teremtés Oszlopai, Örvényköd, Gyűrűs-köd, Bagoly-halmaz, hogy csak párat említsek. Természetesen ezek sem nem hivatalos, sem nem tudományos nevek. Nem kell őket túl komolyan venni! Van hivatalosan elfogadott nevük (katalógusjelük). Ám semmi sem tiltja, hogy a játékos képzeletnek teret engedjünk, és névvel illessünk az égen bármit.

Akinek az a vágya, hogy hivatalosan is elnevezhessen égitesteket, az sem kerget hiú ábrándokat. A Nemzetközi Csillagászati Unió (International Astronomical Union, IAU) több kezdeményezést is hirdetett például olyan csillagok elnevezésére, melyeknek van bolygója. A korábban megkezdett, a Naprendszer újonnan felfedezett égitesteinek elnevezésével kapcsolatos trendet követve, a csillagok és exobolygók nevei már nemcsak a nyugati kultúrkörből kerülhetnek ki. Persze olyan esetek is vannak, amikor egy nem hivatalos nevet oly hosszan, és oly régóta használnak, hogy előbb-utóbb a Nemzetközi Csillagászati Unió is rábólint. Például 2018 decemberében lettek csak hivatalos csillagnevek a Barnard csillaga, és Proxima Centauri. A másik lehetőség, hogy mondjuk kisbolygót fedez fel, és javaslatot tehet (a névkonvencióknak megfelelően). Hazánkban csak az utóbbi két évtizedben rengeteg kisbolygó felfedezés született. De a változócsillag keresők előtt is nyitva áll a lehetőség. Igaz, hogy az olvasó talán nem találja majd túlságosan romantikusnak a Vend32 elnevezést, de a Vendégcsillag kereső program résztvevői mind nagyon büszkék arra, hogy az általuk felfedezett változócsillag az ő „Vend” katalógusjelükkel lett ellátva.

Az NGC6769, NGC6770 és NGC6771 triónak is van beceneve: „Az Ördög Maszkja” (Devil’s Mask). Fogalmam sincs, kitől származhat az elnevezés eredetileg. Elhatároztam, hogy amikor kész lesz a felvétel, akkor megmutatom pár embernek, hogy megtudjam, ők vajon mit is látnak benne. Majd a válasz után mély hangon közölöm, hogy ez bizony a „Máscara el Diablo”. Ugye? Spanyol nyelven sokkal félelmetesebben hangzik! A viccet félretéve, az alanyok többsége tényleg valamiféle arcot vélt felfedezni benne. (Nem, nem adtam elő mély hangon a spanyol verziót.) Bár senki nem látott semmi ördögit a három galaxisba (ahogy én sem), de volt, akit a velencei karneválok maszkjaira emlékeztette. Mégis csak lenne valami a maszkos elnevezésben? Lehet. A mintavételezés igen kis számú csoporton történt. Nem volt ez más, csak afféle játékos kísérlet. Vajon mit lát bele a három galaxisba a kedves olvasó?

velence_i__by_funnymanus

Velencei karneváli maszk. Fotó: Kalmár Gábor 

Ami a maszk mögött van

Velencében a karneválra mindenki a kor „nagy bulijaként” gondol. Szórakozás, kicsapongás, evés, ivás. De nemcsak ez volt a jelentősége. Az álarcot felrakva, ha csak ideiglenesen is, de eltűntek az emberek közötti rangbéli különbségek. A merev társadalmi hierarchia a karnevál idejére megszűnt. Az egész arcot beborító álarc elfedte viselője pontos kilétét. Vajon mi bújik meg az NGC6769, az NGC6770, és az NGC6771 megjelenése mögött?

Ugyan több katalógusban és felmérésben is szerepel a három galaxis, de mégis csak csekély számú tudományos publikáció jelent meg konkrétan velük kapcsolatban. A legtöbbször csupán említés szintjén szerepelnek, esetleg egy-egy sort képviselnek egy nagyobb táblázatban, vagy éppen részesei egy nyúlfarknyi tudományos sajtóbejelentésnek. Őszintén megmondva, bennem az a kép alakult ki ezek elolvasása után, hogy bizonyos vonások már kivehetők, de nem látjuk még teljesen tisztán az arcot a maszk mögött.

A három galaxis távolsága jelenleg mindössze a vöröseltolódásuk (távolodási sebességük) alapján ismert, melyet az elmúlt három évtizedben többször is meghatároztak a különböző kutatásiprogramok keretében. Ugyan az egyes értékek között nincs nagyságrendnyi különbség, némileg azonban mégis eltérnek. De hogyan működik a módszer?

A világegyetem tágulásának köszönhetően a galaxisok távolodnak tőlünk, méghozzá annál nagyobb sebességgel, minél nagyobb a távolságuk. Ezt az összefüggést nevezik a csillagászok Hubble-törvénynek. A Doppler-effektus miatt, a távolodó égitest spektrumában a színképvonalak a sebességgel arányosan a vörös szín felé tolódnak. A vöröseltolódást megmérve tehát, kiszámítható a távolodás sebessége. Ebből pedig, az említett Hubble-törvényt felhasználva, következtetni lehet az adott galaxis távolságára. 

Anélkül, hogy pontosan megmagyaráznám – természetesen az olvasó szabadon utánanézhet a fogalmaknak a szakirodalomban -, a továbbiakban ismertetésre kerülő távolság értékek kiszámításánál a kozmológiai korrekcióban a következő értékek kerültek felhasználásra: H = 73.00 km/sec/Mpc, Ωmatter=0.27, Ωvacuum=0.73. Az adatok forrása pedig a NASA/IPAC Extragalactic Database (NED) volt.

Az NGC6769 és NGC6770 radiális sebességük különbsége, vagyis a tőlünk való távolodási sebességük differenciája hozzávetőlegesen 155 km/s, így egymáshoz viszonylag közeli csillagrendszerekről van szó. Mindössze néhány millió fényév választja el őket. A hozzánk közelebbi NGC6769 távolsága 163 millió fényév körüli, míg a némileg távolabbi NGC6770 esetében 168 millió fényév körül szórnak a távolságadatok. Az NGC6771 radiális sebessége azonban már számottevően nagyobb, mint a másik két galaxisé. Körülbelül 530 km/s-mal több, mint az NGC6769-é, és közelítőleg 375 km/s-mal haladja meg az NGC6770-ét. A Hubble-törvény értelmében, így jóval távolabb is kell lennie azoktól. A nagyjából 184 millió fényéves távolságával, az NGC6771 a trió legtávolabbi tagja. Némileg ki is lóg a sorból, mint ezt később látni fogjuk.

NGC6769-70-71-LRGB-20170725-T30-300s-TTK-1arcmin

A galaxisok méretének érzékeltetése céljából, a képen feltüntettem 1 ívperc hosszúságot. Az NGC6769 (jobbra felül) látszólagos mérete 2.3 x 1.5 ívperc, az NGC6770 (balra felül) látszólagos mérete 2.3 x 1.7 ívperc, az NGC6771 (alul) látszólagos mérete 2.3 x 0.5 ívperc. Ha egy másik népszerű amatőrcsillagászati célponthoz, a Gyűrűs-ködhöz (M57) hasonlítjuk ezeket, akkor elmondható, hogy annál a Planetáris ködnél csak alig látszanak nagyobbnak az égen.

A tekintélyes távolságuk az oka annak, hogy ezek a csillagrendszerek apróknak látszanak az égen. A legnagyobb látszólagos kiterjedésük alig haladja meg a 2 ívpercet. Azonban csak látszólag aprók. Távolságuk alapján, átmérőjük 100-130 ezer fényév között mozog, vagyis kiterjedésük a Tejútrendszerünkéhez hasonlatos.

Ma úgy gondolják a kutatók, hogy a nagyobb galaxisok mind ütközések, és összeolvadások révén jöttek létre. Igen, még a Tejútrendszer is. A „galaktikus kannibalizmus” már a kezdetektől fogva fontos szerepet játszott a csillagrendszerek fejlődésében. Noha ezek a kölcsönhatások, összeolvadások emberi időskálán nézve mérhetetlen hosszú ideig zajlanak, a csillagászok abban a szerencsés helyzetben vannak, hogy népes számú mintán keresztül tanulmányozhatják a Világegyetemet. Éppen ezért is fontos a kölcsönható rendszerek megfigyelése.

A galaxisok közötti gravitációs kölcsönhatások igen viharos események. A másik csillagrendszer keltette árapály erők akár teljesen el is torzítják a galaxisok eredeti alakját. Csillagjaiknak egy része szétszóródhat a galaxisok közötti űrben. De hasonló sorsra juthat a bennük lévő intersztelláris médium is akár. Az árapály erők azonban nem csupán pusztítani képesek, de teremthetnek is. A gázfelhőkben olyan lökéshullámok keletkezhetnek, melynek hatására megindul azok csillagokká tömörülése. Egy új felfokozott csillaggenezis gyakorta két galaxis gravitációs interakciójának vagy éppen összeolvadásának következménye. Ne feledjük, hogy a csillagok között óriási távolságok vannak. Nagyon kicsi annak az esélye, hogy két galaxis összeolvadásakor összeütközzenek. Az intersztelláris anyag esetében már más a helyzet. Azok ütközése a már fentebb említett lökéshullámok kialakulásához vezet. Már amennyiben a galaxisoknak már eleve jelentős gázkészlete volt. Hogy mi a történet folytatása? A spirál galaxisok összeolvadása a mai elképzelések szerint terméketlen elliptikus, vagy éppen lentikuláris galaxisok kialakulásához vezet. Ezekben a csillagkeletkezés szinte teljesen leáll. Az ütközések felmelegíthetik annyira a gázt, hogy az kiszabaduljon a galaxisból, vagy éppen megakadályozza azok összetömörülését (a csillagok keletkezéséhez hideg és kellően sűrű molekuláris gázfelhőkre van szükség). Illetve, a másik lehetőség, hogy szintén az ütközésnek köszönhető heves csillagkeletkezésben egyszerűen felemésztik a gázkészleteiket.

Az éppen folyamatban lévő csillagkeletkezés indikátorai a forró, és ezért kékes színű masszív csillagok tömeges jelenléte. Egy spirál galaxis csillagpopulációját 70%-ban az úgynevezett M típusú, Napunknál is kisebb tömegű, halvány vörös törpe csillagok alkotják (ez az arány 90% az elliptikus galaxisoknál). Azonban hiába nagyobb a kistömegű sárgás-vöröses halvány csillagok aránya, heves csillagkeletkezés esetén oly nagyszámban keletkeznek a csillagok ezeken a területeken, hogy igen magas a forró nagytömegű csillagok száma. A kisebb testvéreiket ezek pedig kékes fényükkel könnyűszerrel túlragyogják. Így végső soron, nekik köszönhetően világítanak a fiatal csillagok halmazai kékes fényfüzérekként a galaxisban. A masszív csillagok azonban tömegüktől függően mindössze néhány millió, vagy néhány tízmillió évig léteznek. (A kisebb tömegű csillagok hosszabb ideig élnek.) Létezésük tehát annak bizonyítéka, hogy legalább az említett időintervallumokon belül intenzív csillagkeletkezés folyt az adott területen. Hasonlóan a fiatal masszív csillagok által ionizált gázfelhők, vagyis a HII régiók vöröses pamacsai is az „éppen zajló” csillagkeletkezés jelei. Nagy távolságok esetén, ahol már távcsövünk felbontása kevés, ezek fénye már gyakorta elvész a kék behemótok ragyogásában.

Elég a három galaxis fotójára egy gyors pillantást vetni, hogy felfedezzük a galaxisok közötti gravitációs kölcsönhatás jegyeit. Ez a legszembetűnőbb az NGC6770 esetében. Magjának és küllőjének fényét ugyan hűvösebb öreg csillagok fénye festi sárgásvöröses színűre, azonban karjai kékes árnyalatúak. Kimondottan a különös megjelenésű egyenes kar, mely a felvételen az NGC6769 felé mutat, szinte hemzseg a fiatal csillaghalmazoktól. De nem ez az egyenes kék kar az egyetlen jele annak, hogy az NGC6770 a múltban gravitációs kölcsönhatásba került szomszédjával. A korongon keresztülhúzódó porsávok is erről tanúskodnak. Ott van továbbá a karon kívüli halvány déli része is, ami azt a benyomást kelti, mintha elszakadni készülne. De az egész NGC6770-et körbevevő háromszög alakú haló is a galaxisok közötti interakció eredménye.

Az NGC6769 megjelenése azonban merőben más kétkarú társához képest. Szakadozott karjai egy belső és egy külső gyűrűt formálnak a kissé kaotikus korongban. Ennek a galaxisnak a külső halója inkább kissé megnyúlt ellipszist formáz. A felvétel alapján olybá tűnik, mintha az NGC6769-ből és az NGC6770-ből is csillagokat és gázt szakított volna ki a gravitációs kölcsönhatás, és ezek éppen valamiféle közös burokká állnának össze a két csillagrendszer körül.

Bár az LRGB felvételen is sejthető, de a kép negatív, és kontrasztnövelt változatán jobban látszik, ahogy halvány „anyaghíd” köti össze az NGC6771 és az NGC6769 galaxisokat. Talán. Elképzelhető, hogy ez csak a perspektíva miatt tűnik így, és a kettőjük tekintélyes távolsága miatt valójában nem is „anyaghídról” van szó. Lehetséges, hogy az egyik galaxishoz tartozó, a galaxisok közötti kölcsönhatás eredményeként létrejött árapálycsóvát látunk a felvételen.

NGC6769-70-71-LRGB-20170725-T30-300s-TTK-neg-crv

Az NGC6769-ről, az NGC6770-ről és az NGC6771-ről készült felvételem negatív, kontrasztnövelt változata. Ezen jobban érzékelhető az NGC6771 háromszög alakú halója, és az NGC6769 és az NGC6771 közötti részen látható árapálycsóva, vagy esetleg anyaghíd. (Eme utóbbit képződményt szinte alig tudtam elválasztani a háttérzajtól. Hosszabb és nagyobb számú expozícióval kellett volna dolgoznom, és akkor talán jobban ki lehetett volna emelni.)

Ahogy már fentebb is írtam az NGC6771 kilóg a sorból. Míg a másik két galaxis színében meghatározók a kékes árnyalatok, addig ennél a galaxisnál ezeknek még csak nyoma sincs. Ebben a csillagrendszerben már rég leállt a csillagok születése, de legalábbis nagyon alacsony a csillagkeletkezési ráta. A kérész életű masszív csillagok már réges-régen kihunytak, s velük tovatűnt a hajdani kékes ragyogás. Vörös és halott (az angol nyelvű szakirodalomban használatos „red and dead” után). Az NGC6771 lentikuláris galaxis. Ezt a típust gyakran átmenetnek szokták tekinteni a spirál és az elliptikus galaxisok között. A lentikuláris galaxisok alapvetően diszk alakúak akárcsak a spirál galaxisok. Nincsenek azonban spirálkarjaik, a korongban nem figyelhetők meg határozott struktúrák. Jellemző rájuk, hogy a központi dudor a galaxis korongjához képest viszonylag nagyméretű, és meghatározó a galaxis felépítése szempontjából. Csekély mennyiségű molekuláris gáz található bennük, ezért nem keletkeznek ma már csillagok ezekben a galaxisokban. 21 cm-es rádióemissziójuk is jelentéktelen, mivel alig van bennük atomos hidrogént tartalmazó intersztelláris anyag. Az ionizált hidrogént tartalmazó HII régiók hiányában Hα sugárzásuk sem számottevő. Eme utóbbi tulajdonságok amúgy az elliptikus galaxisokra is jellemzők, azonban a lentikuláris típusúak porban viszonylag gazdagok. Ezért láthatunk a majdnem teljesen az élével felénk forduló NGC6771 korongjának síkjában markáns porsávot.

Most pedig arra kérem az olvasót, hogy fókuszáljon az NGC6771 közepére. Ha ezt megteszi, akkor észlelhet benne egy tünékeny X alakú struktúrát. Bevallom, hogy ez volt az egyik oka annak, amiért ezeket a galaxisokat választottam célpontnak. De mi is ez? Mi ez a misztikus „X”?

Először is ismerkedjünk meg kettő, a csillagászati megfigyeléseken alapuló felismeréssel.

A Hubble Űrtávcső 2000 galaxist magában foglaló felmérése, a Cosmic Evolution Survey (COSMOS) eredményei szerint a múltban kisebb volt a küllős galaxisok aránya a spirális galaxisok között. A mai univerzumban a spirál galaxisok körülbelül 65% rendelkezik küllős szerkezettel, míg a múltban ez az arány, mindössze 20% volt. 7 milliárd év alatt megháromszorozódott a számuk. A küllős felépítés, nem kizárólag a spirális csillagrendszerek kiváltsága, küllőt lentikuláris galaxisokban is szép számmal megfigyelhetünk. Megjegyzem, hogy sajnálatos módon a lentikulárisok küllőinek alapos vizsgálata viszonylag elhanyagolt terület.

A másik tapasztalat, hogy az éléről látszó korong alakú galaxisok (disc galaxies) központi dudorja (bulge) gyakorta szögletes (boxy), vagy éppen földimogyoróra hasonlít (peanut-shaped), de nem ritka, hogy az NGC6771-hez hasonlóan, „X” alakú derengés figyelhető meg bennük.

A szakemberek többsége ma úgy véli, hogy a korong alakú galaxisokban, vagyis a spirálisokban és a lentikulárisokban idővel törvényszerű a küllő kialakulása. A küllős szerkezet megjelenése e galaxisok dinamikus fejlődésének egyik természetes állomása. Az elméleti megfontolások mellet, a numerikus szimulációk is megerősíteni látszanak azt az elképzelést, hogy a csillagok mozgásának a galaxis síkjára merőleges oszcillációja (a csillagok pályája felülről, majd alulról keresztezik a galaxis síkját, mintha pillangó úszók lennének egy kozmikus medencében) és a küllő forgása között rezonancia lép fel. A szakirodalomban ezt vertikális rezonanciának nevezik. Ez analóg a Lindblad rezonanciával. A kutatók úgy vélik, hogy egészen pontosan 2:1 vertikális rezonanciáról van szó, vagyis két oszcilláció történik rotációs periódusonként. Ahol a rezonancia fellép, ott a csillagok a küllő pozíciójához képest ugyanott kezdik keresztezni a galaxis síkját, pályájuk igazodik a küllőhöz.

Nearly Periodic Orbits - comp4-cut1

Az ábra a küllő forgásával 2:1 vertikális rezonanciában lévő csillagok pályáját szemlélteti különböző galaktikus vetületekben. Figyeljük meg a baloldali diagramon (zöld görbe), hogy a korong síkjára merőleges vetülete a nagyjából periodikus csillagpályának (xz sík) banánhoz hasonló formát rajzol ki. Az ábrán a „banán alakú” pályák két lehetséges konfigurációját (két fekete görbe) is külön feltüntettem (az xz síkban). Az egyik „banán” „két vége” a galaxis korongjának síkja alatt, míg a másiké a fölött van. Az ilyen pályáknak a küllő nagytengelye mentén (az x a küllő nagytengelye, az y a kistengelye) a legnagyobb a dőlés szöge. A jobboldali ábrán látható a vertikális rezonancia következtében módosult csillagpálya (resonant heating), mely többé már közel sem tekinthető periodikusnak. Az ehhez hasonlatos pályákon mozgó csillagok együttes fénye rajzolja ki az éléről látszó galaxisban a központi dudor szögletes vagy éppen a földimogyoró alakját. A földimogyoró forma speciális esete, amikor derengő X-et látunk a galaxis központi régiójában. Az eredeti ábra szerzője: Yu-Jing Qin

A hatás önmagát erősíti. A csillagok egyre magasabbra jutnak a korongból a galaxis síkja fölé (a pályájuk inklinációja megnő) ezeken a részeken. Ahogy az idők folyamán a küllő forgása lassul, vagy éppen a galaxis korongja vastagszik, a rezonancia területe fokozatosan kijjebb húzódik a küllőben. Azok a csillagok, amiken már túlhaladt a rezonancia, továbbra is nagy inklinációjú pályán maradnak, de elvegyülnek a központi dudor csillagai között. Ne feledjük, hogy ezek eredetileg a korongból származnak). Adott időpillanatban ennek hatására azt látjuk a korong síkjával párhuzamos nézetből, hogy a küllő a centrumtól távolodva egyre jobban megvastagodik. Amennyiben, a küllős galaxis korongja az élével fordul felénk, és a küllőre a hosszanti tengelye mentén látunk rá, akkor szögletes alakúnak, amennyiben a hosszanti tengelye merőleges a látóirányunkra (a küllő keresztben áll), akkor földimogyoró alakúnak látjuk a galaktikus dudort.

Fontos megemlíteni egy másik hatást (elképzelést) is. Ennek lényege, hogy a küllőben idővel fellépő instabilitás (bar buckling instability/firehose instability) az, ami a korong csillagait a galaxis síkja fölé emeli, vagy az alá kényszeríti, létrehozva a banán alakú csillagpályákat. A csillagpályák kezdetben kicsiny kitérései a galaxis síkjából idővel felerősödnek. A folyamat hasonló a Kelvin-Helmholtz instabilitáshoz. Azzal analóg módon működik. A numerikus szimulációk viszont azt mutatják, hogy ez inkább a korong megvastagodásában játszik szerepet. A rezonancia sokkal meghatározóbb tényező a szögletes vagy földimogyoró alak kialakításában. Vannak csillagászok, akik azonban ezt vitatják. A jövőbeni megfigyelései majd talán segítenek eldönteni a kérdést.

Remélem, hogy mindenféle hosszabb fejtegetés és matematikai formula nélkül is érthetően sikerült felvázolnom a kedves olvasó számára magát a folyamatot. (A jelenség ennél azért bonyolultabb. A cikk után felsorolt szakirodalomban megtalálhatók a pontos részletek. Nem éreztem szükségét azonban annak, hogy precíz módon minden apró részletre pontosan kitérjek.) Most pedig pörgessük fel az idő kerekét, és néhány percben nézzük meg a sok 100 millió éves időskálán lezajló eseményeket. A következő szimulációk durván 2-3 milliárd évet átfogva mutatják be a küllő kialakulását, fejlődését. Működés közben láthatjuk a korong galaxisokban munkálkodó fentebb ismertetett mechanizmusokat.

A videó a küllő kialakulásának és fejlődésének folyamatát mutatja be. Várjunk türelmesen! 1 perc 20 másodperc környékén láthatóvá válik mindaz, amiről írtam. Szerzők: Fabian Lüghausen, Benoit Famaey, Pavel Kroupa

Hasonló szimuláció (diszk és sötét anyag haló). Figyeljük meg, ahogy a küllő forgása lassul, egyre kijjebb halad a rezonancia, a földimogyoró alak egyre markánsabb  lesz. Szerző: Rubens Machado

A fenti szimuláció kissé döntött nézetben. Figyeljük meg, hogy a küllő miként vastagszik meg, és miként emelkednek ki a csillagok a két átellenes végén, hogyan születik meg az „X”. Szerző: Rubens Machado

Az előbb tehát csak tömören és mindössze vázlatosan ismertetett elképzelés mögött sok-sok elméleti munka, szimuláció és nem utolsó sorban megfigyelés áll. Gondoljunk csak bele, hogy a központi dudor megfigyelésének az kedvez, ha nagyjából éléről vizsgálhatjuk a galaxist, míg a küllő tanulmányozását inkább a hozzávetőleg merőleges rálátás segíti. Ritka kivételek akadnak. Például a korábban általam fotózott NGC7582 galaxis ilyen, ahol a közeli infravörös tartományban (K Band) előbukkan a központi dudor is. Ebben az esetben a küllő és a földimogyoró alakú dudor egyszerre tanulmányozható.

Alapvetően tehát nem voltak könnyű helyzetben a megfigyelő csillagászok. Azonban, mára nem igazán fér kétség ahhoz, hogy kapcsolat van a küllők és a szögletes, illetve a földimogyoró alakú központi dudor között. Legfeljebb a pontos hatásmechanizmusok terén akadnak még kérdések.

Az NGC6771-ben tehát azért látjuk a derengő „X”-et, mert ez a lentikuláris galaxis küllős. Bizonyára impozáns látványt nyújtana, ha a korongja felől látnánk rá. Hogy milyen lenne pontosan? Talán hasonlítana az NGC936-hoz.

NGC 936

A 8.2 m tükörátmérőjű VLT-vel (Very Large Telescope) és B, V, R, I szélessávú szűrőkkel készült felvétel az NGC936 küllős lentikuláris galaxisról. Az NGC6771 is hasonlóan festene, ha korongjára körülbelül merőlegesen látnák rá. Forrás: ESO (Cerro Paranal, Chile)

A Földünkhöz sokkal közelebb is találhatunk azonban olyan galaxist, melynek központi dudorjában szintén megfigyelhető az NGC6771-hez hasonló X alakú mintázat. Ez a Tejútrendszerünk, ami szintén küllős galaxis. Ellentétben az NGC6771-gyel, a saját csillagrendszerünk spirális és nem lentikuláris. Még tekintélyes mennyiségű hideg hidrogén gázfelhő található benne. A Tejútrendszerben évente 1-3 naptömegnyi csillag keletkezik. A spirál karok mentén pedig hemzsegnek a csillagkeletkezési régiók. El kell keserítenem az olvasót, ha arra számít, hogy csak úgy kisétál a sötét ég alá, és némi szemszoktatás után a galaxisunk centruma felé tekint, majd egyszerűen meglátja a „misztikus X-et”. Hasonlóan az „X” amatőrtávcsöves fotózása is lehetetlen. Sokáig mindössze megfigyelési adatok alapján sejtették a létezését, és „szemmel láthatóvá tenni” is csak ügyes trükkel sikerült. A WISE infravörös űrtávcső egész égre kiterjedő megfigyeléseiből a csillagászok kivonták a szimulációkból előállított szimmetrikus dudor csillagait. Vagyis az eredeti WISE képből levonták az elméleti modellek adta, a szimmetrikus dudorban feltételezett csillageloszlást.

MilkyWay-X-in-the-bulge-m

MilkyWay-X-in-the-bulge-explain

A Tejútrendszer központi részén is láthatóvá tehető az X alakú struktúra, ám ehhez a korábban ismertetett módszerre van szükség. Forrás: Credits: NASA/JPL-Caltech/D.Lang

Most már a kedves olvasó is tudja, mit is rejt a maszk: a három galaxis evolúciójának meghatározott pillanatát. Hogy számomra, aki amatőrcsillagász vagyok mitől annyira érdekesek ezek a galaxisok? Hiszen erről szólt az egész cikk! Mivel életem csupán egy szempillantás e kozmikus folyamatok időskáláján, így nincs más választásom, mint újabb és újabb kölcsönható galaxisok felkeresése az égbolton. Akadnak még jelöltek bőven, így folytatás következik.

Felhasznált irodalom:

H. Arp, B. F. Madore and W. Roberton: A Catalogue of Southern Peculiar Galaxies and Associations

Wolfgang Steinicke, Richard Jakiel: Galaxies and How to Observe Them (ISBN 978-1-84628-699-5)

Michael König , Stefan Binnewies: The Cambridge Photographic Atlas of Galaxies (ISBN 978-1107189485)

Gordon, Scott Douglas: Radio studies of southern interacting galaxies

Oddone, M.; Díaz, R.; Carranza, G.; Goldes, G.: El trío de galaxias en Pavo

Kartik Sheth, Debra Meloy Elmegreen, Bruce G. Elmegreen, Peter Capak, Roberto G. Abraham, E. Athanassoula, Richard S. Ellis, Bahram Mobasher, Mara Salvato, Eva Schinnerer, Nicholas Z. Scoville, Lori Spalsbury, Linda Strubbe, Marcella Carollo, Michael Rich, Andrew A. West: Evolution of the Bar Fraction in COSMOS: Quantifying the Assembly of the Hubble Sequence

Francoise COMBES, Patrick Boissé, Alain Mazure, Alain Blanchard: Galaxies and Cosmology (ISBN 978-3540419273)

Alice C. Quillen, Ivan Minchev, Sanjib Sharma, Yu-Jing Qin, Paola Di Matteo: A Vertical Resonance Heating Model for X- or Peanut-Shaped Galactic Bulges

Fabian Lüghausen, Benoit Famaey, Pavel Kroupa: Phantom of RAMSES (POR): A new Milgromian dynamics N-body code

Oscar A. Gonzalez, Victor P. Debattista, Melissa Ness, Peter Erwin, Dimitri A. Gadotti: Peanut-shaped metallicity distributions in bulges of edge-on galaxies: the case of NGC 4710

WISE sajtóhír: X Marks the Spot for Milky Way Formation

Egyéb adatok: NED és SIMBAD adatbázisok

 

NGC6503 – Magányos (???) galaxis a „semmi” peremén

NGC6503-LRGB-20170517-2304-sx-bin2-360s-TTK

Az NGC6503 galaxis a Sárkány csillagképben.

2017-05-17, 2017-06-19, 2017-06-20 – Göd

34 x 360 sec L (Bin2), 10 x 360 sec R (Bin2), 10 x 360 sec G (Bin2), 10 x 360 sec B (Bin2)

300/1200 Newton távcső – Paracorr Type2 kóma korrektor – eredő fókusz 1380 mm

SkyWatcher EQ-6 Pro GoTo mechanika

SXVR-H18 CCD kamera, Hutech IDAS P2 LPS filter és Baader RGBL fotografikus szűrőszett

Lokális Ritkulás

A világegyetem nagy léptékű szerkezete leginkább egy óriási pókhálóra hasonlít. Egyes részei szinte teljesen sötétek és üresek, míg mások galaxisokkal zsúfoltak. Galaxisok, galaxis csoportosulások, galaxishalmazok, szuperhalmazok alkotják ezt a kusza „szövetet”.

cosmic_web2_s

A kozmikus pókháló – Kép forrása: Volker Springel/Max Planck Institute For Astrophysics/SPL

A galaxisok eloszlása a Lokális Univerzumban. Az animáció a Lokális Csoporttól indul (Tejútrendszer, Androméda-galaxis, stb.), és egészen a 10000 km/s vöröseltolódáshoz tartozó távolságig mutatja be a galaxisok eloszlását. Figyeljük meg, hogy a Lokális Csoport szinte a közvetlen közelében helyezkedik el a Lokális Ritkulásnak (The Local Void), melyben szinte alig találhatunk galaxisokat. Az egységnyi területre eső galaxisok száma itt igen alacsony.

Forrás: CLUES Projekt (https://www.clues-project.org/cms/observations/) – H. Courtois, D. Pomarède; SDvision

A világegyetem legnagyobb galaxisokat tömörítő struktúrái az úgynevezett szuperhalmazok. 2014. szeptember 4-én jelent meg az a cikk a Nature-ben, melyben Brent Tully (University of Hawaii) és kutatócsapatának 8000 galaxis mozgásának megfigyelésén alapuló kutatási eredményét közölte. Az Ősrobbanás óta táguló világegyetem globális hatását figyelembe véve korrigálták a mért eredményeket, és ebből megkapták, hogy miként hatnak pusztás a galaxisok egymásra. Egy háromdimenziós térképet alkottak, mely teljesen újradefiniálta a szuperhalmazok fogalmát. A földrajzban is ismert vízválasztó vonalakhoz hasonló analógiával élve, a galaxisok csoportjai különböző gravitációs vonzócentrumok irányába igyekeznek, akárcsak a víz egy vízválasztó vonal két oldalán.  Jól elhatárolható felületek vannak a világegyetemben, melyek egyik oldalán az egyik, míg a másik oldalán egy másik ilyen vonzócentrum felé mozognak a galaxisok, illetve azok csoportosulásai.

Mintegy 100 ezer társával egyetemben Tejútrendszerünk, a közel 520 millió fényév (160 Mpc) kiterjedésű Laniakea vagy más néven a Lokális szuperhalmazhoz tartozik. E szuperhalmaz összes galaxisa, legyen az magányos, vagy valamilyen kisebb csoport, esetleg népes halmaznak a tagja, mind a „Nagy Vonzó” („Great Attractor”) felé mozog. A körülbelül 10 millió fényév kiterjedésű, a Tejútrendszerrel együtt valamivel több mint 50 galaxist tömörítő Lokális Csoport is részt vesz ebben a kozmikus áramlásban.

A Laniakea szuperhalmaz. A fentebb említett kozmikus filamenteket, szálakat halványkék színnel jelölték a szerzők. A vörös és fekete galaxisok különböző áramlásokhoz tartoznak. A videóban a Tejútrendszerünk van az origóban (zöld pötty), mely a feketével jelölt áramlásban vesz részt. Mint az látható, mi az ekképpen definiált Laniake szuperhalmaz külső peremén lakunk. A Lokális szuperhalmazban pedig különböző színekkel jelölték azokat a területeket, ahol a galaxisok sűrűbb, historikus csoportosulásai találhatók. Évtizedeken keresztül a csillagászok úgy vélekedtek, hogy mi a zöld régióval jelölt szuperhalmaznak vagyunk a részei. De kiderült, hogy ez is csak „kis szelete” valami sokkal nagyobbnak. A Laniakea hawaii nyelven mérhetetlen mennyet, mérhetetlen eget jelent. Ezzel az elnevezéssel próbálták a kutatók érzékeltetni, hogy milyen hatalmas struktúráról is van szó a világegyetemben. A 2014-ben Tully és kutatótársai által bevezetett új szuperhalmaz fogalom sokkal egyértelműbbé tette, hogy hol találhatóak eme grandiózus kozmikus képződmények határvonalai.

Forrás: R. Brent Tully, Helene Courtois, Yehuda Hoffman és Daniel Pomarède (Nature, vol 513, number 7516, p71 – 4 September 2014)

Ma már tudjuk, hogy a Föld csupán harmadik bolygója a Naprendszernek. Csillagunk nagyjából 27000 fényévre kering galaxisunk centrumától. A Tejútrendszerünk „másodhegedűs” az Androméda-galaxis mellett egy nem túl népes csoportosulásban. A Lokális Csoport pedig a Laniakea szuperhalmaz külső, mondhatni félreeső részén helyezkedik el.  Nem vagyunk semminek sem a középpontjában, ahogy ezt hosszú időn keresztül gondolta az emberiség. Peremvidéki lakosok vagyunk. Ráadásul nemcsak „a valami”, hanem „a semmi” határán. Bár ahogy ezt mindjárt látni fogjuk, van ebben azért némi túlzás.

A galaxisok, galaxishalmazok, szuperhalmazok kusza rostos hálózata mellett, legalább annyira érdekesek az ezeket elválasztó hatalmas ürességek. Pontosabb azonban, ha ezeket inkább ritkulásoknak tekintjük. A továbbiakban ezt a kifejezést fogom használni az angol „Cosmic Void” magyar fordításaként. A Világegyetem ezen területei ugyanis nem teljesen üresek. Bennük is találkozhatunk galaxisokkal, galaxishalmazokkal, de szignifikánsabban kevesebbel. A legközelebbi ilyen hatalmas „üreg”, a Lokális Ritkulás (Local Void) határa éppen extragalaktikus szomszédságunkban húzódik.

Local_Group_and_its_immediate_vicinity.jpg

Az ábrán a Lokális Csoport közvetlen szomszédsága látható két különböző vetületben. A három koncentrikus kék kört nagyjából 6.5 milliló fényév (2 Mpc = 150 km/s) választja el egymástól. A felső vetületen figyelhetők meg a legjobban az egyes csoportok szeparációja. A sötét pöttyök, a szürke négyzetek, a háromszögek az egyes galaxisokat jelölik, annak megfelelően, hogy azok (sorrendben) nagyjából ebben a síkban, vagy inkább e fölött, vagy az alatt helyezkednek el. Az alsó vetületen jól látszik, hogy a galaxisok többsége közelítőleg egy síkban koncentrálódik (Local Sheet). Továbbá azt is jól szemlélteti, hogy e sík fölött mennyire üres a kozmosz. Forrás: Hélène M. Courtois, Daniel Pomarède, R. Brent Tully, Yehuda Hoffman, Denis Courtois

A Lokális Ritkulás létezését 30 évvel (1987) ezelőtt ismerte fel Brent Tully és Rick Fisher.  Tully és munkatársainak vizsgálata alapján a Lokális Csoportnál kezdőd ritkulás nagyjából 150-200 millió fényév (45-60 Mpc) kiterjedésű. Továbbá, centrumának távolsága legalább 75 millió fényévnyire (23 Mpc) van tőlünk. Meg kell jegyeznem azonban, hogy pontos kiterjedését a mai napig viszonylag nagy bizonytalanság övezi. A galaxisok által kevésbé benépesített területek pontos feltérképezése nem könnyű, mivel összességében kevés elektromágneses sugárzás érkezik onnan. Csekély számú, és a legtöbb esetben halvány galaxisok tanulmányozására nyílik csak lehetőség. Mondhatni a sötétben tapogatóznak a csillagászok. Illetve, a fényesebb, galaxisokkal benépesített régiók tulajdonságai alapján igyekeznek következtetést levonni.

Igazából nem is egyetlen nagy összefüggő térségről van szó. A Lokális Ritkulás Tully-ék szerint három elkülönülő szegmensből áll, melyeket galaxisok alkotta vékony szálak választanak el egymástól. A Lokális Csoport az úgynevezett Belső Lokális Ritkuláshoz kapcsolódik.

A Lokális Ritkulás régiói. A kék ellipszis a Belső Lokális Ritkulásnak nevezett szektort jelöli. Ennek a falához tapad a Lokális Csoport, és szűkebb környezete (Local Sheet). Az Északi kiterjesztést a szaggatott világoskék, a Déli kiterjesztést a szaggatott zöld ellipszis jelöli. Az egyes szektorokat vékony, galaxisok alkotta filament-hidak választják el egymástól. Az egyes síkokban a Lokális Ritkulástól való távolodásunk irányát, relatív sebességének nagyságát a vörös vektor (nyíl) mutatja. Forrás: R. Brent Tully, Edward J. Shaya, Igor D. Karachentsev, Helene M. Courtois, Dale D. Kocevski, Luca Rizzi, Alan Peel

Laniakea-Local_Void1

Kozmikus áramlások és sűrűsödések a Laniakea szuperhalmazban. Ebben a metszetben jól látszik, hogy a Lokális Sűrűsödés elnyúlik egészen a Virgo galaxishalmaz mögé. A galaxisok kiáramlása a ritkulásból teljesen evidens ebben a nézetben.  Forrás: Hélène M. Courtois, Daniel Pomarède, R. Brent Tully, Yehuda Hoffman, Denis Courtois

A vizsgálatok tanúsága szerint a Lokális Ritkulás tágul. A Lokális Csoport és a környező galaxisok alkotta fal (Local Sheet) távolodik a ritkulás centrumától. Úgy tűnhet, mintha az „üresség” taszítana minket. A helyzet azonban nem ez. Arról van szó, ahogy azt már fentebb említettem, hogy a galaxisok mozgásából levonva a világegyetem tágulásának hatását, azok összeáramlása, koncentrációja figyelhető meg a Világegyetemben. Mindez meghatározott vonzócentrumok irányába történik, és a jelenség a gravitációnak köszönhető. De nemcsak e masszív képződmények játszanak fontos szerepet az egészben, hanem ellenpárjaik, a ritkulások is. A korábban említett vízválasztós példánál maradva, az is fontos tényező a víz áramlása szempontjából, hogy van-e magas hegy a közelben. A ritkulások pedig magas, meredek falú hegyeknek tekinthetők, ahol gyorsabban igyekszik a víz a völgybe. Vagyis, ezek közelében a helyi csoportok gyorsabban mozognak az „alacsonyabban fekvő”, vagyis a sűrűbb régiók felé, mint azt egyébként tennék. A nettó hatást pedig úgy érzékeljük, mintha a ritkulás „eltaszítaná” magától, a vonzócentrum pedig „húzná” maga felé a galaxisokat, és ennek a kettőnek a hatás pedig a tőlük való távolság függvényében összeadódik. A Lokális Ritkulást ugyan szinte teljesen galaxisok veszik körül, de ezek eloszlás nem egyenletes. Van olyan része, ahol szinte „semmi sincs”, erről a környékről így még több anyag képes távozni. Az analógiát tovább használva, a hegyek idővel egyre nagyobbá, kiterjedtebbé nőnek, miközben a róluk lezúduló víz a völgyekben összegyűlik. Az összeáramlással a ritkulások egyre nagyobb méreteket öltenek, és pontosan ez az, ami a Lokális Ritkulással is történik.

Egy 2017-es publikáció szerint létezik egy sokkal „meghatározóbb” ritkulás is, ami mintegy „eltaszít” minket magától. Így megoldás kínálkozik a Lokális Csoportnak a kozmikus mikrohullámú háttérsugárzáshoz viszonyított túlságosan nagy sebességére. Azonban, ezzel a mostani cikk keretein belül nem foglalkozom, mert nem egy átfogó kozmológiai cikk megírása volt a célom. Kizárólag a Lokális Ritkulásra koncentrálnék. Akit mégis érdekel a téma, annak Yehuda Hoffman, Daniel Pomarede, R. Brent Tully, Helene Courtois: The Dipole Repeller című cikkét ajánlom a figyelmébe, ami az arxiv.org-on szabadon elolvasható. A Nature-ben megjelent változat fizetős. Illetve, aki csak pár percet szánna rá, annak itt egy rövid kis videó.

NGC6503

Vonzott a gondolat, hogy a galaxishalmazok, kompakt galaxiscsoportok után az űr „sötétebb” tartományait is megfigyeljem. Való igaz, hogy ezek feltérképezése a hivatásos csillagászok terepe, és az eredményeiket sem pusztán egyetlenegy galaxis szimpla lefényképezésével érték el, de amatőrcsillagászként nekem nem is ez volt a szándékom. Átfutott az agyamon, hogy a Lokális Ritkulás mélyéről válasszak csillagrendszert, de végül az NGC6503 katalógusjelű galaxis mellett tettem le a voksom. Nem voltam biztos abban, hogy a gödi ég minősége, illetve műszerem, kamerám megfelelő lenne a többi jelölt megörökítéséhez. Már akkor izgatottság lett rajtam úrrá, midőn megláttam az NGC6503 első nyers „digitális lenyomatát” a laptop képernyőjén. „A semmi határán lebegő” galaxis. Az alapvetően is felfoghatatlanul üres kozmosz partját bámultam, melyen túl még nagyobb üresség kezdődik. A csillagászatban gyakran találkozunk extrém adatokkal, de a földi hétköznapokhoz szokott elménk ezekkel csak nehezen tud mit kezdeni.

ESO 461-36 - NGC6503 - 15 ivpec - 2

Jobbra: az ESO 461-36 a Lokális Ritkulásban. A felvétel középen az apró fényfolt maga a galaxis.

Balra: az NGC6503 a Lokális Ritkulás peremén. Ez a galaxis a középső régióját tekintve, viszonylag nagy felületi fényességű.

A felvételek az SDSS (The STScI Digitized Sky Survey) adatbázisból származnak, azonos módon készültek, a feldolgozás is teljesen identikus. A látómező 15 x 15 ívperc.

A Sárkány csillagképben található galaxist Georg Friedrich Julius Arthur von Auwers (1835-1897) fedezte fel 1854-ben. A később az asztrometria területén szép karriert befutó csillagász ekkor még a Göttingeni Egyetemen tanult. Minthogy Auwers saját 2.6 hüvelykes (6.6 cm) Fraunhofer refraktorával akadt rá a galaxisra, így arra gondoltam, hogy megkeresem az égen a jó öreg 20×60-as Tento binokulárommal. Addig sem unatkozom, míg a 300/1200-as Newton távcsővel készülnek a felvételek. A csillagkörnyezetre rá is akadtam, de a galaxist nem sikerült meglátnom. Ennek persze több oka is lehetett. Talán a kisvárosi égboltom aznapi minősége akadályozott meg ebben. Talán, ha lett volna állványom. Talán, ha még úgy látnék, mint régen.

Három hónappal később, a Meteor 2017 Távcsöves Találkozó második éjszakáján egy Kínából rendelt kis elektronikus egységet teszteltük Nagy Tiborral. A cél az volt, hogy a tableten futó SkySafari programmal vezéreljük a SkyWatcher HEQ-5 Pro mechanikát, melyre a UMA-GPU APO Triplet 102/635 távcsövem került fel. Tibor már korábban elvégezte laptopjáról a néhány dolláros modul beállítását, de ég alatt még sosem próbáltuk ki.  Az elgondolásunk a gyakorlatban is bevált, már csak be kell majd dobozolni, hogy a nyákra szerelt LED-ek vakító fénye ne zavarja az észlelőt. Egymás után böködtük a különböző célpontokra. A mechanika tette a dolgát, mi pedig a távcsőbe pillantva élveztük az éppen beállított objektum látványát. Ekkor jutott eszembe újra az NGC6503. Tarján égboltja jobb, mint az én otthonim, és ez a távcső már bőven elég kell legyen a galaxis megpillantásához! Ha Auwers látta a 2.6 hüvelykes Fraunhofer refraktorával, akkor nekem is menni fog! Az okulárba pillantva azonnal felismertem a csillagkörnyezetet, és a 8.6 magnitúdós csillag (a fényes sárgás árnyalatú csillag a képen) mellett ott volt a galaxis orsó alakú foltja. A belső fényesebb rész inhomogenitást mutatott, de ez nem volt azonnal nyilvánvaló. A külső, halvány régió szinte teljesen simának tűnt. Azonban, a keleti-délkeleti oldalán mintha egy fényesebb foltot érzékeltem volna. Vizuális megjelenése alapján kb. 4 x 1 ívpercesnek saccoltam a galaxist. Nehéz leírni, hogy mennyire örültem annak, hogy végre a saját szememmel is láthattam.

NGC6503-map1

Az NGC6503 a Sárkány csillagképben.

NGC6503-map2

A Sárkány csillagkép NGC6503 körüli részlete. A narancs színű ellipszis jelöli a galaxis pozícióját, ami az Alahakan-tól (χ Dra, 44 Dra) 3.5° távolságra van. 

A Simbad adatbázis szerint látszó mérete az égbolton 4.7 x 1.5 ívperc, míg a NED 7.1 x 2.4 ívpercet közöl. A saját felvételem alapján én az utóbbi értéket tekintem elfogadhatóbbnak. Az elmúlt három évtizedben tucatnyi publikáció közölt értékeket a távolságával kapcsolatban, melyek 17 és 20 millió fényév között szórtak. Az utóbbi években megjelent publikációk zöme inkább a 17.2 millió fényévet (5.27 ± 0.53 Mpc) veszi alapul a számításaihoz. A továbbiakban az ennek megfelelő értékek lesznek olvashatók. Átmérője (a NED által megadott látszólagos mérete alapján) 35 ezer fényév körüli. Vagyis, kiterjedése mindössze harmada, negyed a Tejútrendszerének. Éppen ezért, sokan a törpe spirál galaxisok közé sorolják.

NGC6503 2015-06-10 HST

Az NGC6503 a Hubble űrtávcső felvételén. Forrás és szerzők: NASA, ESA, D. Calzetti (University of Massachusetts), H. Ford (Johns Hopkins University), Hubble Heritage Team

Az NGC6503 viszonylag közeli galaxis, így a Hubble űrtávcsővel és a legnagyobb földi műszerekkel nem jelent különösebb problémát a csillagokra bontása. De legalábbis, a fényesebb csillagok tanulmányozhatók általuk. A galaxist azonban nemcsak a látható fény, hanem az elektromágneses sugárzás szélesebb spektrumán is megvizsgálták a csillagászok. Minden egyes hullámhossz hozzáadott valamit felépítésének megértéséhez, illetve több esetben e részeredmények kombinációjából született meg a konklúzió.

A galaxisra majdnem az éléről látunk rá, inklinációja 75.1 (kb. ±1° a különböző publikációkban). Szerencsére a kutatóknak megvannak a megfelelő matematikai módszereik, hogy az ebben a projekcióban rögzített megfigyeléseiket olyan nézetbe transzformálják, mintha csak merőlegesen látnánk rá az NGC6503 korongjára. Továbbá, rendelkezésükre állnak speciális képfeldolgozási eljárások, melyekkel a galaxis bizonyos struktúráit ki tudják emelni. Adott esetben azonban „a látványt” önmagában nehéz lenne értelmezni alapos fotometriai és spektroszkópiai elemzések nélkül. Példának okáért, a galaxis felületi fényességének változása a centrumtól mért távolság függvényében, illetve a galaxis belső dinamikája sok mindenről árulkodik. Fontos azonban megemlíteni, hogy a csillagászok erősen támaszkodnak a korábbi megfigyelésekből kapott eredményekre, tapasztalati törvényekre. Továbbá, modellek jóslataira, szimulációkból származó eredményekre próbálják illeszteni a saját méréseikből származó adatokat. (A továbbiakban legfeljebb vázlatosan fogok ezekről említést tenni, a cikk után felsorolt felhasznált irodalomban megtalálhatóak a pontos részletek.)

A galaxis kicsiny, kompakt magja intenzíven sugároz. Az NGC6503 a LINER (Low Ionization Nuclear Emission Region) galaxisok csoportjába tartozik. A LINER-ek a nevüket magjuknak színképe alapján kapták, amiben tipikusan gyengén ionizált atomok (egyszeresen ionizált oxigén, nitrogén, kén, stb.) keskeny vonalai figyelhetők meg, míg az erősen ionizált atomok (például kétszeresen ionizált oxigén) vonalai viszonylag gyengék. Máig vitatott, hogy pontosan miért látjuk ezeket az emissziós vonalakat a LINER galaxisok színképében. Egyesek szerint az intersztelláris gázban terjedő lökéshullámok (shock waves), míg mások szerint a fotoionizáció (intenzív UV sugárzás) okozza azt. Nemcsak az ionizációs mechanizmus kérdésében oszlik meg a kutatók véleménye, de annak forrását illetőleg is. A csillagászok egyik jelentős tábora szerint, e galaxisok esetében a centrumban tanyázó szupermasszív fekete lyukak a felelősek a gáz gyenge ionizációjáért. Elképzelésük szerint a LINER-ek mindössze kis luminozitású aktív galaxismagok, vagyis a Seyfert galaxisok és a kvazárok kevésbé energetikus rokonai. Az eltérések az aktív galaxis magok, és a kis luminozitású aktív galaxismagok között a fekete lyukak tömegére, az anyagbefogás ütemére, az akkréciós korong fizikai paramétereire, illetve a fekete lyukat körbevevő galaktikus környezetre (por és gáz, azok hőmérséklete stb.) vezethetők vissza, hogy csak pár lehetséges okot említsek. Mások szerint a csillagkeletkezési régiók fiatal, masszív és egyben forró csillagai gerjesztik a gázt. Egy harmadik elképzelés szerint, az 1 milliárd évnél öregebb, előrehaladott fejlődési állapotban lévő csillagok, az aszimptotikus óriás ág elhagyása után (post AGB phase) rövid ideig elég forrók ahhoz, hogy képesek legyenek gyengén ionizálni a környező csillagközi gázokat. Az emisszió megfigyelésére pedig azért nyílik egyáltalán lehetőségünk, mert sem az aktív mag, sem a fiatal forró csillagok keltette sugárzás nem ragyogja túl azt. (Akit a LINER-ekkel kapcsolatos ismeretek mélyebben érdekelnek, annak érdemes elolvasnia a Hickson68 kompakt galaxiscsoportról írt cikkem ezen részét.)

Az NGC6503 spirál galaxis centrumában „miniatűr”, galaxismagbeli spirális struktúra (nuclear spiral structure) figyelhető meg a Hubble űrtávcső F814W szűrőjével (szélessávú közeli infravörös szűrő) készült felvételén. A magot, és a spirál alakú képződményt közvetlenül körbevevő tartomány feltérképezése viszont közel sem bizonyult már ennyire egyszerűnek. Itt a képfeldolgozási eljárások már nem sokat értek. E. Freeland és munkatársai szimulált sebesség profilokra, pozíció-sebesség profilokra, felszíni fényesség profilokra, stb. próbálták illeszteni az észlelések eredményeit. A felhasznált „teoretikus minták” egyik csoportját korábban azért alkották meg, hogy könnyeben eldönthessék a nagy inklinációjú spirál galaxisokról, hogy azok küllősök-e, vagy sem. A küllő (bar) jelenléte ugyanis, a galaxison belüli irányultsága és erőssége függvényében otthagyja kézjegyét az említett profilokon. Megint más „teoretikus minták” pedig a galaxismagot körülvevő korongok (circumnuclear disk) kimutatására alkalmasak. A látható fényben, és a közeli infravörösben egyaránt megvizsgálták a galaxis belső vidékeit. Ennek köszönhetően például a galaxison belüli intersztelláris anyag okozta extinkciót (fényelnyelést) is számításba tudták venni a felületi fényesség profiloknál. (A por okozta extinkció effektívebb a rövidebb hullámhosszokon.) Kiderült, hogy a galaxismagbeli spirális struktúra egy korongban foglal helyet. Ennek a galaxismagot körülvevő korongnak a mérete pedig durván 250-330 fényév (89 ± 13 pc). Azt is megállapították, hogy az e korongon kívüli tartomány esetében a megfigyelések csak olyan küllő jelenlétével értelmezhetőek, amire a vége felől látunk rá. A küllő méretére 2000 fényév (660 pc) adódott. Korábban nem így gondolták, de az NGC6503 (nagy valószínűséggel) küllős spirál galaxis. Megjegyzem, hogy mindebből nemcsak a saját, de a Hubble fenti felvételén sem érzékelhető semmi. A következőkben az NGC6503 olyan tulajdonságairól ejtek szót, melyek amatőrcsillagászati műszerekkel készült felvételeken is látszanak, vagy tetten érhetők.

NGC6503-nuclear-spiral

A Hubble űrtávcső felvétele a galaxis centrumáról, mely F814W (szélessávú közeli infravörös) szűrővel készült. A képet utólag képfeldolgozási eljárásokkal élesítették. A fehér ellipszis a galaxismag körüli korongot reprezentálja. Forrás: E. Freeland, L. Chomiuk, R. Keenan, T. Nelson

NGC6305-bar-spiral-NIR

Az NGC6503 központi területe a közeli infravörös hullámhosszon (1.6 μm).  A vége felől látszó küllő csak kör alakú foltnak látszik a kép közepén. A felvételen kivehetők még a küllő átellenes végén induló prominens spirálkarok is. A belső szürke ellipszis a galaxismag körüli korongot jelöli. Forrás: E. Freeland, L. Chomiuk, R. Keenan, T. Nelson – A felvétel a Kitt Peak Nemzeti Obszervatórium 3.5 méteres WIYN távcsövének infravörös kamerájával készült (WHIRC – WIYN High Resolution Infrared Camera)

A fotómra pillantva is látszik, hogy a galaxis kompakt magját porsávokkal szabdalt sárgás-vöröses terület öleli körül. A színért a kisebb tömegű, előrehaladottabb fejlődési állapotban lévő idősebb csillagok a felelősek. A centrumtól kifelé haladva, a szorosan „feltekeredett” spirál karokban egyre sűrűbben fordulnak elő a Napunknál jelentősen nagyobb tömegű, forró és fiatal csillagok. Ezek a kisebb tömegű testvéreiket kékes fényükkel könnyűszerrel túlragyogják, így az én műszeremmel elért felbontáson egyre inkább a kék szín válik dominánssá. Csillagászati értelemben ezek csak rövid ideig, mindössze néhány millió, néhány tízmillió évig léteznek. Jelenlétük annak indikátora, hogy itt a közelmúltban intenzív csillagkeletkezés zajlott, és ez valószínűleg még ma is tart. Ha nem lenne folyamatos az utánpótlás, akkor az említett időtartamon belül mind kivesznének. A masszív csillagok nemcsak beragyogják a galaxisnak ezen területeit, de gerjesztik is a környezetükben található gázködöket intenzív UV sugárzásukkal, melyek ennek hatására vöröses/rózsaszínes árnyalattal világítanak. A felvételemen e régiók közül csak azok látszanak, melyek kellőképpen nagyok és fényesek.

Már az első Hα keskenysávú szűrőkkel készült fotók azt sejtették, hogy a csillagkeletkezési régiók gyűrűt képeznek a galaxis korongjában. De pontosan miként bocsájtanak ki Hα (Hidrogén alfa) sugárzást ezek a vöröses/rózsaszínes csillagközi gázfelhők a 656.81 nm-es hullámhosszon? Az atomban meghatározott, diszkrét energiaszintek tartoznak az elektronhoz. Az elektron mindig igyekszik elfoglalni a legalacsonyabb, n=1 energiaszintet. A fényes, fiatal, kék csillagok által kibocsátott nagyenergiájú fotonok gerjesztik, ionizálják a közelükben lévő gázfelhők hidrogén atomjait, vagyis az elektront egy magasabb energiaszintre „lökik”, vagy akár le is szakítják magáról a hidrogén atomról. Az előbbi a gerjesztés, az utóbbi az ionizáció jelensége. Annak a valószínűsége, hogy az n=3-as energiaszintre kerüljön az elektron anélkül, hogy leszakadna a hidrogén atomról, roppant kicsi. Vagyis, ha akkora energiát „közlünk” az elektronnal, ami az n=3 szintre juttatná, a hidrogén atom ionizálódik. A szabad elektron hamar találkozik egy elektron nélküli csupasz hidrogén atommaggal, egy protonnal, és új hidrogén atom jön létre (rekombináció). Ebben a folyamatban az elektron bármilyen energiaállapotot felvehet, de végül kaszkád folyamatban visszatér az alapszintre (n=1). A „lefelé lépéskor” a szintek különbségével megegyező energiájú foton sugárzódik ki. Nagyjából az átmenetek felét képezi az n=3 szintről az n=2 szintre történő átmenet, amikor is a 656.81 nm-es sugárzás keletkezik. Végső soron a Hα emisszió annak köszönhető, hogy az atomos hidrogén korábban ionizálódott. A csillagászok ezen a hullámhosszon tudják a legkönnyebben feltérképezni a gázfelhők hidrogénjét az optikai tartományban. Pontosabban, az úgynevezett HII régiókat, vagyis az ionizált hidrogént tartalmazó területeket.

NGC6503 Ha-NIR

Ez a speciális, felvétel a Hubble űrtávcsővel készült az NGC6503-ról. A látómező 3.3 x 1.8 ívperc. A színek nem véletlenül furcsák, ugyanis ez egy úgynevezett bicolor (hamis színes) felvétel. A vörös szín abból a 28 perces expozícióból származik, mely olyan szűrűvel készült (F658N keskenysávú szűrő), ami csak a Hα emissziót engedi át. A vörös szín tehát a HII régióktól származik, amelyek a csillagkeletkezési régiókhoz köthetők. Majd ezt, a közeli infravörös tartományban (F814W szűrő) rögzített 12 perces felvétellel kombinálták, melyet a megfelelő kontraszt kedvéért kékre színeztek. Figyeljük meg, hogy a HII területek egy széles gyűrűben foglalnak helyet. A csillagkeletkezési gyűrű más hullámhosszokon még ennél is evidensebb. Forrás és szerzők: ESA/Hubble és NASA

A csillagászokat azonban nemcsak az ionizált hidrogén, hanem a galaxis teljes hidrogénkészletének mennyisége, illetve eloszlása is érdekelte. Hogy a HI régiókról képet kaphassanak a csillagászok, a VLA (Very Large Array) rádiótávcső rendszerrel a 21 cm-es hullámhosszon figyelték meg az NGC6503-at. A HI régiók olyan intersztelláris felhők, melyeket javarészt atomos hidrogén alkot (a területek ionizációs foka jellemzően igen alacsony: 1:10000) némi héliummal, és a héliumnál nehezebb elemekkel szennyezve. A 21 cm-es rádiósugárzás a hidrogén hiperfinom szerkezetében nagyon kis spontán valószínűséggel (A=2.88×10−15 s−1 ≈ 1/107 év) végbemenő átmenetnek köszönhetően keletkezik. Nagyon leegyszerűsítve, tekintsük a hidrogén atom protonjának és elektronjának spinjét kvantummechanikai impulzusmomentumnak. Egy adott spin állapot hiperfinom állapotokra bomlik a proton és az elektron spinjei szerint. Nagyobb energiájú állapotról van szó, amikor a proton és az elektron spinje megegyezik, azzal szemben, amikor éppen ellentétes. A két energiaállapot közötti hiperfinom átmenetkor keletkezik az említett sugárzás.  Mivel ez a jelenség csak roppant kis valószínűséggel következik be, így jelentős mennyiségű atomos hidrogéngáznak kell jelen lennie ahhoz, hogy ezen a hullámhosszon a csillagászok megfigyelhessék a sugárzásukat.

21cm-es_sugarzas

A hiperfinom átmenet keltette 21 cm-es sugárzás. Ne feledjük, hogy a spin, mint kvantummechanikai impulzusmomentum csak egy analógia, de segít megérteni a jelenséget.

A galaxis rádiótérképén jól látszott, hogy a HI régiók gyűrűbe tömörülnek. A csillagászoknak az ebben található semleges hidrogénkészlet tömegét 200 millió naptömegben határozták meg (E. Greisen és mások, 2009), vagyis a gyűrű tetemes mennyiségű csillag előállításához szükséges anyagot tartalmaz. Érdekes, hogy abban a két végpontban, ahol a küllő metszi a gyűrűt csak igen kevés gáz található. Pedig, a tapasztalatok szerint, általában éppen a küllők végeinél szokott az atomos és molekuláris hidrogén felhalmozódni, továbbá a hidrodinamikai szimulációk is ezt jósolják. Talán az NGC6503 esetében egy nem is olyan rég lezajlott hevesebb csillagkeletkezés az oka ennek a devianciának. E. Freeland és munkatársainak feltételezések szerint, a HI régiók hiánya csak temporális jellegű. A csillagkeletkezés talán kimeríthette az itteni készleteket, vagy éppen az intenzív csillagszél, illetve szupernóva-robbanások söpörhették tisztára a régiót.

NGC6503-HI

A HI régiók rádió kontúrja a GALEX (Galaxy Evolution Explorer) ultraibolya (NUV) tartományban készült felvételére montírozva. Csak a legfényesebb HI régiók kerültek rá a képre, hogy a gyűrű egyértelműen látszódjon. A hidrogénfelhők kiterjedése a korongban ennél sokkal nagyobb (55-72 ezer fényév), de ezek sűrűsége több nagyságrenddel kisebb, mint a gyűrűben lévőé. Figyeljük meg, hogy az UV felvételen is mennyire szembetűnő a gyűrűs struktúra! Forrás: Forrás: E. Freeland, L. Chomiuk, R. Keenan, T. Nelson

Nem véletlen, hogy a fenti képen a GALEX (Galaxy Evolution Explorer) űrtávcső ultraibolya tartományban készült felvételére került rá a HI területek 21 cm-es rádiókontúrja. A csillagkeletkezési gyűrű ugyanis az UV hullámhosszokon igen tisztán látszik, hála a nagytömegű fiatal csillagoknak. Ezek sugárzása itt még erőteljesebb, mint a látható spektrum kék végén. A másik adaléka annak, hogy a csillagászok a két felvételt fedésbe hozták, hogy így figyelembe tudták venni a GALEX adatainak kiértékelésénél a HI régiók vörösítő hatását. A gyűrű tőlünk távolabb eső (felső) fele valamivel „vörösebb”, mint a hozzánk közelebbi (alsó) fele. Mivel a GALEX két UV hullámhossz régióban (FUV: 180-275 nm, NUV: 140-170 nm) is készített felvételeket, ezáltal külön-külön egyfajta „UV színt” is hozzá lehetett rendelni a gyűrűben található csillagkeletkezési régiókhoz. A „színből”, vagyis a két felvétel intenzitás különbségeiből, pedig meg lehet becsülni a csillagkeletkezési régiók korát. Az FUV – NUV < 1 reláció azt indikálja, hogy ezek 500 millió évnél is fiatalabbak.

Az NGC6503 vizsgálata a LEGUS (Legacy ExtraGalactic UV Survey) felmérésnek is része volt. A LEGUS projekt keretében a Hubble űrtávcsővel 50 darab, 12 Mpc-nél közelebbi galaxist fényképeztek le a WFC3 és ACS képrögzítő műszereit használva. Olyan célpontokat választottak, melyekben jelenleg is aktív csillagkeletkezés zajlik.  A célpontok közelsége miatt a galaxisokat alkotóelemeikre, vagyis csillagokra, csillaghalmazokra, asszociációkra tudták bontani. Több különböző szűrőt (WFC3/F275W, WFC3/F336W, WFC3/F438W, WFC3/F555W, WFC3/F814W, ACS/F435W, ACS/F814W, ACS/F606W) is használtak, így egyaránt lefedték a közeli infravörös, az optikai és az UV hullámhosszokat.

NGC6503-LEGUS-comp1cl1

Az NGC6503-ról a LEGUS projekt keretében készült felvételek. A felső „hibrid kép” baloldalán a galaxis optikai, a jobboldalán az UV „megjelenése” látható. Az optikai képhez használt szűrők és a hozzájuk rendelt színek: F435W (kék), F555W (zöld), és F658N (vörös). Az UV képhez használt szűrők és a hozzájuk rendelt színek: F275W (kék), F336W (zöld), és F435W (vörös). Figyeljük meg, hogy miként rajzolja ki a csillagkeletkezési gyűrűt az alsó, UV tartományban készült felvételen a masszív csillagok sokasága. Forrás:  Legacy ExtraGalactic UV Survey/STScI

A LEGUS NGC6503-mal kapcsolatos fotometriai eredményeit felhasználva D. A. Gouliermis és munkatársai úgynevezett kontúralapú térképelemzés technikát vetettek be annak érdekében, hogy a felszíni csillagsűrűség alapján következtetéseket vonhassanak le a csillagkeletkezési gyűrűről. (A cikk után, a felhasznált irodalomban megtalálhatók a pontos részletek.) Az elemzést szűrőpárok szerint válogatott minták segítségével végezték el. A használt párosítások hullámhossz (nm) szerint: F275 – F336, F336 – F438, F438 – F555, F555 – F814. Tulajdonképpen a párokkal a különböző színű csillagokat válogatták le. Az első páros a kékes árnyalatú csillagokat fedi le, míg a negyedik a vörösöket.

NGC6503-LEGUS-Blue-Red

A csillagok térbeli eloszlása az NGC6503-ban. Balra fent a „kék színű csillag” minta (F275 – F336 szűrőpár), jobbra fent a „vörös színű csillag” minta (F555 – F814). Alul ezek „felülnézetbe transzformált” képe látható, a galaxis inklinációját figyelembe véve. A kék csillagok már szemmel láthatóan is kirajzolják a csillagkeletkezési gyűrűt. A vörösök sokkal nagyobb területen oszlanak el. Mindazonáltal, eme utóbbiaknál is sejthető, hogy némileg követik a csillagkeletkezési régiókat. Fontos megjegyezni, hogy a küllő a hiányos fotometriai felmérés miatt nem jelenik meg a vörös csillagok eloszlásában. A kék csillagok hiánya a centrum környékén azonban valós. Forrás: D. A. Gouliermis és mások.

Mint az fentebb már kiderült, a kék csillagok kijelölik a csillagkeletkezési régiókat. Az NGC6503-ban ezek eloszlását vizsgálva a centrumtól mért távolság függvényében, a kutatók meghatározták a gyűrű külső és belső sugarát is. Az előbbire 1 kpc (326 fényév), míg az utóbbi 2.5 kpc (815 fényév) értéket kaptak. A gyűrű tehát a galaxis küllőjén kívül helyezkedik el.

A csillagászoknak összesen 244 kék csillagokból álló struktúrát sikerült behatárolniuk különböző bizonytalansággal. Határozottan tehát nem jelenthető ki, hogy mind a 244 struktúra valós halmaz, vagy valós asszociáció. Jelentős részük lehet, hogy csak véletlen fluktuáció az adatokban. A tudomány már csak így működik. Az elemzésük szerint, ezek 95%-a hierarchikusan, a gyűrű mentén elhelyezkedő 3 domináns szuper-struktúrához tartozik.

A gyűrűben a fiatal csillagoknak valamivel több mint a fele halmazok, asszociációk része, míg a többiek ezen komplexumok között oszlanak el. Elmondható az is, hogy inkább a legfiatalabbak (legfényesebbek) tömörülnek ilyen struktúrákba, míg a némileg idősebbek, de még mindig fiatal csillagok, inkább szerteszóródottabbak. De a struktúrák mérete és sűrűsége is mutat korrelációt a korral. A legfiatalabb csillagok inkább a kisebb és kompaktabbak lakói, míg a valamivel idősebbek, a lazább és nagyobb kiterjedésűekhez tartoznak. D. A. Gouliermis és szerzőtársai szerint, ez alátámasztja azt az elképzelést, hogy a csillagképződést a gyűrű gázfelhőiben turbulenciák szabályozzák, s melyek aztán felszabdalják azokat (turbulent fragmentation). Vagyis, a nagyobb felhők belsejében idővel kisebb felhők tömörödnek össze, azaz a hideg csillagközi anyag hierarchikus felhőkbe rendeződik (multi-fraktál). Az NGC6503 kék mintájában (F275 – F336 szűrőpár) sikerült is tetten érni a folyamatot. A vizsgált kék csillagok nagyjából 100 millió éves időskálán belül keletkeztek. A legfiatalabb körülbelül 4 millió, míg a legidősebb 110 millió éves lehet, míg maga a fragmentáció pedig nagyjából 60 millió éves időskálán zajlott le.

A turbulenciákat a gyűrűben azok a nyíróerők táplálják, melyek annak belső és külső pereme közötti jelentős forgási sebességkülönbség miatt lépnek fel. Tekintettel arra, hogy 100 millió év alatt a gyűrű belső pereme három fordulatot is végez, az NGC6503 esete azt bizonyítja, hogy ezek a „nyírómechanizmusok” sokkal inkább fenntartják a csillagkeletkezést, mintsem megakadályozzák azt. Továbbá, a LEGUS projekt eredményein alapuló, az NGC6503 kapcsolatos megfigyelések támogatják azt az elképzelést is, hogy a galaxisokban gyűrűk rezonancia jelenségek, melyeket egy forgó küllő vagy éppen valami más nem tengelyszimmetrikus korongbéli zavar hoz létre. Igaza lehet tehát azoknak, akik szerint a gyűrűk a küllős galaxisok dinamikájának természetes következményei (Buta és Combes, 1996).

Kimondottan viszonylagos közelsége, de főleg izoláltsága révén övezi különleges érdeklődés ezt a galaxist. Általánosan elmondható, hogy az izolált galaxisok nem állnak kölcsönhatásban más galaxissal, illetve halmaztagok sem fejtenek ki rá hatást. Így van ez szinte a világegyetem keletkezése óta, de legalább azóta, hogy tömegüknek a felét összegyűjtötték. Az ilyen típusú csillagvárosok ideálisak, hogy a csillagászok ellenőrizzék a galaxisok evolúciójával kapcsolatos elméleteiket. Továbbá fontos a szerepük abban, hogy jobban megérthessék a környezeti hatásokat a népes galaxis halmazokon belül, és megválaszolhassák, e hatások miként befolyásolják egy-egy galaxis, illetve a halmaz egészének fejlődését.

Azonban J. Koda és munkatársainak a közelmúltban (2015) megjelent publikáció azt sugallja, hogy az NGC6503 talán mégsem annyira magányos, mint azt korábban gondolták. A Subaru távcsővel még 2013-ban készítettek felvételeket az NGC6503-ról és környezetéről B, V, R, I, és NA656 (Hα) szűrőket használva, a Subaru extended ultraviolet disk survey program keretében. Az eredeti tudományos cél az NGC6503 optikai korongján is túlnyúló, kiterjedt UV sugárzásnak (XUV) a tanulmányozása és megértése volt. Ez viszonylag gyakori jelenség, mert a közeli galaxisok nagyjából 30%-a mutat ehhez hasonló jegyeket, de pontosan még ma sem tudják a csillagászok, hogy mi lehet ennek a sugárzásnak az oka. A Subaru ekkor készült felvételein akadtak rá a csillagászok, az utólag NGC6503-d1-nek elkeresztelt halvány törpe galaxisra.

NGC6503-d1

NGC6503-d1 törpe galaxis, mely átmenetet képez a törpe irreguláris galaxisok (dIrrs), és a törpe szferoidális galaxisok (dSph) között. Irreguláris megjelenését a néhány 100 millió éve történt csillagkeletkezésnek köszönheti. Míg a szimmetrikusabb alrendszert az idősebb, több milliárd éves csillagok alkotják. Az NGC6503-d1 igencsak „pehelysúlyú” a galaxisok között, mert összességében mindössze 4 millió naptömegű. Érdekes, hogy a becslések szerinti 3.6 milliói naptömeggel, a 8 milliárd évnél idősebb csillagok teszik ki a galaxis tömegének tetemes részét. Ehhez képest a fiatal generáció tömege csupán 280 ezer naptömeg körüli.

(a): A Subaru B, V, R szűrős felvételeiből képzett színes kép (pseudo-color), (b) DSS (Digitized Sky Survey), (c) Subaru V szűrős felvétele logaritmikus skálázással – ez kiemeli az öreg csillagok szimmetrikus alrendszerét, (d) GALEX NUV (ultraibolya) – itt a fiatalabb csillagok tűnnek elő, (e) Subaru Hα – a kis kör az egyetlen detektált HII régiót jelöli

A DSS felvétel esetén 30.2 x 12.7 ívperc a látómező, a többinél  2 x 2 ívperc.

Forrás: J. Koda és mások

Az NGC6503-d1 és az NGC6503 távolsága az égbolton 17 ívperc. A számítások szerint az NGC6503 500 ezer fényévnyi (150 kpc) területét képes „gravitációjával uralni”. Ez a távolságát figyelembe véve, 100 ívpercnyi területét jelenti az égboltnak. Így, ha a két galaxis nagyjából azonos távolságra van tőlünk, akkor az NGC6503-d1 az NGC6503 kísérője.

Az NGC6503-d1 látszólagos mérete és fényessége alapján (ezek távolságfüggő paraméterek) ennek megvan a valószínűsége. Legalábbis, a csillagászok erre a következtetésre jutottak, amikor a csillagrendszert a Lokális Csoport törpe galaxisaival hasonlították össze. Egészen pontosan a központi felületi fényesség, a fél-fényesség sugár (half-light radius – az a sugár, amiből a rendszer fényességének 50%-ka származik), és az abszolút fényesség korrelációját vizsgálták. Megállapították, hogy strukturális felépítése azokhoz a Lokális Csoportban található halvány törpe galaxisokéhoz hasonlít, melyek abszolút fényessége (MV) kb. -10.5 magnitúdó, fél-fényessége sugara (re) nagyjából 1300 fényév (400 pc), és központi felszíni fényessége (μ0,V) 25.2 magnitúdó/ívmásodperc2. Ezekből az adatokból pedig már következtetni tudtak a csillagrendszer távolságára.

Az NGC6503-d1 távolságának meghatározásához a vörös óriás ág legfényesebb csillagait is felhasználták indikátorként a csillagászok. De min alapszik ez a módszer? A vörös óriások eloszlását felrajzolva egy szín-fényesség diagramon, ahol a szín a vizuális és a közeli infravörös tartományban megfigyelt fényességek különbsége (V-I), míg a fényesség a közeli infravörös tartományban látszó fényesség (I), azok eloszlása egyszerű hatványtörvényt követ. A csillagfejlődési elméletek és a megfigyelések szerint is, a vörös óriásoknak a közeli infravörös tartományban van egy jól definiált maximális luminozitása. Ezt a pontot az első vörös óriás ág tetejének nevezik, illetve az angol nyelvű szakirodalomban ez a „Tip of the Red Giant Branch” (TRGB). Megfelelő matematikai apparátus birtokában meghatározható a TRGB látszólagos közeli infravörös fényessége. Az idős (több milliárd éves) vörös óriás csillagok esetén, melyek fémtartalma kicsi ([Fe/H] ≤ -0.7), a közeli infravörös tartományban a TRGB abszolút fényessége független azok fémtartalmától. Ez már nem teljesen igaz a fiatalabb, így nagyobb fémtartalmú csillagokra. (A csillagászok minden olyan elemet, ami nem hidrogén vagy hélium, fémnek neveznek.) A csillagok fémtartalma fontos szerepet játszik fejlődésükben, és ennek köszönhetően kissé más utat járnak be. A nagyobb fémtartalmú vörös óriások életpályája a szín-fényesség diagramon kissé a kék tartomány felé tolódik. A módszer egyik lényeges sarokköve tehát, hogy a csillagok fémtartalma, vagyis kora egy tág intervallumban (>2 milliárd év) nem befolyásolja szignifikánsan a távolság meghatározás pontosságát. Éppen ezért is, a vörös óriás ág (TRGB) tetejének fényessége, mint sztenderd gyertya, a csillagászatban előszeretettel használt távolságmérési módszer. Nem is beszélve arról, hogy nagy fényességüknek köszönhetően, ezek a vörös óriások igen messziről látszanak.

M106-NGC4254-TRGB-example

Példa szín-fényesség diagram a vörös óriások eloszlásának és a TRGB-nek a szemléltetéséhez. Nem véletlen, hogy nem az NGC6503-d1 diagramja szerepel itt. A kisszámú mintán közel sem lenne ennyire szemmellátható a dolog! (Az NGC6503-d1 esetén alkalmazott módszer leírása az eredeti publikációban megtalálható.) Az M106 (NGC4258) galaxis szín (V-I) és közeli infravörös fényesség diagramjának forrása: Barry F. Madore, Violet Mager, Wendy L. Freedman

A csillagászoknak nem volt könnyű a dolga az NGC6503-d1 esetén. Nagyjából 300 csillagot tudtak felbontani a galaxisban. Ezekből kellett a következtetéseiket levonni, illetve a TRGB fényességét is ezek alapján próbálták meghatározni. Természetesnek mondható, hogy az ilyen relatíve kisszámú minta hagy bizonytalanságot az eredményekben.

Külön-külön a fentebb leírt módszerek és megfontolások magukban még nem lennének elegendők, hogy egyértelműen kijelenthető legyen: az NGC6503-d1 az NGC6503 kísérője. Azonban, ezek kombinációja már valószínűvé teszi azt. Így, a publikáció egyik konklúziója, hogy az NGC6503-d1 távolsága nagyjából 17 millió fényév (5.25 Mpc), és valószínű, hogy az NGC6503 szatellit galaxisa. Itt az ideje elfelejteni a magányos jelzőt e galaxis esetében? J. Koda és szerzőtársai szerint: igen. Azt sem tartják kizártnak, hogy a jövőbeli felmérésekben további, az NGC6503-d1-nél halványabb kísérő törpe galaxisok nyomára bukkannak majd az NGC6503 környékén.

Felhasznált irodalom:

R. Brent Tully, Edward J. Shaya, Igor D. Karachentsev, Helene M. Courtois, Dale D. Kocevski, Luca Rizzi, Alan Peel: Our Peculiar Motion Away from the Local Void

R. Brent Tully: Our CMB Motion: The Local Void influence

E. Freeland, L. Chomiuk, R. Keenan, T. Nelson: Evidence for a Strong End-On Bar in the Ringed Sigma-Drop Galaxy NGC 6503

Hélène M. Courtois, Daniel Pomarède, R. Brent Tully, Yehuda Hoffman, Denis Courtois: Cosmography of The Local Universe

R. Brent Tully, Helene Courtois, Yehuda Hoffman, Daniel Pomarède: The Laniakea supercluster of galaxies

Jin Koda, Masafumi Yagi, Yutaka Komiyama, Samuel Boissier, Alessandro Boselli, Alexandre Y. K. Bouquin, Jennifer Donovan Meyer, Armando Gil de Paz, Masatoshi Imanishi, Barry F. Madore, David A. Thilker: Discovery of New Dwarf Galaxy near The Isolated Spiral Galaxy NGC 6503

Dimitrios A. Gouliermis, David Thilker, Bruce G. Elmegreen, Debra M. Elmegreen, Daniela Calzetti, Janice C. Lee, Angela Adamo, Alessandra Aloisi, Michele Cignoni, David O. Cook, Daniel Dale, John S. Gallagher III, Kathryn Grasha, Eva K. Grebel, Artemio Herrero Davo, Deidre A. Hunter, Kelsey E. Johnson, Hwihyun Kim, Preethi Nair, Antonella Nota, Anne Pellerin, Jenna Ryon, Elena Sabbi, Elena Sacchi, Linda J. Smith, Monica Tosi, Leonardo Ubeda, Brad Whitmore: Hierarchical Star Formation across the ring galaxy NGC 6503

Luca Rizzi, R. Brent Tully, Edward J. Shaya, Ehsan Kourkchi, Igor D. Karachentsev: Draining the Local Void

CLUES (Constrained Local UniversE Simulations) projekt

Hickson68 (NGC5350, NGC5353, NGC5354, NGC5355, NGC5358) – Paul Hickson interjú

Hickson68-LRGB-20170326-2144-sx-bin2-360s-TTK

A Hickson68 kompakt galaxiscsoport a Vadászebek csillagképben

2017-03-26, 2017-03-28 – Göd

42 x 360 sec L (Bin2), 10 x 360 sec R (Bin2), 10 x 360 sec G (Bin2), 10 x 360 sec B (Bin2)

300/1200 Newton távcső – Paracorr Type2 kóma korrektor – eredő fókusz 1380 mm

SkyWatcher EQ-6 Pro GoTo mechanika

SXVR-H18 CCD kamera, Hutech IDAS P2 LPS filter és Baader RGBL fotografikus szűrőszett

Be kell valljam, hogy 2017. március 26-án kissé felkészületlenül álltam a hátsó udvaron sötétedés után. Több hónapja, hogy távcsövem téli álmát aludta. A tél azonban rég elmúlt, és fejem fölött már ott sötétlett a galaxisoktól hemzsegő tavaszi égbolt. Nem volt az a koromfekete és kristálytiszta, de kisvárosi éghez képest éppen megfelelő. Amúgy is régen rögzítettem felvételeket kerti magányomban az űr valamelyik távoli szegletéről. Ki tudja, mikor lesz a következő alkalom? Miközben a megszokott rutin keretében pólusra álltam, betanítottam a mechanikát, és meggyőződtem róla, hogy a műszer tényleg készen áll a fotózásra, azon töprengtem, hogy mi legyen a kiszemelt célpont. Egyáltalán nem volt semmilyen tervem. Nem készültem.

Pár nappal korábban olvastam egy cikket az arxiv.org-on, mely a galaxisok evolúciójának kérdésével foglalkozott, és amelyben Paul Hickson munkásságára is hivatkoztak. Sok amatőrcsillagász számára ismerős lehet Hickson katalógusa, kimondottan a mély-ég objektumok kedvelőinek. Hickson a Palomar Obszervatórium Égboltfelmérő Programban (Palomar Observatory Sky Survey) készült, vörös színszűrővel rögzített felvételeit fésülte át alaposan, és speciális kritériumok alapján 100 kompakt galaxiscsoportot azonosított. Célja a galaxisok felépítésének és dinamikus fejlődésének tanulmányozása volt, ezek a csoportok pedig kitűnő terepet szolgáltattak ehhez.

35 év telt el, hogy Hickson publikálta a kompakt galaxiscsoportok tulajdonságait taglaló munkáját (Systematic properties of compact groups of galaxies – Hickson, 1982). Ezt újabb felismerésekkel, és ahogy az lenni szokott, újabb kérdések feltevésével egészítette ki az évek során. De nemcsak saját maga, hanem más csillagászok is előszeretettel tanulmányozták ezeket a csoportosulásokat, illetve támaszkodtak eredményeire. Hickson talán máig az egyik legteljesebb és legjobban tanulmányozott mintát állította össze ebben a témában. Kijelenthető, hogy az ő munkásságának is jelentős szerep jutott abban, hogy a csillagászok ma már többet tudnak a galaxisokról, mint évtizedekkel korábban.

Ezekkel a gondolatokkal a fejemben elhatároztam, hogy a célpontom valamelyik Hickson kompakt galaxiscsoport lesz. Végül a Hickson68-ra esett a választásom. Éppen megfelelő pozícióban volt az égen, figyelembe véve a kertet szegélyző fákat, a szomszédok házait, és bizony a fényszennyezést is.

Az öt galaxist tömörítő Hickson68 kompakt galaxiscsoport a Vadász Ebek (Canes Ventaici) csillagkép területén, a Seginus (γ Boo), Alkaid (η UMa) és a Cor Caroli (α2 CVn) háromszög déli oldalának közelében található. Megtalálásukban nagy segítséget jelent a Seginus és a Cor Caroli között félúton lévő 6.5 magnitúdós HD121197 jelzésű csillag. (7.8 fokra a Seginus-tól). Amennyiben ezt sikerült azonosítani, máris az égbolt megfelelő szegletében járunk, ugyanis ez az a vöröses árnyalatú csillag az, ami a felvételemen is a legfényesebben tündököl.

Hickson68-map1

A Hickson68 elhelyezkedése az égen.

A világegyetem tágulásának köszönhetően a galaxisok távolodnak tőlünk, méghozzá annál nagyobb sebességgel, minél nagyobb a távolságuk. Ezt az összefüggést nevezik Hubble-törvénynek. A Doppler-effektus miatt, a távolodó égitest spektrumában a színképvonalak a sebességgel arányosan a vörös szín felé tolódnak. A vöröseltolódást megmérve tehát, kiszámítható a távolodás sebessége. Ebből pedig, az említett Hubble-törvényt felhasználva, következtetni lehet az adott galaxis távolságára. A Hickson68 galaxisainak vöröseltolódása alapján, azok 111-123 millió fényévre vannak tőlünk. Megjegyzem, hogy az egyéb, a vöröseltolódástól független távolságmeghatározási módszerekkel kapott értékek 90 és 120 millió fényév között szórnak. Ez elfogadható egyezésnek számít a csillagászatban. (Én a továbbiakban a csakis a vöröseltolódáson alapuló távolságokat fogom alapul venni.) A hangsúly nem is a pontos távolságon, sokkal inkább a közel azonos vöröseltolódáson van. Vagyis, az öt galaxis ténylegesen közel van egymáshoz, a Hickson68 mind az öt tagját gravitációs kapocs köti össze, és nemcsak véletlenül látszanak azonos irányban. Ilyen véletlenek márpedig előfordulnak. Csak két híres példát említenék: a Stephan-galaxisötös (Stephan’s Quintet), illetve a Seyfert-galaxishatos (Seyfert’s Sextet) egy-egy tagja csak látszólag az adott csoportosulás része. A valóságban hatalmas távolság választja el a többiektől. Továbbá, a Seyfert-galaxishatos hatodik objektuma nem is galaxis, sokkal inkább a galaxisok közötti kölcsönhatás eredményként létrejött úgynevezett árapálycsóva (tidal tail). A csillagászatban is előfordul, hogy nem mindez az, amink elsőre látszik. Azonban, a vöröseltolódásukat megmérve ezek az imposztorok leleplezhetők.

Hickson68-LRGB-20170326-2144-sx-bin2-360s-TTK-label

A Hickson68 mind az öt galaxisa szerepel az NGC katalógusban. A továbbiakban erre fogok hivatkozni.

A Hickson68 öt galaxisa közül az NGC5350 küllős spirál galaxis az egyik legközelebbi. Vöröseltolódása alapján távolsága 111 millió fényév. Bár látszólag csak 3.2 x 2.3 ívperces kis objektum az égen, de a távolság adatok tükrében, az átmérője a Tejútrendszer 100 ezer fényéves átmérőjével vetekszik.

A „kvintettnek”, az égbolton egymáshoz igen közel látszó két galaxisa az NGC5353 és az NGC5354. Mind a kettő úgynevezett lentikuláris galaxis. Ez a típus átmenetet képez a spirál és az elliptikus galaxisok között. A lentikuláris galaxisok alapvetően diszk alakúak akárcsak a spirál galaxisok. Nincsenek azonban spirálkarjaik, a korongban nem figyelhetők meg határozott struktúrák. Jellemző rájuk, hogy a központi dudor a galaxis korongjához képest viszonylag nagyméretű, és meghatározó a galaxis felépítése szempontjából.

Az elliptikus galaxisokat és a lentikuláris galaxisokat gyakran nem is olyan könnyű megkülönböztetni egymástól. A legtöbb esetben, a csillagászok a felületi fényesség profil alapján szokták eldönteni a galaxisról, hogy az melyik típusba tartozik. Ez a profil leírja, hogy miként változik a galaxis fényessége a centrumtól távolodva. A spirál galaxisok, illetve a lentikuláris galaxisok korongjának profilja tipikusan lapos, míg az elliptikusak szferikus része, illetve a lentikulárisok központi dudorának profilja meredek esésű. A gyakorlat azonban sosem ennyire egyszerű, ugyanis lentikuláris galaxisok esetén a központi dudor jellemzően dominánsabb a koronghoz képest. Tipikusan akkor kap a galaxis lentikuláris, és nem elliptikus besorolást, ha felületi fényesség profilja nem írható le egyetlen indexszel (Sérsic index). Vagyis, csak több, különböző meredekségű görbével írható le.

Sersic_models

Felületi fényesség profilok különböző Sérsic index-ek esetén. A vízszintes tengelyen található a centrumtól mért távolság logaritmusa, míg a függőleges tengelyen a felszíni fényesség logaritmusa. Az n=1 a spirál galaxisokat és a lentikuláris galaxisokat, az n=4 az elliptikus galaxisokat írja le jól.

Használatos még, mivel nincs tökéletesen éles határ, ami elválasztaná az elliptikus és lentikuláris galaxisokat, az E/S0 morfológiai típus is. A Hickson68-ban lévő NGC5353 például néhány szerzőnél ilyen besorolású.

Az NGC5353 a fényesebb (ez vizuálisan is jól kiütközik) a kettőjük közül. Halvány kiterjedt halója, ami összeolvadni látszik a NGC5354 galaxiséval, inkább csak a fotókon bukkan elő. Szinte lehetetlen megmondani, hogy mekkora e két galaxis kiterjedése. Véleményem szerint, a legtöbb katalógusban e külső leplek nélküli méretek szerepelnek. Mindenesetre a SIMBAD adatbázisa az NGC5353-ra 3.6 x 1.7 ívperc, míg az NGC5354-re 2.9 x 2.4 ívperc értéket tüntet fel. De térjünk vissza az NGC5353 és az NGC5354 látszólag egymásba olvadó halvány külső részéhez. A vöröseltolódása alapján az NGC5353 111 millió fényévre, az NGC5354 123 millió fényévre van tőlünk. Amennyiben a csillagászok mérései pontosak, akkor a két galaxist nagyjából 12 millió fényév választja el egymástól. Ez összehasonlításként majdnem ötszöröse a Tejútrendszert és az Androméda-galaxist elválasztó távolságnak. Igazából az NGC5350 küllős spirál és az NGC5353 lentikuláris galaxisok nagyságrendekkel közelebb vannak egymáshoz. Ugyanakkor, egyelőre nincs igazán meggyőző bizonyíték arra nézve, hogy a galaxisok szoros kölcsönhatásban állnának egymással. Sem az NGC5350, sem az NGC5353, de még csak az NGC5354 esetében sem figyelhetők meg az interakcióban lévő galaxisokra jellemző vonások. Ilyen például a rotációs görbék két oldala közötti különbség, a csillagok mozgásában lévő „zavarok”. Vagy éppen a csillagok és az intersztelláris anyag eloszlásában mutatkozó eltérések, esetleges árapály csóvák, vagy az infravörös tartományban megfigyelhető sugárzási többlet. Eddig egyiket sem sikerült kimutatni az esetükben. A két lentikuláris galaxis halvány leplének összefonódása tehát perspektivikus hatás csupán. Ezek a csillagrendszerek azonban már önmagukban is érdekesek.

Az NGC5353 és NGC5354 számottevő aktivitást mutatnak a rádiótartományban, illetve az optikai spektrumuk is több kérdést vet fel. Mind a kettő a LINER (Low Ionization Nuclear Emission Region) galaxisok csoportjába tartozik. A LINER-ek a nevüket magjuknak színképe alapján kapták, amiben tipikusan gyengén ionizált atomok (egyszeresen ionizált oxigén, nitrogén, kén, stb.) keskeny vonalai figyelhetők meg, míg az erősen ionizált atomok (például kétszeresen ionizált oxigén) vonalai viszonylag gyengék. A LINER galaxisok közel sem olyan ritkák, mint az elsőre gondolnánk. A megfigyelések azt mutatják, hogy a környezetünkben (486 elemű, legalább 12.5 magnitúdós (BT) galaxismintát tekintve) minden ötödik-harmadik galaxis ilyen. Érdekes, hogy túlnyomórészt inkább elliptikus és lentikuláris galaxisok esetén figyelhető meg ez a jelenség, bár számottevő a spirál galaxisok mennyisége is. Az irreguláris galaxisok között viszont csak elvétve akad ilyen.

Máig vitatott, hogy pontosan miért látjuk ezeket az emissziós vonalakat a LINER galaxisok színképében. Már abban sincs egyetértés a csillagászok között, hogy egyáltalán miként jön létre maga a gerjesztés. Egyesek szerint az intersztelláris gázban terjedő lökéshullámok (shock waves), míg mások szerint a fotoionizáció (intenzív UV sugárzás) okozza azt. Nemcsak az ionizációs mechanizmus kérdésében oszlik meg a kutatók véleménye, de annak forrását illetőleg is.

A csillagászok egyik jelentős tábora szerint, e galaxisok esetében a centrumban tanyázó szupermasszív fekete lyukak a felelősek a gáz gyenge ionizációjáért. Szerintük a kis luminozitású aktív galaxismagok (Low-Luminosity Active Galactic Nuclei – LLAGN), ahová a kevésbé fényes magú Seyfert galaxisok, és a LINER-ek is tartoznak, illetve azok a galaxismagok, melyek színképe a LINER-ek és a HII régiók közt átmenetet mutat, csupán a nagyságrendekkel intenzívebben sugárzó Seyfert galaxisoknak és a kvazároknak a rokonai. Ezen utóbbiak magjában, a szupermasszív fekete lyuk felé áramló anyag akkréciós korongot formál, s miközben befelé örvénylik, egyre gyorsabban mozog és felhevül. A folyamatban a mozgási energiájának egy jelentős része elektromágneses sugárzássá alakul. Az akkréciós korong mindkét oldalán, a forgástengely mentén plazmából álló jet-ek jönnek létre. A jet a fekete lyukhoz közeli erős mágneses térben közel fénysebességre gyorsított, töltött szubatomikus részecskék fókuszált nyalábja. A relativisztikus sebességgel mozgó töltött részecskék a mágneses térben kifelé spirálozva felelősek az úgynevezett szinkrotronsugárzásért. A kis luminozitású aktív galaxismagok hasonlóan működnek e csillagászok vélekedése szerint, csak éppen kevésbé energikusak.  Míg például a kvazároknál a jet-ek hossza elérheti akár a millió fényéves nagyságrendet is, addig a kis luminozitású aktív galaxismagok esetében inkább csak fényéves méretekről lehet beszélni, de extrémebb esetekben is pár száz fényévről. Az eltérések az aktív galaxis magok, és a kis luminozitású aktív galaxismagok között a fekete lyukak tömegére, az anyagbefogás ütemére, az akkréciós korong fizikai paramétereire, illetve a fekete lyukat körbevevő galaktikus környezetre (por és gáz, azok hőmérséklete stb.) vezethetők vissza, hogy csak pár lehetséges okot említsek. Amennyiben tényleg rokoni szálak fűzik őket össze, akkor a LINER galaxisok alkotják az aktív magú galaxisok legnépesebb alosztályát, számuk messze lekörözi a nagyobb luminozitású Seyfert galaxisok és kvazárok számát.

agn_tipusok

Aktív galaxismag sematikus vázlata.

Black Hole – Fekete lyuk, Torus of Neutral Gas and Dust – Ionizálatlan gázok és por tórusza, Accretion Disk – Akkréciós korong, Radio Jet – Rádió Jet

A kétezres évek elején, több más kis luminozitású aktív magú, és „klasszikus” aktív magú galaxissal együtt az NGC5353-at és az NGC5354-et is vizsgálták a VLA (Very Large Array)  és a VLBA (Very Long Baseline Array) rádiótávcső rendszerekkel, hogy pontosabb képet kapjanak arról, hogy mi is történik azok centrumában. Sokuknál sikerült az ezred ívmásodperces felbontást is elérni (VLBA), ami azt jelenti, hogy szub-parszekes skálán (1 parszek körülbelül 3.26 fényév) tudták vizsgálni a galaxisok centrumából származó rádiósugárzást. Kiderült, hogy a két galaxis magja azokhoz a kis luminozitású aktív galaxismagokhoz tartozik, ahol mindössze alig néhány fényév hosszúságú, és görbült a jet. Tehát, nemcsak náluk, hanem más, a kiválasztott mintában szereplő galaxis magjánál is megfigyeltek hasonlót. A legtöbbjük pedig szintén LINER galaxis volt. Az is hozzátartozik az igazsághoz, hogy nem minden LINER esetében tudták ezt kimutatni. Ahol viszont igen, ott úgy tűnik, hogy a jet-ek nem jutnak messze a központi fekete lyuktól. Lehetséges, hogy egyik galaxis esetében sem eléggé kollimált a nyaláb. De az is elképzelhető, hogy a környező anyaggal való kölcsönhatásban egyszerűen csak hamar elveszíti energiájának tekintélyes részét. Ha ez utóbbi a helyes magyarázat, akkor a jet jelentős mennyiségű energiát ad le alig néhány fényéven belül, így lelassítja a gáz beáramlását az akkréciós korongba. Ez pedig kihat a fekete lyuk anyagbefogási ütemére is. Talán éppen ez az oka, hogy kisebb luminozitásuk ezek a magok a többi aktív galaxismaghoz képest. Csakhogy, sok LINER galaxisban aktív magnak semmi nyoma, így vannak, akik nem támogatják ezt a fentebb vázolt elképzelést, vagy kissé árnyaltabban vélekednek róla.

NGC5353-NGC5354-radio_core01-cut1

Balra: Az NGC5353 centrumának rádióképe. A görbült „megnyúlások” a feket lyuktól induló jet-ek, melyek alig pár fényévre jutnak csak el. Forrás: Nagar és mások

Jobbra: Az NGC5354 centrumának rádióképe. Itt is görbületet mutatnak a jet-ek, és hasonlóan rövidek, mint az előző esetben. Forrás: Filho és mások

Egyesek szerint a csillagkeletkezési régiók fiatal, masszív és egyben forró csillagai gerjesztik a gázt. Való igaz, hogy pár LINER galaxis esetében találtak erre utaló jeleket a közeli infravörös tartományban végzett spektroszkópiai vizsgálatok során. De a Spitzer űrtávcsővel is folytattak kampányt a csillagászok, melyben 33 LINER galaxist vetettek alá alapos spektroszkópiai vizsgálatnak a közép infravörös tartományban. Az átfogó minta elemzésével sikerült kapcsolatot kimutatni a fényes infravörös galaxisok (Luminous Infrared Galaxies – LIRGs) LINER emissziója és a csillagkeletkezési aktivitás között. Ezek olyan távoli galaxisok, amelyek főként a Világegyetem abban a korszakában léteztek, amikor a csillagkeletkezési ráta még jelentősen nagyobb volt a ma megfigyelhetőnél. A tömegével születő csillagokat egy ideig még körbevették azok a gázfelhők, amelyben keletkeztek. Az ezekben a felhőkben lévő por a csillagok fényének jelentős részét elnyelte, majd pedig visszasugározta infravörösben. Ezek az intenzív csillagkeletkezést produkáló galaxisok így nem is a látható fényben, hanem sokkal inkább infravörösben igazán fényesek. Innen származik a nevük is. Megjegyzem, hogy aktív galaxismag jelenlétét is detektálták pár esetben. Ellenben, ugyanezen vizsgálat eredményei szerint, a környező normál (nem csillagontó), az infravörösben kevésbé fényes galaxisok LINER emissziója nem a csillagkeletkezésre vezethető vissza. Nem utolsósorban az elliptikus és lentikuláris galaxisokban nem jellemző a masszív és éppen ezért forró fiatal csillagok jelenléte. Ugyanis, ezek csillagászati értelemben rövid ideig, tömegüktől függően mindössze néhány millió, néhány tízmillió évig élnek csak. Ezeknél a galaxisoknál pedig már sokkal régebben véget ért az aktív csillagkeletkezés korszaka.

Vannak olyan csillagászok, akik nem az aktív galaxismagban, vagy éppen az intenzív csillagkeletkezésben látják a megoldás kulcsát. Sőt, éppen ezek hiányával magyarázzák az egészet. Az 1 milliárd évnél öregebb, előrehaladott fejlődési állapotban lévő csillagok, az aszimptotikus óriás ág elhagyása után (post AGB phase) rövid ideig elég forrók ahhoz, hogy képesek legyenek gyengén ionizálni a környező csillagközi gázokat. Az emisszió megfigyelésére pedig azért nyílik egyáltalán lehetőségünk, mert sem az aktív mag, sem a fiatal forró csillagok keltette sugárzás nem ragyogja túl azt. Ez a magyarázat akár működőképes is lehet. Ehhez csak némi gázra és 1 milliárd évesnél öregebb csillagokra van szükség. Ez az elképzelés arra is választ adhat, hogy a LINER-ek miért főként öreg csillagok alkotta masszív galaxisok, amikben már igen kicsi a csillagkeletkezési aktivitás. Ugyanakkor azt se felejtsük el, hogy akadnak aktív magú LINER galaxisok is.

Nem könnyű eldönteni, hogy pontosan melyik teória a helyes, mert oly változatos morfológiájúak, annyira eltérő tulajdonságúak a LINER galaxisok. Könnyen lehet, és éppen e mellett teszik le a voksukat a legutóbb vázolt elmélet képviselői is, hogy az aktív magnak, a fiatal csillagok ionizációs hatásának, és a LINER tulajdonságnak a kérdését teljesen külön kell kezelni. Ez pedig jelentősen átrajzolhatja a galaxisokról alkotott képet, mivel évtizedek óta a LINER tulajdonságot az aktív mag indikátorának tekinti a kutatók jelentős része.

Míg az előző három galaxis a Tejútrendszerhez nagyjából hasonló méretű, addig a 113 millió fényévre lévő NGC5355 átmérője hozzávetőlegesen csak harmada, míg a 115 millió fényévre lévő NGC5358 átmérője valahol a fele és a harmada között van galaxisunkénak. Ezek ketten szintén lentikuláris galaxisok. Azonban, az NGC5358 esetében küllő szerkezet keresztezi a központi dudort, még ha ez így majdnem oldalnézetből nem is tűnik evidensnek elsőre. A galaxis centrumából kiinduló küllő nemcsak a spirál galaxisok „privilégiuma”, a lentikuláris galaxisok esetében is előfordul. Míg azonban az első típus esetében a küllők végéből spirálkarok indulnak ki, addig a lentikuláris galaxisoknak nincsenek karjaik. Az NGC5358 a küllős és küllő nélküli lentikulárisok közötti átmenet képviselője.

Nem tagadom, hogy a tavaszi égen szerényen megbúvó kis halmaz belopta magát a szívembe. Mondom ezt annak ellenére, hogy elég küzdelmes volt a halványabb részletek előcsalogatása, ami a Gödről készült felvételeken szinte alig vált el az égi háttértől. A kép feldolgozásának végén elmorfondíroztam azon, hogy talán 100 millió fényéven túl, valaki a hátsókertjében – ha létezik ott olyan – éppen a Lokális Halmazt vizsgálgatja. Milyen jól nézhet ki onnan tágabb otthonunk! A látványt bizonyára az Androméda-galaxis (M31, NGC 224), és a Tejútrendszer párosa uralja, amihez a Triangulum-galaxis (M33, NGC 598) asszisztál. Vajon nekik is vannak csillagképeik, és mi melyikben lehetünk? Már, ha szintén az optikai tartományban látnak, mint mi. Ha egyáltalán van ott valaki.

Paul Hickson interjú

Azon az estén azt is elhatároztam, hogy rövid interjút készítek Paul Hickson professzorral.

Paul Hickson

Paul Hickson – Fotó: Oscar Saa, CTIO

Először is köszönöm, hogy elfogadta a felkérést!

Miként kezdődött kapcsolata a csillagok világával? Mi volt az első meghatározó csillagászati élménye? Milyen hatások terelték a csillagászat felé?

P.H.: „Amióta csak az eszemet tudom, mindig is érdekelt a fizika és a matematika. Még kisgyermek voltam, mikor a szüleim megajándékoztak egy kis távcsővel. Teljesen lenyűgözött, hogy láthattam vele a Jupiter holdjait, és megfigyelhettem vele a mozgásukat. Később elhatároztam, hogy saját távcsövet készítek. Megtanultam tükröt csiszolni, és elsajátítottam annak módszerét, hogy miként ellenőrizhetem a készülőfélben lévő 8 hüvelykes parabola tükör optikai minőségét.

Az egyetemen fizikára specializálódtam, és csillagászati kurzusokat is felvettem. Szerencsésnek mondhatom magam, hogy később felvettek egy nagyon jó posztgraduális képzésre, ahol rengeteg mindent megtanultam. Az asztrofizikában is itt mélyedtem el igazán.”  

Tanulmányai befejeztével rögtön belevetette magát a galaxisok kutatásába, vagy előtte kipróbálta magát a csillagászat más területein?

P.H.: „A posztgraduális iskolában a doktori értekezésem kozmológiai témájú volt. A galaxishalmazok segítségével vizsgáltam a Világegyetem tágulási ütemének változását. Meglepetésemre az eredmények nem voltak összhangban azzal a várakozással, hogy a tágulás üteme lassul. Azok sokkal inkább támogatták a gyorsulva táguló Univerzum lehetőségét.”

A szerző megjegyzése: Ebben az időben a kozmológiai modellek a világegyetem tágulásának lassulását jósolták. S mint az látható, voltak már jelek a gyorsulva tágulás lehetősége mellett, de a Nobel-díjat érő bizonyosságig 1998-ig kellett várni.

„Mindeközben sok érdekes dolgot megtanultam Doug Richstone és Ed Turner kollégáimtól a sűrű galaxiscsoportok dinamikai problémájával kapcsolatban. Ez keltette fel érdeklődésemet a kis galaxiscsoportok iránt, ekkor vágtam bele tulajdonságaik vizsgálatába.”

Miért érdekesek a kompakt galaxiscsoportok? Mitől különlegesek? Milyen szerepet játszanak a galaxisok evolúciójában? 

P.H.: „Richstone és Turner rájöttek, hogy a galaxisok kompakt csoportjai instabilak. Mivel ezekben a csillagrendszerek igen sűrűn helyezkednek el, így a köztük fellépő erős gravitációs interakciók letépik a galaxisokat körbevevő sötét anyagot. Nagy, egybe függő tengere jön létre a sötét anyagnak. A galaxisok a pályájukon mozogva energiát veszítenek miközben keresztülvágnak ezen, és így viszonylag gyorsan a csoport centruma felé spiráloznak, ahol összeolvadnak. Az ilyen egyesülés a spirál galaxisokat elliptikus galaxisokká alakítja át. Ez az egész felvázolt folyamat a kompakt csoportokban sokkal gyorsabban játszódik le, mint bármely más galaxisok alkotta rendszerben.”

Korábban már mások is készítettek katalógusokat kompakt galaxiscsoportokról, vagy éppen a kölcsönható galaxisokról. Csak, hogy néhányat említsek: Interacting Galaxies (Vorontsov-Velyaminov 1959, 1975), Atlas of Peculiar Galaxies (Arp 1966), Shakhbazian többek közreműködésével 376 új kompakt galaxiscsoportot katalogizált a hetvenes években, és így tovább. Mi késztette arra, hogy ön is összeállítsa a saját katalógusát? Mik voltak azok a kritériumok, amik alapján kiválasztotta a kompakt csoportokat? Miért éppen azokra a kritériumokra esett a választása?

P.H.: „Való igaz, hogy már más gyűjtemények, katalógusok is megjelentek korábban a kompakt galaxiscsoportokkal kapcsolatban. Néhány ezekben szereplő csoport kimondottan híres volt, és olyan galaxisokat is tartalmazott, melyek vöröseltolódása eltért. Azonban, mivel a minták nem voltak homogének, így igazából nehéz volt belőlük bármilyen statisztikai következtetést levonni. Olyan csoportok, mint például a Stephan-galaxisötöse (Stephan’s Quintet) szokatlan természetük miatt szerepeltek a katalógusokban.”

A szerző megjegyzése: A Stephan-galaxisötös (Stephan’s Quintet), illetve a Seyfert-galaxishatos (Seyfert’s Sextet) egy-egy tagja csak látszólag az adott csoportosulás része. A valóságban hatalmas távolság választja el a többiektől. Továbbá, a Seyfert-galaxishatos hatodik objektuma nem is galaxis, sokkal inkább a galaxisok közötti kölcsönhatás eredményként létrejött úgynevezett árapálycsóva (tidal tail). A csillagászatban is előfordul, hogy nem mindez az, amink elsőre látszik. Azonban, a vöröseltolódásukat megmérve ezek az imposztorok leleplezhetők.

„Rájöttem, hogy megfelelő kiválasztási kritériumok kellenek ahhoz, hogy egy katalógus statisztikailag is hasznos legyen. A kritériumokat végül úgy választottam meg, hogy olyan rendszerekre illeszkedjenek, amelyek hasonlatosak a klasszikus kompakt csoportokhoz, mint amilyen például a Stephan-galaxisötös (Stephan’s Quintet), a Seyfert-galaxishatos (Seyfert’s Sextet), és a VV172. Az így kapott katalógus végül tényleg hasznosnak bizonyult. Különösen azért gondolom ezt, mert sok-sok későbbi kutatás célpontjává váltak ezek a csoportok, illetve azok galaxisai. A csillagászok az optikai, infravörös, rádió és röntgen hullámhosszakon is alaposan tanulmányozták őket. Ennek köszönhetően ma más sokkal jobban értjük a kompakt galaxiscsoportok fejlődését, és helyüket a galaxishalmazok általános hierarchiájában.”

Mit érdemes tudni az illusztrációként szolgáló Hickson 68-ról? Van-e valami különlegessége ennek a galaxiscsoportnak a többiekhez képest?

P.H.: „Szép fénykép!”

Köszönöm!

P.H.: „Ez a csoport szokatlan, ugyanis két fényes korai típusú (elliptikus, lentikuláris – S0) galaxis is található benne. Ezekben a csillagrendszerekben már legalább 1 milliárd éve leállt a csillagképződés, így öreg csillagokból állnak. Ezekhez hasonlókat rendszerint a nagy galaxishalmazok centrumában figyelhetünk meg, így jelenlétük egy ilyen kompakt csoportban mindenképpen figyelemfelkeltő. A valószínű magyarázat, hogy ezek valaha gázban gazdag spirál galaxisok lehettek. Azonban, a múltban lezajlott ütközések felmelegíthették a gázt annyira, hogy az kiszabaduljon a galaxisból. Illetve a másik lehetőség, hogy a szintén az ütközésnek köszönhető heves csillagkeletkezés emésztette fel gázkészleteiket.”

Tudomásom szerint ön a csillagászati műszerek területén is elismert szakember. Igazi különlegességnek számítanak a folyékony tükrű távcsövek (Liquid-Mirror Telescopes). Kérem meséljen ezek felhasználási területéről, és tapasztalatairól.

P.H.: „A földfelszíni csillagvizsgálókba és űrbeli felhasználásra tervezett folyékony tükrű teleszkópok (LMT-k) optikai felületét, a kellőképpen sima parabolikus tál tetején lévő vékony higanyréteg képzi. Jellemzően a higany vastagsága mindössze néhány milliméter. A tálat általában üvegszálból, grafitból vagy kevlárból és epoxiból készítik, és nagyon pontos ütemben forgatják a függőleges tengelye körül. A gravitációs és a centrifugális erők kombinációjának köszönhetően, a higany felülete kitűnő optikai minőségű paraboloid alakot vesz fel. Ez a technológia lehetővé teszi, hogy viszonylag alacsony költséggel építhessünk olyan nagy teljesítményű távcsöveket, amelyek mindig csak a zenitbe tekintenek. E távcsövek nagyszerűen alkalmazhatók olyan felmérésekben (surveys), ahol nem szükséges egy adott objektumokra ráállni és követni a műszerrel. A NASA közel egy évtizede működteti 3 méteres folyékony tükrű távcsövét, megfigyelve vele az űrszemetet. Egy 4 méteres folyékony tükrű csillagászati teleszkóp pedig hamarosan működésbe lép az indiai Himalájában, az International Liquid-Mirror Telescope projekt keretében. Immáron több éve annak is, hogy saját kutatócsoportom Vancouver közelében megépített egy ilyen 6 méteres példányt, melyet azóta is használunk. A Nagy Zenit Távcső (Large Zenith Telescope) ötlete a lézeres adaptív optika és a Föld mezoszferikus nátriumrétegének tanulmányozásának céljából született meg.”

A Thirty Meter Telescope már nemcsak egy álom csupán, hanem a megvalósulás útjára is lépett. Milyen potenciál van ebben a távcsőben? Milyen fontos tudományos áttörések elé nézünk ennek a műszernek köszönhetően?

P.H.: Nos, a nagy földi optikai és infravörös teleszkópok következő generációja, mint például a Giant Magellan Telescope (GMT), a Thirty Meter Telescope (TMT) és az európai Extremely Large Telescope (ELT), a közeli bolygórendszerektől kezdve egészen a legtávolabbi galaxisokig tanulmányozni fogja az Univerzumot. Szinte nem is lehet megnevezni egyetlen célt, mert annyi tudományos program kapcsolódik majd ezekhez. Átfogó információk tekintetében, érdemes azonban felkeresni ezen távcsövek weboldalait.

Egyetlen dolgot azonban ki tudnék emelni. Ezek az új távcsövek teljes mértékben az adaptív optikára támaszkodnak. Ez a technológia lehetővé teszi, hogy soha nem látott képminőséget érjenek el. Olyat, mely élességben túlszárnyalja még a jelenlegi űrtávcsöveket is. De az adaptív optika nagy lökést ad a távcsövek érzékenységének is, az adott műszer átmérőjének negyedik hatványával arányosan. Biztosra veszem, hogy számos tudományos áttörés várható, miután ezen óriások hadrendbe állnak.”

Mik a tudományos tervei a jövőre nézve?

P.H.: „Diákjaimmal és kollégáimmal folytatni szeretném a távcsövekhez, csillagászati műszerekhez és az adaptív optikákhoz kapcsolódó projekteket.”

Nekem a csillagászat a hobbim, önnek a munkája. De tudtommal, önnek is van egy különleges szenvedélye: a repülés. Hogyan kezdődött? Miként hódol a repülésnek?

P.H.: „Igen, körülbelül 30 éve vagyok pilóta. A repülést egy motoros Cessna repülőgéppel, valamint Piper Cub-bal kezdtem. Később vezettem Citabria-t és több otthon épített repülőgépet is. Jelenleg egy Zlin 142C Aerobatic Trainer-rel és egy kétmotoros Beach Baron-nal repülök. Kanada nyugati partja gyönyörű terület. A vizek felett és a hegyek között szállni igazi élvezetet nyújt. A repülés szabadságot ad.”

Köszönöm az interjút, és további sok sikert kívánok az életben!

 

Felhasznált irodalom:

P. Hickson: Systematic properties of compact groups of galaxies

P. Hickson: Compact groups of galaxies

Luis C. Ho, Alexei V. Filippenko, and Wallace L. W. Sargent: A Search for “Dwarf” Seyfert Nuclei. V. Demographics of Nuclear Activity in Nearby Galaxies

M. E. Filho, F. Fraternali, S. Markoff, N. M. Nagar, P. D. Barthel, L. C. Ho, F. Yuan: Further Clues to the Nature of Composite LINER/HII Galaxies

Neil M. Nagar, Heino Falcke, Andrew S. Wilson: Radio Sources in Low-Luminosity Active Galactic Nuclei.IV. Radio Luminosity Function, Importance of Jet Power, and Radio Properties of the Complete Palomar Sample

S. Torres-Flores, C. Mendes de Oliveira, P. Amram, H. Plana, B. Epinat, C. Carignan, C. Balkowski: Kinematics of galaxies in Compact Groups. Studying the B-band Tully-Fisher relation

E. Sturm, D. Rupke, A. Contursi, D.-C. Kim, D. Lutz, H. Netzer, S. Veilleux, R. Genzel, M. Lehnert, L.J. Tacconi, D. Maoz, J. Mazzarella, S. Lord, D. Sanders, A. Sternberg: Mid-Infrared Diagnostics of LINERs

Robert L. da Silva, J. Xavier Prochaska, David Rosario, Jason Tumlinson, Todd M. Tripp: Shining Light on Merging Galaxies I: The Ongoing Merger of a Quasar with a „Green Valley” Galaxy

R. Singh, G. van de Ven, K. Jahnke, M. Lyubenova, J. Falcón-Barroso, J. Alves, R. Cid Fernandes, L. Galbany, R. García-Benito, B. Husemann, R. C. Kennicutt, R. A. Marino, I. Márquez, J. Masegosa, D. Mast, A. Pasquali, S. F. Sánchez, J. Walcher, V. Wild, L. Wisotzki, B. Ziegler, the CALIFA collaboration: The nature of LINER galaxies: Ubiquitous hot old stars and rare accreting black holes

L.H.S. Kadowaki, E.M. de Gouveia Dal Pino, Chandra B. Singh: The role of fast magnetic reconnection on the radio and gamma-ray emission from the nuclear regions of microquasars and low luminosity AGNs

H. B. Ann, Mira Seo, and D. K. Ha: A catalog of visually classified galaxies in the local (z ~ 0.01) universe

P. Marziani, M. D’Onofrio, D. Bettoni, B. M. Poggianti, A. Moretti, G. Fasano, J. Fritz, A. Cava, J. Varela, A. Omizzolo: Emission Line Galaxies and Active Galactic Nuclei in WINGS clusters

Mark Bratton: The Complete Guide to the Herschel Objects: Sir William Herschel’s Star Clusters, Nebulae and Galaxies (ISBN-13: 978-0521768924)

Adatok: NED és SIMBAD adatbázisok

NGC2808 – Csillagok generációi a gömbhalmazokban

NGC2808-LRGB-20170220-T32-180s-TTK

Az NGC2808 gömbhalmaz

2017-02-20, 2017-02-21 – Siding Spring Observatory

21 x 180 sec L, 8 x 180 sec R, 8 x 180 sec G, 8 x 180 sec B

iTelescope.net T32 – Corrected Dall-Kirkham Astrograph Planewave 17″ – 43 cm, f/6.8 – FLI Proline 16803 CCD kamera

A képre kattintva, az nagyobb felbontásban is elérhető.

A gömbhalmazokról írt összefoglaló cikkem írásakor merült fel bennem először, hogy felvételt készítsek az NGC2808-ról. A déli Hajógerinc (Carina) csillagképben található, ezért nálunk sosem emelkedik a horizont fölé. A megfigyeléséhez vagy délre kell utazunk, vagy távcsőidőt kell bérelnünk ott. Én eme utóbbi megoldást választottam.

NGC2808-map1

Az NGC2808 a déli Hajógerinc (Carina) csillagképben.

Az NGC2808 a Tejútrendszer ősi csillaghalmazai között is igazi óriásnak számít. Ugyan van nála nagyobb, és masszívabb is akad, de 130 fényéves átmérője és tömege, ami 1.42 milliószorosa Napunkénak, így is messze kimagaslónak számít a gömbhalmazok mezőnyében. Csillagai extrém koncentrációt mutatnak a mag felé. A 12 fokozatú Shapley-Sawyer féle osztályozás szerint, mely a gömbhalmazok előbb említett tulajdonságon alapszik, az I. osztályba tartozik. Nem sok riválisa akad. Csak a hazánkból is megfigyelhető M75 (Nyilas csillagkép), és az NGC7006 (Delfin csillagkép) esetében tapasztalhatunk hasonlót. Ezek viszont fényességben és méretben is elmaradnak tőle. Megjegyzem, hogy talán éppen a csillagok koncentrációja, és a mag döbbenetes fényessége jelentette a legnagyobb nehézséget a kép kidolgozása során. Ennek részleteivel azonban nem untatnám az olvasót.

NGC2808-Tejutrendszer2

Az NGC2808 elhelyezkedése a Tejútrendszerben. Napunkat a kis sárga pöttyjelöli.

Talán már magában az NGC2808 impozáns paraméterei, illetve az ennek köszönhető látványa is izgalmassá tenné a 31300 fényévre (9.1 kpc) lévő, 6.2 magnitúdós gömbhalmazt. Én elsősorban mégsem ezért választottam ki. A gömbhalmazok megismerésében játszott kulcsfontosságú szerepe volt az, ami számomra különösen érdekessé tette.

Sokáig úgy gondolták a csillagászok, hogy a gömbhalmazok csillagjai egyszerre keletkeztek. Kémiai összetételük éppen ezért teljesen homogén. A gömbhalmazok korát, azok Hertzsprung-Russel diagramja (HRD) alapján határozták meg, élve az előbbi feltételezéssel. Az egyszerre született, azonos fémtartalmú csillagok megfigyelhető fejlődési állapota csak a kiindulási tömegtől függ.

A csillagászok minden elemet a hidrogénen és a héliumon túl a periódusos rendszerben fémnek neveznek. Egy csillag fémtartalmát általában a Naphoz szokták hasonlítani a kutatók. A világegyetem története folyamán, a csillagoknak hála folyamatosan dúsult fémekkel. Az újabb és újabb csillaggenerációk egyre több fémet tartalmaztak, így minél alacsonyabb fémtartalmú egy csillag a Naphoz képest, annál ősibb objektum. Kezdetben csak a vas és a hidrogén arányát vizsgálták, és ez alapján vontak le következtetéseket. Később azonban más elemek hidrogénhez viszonyított arányát is elkezdték vizsgálni, amikor arra voltak kíváncsiak, hogy eltérő-e két csillag kémiai összetétele. Mint ezt később látni fogjuk, csak a vas relatív mennyisége nem mindig árulkodó.

A nagyobb tömegű fényesebb és forróbb csillagok hamarabb elhasználják hidrogén készleteiket, és elhagyják a fősorozatot. Az idő előrehaladtával már csak a kisebb tömegű, és kevésbé fényes csillagok maradnak a fősorozaton.

M55HRD-label

Nincs „tipikus” gömbhalmaz, de az M55 Hertzsprung-Russel diagramja jól szemlélteti a szövegben foglaltakat. Main sequence – Fősorozat, Red giant branch – Vörös óriás ág, Horizontal Branch – Horizontális ág, AGB (Asymptotic Branch) – Aszimptotikus óriás ág, Blue stragglers – Kék vándorok, White dwarfs – Fehér törpék

Az ábra forrása: Australia Telescope National Facility (ATNF)

Megnézve egy gömbhalmaz Hertzsprung-Russel diagramját rögtön szembetűnő, hogy a valaha legfényesebb, a Nap tömegét több mint nyolcszorosan meghaladó csillagok mind hiányoznak a fősorozatról. Ezek réges-régen „kihunytak”, miután szupernóvaként lángoltak fel. De a közepes tömegűeket, vagyis a Nap tömegét nagyjából kétszeresen, de maximum nyolcszorosan meghaladó csillagokat sem találjuk már ott. Bennük is leálltak a fúziós energiatermelő folyamatok, ma a gömbhalmazok fehér törpe populációját gyarapítják, hogy aztán sok-sok évmilliárd év alatt nagyon lassan kihűljenek. 10 milliárd év után a gömbhalmazokban – márpedig a Tejútrendszer gömbhalmazai jellemzően ennél is idősebbek -, már csak a Nap tömegével összemérhető, illetve a Nap tömegénél kisebb tömegű csillagok belsejében folyik energiatermelés. Azonban, ezekből is a nagyobb tömegűek magjában már kifogytak a hidrogénkészletek, és így el is hagyták a fősorozatot. Miután a csillag fejlődése során a magban elfogy a hidrogén, ennek héliummá történő átalakítása a magot körülvevő külső héjba tevődik át, és a csillag felfúvódva a vörös óriás állapotba jut. A horizontális ág tagjai a magjukban már héliumból szenet hoznak létre. (Elméleti megfontolások szerint, ehhez legalább nagyjából 0.5 naptömeg szükséges.) Ennek az ágnak a csillagai kis fémtartalmú ősi, kisebb tömegű csillagok. A Naphoz hasonló, vagy csak valamivel kisebb fémtartalmú, és tömegű csillagok nem „foglalják el” a horizontális ágat, csak némileg válnak forróbbá, miközben luminozitásuk csökken. Ezek alkotják az úgynevezett vörös kupac (Red Clump) csillagait a Hertzsprung-Russel diagramon. Miután a hélium is elfogy az addigra szénben és oxigénben gazdag magban, a fúzió az azt körülvevő külső héjba tevődik át. Az energia nagy része azonban nem itt keletkezik, hanem a külsőbb hidrogén héjban. A csillag külső rétegei ismét felfúvódnak és lehűlnek. Ennek köszönhetően a csillag fényessége ismét megnő, túlszárnyalva a korábbi vörös óriás fázist, színe pedig ismét a vörös felé tolódik. A csillag elfoglalja helyét az aszimptotikus óriás ágon (AGB fázis). Innen, ezeknek a csillagoknak útja is a fehér törpe állapot felé vezet, ugyanis már a Napunk tömege is kevés ahhoz, hogy valaha is beinduljon a magjában a szén vagy az oxigén fúziója, nem is beszélve a nála kisebb tömegű csillagokról.

Evolutionary_track_1m.svg

Nagyjából 1 naptömegű csillag fejlődési útvonala a fősorozat után a Hertzsprung-Russel diagramon. A gömbhalmazok ma megfigyelhető, a fősorozatról korábban eltávozott csillagjai is nagyjából hasonló utat járnak be. Jelenleg, tömegüktől függően, a görbe valamelyik pontjának közelében tartózkodnak. A pontos útvonal azonban függ a csillag kémiai összetételétől is.

Ábra forrása: Wikipedia.org

Minél idősebb egy halmaz, annál lejjebb tolódik az a pont (Turn Off Point) a fősorozaton, ahol a csillagok „elkanyarodnak” a vörös óriás ág felé. Felrajzolva a HRD-t egy adott halmazra, az előbb említett pontnak a meghatározásával, továbbá felhasználva a csillagfejlődési elméleteket, izokron illesztésével megbecsülhető a halmaz kora. Az izokron a csillagfejlődésben használt kifejezés, mely a HRD-n az azonos korú csillagokat összekötő görbét jelöli. Évtizedeken keresztül alkalmazták a módszert a csillagászok, és végig egyetlen csillaggenerációt feltételezve, keresték azt „az egyetlen” görbét, mely a legjobban illeszkedik az adott halmaz Hertzsprung-Russel diagramjára. A gömbhalmazokat a csillagfejlődési elméletek tökéletesítésére, tesztelésére, kalibrálására használták, és természetesen használják még a mai napig is. De e halmazok révén a Tejútrendszer és más galaxisok kialakulásával, evolúciójával kapcsolatos elméletek is ellenőrizhetők. Fontos tehát, hogy a csillagászok alaposan ismerjék felépítésüket, tulajdonságaikat.

Mindig is volt azonban egy bizonyos probléma a gömbhalmazok Hertzsprung-Russel diagramjával kapcsolatban, ami nagyon zavarta a csillagászokat, és a múlt század hatvanas éveitől kezdve évtizedeken át nem lelték a megoldását.

Azt viszonylag hamar felismerték (ezt korábban már említettem is), hogy a csillagok „működése”, fejlődése nagyban függ a fémtartalomtól. Némileg más utat jár be a fémekben szegény csillag a HRD-n, mint a fémekben gazdagabb. A fémtartalom a csillag színhőmérsékletére is kihat. A fémekben szegények kékebbek, mint a fémekben gazdagabbak. Éppen ezért a fémekben gazdagabb gömbhalmazoknak általában vörösebbek a horizontális ágon tartózkodó csillagjai. Találtak tehát egy paramétert, amivel a horizontális ágak morfológiájának különbségét magyarázni lehetett. A halmazok horizontális ágán lévő csillagok színeloszlása azonban még így is furcsa devianciát mutatott bizonyos esetekben.

GC_masodik_parameter1-m

Az ábrán fémekben gazdagabb négy halmaz szín-fényesség diagramja (HRD) látható. A vízszintes tengelyen B és V szűrővel mért fényesség értékek különbsége van feltüntetve (ez tekinthető a csillagok színének) a színképosztály helyett. A függőleges tengelyen pedig V színszűrővel felvett fényességérték szerepel. Figyeljük meg, hogy míg a felső kettő horizontális ága csak egy „vörös csonkból” áll, vagyis vöröses árnyalatú csillagok alkotják, addig az alsó kettő horizontális ága, a vörös csillagokat követő résen túl (balra), kékes csillagokban is bővelkedik. Hasonló a fémtartalom, pontosabban a vas hidrogénhez viszonyított aránya, de mégis eltérő a horizontális ág morfológiája. Ábra forrása: C. Sosin és mások.

A csillagászok találtak olyan nagyjából hasonló fémtartalmú, hasonló vas/hidrogén arányú gömbhalmazokat, melyek horizontális ágai meglepően más képet mutattak. Egyeseké vörösebb, másoké inkább kékes árnyalatú volt, de akadtak a kettő között átmenetet képezők is. Mintha ezek nem akarták volna betartani az előbb felvázolt „szabályt”. A kutatók lázasan keresték, hogy a fémtartalom mellett a halmazok milyen más paramétere lehet hatással a horizontális brancs eloszlására. Innen származik a szakirodalomban használt elnevezés is: a második paraméter problémája.

Ennek egy példája látható a fenti ábrán is. A fémekben gazdagabb gömbhalmazok horizontális ágának vörös csillagait tökéletesen le lehetett írni a korabeli csillagfejlődési elméletekkel, melyek már a fémtartalommal is számoltak. A kékes csillagok előtt viszont némileg értetlenül álltak a csillagászok. Ezeknek nem kellett volna ott lenniük, csakis a fémszegény halmazokban tudták értelmezni a jelenlétüket.

A második paraméterre az idők folyamán több jelölt született. Ezek közül nagyon röviden megemlítenék néhányat. Volt, amelyik a fémtartalom mellett, a halmazok korkülönbségét nevezte meg második paraméterként. Sokáig talán ez volt a legnépszerűbb elképzelés. Mások lokális okokra hivatkoztak. Az egyik ilyen szerint a halmazokon belül a csillagok sűrűsége fontos tényező, ez ugyanis indirekt módon kihatással bír a csillagok késői fejlődési állapotában történő tömegvesztésre, amivel pedig megmagyarázható, hogy miért is különbözőek az azonos fémtartalmú halmazok horizontális ágai. Olyan elképzelés is akadt, mely az eltérő szén-nitrogén-oxigén (CNO) tartalmat tette felelőssé. A horizontális ág csillagainak magjában hélium fúzió zajlik, míg az azt körülvevő héjban pedig hidrogén fúzió. Eme utóbbira pedig nagy hatással van, hogy mekkora a szén-nitrogén-oxigén aránya a csillagban (CNO-ciklus). Mivel a szén-nitrogén-oxigén mennyisége a csillagban befolyásolja annak energiatermelését, így nagyban meghatározza, hogy az hol foglal helyet a Hertzsprung-Russel diagram horizontális ágán. Önmagában végül egyik elképzelés sem volt képes megoldani a problémát.

Az NGC2808 szintén a problémás esetek közé tartozott. Már a múlt század hetvenes éveiben ismert volt a tény, hogy horizontális ágát vörös és kék csillagok alkotják, melyeket tekintélyes rés választ el egymástól. A két csoport között teljesen hiányoztak a „köztes színű” csillagok.

A Hubble űrtávcső teljesen új fejezetet nyitott a csillagászatban, így a gömbhalmazok kutatásában is. A Hubble és kamrája (WPFC2 – Wide Field and Planetary Camera 2) olyan jellegű fotometriai vizsgálatokat tett lehetővé, amiről korábban a kutatók még csak nem is álmodhattak. A rendkívül zsúfolt gömbhalmazok fotometriája az akkori földi műszerekkel igencsak nehézkes volt. Pár példány esetében a Hubble-re volt ahhoz szükség, hogy egyáltalán azonosítani lehessen a horizontális ágon a csillagait. Nagy lendülettel vetették tehát bele magukat a csillagászok a munkába, mely az NGC2808 esetében is izgalmas új részleteket tárt fel. Kiderült, hogy a horizontális ág kék oldala kiterjedtebb, mint az korábban gondolták. Az kezdetben vízszintesen indult, majd hosszan lefelé hajlott a HRD-n. Első alkalommal sikerült nyomon követni a horizontális ág kék csillagait egészen 21 (V) magnitúdóig. Ráadásul, a Hubble ultraibolya szűrőjével (F218W, λeff = 2189Å) készült szín-fényesség diagramján a horizontális ág kék része csomósodásokat mutatott. Ebből kettő teljesen egyértelmű volt, míg egy harmadik jelenléte is gyanítható volt az extrém kék végén. Semmilyen mechanizmus nem volt ismert, mely megmagyarázhatta volna ezeknek a csomóknak a létét. Összefoglalva tehát, 1997-re világossá vált, hogy az NGC2808 horizontális ága három elkülöníthető, egy vörös és két kék csoportból áll. Azonban egy negyedik kék csoport létezése sem volt teljesen kizárt. Lassan gyűltek a jelei annak, hogy a gömbhalmazok talán mégsem egyetlen csillaggenerációból állnak. De az igazi áttörésre még várni kellett.

 NGC2808-HST-CMD-97Sosin-m

Balra az NGC2808 szín-fényesség diagramja (HRD) látható. A vízszintes tengelyen B és V szűrővel mért fényesség értékek különbsége van feltüntetve (ez tekinthető a csillagok színének) a színképosztály helyett. A függőleges tengelyen pedig V színszűrővel felvett fényességérték szerepel.

A jobb alsó ábrán külön kiemelésre került az NGC2808 horizontális ágának szín-fényesség diagramja (HRD). A vízszintes tengelyen FUV (ultraibolya) és B (kék) szűrővel mért fényesség értékek különbsége van feltüntetve. A függőleges tengelyen pedig B színszűrővel felvett fényességérték szerepel. A vörös része a horizontális ágnak itt nem látható, ugyanis azok a csillagok túlságosan halványak az FUV szűrős felvételeken. Jobb felső diagramon a horizontális ág kék csillagainak szín szerinti eloszlása látható. Figyeljük meg a csomósodásokat!

Ábra forrása: C. Sosin és mások.

A következő jelentős felfedezésre csak pár évet kellett várni. 2004-ben annak felismerése keltett nagy izgalmat, hogy az ω Centauri (NGC5139) gömbhalmaz fősorozatán, a Hubble űrtávcsőnek hála, sikerült elkülöníteni két különálló csillagcsoportot. Az ezt követő spektroszkópiai analízis is megerősítette azt a tényt, hogy ezek bizony különböző csillaggenerációk. A két csoport fémtartalma különböző volt. Egészen pontosan a második generációra csak olyan izokron illeszkedett, amiben a csillagok héliumban jelentősen gazdagabbak voltak a domináns öregebb populációhoz képest. Ehhez a bravúrhoz egyértelműen az űrtávcsőre volt szükség! Nemsokkal később már legalább három generáció jelenlétét sikerült igazolni a fősorozaton, mely a szubóriás ágon négy különböző brancsra bomlott kora és fémtartalma alapján. Ezek a felismerések megerősítették a gyanút, hogy az ω Centauri talán nem is gömbhalmaz, hanem egy törpe galaxis maradványa.

Kampány indult annak kiderítésére, hogy vajon a Tejútrendszer más gömbhalmazát is több csillaggeneráció alkotja-e. Éppen tíz évvel ezelőtt, 2007-ben jelent meg a tanulmány, aminek a szerzői (G. Piotto és mások) bejelentették, hogy elsőként az NGC2808 esetében siker koronázta próbálkozásukat. Már korábban, 2005-ben megszületett az a felismerés (D’Antona és mások), miszerint a halmaz fősorozata anomális kiterjedést mutat a kék szín irányába. Ebben a fősorozat csillagainak nagyjából 20%-ka volt érintett, így kimondottan ennek a jelenségnek a vizsgálata volt az egyik fő cél. A csillagászok biztosak szerettek volna lenni abban, hogy a vizsgálatuk tárgyát képező csillagok tényleg a halmazhoz tartoznak, és nem előtér vagy háttér csillagok csupán. Éppen ezért, a megfigyeléseiket 18 hónapra nyújtották el, és azt 3 különböző időpontban végezték el. Ez már elég volt ahhoz, hogy a csillagok sajátmozgását figyelembe vegyék. Az elmozdulásuk alapján így el lehetett dönteni, hogy a vizsgált csillag halmaztag-e, vagy sem. Megállapították, hogy az NGC2808 fősorozata egyértelműen 3 különböző csillagpopulációból áll. Ugyanakkor, ezek fémtartalma, pontosabban a vas és a hidrogén aránya nem tér el számottevően, ahogy ezt például az ω Centauri esetében megfigyelték. Jelentősen különbözik azonban az egyes csoportok hélium tartalma.

NGC2808-iso

Az NGC2808 gömbhalmaz fősorozata, amelyben 3 csillagpopuláció is elkülöníthető Piotto és kutatótársainak 2007-es tanulmánya szerint. Az ábrán látható, hogy a fősorozat több izokronnal írható csak le. Ezek az izokronok a csillagok kémiai összetételben (hélium tartalmában) térnek el egymástól. Ábra forrása: G. Piotto és mások

Pár évvel korábban más kutatók (E. Carretta és mások) spektroszkópiai vizsgálatoknak vetették alá az NGC2808 vörös óriás ágát. A nátrium/vas és oxigén/vas arányát vizsgálták és szignifikáns oxigén-nátrium antikorrelációt találtak. A vörös óriás csillagok túlnyomó többségének oxigéntartalma a galaktikus halóra jellemző értéket mutatott. Azonban, kimutatható volt még két másik csoport is: egy oxigénben szegény, és egy oxigénben kimondottan szegény. E mellett marginális eltérést is megállapítottak a vas és a hidrogén arányában az egyes csoportok között. Az oxigénben nagyon szegényekben némileg több volt a vas aránya a hidrogénhez képest, mint a normál mennyiségű oxigént tartalmazókban. Ezt az eltérő héliumtartalomra vezették vissza, ugyanis a héliumtöbblet, erősebbé teszi a fémek vonalait.

Végső konklúzióként az született 2007-ben (G. Piotto és mások), hogy a horizontális ág megfigyelt morfológiája, a fősorozat felépítése, a vörös óriás ág kémiai összetételében tapasztalható különbségek csakis egy módon értelmezhetők: az NGC2808 legalább három, különböző korú csillagok generációjából áll. Az első generációt követő újabbak, már az korábbiak által beszennyezett gázból formálódtak.

Az NGC2808 vizsgálata nem ért véget 10 évvel ezelőtt. A folytatáshoz nagyban hozzájárult a Hubble űrtávcső negyedik szervizmissziója 2009 májusában. Újra használhatóvá vált a WFC/ACS műszer (Wide Field Channel of the Advanced Camera for Surveys), továbbá ekkor helyezték üzembe az új UVIS/WFC3 (Ultraviolet and Visual Channel of the Wide Field Camera 3) eszközt. Az utóbbinak köszönhetően a kutatók nagyobb hangsúlyt fektetettek az NGC2808 csillaggenerációinak ultraibolya tartománybéli megfigyelésére (Hubble Space Telescope UV Legacy Survey of Galactic GCs). Az elektromágneses spektrum ultraibolya régiója kiváló lehetőségeket nyújt az eltérő kémiai összetételű csillagpopulációk tanulmányozására. Azoknak a molekuláknak a sávjai (OH, NH, CH, CN), amelyekből következtetni lehet a csillagok szén (C), nitrogén (N) és oxigén (O) tartalmára az ultraibolya tartományba esnek. A több hullámhosszon elvégzett fotometriai vizsgálatokra, eltérő kémiai összetételt feltételező szintetikus spektrumokra, és nagy felbontású spektroszkópiára épülő eredményeket taglaló cikk 2015-ben jelent meg (A. P. Milone és mások).

NGC2808-HST-CMD-15Milone-1

Az NGC2808 gömbhalmaz szín-fényesség diagramja (HRD). A belső ábrákon a vízszintes és függőleges tengelyeken, a nagy ábrától eltérő, az egyes vizsgálatok szempontjából „legpraktikusabb” hullámhosszokból konstruált szín-fényesség diagrammok láthatók. Balra alul: vörös óriás ág. Jobbra alul: fősorozat. Jobbra felül: szubóriás ág. Már szemmel is látható a többszörös szekvencia jelenléte. Az alapos analízis 5 csillaggeneráció jelenlétét mutatta ki.

Ábra források: A. P. Milone és mások

Kiderült, hogy az NGC2808 felépítése még komplexebb, mint azt korábban gondolták. A vörös óriás ágon 5 populációt sikerült elkülöníteni. Bár a fősorozaton már nem volt ennyire egyértelmű a helyzet, de végül ott is 5 külön populációt találtak. A 2007-es tanulmányban (G. Piotto és mások) kimutatott két kékebb csoport mellett, a fősorozat többséget alkotó vörös csoportot is három részre tudták bontani. Újra megerősítést nyert az is, hogy a horizontális ág kék része 3 populációból áll. Továbbá, konfirmálták más csillagászok 2014-ben publikált (Marino és mások) felismerését, hogy a horizontális ág vörös részét valójában két eltérő kémiai összetételű csillagcsoport lakja (nátriumban gazdag, és nátriumban szegény). De még az aszimptotikus óriás ágon is egyértelműen elkülöníthető volt három populáció.

Összességében tehát elmondható, hogy az NGC2808-ban ma 5 csillaggenerációról van tudomásunk, melyek kémiai összetétele eltérő, vagyis változik populációról, populációra. Azt, hogy az eltérések kimondottan diszkrétek, nem lehet figyelmen kívül hagyni. Az egyes generációk születése is diszkrét kellett, hogy legyen. Az adott generáció csillagai szinte tökéletesen egyszerre keletkeztek. A legelső az ősi gázfelhőből, így annak kémiai összetételét örökölte. Az azt követők pedig már a megelőzők által beszennyezett gázból. Az is tény, hogy a körülbelül 12.5 milliárd éves gömbhalmazban alig néhány 100 millió éve alatt le is játszódtak az epizodikus születési hullámok. Az NGC2808 példája is azt mutatja, hogy a masszív gömbhalmazokban mégis csak maradhat elég gáz az első heves csillagkeletkezés után ahhoz, hogy abból további nemzedékek születhessenek. És nem csak az NGC2808 az egyetlen példa erre.

Sőt, ma már ismerünk olyan gömbhalmazokat is, ahol több generáció él együtt, noha az nem is tartozik az igazán masszívak közé. Ilyen például az M4 és az NGC3201 is. Hogy miképpen lehetséges ez? Hogyan születnek egymást követően az egyes nemzedékek? Ez elég komplex probléma, és még ma is vita tárgyát képezi. Erről egy lehetséges „forgatókönyv” vázlatosan olvasható a gömbhalmazokról írt összefoglaló cikkemben.

Felhasznált irodalom:

Young-Wook Lee, Pierre Demarque, Robert Zinn: The horizontal-branch stars in globular clusters. 2: The second parameter phenomenon

C. Sosin, G. Piotto, S.G. Djorgovski, I.R. King, R.M. Rich, B. Dorman, S. Phinney, J. Liebert, A. Renzini: Globular Clusters Color-Magnitude Diagrams with HST

Craig Sosin, Ben Dorman, S. George Djorgovski, Giampaolo Piotto, R. Michael Rich, Ivan R. King, James Liebert, E. Sterl Phinney, Alvio Renzini: Peculiar Multimodality on the Horizontal Branch of the Globular Cluster NGC 2808

Alistair R. Walker: CCD Photometry of Galactic Globular Clusters V. NGC 2808

E. Carretta, A. Bragaglia, R.G. Gratton, F. Leone, A. Recio-Blanco, S. Lucatello: Na-O Anticorrelation And HB I. The Na-O anticorrelation in NGC 2808

G. Piotto, L. R. Bedin, J. Anderson, I. R. King, S. Cassisi, A. P. Milone, S. Villanova, A. Pietrinferni, A. Renzini: A Triple Main Sequence in the Globular Cluster NGC 2808

Jason Boyles, Duncan R. Lorimer, Phil J. Turk, Robert Mnatsakanov, Ryan S. Lynch, Scott M. Ransom, Paulo C. Freire, Khris Belczynski: Young Radio Pulsars in Galactic Globular Clusters

A. P. Milone, A. F. Marino, G. Piotto, A. Renzini, L. R. Bedin, J. Anderson, S. Cassisi, F. D’Antona, A. Bellini, H. Jerjen, A. Pietrinferni, P. Ventura: The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters. III. A quintuple stellar population in NGC2808

NGC1514 plantáris köd

NGC1514-LRGB-20161104-0039-sx-bin2-360s-TTK

NGC1514 – planetáris köd a Bikában

2016-11-04, 2016-11-22 – Göd

24 x 360 sec L (Bin2), 10 x 360 sec R (Bin2), 10 x 360 sec G (Bin2), 10 x 360 sec B (Bin2)

300/1200 Newton távcső – Paracorr Type2 kóma korrektor – eredő fókusz 1380 mm

SkyWatcher EQ-6 Pro GoTo mechanika

SXVR-H18 CCD kamera, Hutech IDAS P2 LPS filter és Baader RGBL fotografikus szűrőszett

Az NGC1514 is egy azon objektumok közül, melyet kisebb lencsés távcsővel, ASI 120mm kamerával korábban már lefényképeztem. Anno csak luminance felvételeket készítettem, vagyis monokróm fotó született. A dolog akkoron félbe is maradt, színeket már nem rögzítettem hozzá. Elraktam a dolgot későbbre. Végül sosem fejeztem be. A kis ködösség az égen arra várt, hogy nagyobb átmérőjű, hosszabb fókuszú műszerrel egyszer majd jobban „szétcincáljam”. 2016 őszén néhány vele kapcsolatos cikk került a kezembe, mely újra felé fordította a figyelmem.

A felvételek feldolgozása közben rá kellett döbbennem, hogy van még tartalék a célpontban és a környező látómezőben. Ezt azonban kisvárosi ég alól (LRGB technikával) már nehezen fogom tudni kiaknázni. A nagyon halvány részek a nyers felvételeken már csak alig-alig váltak el az égi háttértől. De sebaj! Az éppen felsejlő, az egész területen ólálkodó csillagközi anyagot, port, majd egy másik alkalommal leplezem le. Most csak ott bujkál, kissé fátyolossá téve a hátteret, a csillagok fényét tompítva, s narancsos árnyalatot kölcsönözve nekik. Mindez a fizika játéka. A por okozta extinkció effektívebb a rövidebb hullámhosszakon. S minthogy a rövidebb hullámhosszú fény intenzitása jobban csökken, a csillagok fénye a vörös felé mozdul (szín-excesszus). El lehetne még azon is mélázni, hogy jó pár nagyon távoli galaxis is megbújik a háttérben, de most még csak nem is róluk lesz szó. Mindössze a látómező nagyjából 3 ívperces központi területére fogok koncentrálni. Több ott a megfejtetlen titok, mintsem elsőre gondolnánk! Az NGC1514 pontos mibenléte fogós feladvány.

„Egyedülálló jelenség! Egy nagyjából 8 magnitúdós csillag halványan fénylő légkörrel, melynek körkörös az alakja és 3 ívperc az átmérője. A csillag pontosan középen van és a ködösség körülötte nagyon halvány és olyannyira egyenletes, hogy úgy vélem nem is csillagok alkotják. Nem lehet kétséges a kapcsolat a csillag és a légkör között.” Ezekkel a szavakkal jellemezte William Herschel, a ζ Persei-től nem egészen 3.5 fokra található planetáris ködöt, ami valójában már a Bika csillagkép területén található.

Akkoriban általánosan elfogadott vélekedés volt, hogy minden köd csillagokra bontható, és ez csak távcső kérdése. Azonban Herschel-t pár planetáris köd megjelenése ebben elbizonytalanította, és közéjük tartozott az NGC1514 is. Szintén Herschel volt az a személy, aki először használta a planetáris köd kifejezést a Macskaszem-köd, hivatalos nevén az NGC6543 esetében, melynek megjelenése szerinte az Uránuszra hajazott. Az elnevezést aztán a többi csillagász is átvette. Annyira megragadt a szaknyelvben, hogy még akkor sem változtatták meg, amikor már biztosan tudható volt, hogy a planetáris ködök és a bolygók között semmiféle kapcsolat sincsen. A planetáris ködök létezése, az életük végéhez közelítő közepes tömegű csillagoknak köszönhető. Közepes tömeg alatt a 0.8 és 8 naptömeg közötti tartomány értendő. A továbbiakban csakis ezekkel foglalkozom majd, és nem térek ki sem a kisebb, sem a nagyobb tömegűekre.

Evolutionary_track_1m-5m

Közepes tömegű csillagok fejlődési útvonala a Hertzsprung-Russel diagramon. Main Sequence – Fősorozat, Subgiant Branch – Szubóriás ág, Giant Branch – Óriás ág, Horizontal Branch – Horizontális ág, Asymptotic Giant Branch – Aszimptotikus óriás ág, Instabilty Strip – Instabilitási sáv

Ábrák forrása: Wikipedia.org

A csillagok életük jelentős részét a Hertzsprung-Russel diagram úgynevezett fősorozatán töltik, miközben magjukban a hidrogén héliummá fúziónál. E folyamatban keletkező energiának köszönhetően képes dacolni a gravitációval. Leegyszerűsítve, a kifelé ható sugárnyomás akadályozza meg, hogy saját gravitációja összeroppantsa a csillagot. Ez a harc születésüktől fogva zajlik, s egészen halálukig, az energiatermelő termonukleáris folyamatok megszűnéséig tart. A hidrogénkészletek azonban nem tartanak örökké. Szerencséjükre a magban zajló hidrogén fúziója nem túlélésük egyetlen kulcsa. Sorsuk azonban így is beteljesül.

A Nap tömegének nagyságrendjébe eső, a fősorozatot elhagyó csillag esetén a hidrogén fúzió már régen nem a magban zajlik. Ekkora, a hidrogén héliummá történő átalakítása már a magot körülvevő külső héjba tevődik át, melynek következtében a csillag felfúvódik, és külső része lehűl, így jut el a vörös óriás fázisba. Majd miután a magban a hőmérséklet eléri a 100 millió fokos nagyságrendet, beindul a hélium fúziója. Ez a folyamat a kék szín irányába tolja a csillag fényét. Hogy mennyire, ez nagy részben a fémtartalomtól függ. (A csillagászok minden elemet a hidrogénen és a héliumon túl a periódusos rendszerben fémnek neveznek. Egy csillag fémtartalmát általában a Naphoz szokták hasonlítani a kutatók. A világegyetem története folyamán, a csillagoknak hála folyamatosan dúsult fémekkel. Az újabb és újabb csillaggenerációk egyre több fémet tartalmaztak, így minél alacsonyabb fémtartalmú egy csillag a Naphoz képest, annál ősibb objektum.) A horizontális ág tagjai a magjukban már héliumból szenet hoznak létre. Ennek az ágnak a csillagai kis fémtartalmú ősi, kisebb tömegű csillagok. A Naphoz hasonló fémtartalmú, 1-2 naptömegű csillagok nem „foglalják el” a horizontális ágat, csak némileg válnak forróbbá, miközben luminozitásuk csökken. Ezek alkotják az úgynevezett vörös kupac (Red Clump a fenti ábrán) csillagait a Hertzsprung-Russel diagramon. A 2-8 naptömegűek viszont kissé nagyobb kitérőt tesznek a kék szín irányába, felszíni hőmérsékletük is jobban megemelkedik. Ezek a kék hurok (Blue Loop a fenti ábrán) csillagai. Azonban, e csillagok életében ez mindössze egy rövidke epizód.

Miután a hélium is elfogy az addigra szénben és oxigénben gazdag magban, a fúzió az azt körülvevő külső héjba tevődik át. Az energia nagy része azonban nem itt keletkezik, hanem a külsőbb hidrogén héjban. A csillag külső rétegei ismét felfúvódnak és lehűlnek. Ennek köszönhetően a csillag fényessége ismét megnő, túlszárnyalva a korábbi vörös óriás fázist, színe pedig ismét a vörös felé tolódik. A csillag elfoglalja helyét az aszimptotikus óriás ágon (AGB fázis). Ugyan a valamivel nagyobb tömegű (2-8 naptömeg közötti) csillagok némiképp más utat járnak be, de nagy vonalakban hasonló folyamatok zajlanak le azoknál is.

Az AGB fázisban a csillagok jelentős mennyiségű tömeget veszítenek a magból a felszínre emelkedett szén, oxigén és egyéb nehéz elemeknek köszönhetően porban gazdag, 10-15 km/s sebességű, sűrű csillagszél révén. Ez évente mintegy 10-7 naptömeget jelent. Ezt egy rövid ideig tartó, hirtelen felgyorsuló, intenzív anyagkiáramlás, az úgynevezett szuperszél követi. Ennek a folyamatnak a végére már szinte csak a lecsupaszított, szénben és oxigénben feldúsult forró mag marad hátra. A csillagot körbevevő anyagfelhőt ebben az állapotban protoplanetáris ködnek nevezik, ugyanis még csak visszaveri szülőcsillagának fényét (nincs még gerjesztés, mint a későbbi planetáris köd fázisban).

A magot vékony hidrogénburok veszi körül, amiben még mindig zajlik a hidrogén fúziója héliummá. A csillag így egyre forróbb, és forróbb lesz. (Balra mozogva a Hertzsprung-Russel diagramon.) A tömegvesztés lelassul évi 10-8 naptömegre. A lassú és sűrű csillagszelet 200-2000 km/s-os gyors, de kis sűrűségű csillagszél váltja fel, mely beleütközik a korábban ledobott, főleg a szuperszél időszakából származó csillagkörüli anyagba. A gyors csillagszél mintegy maga előtt tolva azt, képes sűrű héjat formálni belőle.

Mikor a csillag felszíni hőmérséklete átlépi a 30000 K-t intenzív UV sugárzásával gerjeszteni kezdi a körülötte lévő gázt. A köd többé már nem a csillag fényét veri vissza, hanem „világítani” kezd. Színképét ettől fogva a hidrogén rekombinációs vonalai, és az úgynevezett ütközéssel gerjesztett tiltott vonalak uralják. (Eme utóbbiak csak roppant ritka csillagközi gázban jöhetnek létre, ezért hívják tiltott vonalaknak. Ilyen például az OIII színképvonala is.) Ettől a ponttól beszélünk planetáris ködről.

Alapvetően, az előbb említett különböző típusú anyagkiáramlások bonyolult kölcsönhatása az, mely meghatározza a planetáris köd felépítését, szerkezetét. Hihetetlen tűnik, de kezdeti tömegüknek akár több mint a felét is elveszíthetik a csillagok késői fejlődési fázisukban. Illetve, az esetenként akár 100000 K-nál is nagyobb felszíni hőmérsékletű központi csillag intenzív UV sugárzása teszi a ködöt „láthatóvá”.

Azt mindenképpen ki szeretném emelni, hogy az AGB fázisban történő anyag kibocsájtás, tömegvesztés pontos megértése még várat magára. Sok minden nem teljesen világos még a csillagászok előtt.

A planetáris ködök csillagászati időskálán mérve roppant gyorsan jönnek létre. Az AGB fázis végén ehhez elég mindössze néhány évszázad. Létezésük pedig alig pár tízezer év. A planetáris ködök szülőcsillagai nem elég nagytömegűek, hogy magjukban beinduljon a szén és az oxigén fúziója. Idővel a nukleáris fúzió a külső rétegekben is leáll. A csillagszél megszűnik, és lassan a fehér törpe állapotba jut a csillag. Mire ez a folyamat teljesen befejeződik, a planetáris köd elenyészik az űr sötétjében, láthatatlanná válik.

A fehér törpék esetében az úgynevezett elfajult elektrongáz nyomása dacol gravitációval. Ez a kvantummechanikai eredetű nyomás csakis a sűrűségtől függ, a hőmérséklettől egyáltalán nem – ellentétben az ideális gázokkal -, s egészen 1.44 naptömegig (Chandrasekhar-határ) képes egyensúlyban tartani a csillagot.

A fentebb ismertetett, úgynevezett kölcsönható csillagszél modellel tehát nagyszerűen megmagyarázható, hogy miként keletkeznek a sűrűbb héjak a lassan haldokló csillag körül. Azonban a legtöbb planetáris köd egyáltalán nem gömbszimmetrikus. Tekintélyes hányadukra például sokkal inkább jellemző valamiféle tengelyes szimmetria (bipolárisak, esetleg multipolárisak). Csak hogy két példát említsek azok közül, melyeket korábban már megörökítettem, sem az NGC6302, de még csak M57 sem gömbszimmetrikus.

ngc6302-lrgb-20140414-ttk-1

NGC6302 planetáris ködről már elsőre látszik, hogy sokkal inkább valamiféle tengelyes szimmetria jellemző rá, még ha az nem is oly tökéletes. Bíbor csápjait messzire nyújtja az űrben. A központi részen két fénykaréj fordít egymásnak hátat, így téve még hangsúlyosabbá a homokóraformáját az objektumnak. A bipoláris planetáris ködök gyönyörű példánya. (A szerző saját felvétele.)

M57-LRGB-20140505-TTK

Az M57 felépítése is valami mást takar. (A szerző saját felvétele.)

Hogyan értelmezhető e planetáris ködök szerkezete? Egyes elképzelések szerint, már az AGB fázisban, a forgó csillagról kiáramló lassú csillagszél sem gömbszimmetrikus, az a csillag egyenlítőjénél sűrűbb, míg a pólusok irányában ritkább. A csillag körül, annak egyenlítőjének a síkjában, tórusz alakú sűrűsödés alakul ki. A későbbi fejlődési állapotban meginduló gyors csillagszél, így könnyebben el tud szökni a pólusok irányába, és ott messzebbre jutva, létrehozza a bipoláris planetáris ködökre jellemző homokóraformát (pillangóformát). Az, hogy milyennek látjuk ezeket a ködöket, az nagyban függ attól, hogy milyen irányból tekintünk rájuk, ahogy ez a lenti ábra is szemlélteti.

planetaris-kodok-persp

Az, hogy a bipoláris planetáris köd megjelenése gyűrűre, vagy inkább homokórára emlékeztet, az attól függ, hogy milyen irányból tekintünk rá. Forrás: http://astro.u-szeged.hu/oktatas/galaktikus/34planetaris_nezet.html

Csakhogy, az elméleti megfontolások arra engednek következtetni, hogy az AGB fázisban a csillag forgása ahhoz nem elég gyors, és a mágneses mezeje sem elég erős, hogy működhessen a modell.  Ráadásul a planetáris ködök formavilága roppant változatos. Van, ami bár közel gömb alakú, de belsejében furcsa struktúrák figyelhetőek meg. Van ahol több héjból áll a köd. Egyeseknél jet-ek (kilövellések) láthatóak. Olyan planetáris ködök is vannak, ahol csak úgy értelmezhető a megfigyelhető látvány, hogy a csillag „imbolygott” (precesszió) az anyagkibocsájtás közben.

A világegyetemben a csillagok nagyjából fele nem magányos. Körülbelül 50 ± 10 % egyedüli, 38 ± 10 % kettős, 8 ± 3 % hármas, 3 ± 1 % többes rendszer tagja. A csillagászok joggal feltételezték, hogy a planetáris ködök szülőcsillagainál sincs ez másképpen.

The Frosty Leo Nebula

Az IRAS 09371+1212 planetáris köd (Frosty Leo Nebula) szerkezete arról árulkodik, hogy szülőcsillaga nem magányos. Forrás: ESA/Hubble – NASA

És valóban! Az esetek felében – ahol sikerült megfigyelni a központi csillagot -, azt találták a csillagászok, hogy az nem magányos. Alapvetően tehát szülőcsillaguk UV sugárzása a felelős e ködök fényéért, azonban a szerkezetük kialakításában kulcsszerep jutott a társcsillagnak. Hogyan?

Két mágnesezett és egymás körül keringő csillag egymásra gyakorolt hatását egyelőre nem lehet egzakt módon kiszámítani, mindössze kvalitatív képe van csak a csillagászoknak a dologról. Úgy látszik azonban, hogy a kísérőcsillag segít a mágneses mező fenntartásában. Továbbá, a keringésből származó perdület egy részét a gerjesztő csillagra juttatva felgyorsíthatja annak forgását. Mégis csak lehetséges tehát, amennyiben kettőscsillagról van szó, hogy már eleve az AGB fázisban sérül a gömbszimmetria. A kettősségnek köszönhetően mégiscsak működhet az elképzelés, miszerint a csillag egyenlítőjénél sűrűbb, míg a pólusok irányában ritkább a lassú csillagszél, illetve a szuperszél.

Másfelől, mivel a kettős rendszer tagjai a közös tömegközéppont körül keringenek, így a kiáramló csillagszél „megkavarodik”. A ledobott héjak összenyomódnak a keringés irányában, az anyag a vezető oldalon jobban összesűrűsödik, majd a köd tágulásával a „mintázat” felfúvódik. Ez a jelenség megmagyarázza, hogy miért látunk több planetáris ködben is spirális mintázatot.

R_Sculptoris_ALMA_data_visualisation

Az ALMA (Atacama Large Millimeter Array) milliméteres/szubmilliméteres tartományban működő rádiótávcsövek hálózatából álló rendszer felvétele az R Sculptoris félszabályos változócsillagról, mely egy AGB fázisban lévő vörös óriás csillag. A csillakörüli anyag különös mintázatát valószínűleg a „láthatatlan” kísérőjének köszönhető. Az R Sculptoris pályája különböző pontjain „pöfögte le” magáról külső rétegeket, miközben a kettős rendszer a közös tömegközéppont körül keringett.  Forrás: ALMA (ESO/NAOJ/NRAO)

Kettőscsillag alkotta rendszerekben más egyéb folyamatok is alakíthatják a planetáris köd szerkezetét. Talán a legkülönösebb mintázatokat az egymáshoz viszonylag közel keringő kölcsönható kettősök hozzák létre.

Mindkét tag esetén megvan az a térrész, amit az adott égitest gravitációja ural. Ezt Roche-térfogatnak nevezik. Ami azon kívül kerül az akár el is hagyhatja a rendszert, vagy a páros körüli pályára állhat. A belső (L1) Langrange-ponton keresztül azonban anyag áramolhat át az egyik Roche-térfogatból a másikba. Amennyiben az egyik csillag társa fejlődése során felfúvódik, és kitölti saját Roche-térfogatát, vagy csak intenzív csillagszele révén az AGB fázisban sok anyagot veszít, és ez tölti ki az említett térfogatot, akkor megindul az anyag átáramlása a társra.

Roche-lobes-corrected

Az ábra a Roche-térfogatot szemlélteti. Az L1 a szövegben is említett belső Langrange-pont. Az eredeti ábra forrása: Wikipedia.org (az eredeti ábra hibás volt, így módosítottam)

Bizonyos esetben azonban nem jut el az AGB társ összes anyaga a kísérőjére, hanem gázfelhő formájában veszi körül a párost. Közös gázburokkal körülvett kettőscsillagoknak (common envelope binary systems) nevezik az ilyen rendszereket. (Megjegyzés: A gázburok más ütemben rotál, mint a benne található kettőscsillagok. Ez különbözteti meg ezeket a kettősöket az érintkező kettős rendszerektől.)

Közös gázburok olyankor alakul ki kettőscsillagok körül, ha az egyik komponens valamilyen okból nagyon gyorsan fúvódik fel, vagy a két csillag közötti szeparáció nagyon gyorsan ütemben csökken. Ezeknél a párosoknál is, amikor a felfúvódó donor kitölti a Roche-térfogatot, megindul az anyagátadás. Tömege csökken, a Roche-térfogata zsugorodik. Így még jobban kitölti a térfogatot. Gyorsul az anyagátadás üteme, gyorsul a Roche-térfogat kitöltése (az folyamatosan megy össze), és így tovább. Egy megszaladó dinamikusan instabil anyagátadás valósul meg a kettős rendszerben. Adott esetben a „fogadó” oldali csillag már nem is tudja begyűjteni az összes gázt, és ezért közös gázburok alakul ki a páros körül. A gázburok fékező hatást fejt ki a kettős rendszerre. A csillagok energiát veszítenek, és közelebb kerülnek egymáshoz, ami szintén maga után vonja a Roche-térfogat zsugorodását, s így az anyagátadás fokozódását. A keringésből származó „lopott” energia felfűti és kitágítja a közös burkot. Idővel a donor felfúvódása abbamarad, a közös burok pedig tágulva elhagyja a rendszert. (Az is előfordulhat, hogy a kettős tagjai végül összeolvadnak, de e helyütt ezzel most nem foglalkozom.)

Akár közös burok veszi körül a párost, akár sem, amikor a Roche-térfogat kitöltésekor az anyagátadás megvalósul, akkor a gáz nem közvetlenül zuhan a második csillagra, hanem úgynevezett akkréciós korongot formál körülötte, s így befelé spirálozva éri el a csillag felszínét. Az ilyen akkréciós korongok gyakori sajátossága a forgástengellyel párhuzamos kifújások (jet) a csillagnál. Amennyiben a korong még precessziós mozgást is végez (imbolyog), az epizodikus kifújások dugóhúzó, vagy S mintázatot rajzolnak a térben. Ennek a jelenségnek egy nagyszerű példája a Fleming 1 planetáris köd.

The planetary nebula Fleming 1 seen with ESO’s Very Large Telescope

A Fleming 1 planetáris köd közepén nem is egy, hanem két degenerált (post-AGB fázisú, ifjú fehér törpe) csillag is található. A kiinduláskor a két csillag tömege igen közel lehetett egymáshoz. Az árnyalatnyival nagyobb tömegű komponens, csillagászati értelemben csak alig valamivel hamarabb érte el a planetáris ködöt létrehozó fejlődési állapot. Nem sokkal később a társa is követte. A különös S mintázatot az AGB csillagról a fehér törpére átáramló anyag formálta akkréciós korong jet-jei alakították ki.  Forrás: ESO (VLT)

A Fleming 1 S alakú mintázatának kialakulását szemléltető video.

Egyre elfogadottabb tehát az a nézet, hogy a gömbszimmetriától való eltérés magyarázata, a központi csillag kettőssége.  A planetáris ködök központi csillagainak hatoda ráadásul nem is kettős, de hármas rendszer tagja. Ilyen esetekben még a tengelyes szimmetria sem teljesül. De mi a helyzet azokkal a ködökkel, amelyek középpontjában magányosnak tűnő csillag csücsül, és mégsem gömbszimmetrikusok? Az elméleti megfontolások szerint nincs szükség feltétlenül csillagkísérőre, hogy működjenek a fentebb vázolt mechanizmusok. Már egy barna törpe társ, vagy akár a csillag bolygórendszere is képes „tönkretenni” a szabályos gömbformát. Napjainkban már több ezer exobolygóról van tudomásunk, s azt is tudjuk, hogy a bolygórendszerek igen gyakoriak a csillagok körül. Mondhatni, szinte nincs is valójában magányos csillag, csupán olyan, melynek nincs csillagtársa.

Röviden áttekintettem a megfigyelések, következtetések, elméleti megfontolások azon láncolatát, melyek Herschel „planetáris köd definíciójától” a mai, modern képig elvezettek. Igaz, e helyütt csak kialakulásukkal, felépítésükkel foglalkoztam. Azzal is csak vázlatosan. Akit a téma részletesebben is érdekel, annak ajánlom figyelmébe a felhasznált irodalmak listájából Szabados László cikkét. Évtizedek óta nem jelent meg magyar nyelven ahhoz hasonló összefoglaló cikk a planetáris ködökről! Ráadásul (teljesen természetes módon), azokban sok információ mára elavult.

Lépjünk tovább, és vegyük alaposabban szemügyre az NGC1514-et! A planetáris ködöt William Herschel fedezte fel 1790-ben, és tőle származik az objektum első vizuális jellemzés is. Elmondható, hogy a következő fontos lépést Kohoutek teszi meg 1968-ban az NGC1514 morfológiájának értelmezése felé. Tanulmányában megemlíti, hogy a köd kettős szerkezetet mutat. Az, egy ∼136ʺ méretű belső héjból, és egy ∼206ʺ szferikus, homogén külső héjból áll. A belső héj tengelyes szimmetriájára is felhívja a figyelmet (P. A. 35°), de ő még azt toroid alakú kondenzációként értelmezi. A múlt század katalógusaiban tipikusan kör alakúként, vagy kissé elnyúlt, elliptikus planetárisként írták le. Napjainkban sincs ez jelentősen másként. Az egyik legutóbbi osztályozási rendszerben, amit Quentin Parker és munkatársai publikáltak (2006), és amelyet David Frew egészített ki (2008), az „Es” címkét kapta meg. Az E jelentése: elliptikus. Az s jelentése: kivehető a belső szerkezete (s: structure).

Ugyan a századforduló előtti két évtizedben többen is alaposan elemezték a ködöt, és lassan világossá kezdett válni annak felépítése, azonban az egyik máig legpontosabb vizsgálatnak Muthu és Anandarao vetette alá 2003-ban. Legalábbis az optikai tartományban. Bár korábban már készültek nagy mélységű, részletes fotók az 5007 Å (OIII) hullámhosszon, azonban ők a ködön belüli mozgásokat is alaposan feltérképezték. Az általuk használt Fabry-Pérot spektrométernek, és a kutatók kitartó munkájának köszönhetően, addig soha nem látott részletességű és pontosságú (relatív) sebességtérkép készült az NGC1514-ről. Modelleket illesztve a különböző pontokban kapott sebességprofilokra, konklúzió született a köd felépítését illetően.

NGC1514-felepitese-cut1Az NGC1514 alapvetően 3 fő komponensből épül fel. Egyrészt a halvány külső héjból. Másodrészt a nézőpontunkhoz képest dőlt tengelyű ellipszoid alakú belső héjból. Harmadrészt pedig, a belső héjban elhelyezkedő fényes anyagbuborékokból (blobs). Ezek majdnem teljesen szimmetrikusak, és az általuk kijelölt tengely, nagyjából párhuzamos az égbolt síkjával. De csak nagyjából. A délkeleti buborék enyhe kék, míg az északnyugati enyhe vörös eltolódást mutat. Vagyis, míg az elsőben az anyag közelít, a másodikban távolodik tőlünk. Azonban az NGC1514 mégsem „tipikus” esete a bipolaritást mutató planetáris ködöknek. Ezek a buborékok bár ellentétes irányba mutatnak, de jelentős bennük a sebesség diszperzió (velocity dispersion). Vagyis, a buborékokban az áramlás nem elég kollimált, nem egy jól összefogott nyaláb mentén történik. Ahogy ezt már korábban is említettem, a bipolaritás egyik feltételezett oka a központi csillag kettőssége, illetve a planetáris köd szülőcsillagát körülvevő, annak egyenlítői síkjában elhelyezkedő tórusz, vagy korong alakú sűrű anyagfelhő. Ez az, ami a csillag pólusainak iránya mentén, az AGB fázist követően meginduló gyors csillagszelet nyalábba tereli. Az NGC1514 központi csillaga esetében – Muthu és Anandarao vélekedése szerint -, az említett anyagfelhő vagy túlságosan nagy kiterjedésű, vagy egyáltalán nem is létezik, így nincs ami effektíven kollimálja a kiáramlást. A két csillagász diszkussziója szerint, mely a planetáris köd kinematikája mellett annak kémiai összetételére is erősen épít, a közös gázburokkal körülvett kettőscsillag (common envelope binary systems) modell, és az akkréciós korongoknál keletkező epizodikus kifúvások (jet-ek) adják a legkézenfekvőbb magyarázatot az NGC1514 felépítésre.

Már az optikai tartományban is magával ragadó az NGC1514 szerkezete, de 2010-ben a NASA WISE (Wide-field Infrared Survey Explorer) nevű űrtávcsöve bebizonyította, hogy 220 évvel felfedezése után még mindig meg tud hökkenteni minket az NGC1514. Az infravörös tartományban készült felvételen a köd új arca tárult fel a csillagászok előtt.

ngc1514-infra

Az NGC1514 a WISE infravörös felvételén. Forrás: NASA/JPL-Caltech/UCLA

Az NGC1514-et tengelyesen szimmetrikus, porban gazdag gyűrűk ölelik körül. Más kutatókhoz hasonlóan Ressler és munkatársai is megpróbálták értelmezni a látottakat.  Mivel az infravörös megfigyelésekhez nem álltak rendelkezésükre kinematikai eredmények, így akárcsak e planetáris köd első optikai felméréseinél, a struktúrák elemzésével és hasonló esetek tanulmányozásával próbálták a következtetéseket levonni.

Szerencsére az NGC1514 a gyűrűivel nincs egyedül, más planetáris ködöknél is megfigyelhetőek hasonló struktúrák. Ennek egyik legszebb példája a MyCn18 (Homokóra-köd), melyről a Hubble űrtávcső készített anno egy mára ikonikussá vált felvételt. A többi csillagász korábban már behatóan foglalkozott az NGC1514 „testvéreinek” modellezésével, és azok homokórára emlékeztető alakját, de legfőképpen a gyűrűiket sikerült is megmagyarázniuk a kettőscsillag rendszerekben munkáló kölcsönható csillagszél modellel. Ressler és munkatársai elővéve ezeket a munkákat, rámutattak, hogy részben az NGC1514 gyűrűi is leírhatóak ezekkel, amennyiben azok különösen nagy tömegvesztés keretében születtek. Sőt, kimondottan ennek kellett a legnagyobb anyagkidobódásnak lennie a központi csillag életében, mely még valószínűleg az AGB fázis legelején történhetett. Ezzel a feltételezéssel azért kellett élniük, mert az NGC1514 hasonszőrű társai esetében több gyűrű helyezkedik el egy tengely mentén, míg ennél a planetáris ködnél csak egy-egy gyűrűt sikerült kimutatni. Elképzelhető persze, hogy nagyobb érzékenységgel felvett felvételeken a köd kiterjedtebb lenne, és több, halványabb gyűrűt is sikerülne kimutatni, de ez a jövőbeni infravörös megfigyelésekre vár.

hourglass-1996-07

MyCn18 (Homokóra-köd) a Hubble űrtávcső felvételén.

A többi homokóra alakú köd esetében azonban az optikai tartományban is remekül látszanak a gyűrűk, míg az NGC1514-nél ezeknek semmi nyoma nincs a látható fényben. Ennek egyik oka lehet, hogy anyaga ehhez nem elég meleg. Az infravörös megfigyelések szerint ∼160 K a por hőmérséklete. Az is elképzelhető azonban, hogy fénye egyszerűen csak belevész a halvány külső halóéba.

A WISE felvételei, és a ráépülő kutatásoknak köszönhetően addig ismeretlen struktúrák létezésére derült fény, így a szülőcsillag tömegvesztésének hosszabb időszakáról van ma már lenyomatunk. Ez is megerősítni látszik azt a tényt, hogy az NGC1514 belsejében kettőscsillag lakik.

Közvetve, a planetáris köd szerkezetének tárgyalásakor már többször hivatkoztam az NGC1514 központi kettőscsillagára. Vizsgáljuk meg alaposabban, hogy mit sikerült kideríteni róla a csillagászoknak!

A felvételemen köd középpontjában ragyogó fehéres, kékes-fehér színű különös csillag (BD+30°623) furcsaságai nagyon régóta ismertek voltak a csillagászok előtt. A különös szót nem véletlenül használtam, bár írhattam volna sajátost, ha úgy tetszik. A BD+30°623 csillag a planetáris ködök központi csillagainak speciális csoportját képviseli, melyre az angol szakirodalomban a „peculiar central stars” kifejezést használják. Azokat sorolják ide, melyek nem elég forróak ahhoz, hogy ionizálják az őket körülvevő planetáris ködöket. Több olyan példa is akad, ahol A-K színképosztályú csillag látható a planetáris köd középpontjában. Az NGC1514 is ilyen eset. Még Lutz (1977) vetette fel az ötletet, miszerint ezeknek kell, hogy legyen egy halvány, de forró társuk. Valójában ez a gerjesztő csillag, és nem a hűvösebb, de fényesebb komponens.

Amennyiben ez tényleg így van, bár egyetlen csillagot látunk, de két színkép rakódik egymásra. Így, bár nem kevés munkával, de különválasztható a két csillag, és külön-külön meghatározhatóak a paramétereik. Hogy ez mennyire nem is egyszerű feladat, az bizonyítja, hogy az évtizedek alatt többször is nekifutottak a különböző szakemberek a problémának. Bár Kohoutek (1967) elsőként hívta fel a figyelmet a színképelemzés alapján a BD+30°623 kettősségére, e cikkben most csak a legutolsó, és (talán) a legpontosabb eredményekre hivatkoznék.

Aller és kutatótársai egyfelől az optikai tartományban, földi távcsővel (Calar Alto obszervatórium, 2.2 méteres távcső, Calar Alto Faint Object Spectrograph) felvett színkép elemzésével próbáltak fogást találni a problémán. Másfelől pedig az IUE (International Ultraviolet Explorer) űrtávcső, az ultraibolya tartományban, 1978-1989 között a csillagról rögzített archív spektrumait használták fel. Eme utóbbiak azért voltak roppant fontosak, mivel az NGC1514 He II emissziós vonalai alapján a forró társ hőmérsékletére legalább 60000 K fokot feltételeztek. Az ilyen forró csillagok sugárzásuk jelentős részét már az ultraibolya tartományban bocsájtják ki, így itt a legkönnyebb karakterizálni őket.

A valós színképeket szintetikus színképekkel modellezték. Alapvetően olyan felszíni hőmérsékletű, felszíni gravitációs gyorsulású, fémtartalmú (kémiai összetételű) modellcsillagokat kerestek, melyek szintetikus spektruma a legjobban illeszkedett az igazi spektrumhoz. A lehetséges megoldásokhoz több iterációval jutottak el.

Az elméleti csillagfejlődési modellek szerint, adott fémtartalmú (kémiai összetételű), és adott tömegű csillaghoz, meghatározott fejlődési görbe tartozik a Hertzsprung-Russel diagramon, amennyiben a diagram vízszintes tengelyén az effektív hőmérséklet, függőleges tengelyén pedig a felszíni gravitációs gyorsulás logaritmusát ábrázoljuk. A kutatók a színképelemzésből kapott lehetséges felszíni hőmérséklettel és a lehetséges felszíni gyorsulással a kezükben, az elméleti csillagfejlődési modelleket felhasználva, megkeresték a csillagokra legjobban illeszkedő fejlődési útvonalat, így meghatározva a csillagok tömegét. Mivel a fejlődési modellek azt is megmondják, hogy milyen fejlődési görbe tartozik a választott tömeghez a Hertzsprung-Russel diagramon, amikor annak vízszintes tengelyén az effektív hőmérséklet, függőleges tengelyén pedig a csillag a Naphoz viszonyított luminozitásának logaritmusát ábrázoljuk, így a csillagok további paraméterei is meghatározhatóak. Végső soron levezethető a csillag tömege, sugara, luminozitása, és távolsága. A távolság meghatározásához igyekeztek megbecsülni, és figyelembe venni, az intersztelláris anyag okozta, az NGC1514 irányában igen számottevő extinkciót (fényelnyelést), és szín-excesszust (vörösítő hatást).

Több kritériumnak is meg kellett felelnie azonban az egyes levezetett csillagparamétereknek. Az abszolút és a megfigyelt látszólagos fényességből kiszámított távolságnak elég jól kellett egyeznie a két csillagra, hiszen kettőscsillagról van szó, egymás közelében vannak. A távolságadatoknak ráadásul összhangban kellett lennie az egyéb független módszerekkel kapott mérésekkel. Bár a köd távolsága elég pontatlanul ismert, 200-300 pc távolság tűnik a legelfogadhatóbbnak. A csillagok korának is megfelelő egyezést kellett mutatnia. De nemcsak egymással, hanem a fejlődési modellekkel is.

Ennek fényében döntöttek úgy, hogy a hűvös, fényesebb komponensre illeszkedő két lehetséges megoldás közül csak az egyik lehetőséget tartják meg. Azt az a megoldást elvetették a kettősségi kritérium alapján, hogy a hűvösebb társ egy nagyobb tömegű, a fősorozatról elfejlődő csillag lenne. Ebben az esetben ugyanis jóval fiatalabb lenne a gerjesztő csillagnál. Ráadásul, akkor jóval távolabb is lenne, így semmiképpen sem alkothatna a két csillag egyetlen párt. Az a megoldás illett csak a képbe, hogy a hűvös társ alacsony fémtartalmú és éppen a horizontális ágon tartózkodik.

NGC1514-bs-evotrack

Fejlődési útvonalak a csillagfejlődési elméletek alapján.

Balra a halvány, forró komponens fejlődési útvonalai. Kékkel jelölve a lehetséges paraméterű területet.

Jobbra a fényes, hűvös komponens fejlődési útvonalai. Szürkével az óriás ági fejlődési útvonalak, melyek elvetésre kerültek az ezekből származtatott kor és távolság miatt. Ezek a „megoldások” túl fiatal kort, és túl nagy távolságot eredményeztek a forró csillaghoz képest. Kékkel jelölve a lehetséges paraméterű pont, vörössel a hozzá tartozó horizontális ági fejlődési útvonal.

Részletek a szövegben. Forrás: A. Aller és mások

Mindezek után, Aller és szerzőtársai megalkották a diszkussziót. (Az összes adat a felhasznált irodalomnál megjelölt cikkben érhető el). A fényesebb, hideg komponens 9850±150 K felszíni hőmérsékletű, a HRD horizontális ágán tartózkodó, A0 színképosztályú óriáscsillag. A Napnál nagyjából kétszer nagyobb sugarú (2.1±0.6 R), és fele akkora tömegű (0.55 ± 0.02 M). A fejlődési modellek szerint, fémtartalomtól függően kezdetben 0.8-0.9 naptömegű lehetett. A forró, halvány gerjesztő csillag nagy valószínűséggel O színképosztályú szubtörpe csillag (sdO), de ezt egészen biztosan csak nagyobb felbontású UV spektrum elkészítése, és elemzése után lehetne kijelenteni. Felszíni hőmérséklete 80000-95000 K közötti. Sugara a Napénak mindössze kéttizede (0.22±0.03 R), és körülbelül hasonló, vagy talán alig valamivel nagyobb tömegű (0.56 ± 0.03 M), mint a társa. Viszont kezdetben Napunkhoz nagyon hasonló lehetett a tömege. A páros tagjai 8-12 milliárd évesek. Távolságukra pedig a hűvösebb csillag paraméterei alapján 294±69 pc, a forró komponens paraméterei alapján pedig 253±88 pc adódott.

A diszkussziójukban a kutatók helyt adtak egy „apró”, de mégiscsak fontos megjegyzésnek. Tény, hogy a megfigyeléseikből kikövetkeztették a páros paramétereit. Továbbá a kettősség mellett szól az NGC1514 komplex, buborékos, tengelyszimmetrikus felépítése, amit magányos szülőcsillaggal nem lehet megmagyarázni. Azonban, a duó nem mutatja a kettőscsillagok egyéb jellegzetességeit. Mindmáig nem sikerült változásokat kimutatni a BD+30°623 radiális (látóiránybeli) sebességében. Egy kettőscsillag tagjainak mutatni kellene némi „előre-hátra” irányuló mozgást, miközben a közös tömegközéppont körül keringenek. Ez pedig a Doppler-effektusnak köszönhetően detektálható, kimérhető lenne a színképből. A megfigyelt színképe ilyen jellegű változásokat azonban hosszú időskálán sem mutatott. A BD+30°623 egyszerűen „nem akar” tipikus spektroszkópiai kettőscsillagként viselkedni. A csillag fényességbeli változásokat sem produkál. Tagjai tehát keringés közben nem fedik el egymást. A BD+30°623 nem fedési kettőscsillag. Miért nem látjuk az említett jelenségeket? A szerzők ezt azzal magyarázzák, hogy valószínűleg nagyon szorosan helyezkedik el a két csillag. Talán közös gázburok öleli őket körül. Vagy éppen a pólusaik felől látunk rá a kettősre. Ez az elképzelés egybevág a vonalak keskenységével a hűvös komponens színképében, amit a csillag forgásának ki kellene szélesítenie amúgy (Doppler-effektus). Az is lehet magyarázat, hogy tág rendszerről van szó. Akkor viszont a csillagpályáknak speciálisaknak kell lenniük, amely egyéb problémákat vet fel. Hosszú periódusú, elnyúlt pályával ugyan megmagyarázható lenne az említett jegyek hiánya, de ez nagyban megnehezíteni a köd komplex struktúrájának értelmezését. Nem kizárható, hogy a hűvös, fényes csillag, csak a véletlennek köszönhetően látszik a köd középpontjában.

Ezt a kérdést feszegette Méndez és Kudritzki is. Vajon a két csillag tényleg összetartozó, ahogy ezt mindig is feltételezték a különös színkép alapján? Radiális sebesség vizsgálatuk, melyet a CHFT-vel (France-Hawaii Telescope – Mauna Kea), és az Espandos nagy felbontású spektrográffal végeztek el, ezt erősen megkérdőjelezi. A két csillag radiális sebességében 13±2 km/s sebesség eltérést találtak, de ami még ennél is fontosabb, ez nem mutatott változást a közel 500 nap alatt.

Továbbá meghatározták a hűvös, fényes csillag fémtartalmát is, amire nagyobb értéket kaptak annál, mint ami a horizontális ág tagjaira jellemző. Az A0 színképosztályú csillag tehát jóval fiatalabb a forróbb gerjesztő csillagnál. A csillagfejlődési modellek szerint inkább 3 naptömegű, és fényesebb is, tehát legalább 400 pc a távolsága. Így a két csillag nem lehet egymás társa (253±88 pc a legalább 400 pc ellenében). Aller-nek és társainak korábbi két alternatívája közül Méndez és Kudritzki megfigyeléseinek eredménye, mégiscsak a fősorozatot elhagyó, nagyobb tömegű csillag elképzelést támasztják alá. Ne feledjük el, hogy Aller-ék ezt csak a kettősségen alapuló előfeltevés miatt dobták el!

De térjünk vissza a radiális sebességekre! A forró csillagnál 57±1 km/s, míg a hűvös csillagnál 44±2 km/s sebességet kaptak átlagosan, mely szignifikánsan nem változott a mérés hosszú időtartama alatt. Ha mégis csak feltesszük, hogy összetartozik a két csillag, akkor a sebességek különbsége kizárja azt, hogy a pólusok felől lássuk a közös tömegközéppont körüli keringésüket. Illetve, a radiális sebességek állandósága, hosszú periódust feltételez a keringésre. Akkor viszont, ahogy erre már korábban is utaltam, a hűvös csillagnak nem sok szerepe lehetett a köd struktúrájának felépítésében.

Harmadik érvként az hozható a fel a kettősség ellen, hogy magának az NGC1514-nek a radiális sebessége csak a forró csillag radiális sebességével kompatibilis. Vagyis csak a forró gerjesztő csillag lehet a köd középpontjában. Természetesen nem zárható ki, hogy a planetáris köd eddigi radiális sebességének meghatározására irányuló mérések egytől-egyig szisztematikus hibát tartalmaznak. Amennyiben ez még sincs így, illetve Méndez és Kudritzki mérései sem hibákkal terheltek, akkor a fényes csillag nem a planetáris ködben található.

Összességében tehát Méndez és Kudritzki tanulmánya elveti azt a feltevést, amiből sok korábbi tanulmány kiindult. Vagyis, hogy fizikailag is összetartozó az a két csillag, amit egynek látunk, ha az NGC1514 középpontjára tekintünk. A csillagok a köd közepén talán csak a szerencsés véletlennek köszönhetően látszanak azonos irányba. Ennek a valószínűsége bár nem kizárható, de mindenképpen kicsi. Kimondottan annak tükrében, hogy a Hubble űrtávcsővel sem sikerült felbontani a BD+30°623-at két csillagra (Ciardullo és mások – 1999). Nem vethető el az a lehetőség sem a tanulmányuk alapján, hogy valamiféle kis amplitúdójú sebességváltozás mégiscsak jelen van a csillagok mozgásában. Mind a két csillagnak lehet bolygórendszere, vagy kicsiny tömegű társa. Ezt viszont már csak a jövőbeli pontosabb mérések dönthetik el.

Pár éve, a több mint 3000 ismert galaktikus planetáris köd központi csillagainak csak durván 13%-ról volt spektroszkópiai információnk. Illetve, körülbelül háromtucatnyi alaposan vizsgált központi csillagot katalogizáltak kettőscsillagként. Ezek a számok a cikk írásáig sem emelkedtek meredeken. Továbbiak megfigyelésekre van szükség! Mindenesetre, ha valami végső konklúziót szeretnék levonni az NGC1514-gyel, és úgy általában a planetáris ködökkel kapcsolatban, akkor talán az az lenne, hogy a gömbtől eltérők, változatos alakjának kulcsa a rendszerek kettősségében rejlik. Legyen a társ másik csillag, vagy kisebb tömegű égitest, mint például egy barna törpe, vagy bolygórendszer.

Ahogy az elején is mondtam: az NGC1514 több titkot rejt, mintsem elsőre azt az olvasó sejtené. Még akkor is, ha néhányra időközben már fényderült.

Külön köszönettel tartozom Szabados Lászlónak az általános rész írásakor nyújtott konzultációs lehetőségért!

Felhasznált irodalom:

C. Muthu, B. G. Anandarao: A Spatiokinematic Study of the Planetary Nebula NGC 1514

Michael E. Ressler, Martin Cohen, Stefanie Wachter, D. W. Hoard, Amy K. Mainzer, and Edward L. Wright: The Discovery of Infrared Rings in the Planetary Nebula NGC 1514 During the WISE All-Sky Survey

B. Aryal, C. Rajbahak, R. Weinberger: A giant dusty bipolar structure around the planetary nebula NGC 1514

Henri M. J. Boffin, Brent Miszalski, Thomas Rauch, David Jones, Romano L. M. Corradi, Ralf Napiwotzki, Avril C. Day-Jones, Joachim Koeppen: An Interacting Binary System Powers Precessing Outflows of an Evolved Star

A. Aller, B. Montesinos, L. F. Miranda, E. Solano, A. Ulla: Spectral analysis of BD+30°623, the peculiar binary central star of the planetary nebula NGC 1514

R.H. Mendez, R.P. Kudritzki, M.A. Urbaneja: The two central stars of NGC 1514: can they actually be related?

Szabados László: Planetáris ködök (Meteor csillagászati évkönyv 2017)

 

NGC7331

NGC7331-LRGB-20160707-0135-sx-bin2-360s-TTK

NGC7331 / Deer Lick csoport

2016-07-07, 2016-08-05, 2016-08-26 – Göd

27 x 360 sec L (Bin2), 10 x 360 sec R (Bin2), 10 x 360 sec G (Bin2), 10 x 360 sec B (Bin2)

300/1200 Newton távcső – Paracorr Type2 kóma korrektor – eredő fókusz 1380 mm

SkyWatcher EQ-6 Pro GoTo mechanika

SXVR-H18 CCD kamera, Hutech IDAS P2 LPS filter és Astronomik RGBL fotografikus szűrőszett

Pegazus (vagy Pégaszosz) a görög mitológia szárnyas lova, aki Poszeidón és Medúza „nászából” fogant. Annak előtte Medúza még szépséges szűz volt, és Pallasz Athéné kísérője. Büntetésül maga Athéné Istennő változtatta szörnyű teremtménnyé, miután (egyes változatok szerint) Poszeidón erőszakot tett rajta, ártatlanságát elvesztette. Medúza fejéről kígyók tekeregtek alá, s pillantásával a halandókat kővé változtatta. Életének végül Perszeusz vetett véget, mikor az Athénétől(!) kapott pajzzsal és egy sarlóval felszerelkezve levágta annak fejét. Pegazus és Khrüszaór gigász ekkor pattant elő teljes életnagyságban anyja testéből. Pegazus további sorsát illetően már az ókorban többféle elbeszélés létezett. A reneszánsz során ezek a történetek kissé át is alakultak. Például több szerepet kapott Perszeusz történetében. A klasszikus görög mítoszokban még a Hermésztől kapott mágikus sarkantyút használta Perszeusz a sziklához kötözött Androméda megmentésekor. Azonban, a XV-XVI században már úgy mesélték, illetve ábrázolták, hogy Perszeusz Pegazus hátán érkezett, hogy a Cettől a királylányt megmentse.

Pegazus kulcsszerepet játszott Bellerophontész mítoszában is. A hős segítségével győzte le Khimairat, az oroszlántestű nőstényszörnyet, melynek hátán kecskefej meredezett, és farka kígyófejben végződött. Az amazonok ellen vívott harcban, hősünk szintén kihasználta Pegazus nyújtotta magaslati előnyét. Bellerophontészt végül sikerei olyannyira elvakították, hogy Pegazus hátán egyenesen az Olimposzra lovagolt, mert úgy gondolta, hogy magának is az istenek között a helye. Zeuszt feldühítette az arcátlanság, és böglyöt küldött, mely megcsípte Pegazust. A ló levetette hátáról Bellerophontészt, aki visszazuhant a földre. Új gazdája maga Zeusz lett. S mivel Pegazus hűen szolgálta őt, hordta villámait, Zeusz tiszteletből csillagképpé változtatta.

Ez hát Pegazus mítosza. Az viszont maga a valóság, hogy a Pegazus egyike annak a 48, Ptolemaiosz által felsorolt csillagképnek (Almageszt), melyet a mai napig használunk. Ma összesen 88 csillagkép létezik, melyeket a Nemzetközi Csillagászati Unió (International Astronomical Union, IAU) 1922-ben fogadott el.

Pegasus_IAU.svg

A Pegazus csillagkép, és a hozzá tartozó területek. A Pegazus-négyszög igen jellegzetes alakzat, noha annak „bal felső” csillaga (α Andromedae) már az Androméda csillagképhez tartozik. 

A Pegazus vidéke hemzseg a látnivalóktól. Kimondottan, ha valaki galaxisokra vadászik. Igaz, legtöbbjük olyan apró és halvány, hogy nagyobb méretű amatőrtávcsőre van szükség a megpillantásukhoz, illetve lefényképezésükhöz. Akad azonban könnyebb célpont is. Az NGC7331 katalógus számú galaxis a Pegazus csillagkép legfényesebb, és talán legismertebb galaxisa. A Matar (η Peg) nevű csillagától nem egészen 4.5 fokra, észak-északnyugatra, nem is nehéz ráakadni erre a 9.5 (V) magnitúdós és 10.5 x 3.7 ívperc látszólagos kiterjedésű csillagvárosra.

A csillagrendszert William Herschel fedezte fel 1784-ben. Érdekes, hogy Charles Messier több hasonló paraméterrel rendelkező mély-ég objektumot katalogizált, véleményem szerint ennél nehezebben megpillanthatóakat is, de ez a galaxis valamiért mégis kimaradt gyűjteményéből. Természetesen, ez mit sem von le Messier érdemeiből.

NGC7331-Pegazus-02

Az NGC7331 nem egészen 4.5 fokra, észak-északnyugatra található a Pegazus csillagkép Matar (η Peg) nevű csillagától.

Ha már megemlítettem Messier nevét, akkor megjegyzem, hogy az általa felsorolt 110 objektum megfigyelése szerintem egy nagyszerű program kezdő mély-ég észlelők számára. Gyakorlott megfigyelőknek pedig a Messier-maraton kitűnő szórakozás, melynek során egyetlen éjszaka alatt kell a lehető legtöbb Messier objektumot teljesíteni. Erre az egyik legkitűnőbb alkalom április elejének környéke. Hazánkból már többen is teljesítették a kihívást, eljutva egészen 109 objektumig (az M30 megfigyelése hazánkból lehetetlen ebben az időpontban).

Az idők folyamán azonban több katalógus, pontosabban szólva gyűjtemény is napvilágot látott, mely egyfajta további észlelési programot ad azok kezébe, akik már felkeresték az összes Messier objektumot, és a távoli világűr további szépségére is kíváncsiak. Úgy gondolom, minden lelkes mély-ég észlelő életében eljön ez a pillanat. A Messier katalógus közel sem tartalmazza az égbolt fényesebb mély-ég objektumainak teljes listáját. Nem is ezzel a céllal született. Sir Patrick Alfred Caldwell-Moore viszont azon a véleményen volt, hogy szükség lenne egy kiegészítésre, kimondottan amatőrcsillagászoknak. Ezzel az indíttatással állította össze, és publikálta saját katalógusát 1995-ben, mely Caldwell katalógusként lett ismert.

CaldwellStarChart-2000px

Caldwell objektumok az égbolton.

Ezek nem az ő önálló felfedezései, csupán összegyűjtötte az égbolt izgalmas, és viszonylag fényes mély-ég objektumait, melyeket mások figyelmébe szeretett volna ajánlani, és melyek hiányoztak a Messier katalógusból. A Caldwell katalógusban az objektumok deklinációjuk szerint következnek sorba. Továbbá az égbolt déli féltekének gyönyörűségeiből is tartalmaz egy jókora merítést. Az NGC7331 éppen a harmincadik objektum a Caldwell katalógusban, így amatőrcsillagász körökben gyakran C30-ként is szoktak rá hivatkozni.

NGC7331-LRGB-20160707-0135-sx-bin2-360s-TTK-label

A felvételen elsőként a négy apró galaxisokkal körülvett NGC7331 spirál galaxis vonja magára a szemlélő figyelmét, és természetesen ott van a csillagokkal telehintett látómező. A csillagok mind a Tejútrendszerünkhöz tartoznak. De mi a helyzet a galaxisokkal? Vajon van fizikai kapcsolat a Deer Lick csoport tagjai, vagyis az NGC7331, az NGC7336, az NGC7335, az NGC7340 és az NGC7337 között?

Az NGC7331 távolságát az elmúlt évtizedekben több módszerrel is megpróbálták meghatározni. A spirál galaxis felépítése és nagy inklinációja (kb. 73°) ideális körülményeket biztosított az úgynevezett Tully-Fisher reláció használatára. A Tully-Fisher reláció (elliptikus galaxisok esetén nem használható, csak spirális és lentikuláris galaxisoknál) egy tapasztalati összefüggés a galaxisok tömege vagy luminozitása és emissziós vonalainak szélessége, vagyis a galaxison belüli szögsebességek között. A részletekbe nem nagyon elmerülve, arról van szó, hogy a galaxison belüli sebességekből meghatározható a galaxis luminozitása, és ebből pedig távolsága. Ugyanis, a galaxis csillagainak dinamikáját a galaxis tömege határozza meg, mely pedig összefüggésben áll annak luminozitásával. Az így kapott luminozitást felhasználva a látszólagos fényesség ismeretében a távolság már meghatározható. Ezzel a módszerrel a kilencvenes évek elején végzett alapos vizsgálatok után 12Mpc (kb. 39 millió fényév) távolságot kaptak a csillagászok.

Ezt követően nem sokkal, a kilencvenes évek közepén indult egy projekt (The Hubble Space Telescope Extragalactic Distance Scale Key Project), melyben a Hubble űrtávcsővel kívánták meghatározni 20 Mpc-en belül 18 galaxis távolságát a benne található Cepheida típusú változócsillagok segítségével.

A Cepheida változócsillagok radiálisan pulzálnak. Az átmérőjükben és hőmérsékletükben bekövetkező változás az oka, hogy fényességük meghatározott, stabil periódus szerint változik.

Henrietta Swan Leavitt még 1912-ben felfedezte fel a Cepheida-k fényváltozási periódusa és abszolút fényessége között fennálló kapcsolatot, miután a Nagy Magellán-felhő Cepheida változóiról készült több száznyi fotólemezt áttanulmányozta. E csillagok úgynevezett standard gyertyaként használhatók az őket tartalmazó halmazok, galaxisok távolságának meghatározására. A Cepheida periódusából adódik, annak abszolút fényessége. Ennek, és a mért látszólagos fényességnek a birtokában a távolság pedig már meghatározható.

Maga Edwin Hubble is Cepheida típusú változócsillagokat használt az Androméda galaxis távolságának meghatározásához. Sikeresen azonosította őket, majd a periódus-fényesség relációjuk felhasználásával bizonyította 1926-ban, hogy az Androméda galaxis a Tejútrendszeren kívül elhelyezkedő önálló csillagváros.

Hubble_V1

Edwin Hubble egyik felvétele, rajta az Androméda galaxisban azonosított Cepheida változókkal.

Ezúttal a Hubble-ről elnevezett űrtávcsőn volt a sor, hogy megismételje azt a bravúrt, amit a Hooker távcső itt a Földön közel 70 évvel ezelőtt. A kitűzött távolság azonban ebben az esetben 25-ször nagyobb volt. Végül a kutatók 13 Cepheida változót azonosítottak biztosan az NGC7331-ben, és ezeket használták fel a galaxis távolságának meghatározására.

NGC7331-Ceph-HST

Cepheida típusú változócsillagok az NGC7331-ben a Hubble űrtávcső felvételén.

Az 1998-ban publikált eredmények szerint a galaxis távolsága 15.1 (+1.0/-0.9) Mpc, vagyis nagyjából 49 millió fényév.

A csillagászok a „kis” galaxisok távolságát is meghatározták. Ezek jóval távolabb vannak, mint az NGC7331. Olyannyira, hogy még a Hubble űrtávcső is képtelen megpillantani bennük az amúgy igen fényes Cepheida változócsillagokat. E négy galaxis esetében egészen más módszert is használtak.

A világegyetem tágulásának köszönhetően a galaxisok távolodnak tőlünk, méghozzá annál nagyobb sebességgel, minél nagyobb a távolságuk. Ez az összefüggést nevezik Hubble-törvénynek. A Doppler-effektus miatt, a távolodó égitest spektrumában a színképvonalak a sebességgel arányosan a vörös szín felé tolódnak. Megmérve a vöröseltolódást kiszámítható a távolodás sebessége, ebből pedig a Hubble-törvény alkalmazásával már következik a galaxis távolsága.

Az NGC7335, NGC7337, és az NGC7340 hasonló távolságra vannak, de jóval az NGC7331-en túl. Szám szerint, 264 millió fényévre, 275 millió fényévre, 268 millió fényévre. Az NGC7336 a maga 371 millió fényéves távolságával azonban, még rajtuk is túltesz.

A fentebb feltett kérdésre válaszolva: a Deer Lick csoport tagjai, bár pompásan mutatnak így együtt, három jelentősen eltérő távolságban vannak. A csoportosulás mindössze látszólagos.

Az NGC7331 valójában tényleg része egy galaxis csoportnak. Ez nem túlságosan sűrű, és tagjai az égbolt viszonylag nagy területén, szétszórtan helyezkednek el. Elég nagy területen ahhoz, hogy az én látómezőmbe már ne férjenek bele. E csoport fényesebb tagjai: az NGC7217 (kb. 6° távolságra az NGC7331-től, ez a második legfényesebb), az NGC7320, az NGC7292, az NGC7457 (a harmadik legfényesebb), az UGC12060, az UGC12082, az UGC12212, az UGC12311, és az UGC 12404. Talán az NGC7320 a leginkább ismert közülük, a Stephan´s Quintett révén. Igaz, nincs fizikai kapcsolatban az ötös másik négy galaxisával. Megint csak egy véletlen egybeesés!

Gyakran beszélnek, vagy éppen írnak az NGC7331-ről, mint galaxisunk ikertestvéréről. Ez azonban csak félig-meddig igaz.

A 49 millió fényév körüli távolságot elfogadva, a galaxis átmérője nagyjából 100000 fényév, vagyis Tejútrendszerünk és az NGC7331 hasonló méretű spirál galaxis. Szintén, a Cepheida változócsillagokra alapozott távolságát alapul véve, látszólagos fényességéből már következik a valódi fényessége (luminozitása). Ez utóbbi és a galaxis kinematikai vizsgálatainak eredménye alapján tömege 4.6 x 1011 naptömeg (Tully-Fisher reláció). Kijelenthető tehát, hogy az NGC7331 a saját galaxisunkkal egy „súlycsoportjába” tartozik. Morfológiai típusa SA(s)b D. Ellentétben saját Tejútrendszerünkkel, ez a spirális csillagrendszer nem küllős, vagyis a galaxis karjai közvetlenül a magból indulnak. Ha már mindenképpen az NGC7331 ikertestvérét keressük „a közelben”, akkor morfológiáját tekintve, az az Androméda-galaxis (M31).

 Hubble_-_de_Vaucouleurs_Galaxy_Morphology_Diagram-mini

A Hubble – de Vaucouleurs galaxis morfológiai diagram.

Bár a korai elképzelések miatt, ma is használják a korai típusú (elliptikus, lentikuláris galaxisok), és a késői típusú galaxis elnevezést (spirál galaxisok, irreguláris galaxisok), ma már tudjuk, hogy valójában a galaxisok fejlődése nem a balról jobbra irányt követi az ábrán. Most csak a spirál galaxisokra koncentrálva, ezek három osztályba sorolhatóak. Normál spirál galaxisok (felül), átmeneti spirál galaxisok (középen), küllős spirál galaxisok. Figyeljük meg, hogy ez utóbbi esetben a küllőből indul a spirálkar. A Hubble Űrtávcső 2000 galaxist magában foglaló felmérése, a Cosmic Evolution Survey (COSMOS) eredményei szerint a múltban kisebb volt a küllős galaxisok aránya a spirális galaxisok között. A mai univerzumban a spirál galaxisok körülbelül 65% rendelkezik küllős szerkezettel, míg a múltban ez az arány, mindössze 20% volt. 7 milliárd év alatt megháromszorozódott a számuk. Az is kiderült, hogy a galaxis tömege is fontos szerepet játszik abban, hogy mikor válik egy spirális galaxis küllőssé, vagyis mikor éri el a fejlettség/érettség eme szintjét. A nagytömegűek gyorsan legyártják csillagaikat, miközben felélik intersztelláris gázkészletük jelentős részét. A rövidéletű forró kék csillagok kihalásával, az újabb populációk utánpótlásának hiányában, vörös korongokká válnak az űrben. A kisebb tömegű galaxisok azonban nem fejlődnek olyan gyorsan. Náluk később alakul ki a küllős struktúra. A csillagászok ma úgy vélik, hogy a küllős szerkezet létrejötte a spirál galaxisok fejlődésének egyik állomása.

Első ránézésre az NGC7331 átlagos spirál galaxis benyomását kelti. A kilencvenes években azonban furcsa felfedezést tett csillagászok egy csoportja, miközben a Kanári-szigeteken (La Palma) lévő 4.2 méter tükörátmérőjű William Herschel Távcsővel megvizsgálták a galaxist a közeli infravörös tartományban. Felvételeket készítettek, illetve spektroszkópiai méréseket végeztek. A galaxis felépítését, szerkezetét, a galaxison belüli sebesség eloszlásokat igyekeztek feltérképezni. Megfigyeléseik igen meghökkentő eredménnyel zárultak. Megállapították, hogy a galaxis központi régiója lassú ellentétes irányú forgást végez a gyorsan forgó koronghoz képest. De mi lehet ez a furcsa háromtengelyű képződmény a belső 5ʺ sugarú területen? Erre két lehetséges magyarázattal is szolgáltak a felfedezők. Az első szerint elképzelhető, hogy mégis küllős galaxis az NGC7331, és a küllő éppen a végével fordul felénk. A második lehetőség azonban a sokkal valószínűbb, miszerint ez külső eredetű, és egy korábbi nagyobb méretű, galaxisok közötti összeolvadás eredménye. Az ellentétes irányba forgó rendszer nem más, mint a másik galaxis maradványa. Amennyiben, ez valahogy mégiscsak belső eredetű lenne, az nagyon feladná a leckét a csillagrendszerek kialakulásával foglalkozó kutatóknak és elméleteiknek.

Infravörös tartományban azonban nemcsak a Föld felszínéről vizsgálták az NGC7331-et, hanem a NASA Spitzer űrtávcsövével is. Ez az objektum is része volt annak a programnak (Spitzer Infrared Nearby Galaxies Survey), melyben 75 viszonylag közeli galaxis infravörös tartományban történő feltérképezését tűzték ki célul. A Spitzer olyan dolgokat is képes volt meglátni, ami a látható fény tartományban többnyire rejtve marad előlünk.

NGC7331-PIA06322-rot

Az NGC7331 az infravörös tartományban a Spitzer űrtávcsővel készült felvételen.

A fényképen négy szín jelöli a különböző hullámhosszú infravörös sugárzást: 3.6 mikron a kék, 4.5 mikron a zöld, 5.8 mikron a sárga és végül 8.0 mikron a vörös szín. A rövidebb hullámhosszú sugárzás (kék és zöld szín) az idősebb hidegebb csillagoktól származik, főleg ezek sugárzása uralja ezt a tartományt. A hosszabb hullámhosszakon (sárga és vörös szín) a csillagok már kevésbé sugároznak, ott a porfelhők válnak hangsúlyossá.  Egészen pontosan az úgynevezett policiklusos aromás szénhidrogének (PAH – Polycyclic Aromatic Hydrocarbons) sugárzását láthatjuk ezeken a hullámhosszakon.

A csillagok sugárzása által felmelegített por emissziója folytonos az infravörös tartományban. Ezt a folytonos spektrumot szilikát elnyelési vonalak (vagy sávok), illetve a policiklusos aromás szénhidrogének emissziós vonalai (vagy sávjai) tarkítják. A Spitzer teleszkóp infravörös kameráját pedig kimondottan úgy tervezték, hogy eme utóbbi megfigyelésére (is) alkalmas legyen. A csillagászok korábban azt tapasztalták, hogy ahol előfordul a csillagközi por, ott a policiklusos aromás szénhidrogének is előfordulnak. A csillagok sötét helyeken, sűrűs gáz- és porfelhők mélyén keletkeznek, ahová optikai tartományban vajmi kevés esélyünk van bepillantani. Az 5.8 és 8.0 mikronos emisszió azonban elárulja e fészkek helyét. Nemcsak elárulja, de egyben fel is tárja a részletek. Amíg a csillagkeletkező régióknak csak sziluettjét látjuk mindössze az optikai tartományában, addig a policiklusos aromás szénhidrogének szépen kirajzolják a ködök struktúráját.

A felvételen tisztán látszik, hogy a központi rész szinte csak öreg csillagokat tartalmaz, míg a karok bővelkednek porban és gázban, de nemcsak a karok. A galaxis centrumát egy 20000 fényév sugarú gyűrű alakú aktív csillagkeletkezési terület veszi körül. A Spitzer adatai alapján nagyjából még 4 milliárd Naphoz hasonló tömegű csillag keletkezéséhez elég gáz lehet ebben a hatalmas gyűrűben. E roppant méretű struktúra a rádió és infravörös megfigyelések előtt teljes mértékben ismeretlen volt. Ez az optikai tartományban, így az én felvételemen sem látható. Ez is azt mutatja, hogy mennyire fontos a világegyetem folyamatainak megértése szempontjából a teljes elektromágneses spektrumot lefedő kutatás. Ezt azonban a csillagászokra hagyom, én amatőrcsillagászként (egyelőre) maradok az optikai tartományban történő észlelésnél, saját kedvtelésre.

A felvételről dióhéjban

Pár éve már készítettem felvételt az NGC7331-ről. Akkori főműszerem egy UMA-GPU APO Triplet 102/635 volt, melyhez ASI 120MM monokróm kamerát használtam. Mindig is dédelgettem a tervet, hogy egyszer majd egy nagyobb távcsővel és jobb dinamikával rendelkező kamerával visszatérek erre a galaxisra, vagy legalább újra feldolgozom a képet. Nem voltam sosem teljesen elégedett az eredménnyel, de akkor ennyit tudtam. Természetesen ma sem tartom magam nagy mágusnak. 🙂

Ennek a fotónak az L (Luminance) komponenseit mégsem azzal a céllal készítettem, hogy valóra váltsam az említett tervet. Egészen más témát fotóztam, és nem voltam tökéletesen elégedett a vezetéssel. Nem volt rossz, de mintha bolyongott volna kissé a mechanika. Kíváncsi voltam, hogy a jelenség függ-e attól, hogy milyen irányban néz, és milyen magasan áll a távcső. Ehhez az egyik tesztobjektum az NGC7331 volt. Kiderült, valóban a mechanikán kellett állítani, de erre nem azon az éjszakán került sor. A teszt közben készült felvételeket először ki akartam dobni, de külső unszolásra végül mégsem tettem. Augusztusban felvettem a színszűrős felvételeket is. Közel másfél hónap után pedig végre arra is lett időm, hogy kidolgozzam a képet, és felújítsam a korábbi cikket. Megérdemelne még a téma némi törődést (több L kép, alaposabb kidolgozás), de most ennyi fért bele.

Felhasznált irodalom:

F. Prada, C. Gutierrez, R.F. Peletier, C.D. McKeith: A Counter-rotating Bulge in the Sb Galaxy NGC 7331

Hughes, Shaun M. G.; Han, Mingsheng; Hoessel, John; Freedman, Wendy L.; Kennicutt, Robert C., Jr.; Mould, Jeremy R.; Saha, Abhijit; Stetson, Peter B.; Madore, Barry F.; Silbermann, Nancy A.; Harding, Paul; Ferrarese, Laura; Ford, Holland; Gibson, Brad K.; Graham, John A.; Hill, Robert; Huchra, John; Illingworth, Garth D.; Phelps, Randy; Sakai, Shoko: The Hubble Space Telescope Extragalactic Distance Scale Key Project. X. The Cepheid Distance to NGC 7331

Kartik Sheth, Debra Meloy Elmegreen, Bruce G. Elmegreen, Peter Capak, Roberto G. Abraham, E. Athanassoula, Richard S. Ellis, Bahram Mobasher, Mara Salvato, Eva Schinnerer, Nicholas Z. Scoville, Lori Spalsbury, Linda Strubbe, Marcella Carollo, Michael Rich, Andrew A. West: Evolution of the Bar Fraction in COSMOS: Quantifying the Assembly of the Hubble Sequence

Johannes Ludwig, Anna Pasquali, Eva K. Grebel, John S. Gallagher III: Giant Galaxies, Dwarfs, and Debris Survey. I. Dwarf Galaxies and Tidal Features Around NGC 7331

Joshua Davidson, Sanjoy K. Sarker, Allen Stern: Possible Evidence of Thermodynamic Equilibrium in Dark Matter Haloes

Guillermo A. Blanc, Tim Weinzirl, Mimi Song, Amanda Heiderman, Karl Gebhardt, Shardha Jogee, Neal J. Evans II, Remco C. E. van den Bosch, Rongxin Luo, Niv Drory, Maximilian Fabricius, David Fisher, Lei Hao, Kyle Kaplan, Irina Marinova, Nalin Vutisalchavakul, Peter Yoachim: The VIRUS-P Exploration of Nearby Galaxies (VENGA): Survey Design, Data Processing, and Spectral Analysis Methods

NGC6015 – Első bevetésen a 300/1200-as Newton távcső

NGC6015-LRGB-20160429-2259-sx-bin2-360s-TTK

Az NGC6015 spirál galaxis a Sárkány csillagképben

2016-04-29, 2016-05-30, 2016-05-31 – Göd

24 x 360 sec L (Bin2), 10 x 360 sec R (Bin2), 10 x 360 sec G (Bin2), 10 x 360 sec B (Bin2)

300/1200 Newton távcső – Paracorr Type2 kóma korrektor – eredő fókusz 1380 mm

SkyWatcher EQ-6 Pro GoTo mechanika

SXVR-H18 CCD kamera, Hutech IDAS P2 LPS filter és Astronomik RGBL fotografikus szűrőszett

Ez a cikk most kicsit más lesz, mint amiket az elmúlt években egy-egy fotóm kapcsán publikáltam. A tőlem talán már megszokott, nagyobb lélegzetvételű ismertető helyett, ezúttal csak rövidebb személyleírást adnék magáról az objektumról, és sokkal inkább az elmúlt hónapok azon történéseire és élményeire koncentrálnék, melyek aztán egészen az NGC6015 spirál galaxisról készült fotóig vezettek.

Az NGC6015-ről dióhéjban

Az NGC6015 a Sárkány csillagkép területén található, véleményem szerint igen szép csillagkörnyezetben. Fényessége 11.14 (V) magnitúdó, látszólagos mérete az égen 5.4ˊ x 2.1ˊ. A fényes, a spirálkarokat is tartalmazó ovális rész legnagyobb kiterjedése azonban mindössze nagyjából 3.5ˊ.

NGC6015-map2

Az NGC6015 pozícióját a Sárkány (Draco) csillagképben a kis négyzet jelöli.

Távolsága csak igen pontatlanul ismert. Viszonylag közel van ahhoz, hogy a színképvonalainak vörös eltolódását megmérve, és a Hubble-törvényt felhasználva, megbízható távolságértéket kapjunk. A csillagászok inkább a Tully-Fisher relációt használták fel ahhoz, hogy valahogy képet alkossanak arról, hogy milyen távolságban is van valójában. A mérést az elmúlt évtizedekben többen is elvégezték, és igen csak különböző eredményeket kaptak. Az értékek 10.4 Mpc (bár ez kiugróan alacsony a többihez képest) és 20.2 Mpc között szóródnak. Ezek középértékét véve a galaxis távolsága 17.1 Mpc (55.7 millió fényév), míg átlagot tekintve 16.2 Mpc (52.8 millió fényév).

A Tully-Fisher reláció (elliptikus galaxisok esetén nem használható, csak spirális és lentikuláris galaxisoknál) egy tapasztalati összefüggés a galaxisok tömege vagy luminozitása és emissziós vonalainak szélessége, vagyis a galaxison belüli szögsebességek között. A részletekbe nem nagyon elmerülve, arról van szó, hogy a galaxison belüli sebességekből meghatározható a galaxis luminozitása, és ebből pedig távolsága. Ugyanis, a galaxis csillagainak dinamikáját a galaxis tömege határozza meg, mely pedig összefüggésben áll annak luminozitásával. Az így kapott luminozitást felhasználva a látszólagos fényesség ismeretében a távolság már meghatározható.

A távolságadatokból és az égen látszó méretéből az következik, hogy a galaxis valós mérete durván csak a fele a Tejútrendszerünknek, legalábbis ha csak az optikai tartományban készült csillagászati felvételeket vesszük alapul. A 21 cm-es rádió hullámhosszon végzett megfigyelések ugyanis azt mutatják, hogy az NGC6015 kétszer kiterjedtebb. A 21 cm-es sugárzást az úgynevezett HI régiók bocsájtják ki. A HI régiók olyan intersztelláris felhők, melyeket javarészt atomos hidrogén alkot (a területek ionizációs foka jellemzően igen alacsony: 1:10000) némi héliummal, és a héliumnál nehezebb elemekkel szennyezve. A galaxist tehát atomos hidrogént tartalmazó felhők ritka leple veszi körül. Ráadásul a HI területek eloszlása, illetve a galaxison belüli sebességek vizsgálata is arra utal, hogy a galaxis korongja 170ʺ sugáron túl deformált.

NGC6015-radio-HI

Baloldalon a galaxis rádiókontúrja látható, míg jobboldalon a B szűrővel felvett képe. A HI régiók jóval kiterjedtebbek, mint a galaxis optikai tartományban megfigyelhető képe. Az is megfigyelhető, hogy az atomos hidrogén felhők eloszlása aszimmetrikus a koronghoz képest – Forrás: L. Verdes-Montenegroa és mások

Az NGC6015-öt halvány álgyűrű (pseudo-ring) veszi körül, mely kissé kékes árnyalatú, kék színtöbblettel rendelkezik. Ennek egyik lehetséges magyarázata, hogy az ott összegyűlt hideg gáz remek környezetet nyújt a csillagok kialakulásához. A fiatal nagytömegű, és ezért kék csillagok pedig jelentősen túlragyogják kisebb testvéreiket, melyek halványabbak és sárgás, illetve vöröses színűek. Innen a gyűrű kékes árnyalata. Mindenesetre annyi bizonyos, hogy a csillagbölcsőkhöz szükséges anyag bőségesen rendelkezésre áll, a vizsgálatok szerint a galaxis teljes atomos hidrogénkészletének 43%-át ez a régió tartalmazza, mintegy 1.5 x 109 naptömegnyit.

Az NGC6015 úgynevezett pelyhes galaxis (flocculent galaxy). Ezeknél a karok nehezen kivehetőek, szakadozottak, kissé „szedett-vedett”, kaotikus a korong. A két kar a centrum környékékéről indul. 1ˊ-re a centrumtól kezdődően a galaxis struktúrája pelyhessé válik, majd 1.5ˊ-nél indulnak az úgynevezett álkarok (pseudoarms), melyek külső részei egészen az álgyűrűig érnek. A karokat kékes és vöröses pöttyök tarkítják mindenfelé, melyek valójában hatalmas kékes fényű csillaghalmazok, illetve vöröses színben pompázó ionizált gázfelhők. Ezek mind a folyamatosan zajló csillagkeletkezésnek az egyértelmű jelei, melyet a spirális szerkezet kialakulásáért felelős, a galaxison belül jelenlévő sűrűséghullámok indítottak be. A fiatal nagytömegű csillagok intenzív sugárzása és az ionizált gázfelhők, vagyis az úgynevezett HII régiók életre keltik a spirálkarokat, vagyis e struktúrák főként ezeknek köszönhetik „kivilágításukat”.

Mivel a galaxisra eléggé ferdeszögből látunk rá (inklinációja 63°), így nem könnyű állást foglalni az ügyben, hogy van-e egyáltalán központi dudora (bulge). A megfigyelések szerint, ha van is neki, az egyáltalán nem számottevő. Az a galaxis egészéhez képest csak kis kiterjedésű, és igen kis tömegű.

Egy másik kérdés, ami már évtizedek óta foglalkoztatja a kutatókat, hogy vajon van-e ennek a galaxisnak küllője (bar). Az NGC6015-ről a közeli infravörös tartományban, különböző hullámhosszakon (JHK bands) rögzített, majd e felvételekből készült kompozit képeken, a centrum környékén elnyúlt struktúra fedezhető fel, mely küllőre emlékeztet. Szintén a közeli infravörös tartományban elvégzett (I, JHK bands) fotometriai vizsgálatok viszont csak igen gyenge bizonyítékot szolgáltattak a küllő létezésére. Éppen ezért bizonyos publikációkban a galaxis morfológiai besorolása SA(s)cd, míg másutt az SB(s)cd besorolással lehet találkozni. Az „SA” a nem küllős spirál galaxist, az „SB” a küllős spirál galaxist jelenti. Az „(s)” tag jelentése, hogy a mag környékén nem figyelhető meg gyűrűs struktúra (pure spiral). A cd tag pedig arra utal, hogy a karok csak lazán tekerednek körbe.

Csak a távolságát és felépítését tekintve is igen sok még a bizonytalanság ezen objektum körül. Pedig fontos lenne ezeket pontosabban is ismerni, ugyanis az NGC6015 izolált galaxis. Ez annyit jelent, hogy a galaxis nem áll kölcsönhatásban más galaxissal, illetve halmaztagok sem fejtenek ki rá hatást szinte a világegyetem keletkezése óta, de legalább azóta, hogy tömegének a felét összegyűjtötte. Az ilyen típusú csillagvárosok ideálisak, hogy a csillagászok ellenőrizzék a galaxisok evolúciójával kapcsolatos elméleteiket. Továbbá fontos a szerepük abban, hogy jobban megérthessék a környezeti hatásokat a népes galaxis halmazokon belül, és megválaszolhassák, e hatások miként befolyásolják egy-egy galaxis, illetve a halmaz egészének fejlődését.

Az NGC6015 tehát nemcsak egyszerűen szép és mutatós, de egyben különleges is a maga nemében. Az itt megkezdett gondolatsort még folytatni kívánom a jövőben, egy másik cikk keretében. Most azonban, ígéretemhez híven, had meséljem el e felvétel történetét, mely nem 2016. április 29/30. éjszkáján kezdődött. Az előzmények jóval korábbiak.

Az első felvételig vezető út

Több távcsövem is volt az elmúlt évtizedekben, melyekkel sokat észleltem vizuálisan. Mindegyikhez szép emlékek fűznek, noha a legtöbbet mára már vagy eladtam, vagy elajándékoztam. Valamivel több, mint három éve hűséges társam egy UMA-GPU APO Triplet 102/635 távcső. Rengeteg vizuális és fotografikus élménnyel ajándékozott meg a csillagos égbolt alatt. Optikai minőségben és hordozhatóságban ez a kis lencsés távcső messze túlszárnyalta a korábbi műszereimet.

Azt mondják az első mindig felejthetetlen. Nos, valóban így van ez. Sosem felejtem el azt az élményt, amikor elkészítettem vele az első felvételeimet, majd másnap a notebook előtt ülve kezdett lassan összeállni az első kép. Ezt újabb, és újabb próbálkozások sora követte. Messze nem voltak tökéletesek ezek az asztrofotók, mai szememmel nézve ezer sebből vérzett mind. De hé! Mégiscsak megörökítettem a világűr távoli szegletének darabkáját. Én magam! Ott volt az áhított objektum a képen. Ugyanazt az ujjongást éreztem, mint amikor korábban, és az óta is, valami izgalmasat, valami lenyűgözőt sikerült megpillantani az okuláron keresztül.

Ma úgy gondolom, hogy addig nem hagyok fel az asztrofotózással, míg egy-egy felvételsorozat zajtengeréből kiemelve az engem érdeklő célpontot, sikerül átélnem újra, meg újra ezt az érzést. Az amatőrcsillagászattal pedig addig nem hagyok fel, míg a világegyetem csodáinak befogadás megadja számomra azt a különös euforikus érzést. Legyen akár az érdeklődésem tárgya asztrofizikai értelemben izgalmas, vagy csak egyszerűen a maga nemében gyönyörű. Szétválasztható ez egyáltalán?

Miért is osztom meg a felvételeimet, a cikkeimet, a mondandómat másokkal? Miért is tartok távcsöves csillagászati bemutatókat embereknek? Miért népszerűsítem a csillagászat tudományát a magam módján? A válasz talán az lehet, hogy szeretném a megélt élményeimet átadni másoknak. Sőt, szeretném, ha ők is átélnék azt! Mindig jó látni az emberek csodálkozó arcát, az átszellemülést, amikor távcsőbe pillantanak, mikor felnéznek az égre, vagy megnéznek egy fotót, s ha ez nem is változtatja meg az életüket, de mégis valahol gazdagabbak lesznek egy élménnyel. Valamit hazavisznek, és ha csak apró darabként is, de részükké válik. Ennél talán nem is kell több.

A fentebb felsorolt dolgokból a kis APO-nak (is) köszönhetően volt részem bőven. Szerencsésnek érzem magam, hogy összehozott minket a sors.

Amennyiben az olvasó ellátogat az oldalamra, és megnézi, hogy mely csillagászati objektumok keltették fel az érdeklődésemet, és melyeket fotóztam le az elmúlt években, akkor maga is rájöhet arra, hogy ezek többnyire látszólagosan kisebb kiterjedésű célpontok voltak. Bár kétségtelen, hogy egy részük kisebb távcsövekkel is fotózható, de az alkalmanként Ausztráliában bérelt távcsövek mutatták meg nekem azt igazán, hogy a nagyobb apertúra és a hosszabb fókusz az, ami igazán feltárja a részleteket ezek esetében. 2015 őszén kezdett munkálni bennem a gondolat, hogy ha nem is 40-50 cm-es, de az APO-nál nagyobb távcsövet be kellene szereznem magamnak.

Innentől hosszú vívódások sora vette ezzel kezdetét. Az UMA GPU egyik legfőbb előnye volt a hordozhatósága, és hogy egyedül is könnyen össze tudtam szerelni. Anno a kiválasztásakor ezek is fontos szempontok voltak. Célom volt tehát, hogy az új műszert egyedül is munkára tudjam bírni az éjszakában.

Régi Netwon távcsöveim viszonylag gyakran szorultak kollimálásra. Igaz, hogy viszonylag sokat mozgattam, szállítottam őket. Így utólag talán nem is voltak kifogástalan konstrukciók. Ehhez képest a kis APO-t csak feldobtam az állványra, és miután felvette a környezet hőmérsékletét, máris bevetésre készen állt. Régi emlékeim alapján, semmi kedvem nem volt a kollimáció ellenőrzésével kezdeni egy-egy éjszakát. Éppen ezért, szinte csak APO távcsöveket nézegettem kezdetben. Két dilemma azonban így is akadt. Az első, hogy a hőn áhított 15 cm-es apertúrával rendelkező APO-k már igencsak borsos áron voltak kaphatóak. Nem vonom kétségbe, főleg a sajátommal szerzett tapasztalatok alapján, hogy bizony ezek a lencsék valóban remekül teljesítenek. Továbbá azzal is tisztában vagyok, hogy a távcsőpiacon (is) mindennek annyi az ára, amiért még van megfelelő kereslet. De e távcsőtípus egyik kétségtelen hátránya a magas ár.

A másik dilemmám az volt, hogy bizony ezek a távcsövek már tekintélyes tömeggel rendelkeztek, túllépve a SkyWatcher HEQ5-Pro mechanikám gyártó szerinti teherbírását. Megjegyzem, hogy mivel a puding próbája az evés, így a meglévő mechanikám csakis akkor szándékoztam volna lecserélni, ha használat közben kiderül, hogy nem bírja el a terhelést. Nem vagyok szívbajos, ha egy kicsit túl kell terhelni a mechanikát. Félreértés ne essék, nem tanácsolom ezt senkinek. Szóval, mindenki csak saját felelősségére tegyen ilyet!

Hosszas pénzügyi mérlegelés, és sok teszt elolvasása után a SkyWatcher 150/1050-es ESPRIT modellje tűnt csábítónak az „olcsóbb” alternatívák közül. Olyannyira, hogy nagy levegőt vettem, igen nagyot, és felvettem a kapcsolatot az egyik távcsőforgalmazóval. Sajnos az utolsó példányokat éppen az orrom elől halászták el. Nem estem nagyon kétségbe. Gondoltam, hogy megvárom a pár hónap múlva érkező következő szállítmányt. Van távcsövem úgyis, és nem kergetett a tatár. Eljött a várva várt időpont, azonban a gyártó újabb két hónapos kését prognosztizált a szállítás ügyében. Kissé csalódott voltam, így újra keresgélni kezdtem.

Szeri László barátommal igen gyakran beszélgetünk, és végül ő vezetett rá arra, amit mindig is valahol sejtettem, csak nem akartam elfogadni. Pedig igencsak adta magát a dolog. Mit szerettem volna fotózni? Kisebb galaxisokat, kisebb planetáris ködöket, és egyéb apróbb témákat. Mi kell ehhez? Jóval nagyobb átmérő, és hosszú fókusz. Mi a megfizethetőbb alternatíva? Egy Newton rendszerű tükrös távcső.

Amiben biztos voltam, hogy saját kezűleg, teljesen egyedül nem fogok összerakni egy ilyen távcsövet. Nem vagyok ügyes kezű barkácsoló, nincsenek megfelelő eszközeim, és túl sok türelmem sincs bíbelődni távcsövek építésével. Több gyártó termékét is átnéztem, majd elolvastam az interneten fellelhető értékeléseket ezekről, továbbá több külföldi fórumot is átböngésztem. Ennek csak az lett az eredménye, hogy teljesen elbizonytalanodtam. Kiderült, hogy a megfizethetőbbek közül bizony utólagosan át kellene építenem a legtöbbet, hogy megfeleljenek az igényeimnek. A minőséginek tűnő, speciálisan asztrofotós célokra tervezett darabokért pedig csillagászati árakat kértek. Eme utóbbiak esetében a gyártók teljesen természetes módon az egekbe dicsérik a portékájukat, azonban az interneten igen kevés gyakorlati információt találtam róluk. Ez valószínűleg összefügg azzal, hogy igen kevesen birtokolnak ilyen műszereket, illetve nem sokaknak adatott meg, hogy kipróbálják őket az ég alatt. Egyre távolibbnak tűnt, hogy találok valami olyat, amit csak megrendelek, beállítom, és már mehet is a fotózás. Hónapok után ott tartottam, hogy inkább nem váltok műszert, hagyom az egészet, és inkább asztrofotózok tovább a meglévő UMA-GPU APO Triplet 102/635 távcsővel.

Ekkor kínálta fel nekem Szeri László, hogy vegyem meg tőle az időközben szétszedésre került „trinokli” (3 darab 300/1200-as távcső párhuzamosan szerelve) egyik darabját. Tetszett az ötlet. Nagyon is! Ez a Newton már bizonyított az ég alatt. Mondhatni, alaposan „be lett járatva”. Azonnal belelkesültem, de mint mindig, most is aludtam rá, és nem is egyet.

Sokat vacilláltam a dolgon. Már tudtam, hogy nem szabad kihagynom ezt a remek lehetőséget, de még mindig kétségeim voltak. Kell-e nekem a nagy távcsővel járó macera? Hogyan fogom például szállítani, ha kitelepülnék? Fontos ez? Hányszor is tettem ilyet az elmúlt három évben? Négyszer. Plusz elvittem három alkalommal az MTT-re, ahol az ég nem sokkal jobb, mint Gödön. Ez bizony nem sok, és a jövőben sem tűnik úgy, hogy jelentősen szaporítanám az ilyen eseményeket. Egy kérdés tehát eldőlt: a távcsövet szinte biztosan csak a kertemből fogom használni. Az élet csupa kompromisszum.

Hol tárolom majd? Honnan fogom használni? Azt a lehetőséget gyorsan kizárta a családom, hogy külön kis építményt kapjon, illetve megbontsam a kertben álló kis faház tetejét. Bár ezért a projektért még lobbizom. Maradt tehát az a lehetőség, hogy minden éjszaka összerakom, majd szétszedem a konfigurációt, ahogy ezt az eddigi kis APO esetén is tettem. Csakhogy itt nem egy könnyű távcsőről van szó! Nagyon nem volt kedvem birkózni vele minden alkalommal. Higgye el az olvasó, hogy nem egy leányálom (ha nem is lehetetlen) egy ekkora, cirka 18 kg-os tubust egyedül felegyensúlyozni egy állványra. Az időigényről akkor még nem is beszéltem. Mi lenne, ha valami mobil, „tologatható” megoldást alkalmaznék? Igen, ez lesz az! Nem hezitáltam tovább, és 2016. március 15-én el is küldtem Lászlónak a „Alea iacta est” tárgyú E-mail-emet. Döntöttem. A kocka el van vetve. Végre! A SkyWatcher 150/1050-es ESPRIT megrendelésemet pedig lemondtam. Innen már nem volt visszaút, sem bármiféle kétség bennem.

Lászlóra igazán lehet számítani, így azt is felkínálta, hogy segít nekem összerakni a kívánt kialakítást. De nemcsak tőle kaptam időközben sok segítséget, hanem Nagy Tibor régi kollégámtól és amatőrcsillagásztól is, akivel szintén sokat töprengtünk azon például, hogy milyen lenne az ideális „kiskocsi”, amivel hordozhatnám a távcsövet. Sőt, az otthon elfekvőben lévő anyagokból is felkínált nekem, melyek igen csak jól jött később, amikor össze kellett építeni a „guruló alkotmányt”. Tibor a távcsőhöz való flat box megépítését is szinte teljesen magára vállalta. Nekem csak meg kellett álmodnom, és az anyagokat beszerezni hozzá. De erről majd egy kicsit később!

Közben az is eldőlt, hogy egy „klasszikus” SkyWatcher EQ-6 Pro GoTo mechanika fej fog szolgálatot teljesíteni a tubus alatt, melyet Laci alig párszor használt mindössze. Meg kellett azonban oldani a fej rögzítését a kocsi tartóoszlopához. Ehhez az interneten fellelt NEQ-6 metszetrajz jelentett nagy segítséget, melyet átadtam Bujáki Krisztián barátomnak, aki igen ügyesen esztergál, és a C45-ös fémpogácsába elkészítette a vájatokat, illetve a megfelelő furatokat.

Eljött 2016 márciusának utolsó szombatja, mikor is „a vasakkal”, egyéb alkatrészekkel, és Húsvéthoz közeledvén, csoki nyuszikkal megérkeztem Kiskunfélegyházára. Eme utóbbinak nagyon örült a gyerek sereg. Végre lehetőségem volt megismerni személyen Laci családját. Igazán szívélyes vendéglátásban részesültem. Volt kedvesség, volt finom sonka, remek sütemények, és még sorolhatnám.

Aztán kezdetét vette a munka, ahol Laci mellett szorgalmas segédmunkásként igyekeztem helytállni a kocsi összerakásakor. Persze, hogy a fő tartóoszlopot Gödön hagytam. Isteni szerencse, hogy akadt egy korábban más célokra használt, és éppen megfelelő vascső. 3 órás autókázástól menekültem meg így! Kezdetét vette a méricskélés, a fúrás, a flexelés, a hegesztés, csiszolás. Közben meg-megálltunk egy cigi szünetre. (Figyelem, a dohányzás halált okozhat!) Sok paramétert figyelembe kellett venni. A tubus hosszát, annak az ajtónak a méretét, amin majd keresztül kell tolnom otthon a távcsövet. A terepet, ahol a kocsi majd az igen masszív tömeggel közlekedik. A szintkülönbségek, hepehupák, és a küszöbök miatt például direkt nem tömör kereket választottam, hanem egy szélesebb, „traktoros mintázatú” felfújhatót. De még a saját termetem is fontos szerepet játszott, hiszen fontos volt, hogy megfelelő testtartás mellett tudjam húzni-vonni a műszert. Már javában sötétedett, mire lassan elkészültünk. A felületek csiszoláskor már reflektorfényben szállt a fémpor az udvaron.

Magammal vittem az SXVR-H18-as kamerámat is, mert tudtam róla, hogy annak kollimációja nem teljesen tökéletes. Az APO kihuzata szerencsére lehetővé tette ennek korrigálását, a nagy Newton viszont már nem adta volna meg ezt a játékteret. Mivel ez a kamera szerencsére csavarokkal kollimálható, így egy 2ʺ-os toldatot satuba fogva, abba bedugva a kamerát, egy fehér ernyő és zöld lézer segítségével a rögtönzött optikai padon megtörtént a kamera beállítása is.

Kis lyuk támadt a felhőzeten, így pihenés képen segítettem Laci új 458 mm-es főműszerének vezetőtávcsövét beállítani. Ő odafent a magasban tornászva állított az Off-Axis Guider-en, míg én lent a monitort figyeltem ennek következményét. A jól végzett munka jutalma újabb adag remek sonka volt.

Majd következett a tubussal való „ismerkedés”. A tükrök a német Teleskop Service-től kerültek beszerzésre. A fűtükör 300/1200-as, a segédtükör 88mm-es GSO gyártmány. Elsőre semmi különös, azonban a rendszer optikai minőségére legyen elég az, hogy a korábban párhuzamosan szerelt λ/10-es 300/1200-as Orion Optics főtükrű, és 88mm-es λ/20-as Antares segédtükörrel szerelt távcsővel megegyező minőséget adott mély-ég fotózásra. Mivel anno három távcsövet használt párhuzamosan Laci (a „trinokli” idejében), ezért ez a két távcső folyamatosan együtt dolgozott. Ráadásul ezzel a műszerrel készültek a B színszűrős képek, illetve keskenysáv esetén az SII szűrős képek, így bármiféle optikai hiba azonnal kiugrott volna. Ezek a tartományok igen érzékenyek a minőségi problémákra! A nyers képek, és az abból készült fotók is, abszolút egyezőséget mutattak minőségben a fent említett „pöpec” Orion Optics optikai rendszerrel. Ugye még emlékszik az olvasó, hogy a magukat felső kategóriás gyártóknak hirdető cégek termékeivel kapcsolatban volt némi kétségem. Tényleg valóban annyival jobbak-e a produktumaik, mint amit a feláruk tükröz?

A cső anyaga természetesen karbon kompozit, mivel a minimális hőtágulás, s így fix fókuszpozíció volt a cél. Ennek a célnak a kompozitok a legalkalmasabbak. A karbon kompozit csövet Takács András gyártotta. A fűtükörtartót a régebbi Orion Optics távcsövének mintájára, kis módosítással, László saját magam készítette 20 x 20 mm-es acél zártszelvényekből. A főtükör összesen hat ponton támaszkodik fel, oldal irányban állítható távolságú L-alakú acél elemek tartják középen, az elfordulást három, a főtükörre ragasztott tengely gátolja meg. A főtükör így abszolút feszültségmentes, nincs semmi karom, vagy hátsó feszítés. Észlelési helyzetekben akár 5-10 mm-t is lehet rajta emelni, minden irányból direkt eltúlzottan laza illesztésű, de pontos a tartó. Ami viszont nagyon fix, az a főtükröt tartó 6 db „tüske”, illetve az oldalmozgást gátló L-alakú elemek. A segédtükör tartó középrésze Papp Andrástól származik, egy régebbi rendelésből maradt ki neki egy „klasszikus csavarodás mentes dizájnú” darab. A segédtükör tartó lábait 2mm-es acélból készültek, több mint szükséges merevséget adnak a segédtükör tartónak. A segédtükör, az eltolás kimérés után FBS-el került felragasztásra három ponton, illetve a még precízebb pozíció megtartása végett még három ponton a külső peremen kétkomponensű fémgyantával került rögzítésre. Mivel az FBS egy alapvetően rugalmas anyag, így ezek a gyurmák totális szilárdságot adnak, feszmentesen, hőmérsékleti alakváltozástól mentesen. A kihuzat egy 2ʺ-os Moonlite típus, nagyon finoman kidolgozott gyártmány, az összes illesztés precíz. A Moonlite gyártmányok igen szívós alumínium ötvözetből készülnek. Lacinak volt alkalma egy másikat fűrészelni, ez közel – vagy teljesen – acél minőség. A nyers darabot vastag és kemény felületkezeléssel látták el. A fókuszálást SkyWatcher fókuszmotor könnyíti meg. Az ember nem is gondolná az ára alapján, hogy milyen remek ez a fókuszírózó. Köröket ver pár drágább riválisra is.

A főtükör tartót kültéri, vízálló, bükk. 40 mm vastag rétegelt lemez közdarabbal lett rögzítve a tubushoz. Az anyag előnye, hogy nagy a szilárdsága ilyen keresztmetszetben, könnyű, hőmérsékletváltozásra nagyságrenddel kisebb a méretváltozása, mint például az alumíniumé. Ugyanilyen anyagból készült a cső elején a segédtükör tartó lábakat pozicionáló karika is. A cső belülről öntapadó matt fekete tapétával lett bevonva. László külön ügyelt minden egyes elemre, mely reflexiót okozhat. Az összes csavar, mely a távcsőben van, mind méretre van vágva, nincsenek kinyúló részek. A csavarok végei mind a tükrök, mind a kihuzat körül matt fekete akril festékkel mattítva vannak. Ugyanígy a segédtükör széle is, nem alkoholos filccel lett megfestve (az László szerint nem eléggé matt), hanem a velúr tapéta anyagból került rá egy réteg.

A BK7 anyagú főtükör tapasztalat szerint kissé nagyobb méretváltozással reagál a hőmérsékletváltozásra, mint például a Pyrex. Míg az Orion Optics távcsőben lévő Pyrex anyagú főtükör szinte nem is mutat optikailag semmi eltérést az észlelés előtt, a BK7-nek azonban kell kb. fél óra, ameddig felveszi a közel környezeti hőmérsékletet. Ennek meggyorsítása érdekében kerültek beépítésre a teljes csövet átszellőztető ventilátorok. A távcsőben négy darab, gyors fordulatú axiális ventilátor csinálja a „huzatot”, a tubus alja felé szívva a levegőt. A ventilátorok egy 3 mm-es farost lemezre vannak felfogatva. Ezt a lemezt a távcsőhöz átmenetként puha, rugalmas, de kellően tartós Armalok szigetelőből készült sapka fogja fel. A ventilátorok lemeze így kézzel is billegtethető, a ventilátorokból érkező nagyobb frekvenciás rezgéseket pedig ez az anyag jól elnyeli, s így észlelés közben is használhatóak, bekapcsolás után semmiféle „csillagméret” növekedést nem tapasztaltam.

A távcső véleményem szerinti legnagyobb erénye, a kialakításnak és a felhasznált anyagoknak köszönhetően, hogy mechanikai rezgések, rázkódások után is pontosan megtartja a kollimációt. Ezt oly mértékben sikerült elérni, hogy a cipeléshez használt kocsin, fűben, és küszöbökön döcögtetés során is majd csak akkor kell kollimálni, mikor a tükrök egyébként is már tisztításra szorulnak. Ez lehet akár fél év, vagy egy év is.

Miután a csővel közelebbről is összebarátkoztam, következett a dolgok szétbontása, és a Kombi Opel Astra-ba való bepakolás. Ugye mondtam, hogy sok paramétert figyelembe kellett venni a szerelésekkor? Azt viszont elfelejtettem, hogy az autó befogadóképességét is felmérjem. A csomagteret az alsó lemezig kellett bontani, hogy beemeljük a fémszerkezetet. Még szerencse, hogy volt nálam régi szakadt lepedő bőven, hogy a fém a fémet ne bántsa. Az is fontos tapasztalat, hogy nem szabad emelés közben kínunkban nevetni. Az autó megtelt a távcső tartozékaival. A nehéz tubusnak már csak az anyósülésen jutott hely. Bőkezűen bántunk a gumipókokkal, mert nem szerettem volna, ha egy kanyarban fejbe kólint a cső. Azért volt pár alkalom, amikor a hazavezető úton fenyegetően így is megindult felém, de a rövid póráz megakadályozta abban, hogy belém harapjon.

Hosszú, de élményekkel teli, remek szombati nap volt ez, mely igencsak belenyúlt a vasárnapba is. Ráadásul óraátalítás is volt, így a végső kézfogást követően „látszólag” csak valamivel több, mint egy órával később hagytam magam mögött a Kiskunfélegyháza határát jelző táblát. Azért örültem, hogy nem állított meg hazafelé a rend őre, mert hosszasan kellett volna magyarázkodnom, hogy mit, hogyan és hová is viszek. Otthon egyszerűen csak kivánszorogtam a kocsiból, és arccal előre bevágódtam az ágyba.

Másnap felébredve, a szokásos reggeli rutin, és a gyors reggeli után tele voltam izgalommal. Nekiálltam összeszerelni a dolgokat. Ebben nagy segítségemre volt feleségem: Kati. Nélküle csak igen nehezen tudtam volna mindent megcsinálni. A kocsi hamar összeállt, mert csak alig pár elemet kellett a helyére illeszteni. Következett a mechanika fej, melyet az oszlopon előzőleg az oszlopon vágott kis ablakon benyúlva rögzítettem. A furatok és az egész konstrukció igen pontosra sikerült. Az ellensúlyokat tartó rúd kapott egy hosszabbító, majd felkerültek az ellensúlyok. A távcsövet felemeltem a fejre, majd Kati segítségével rögzítettem. A végső kiegyensúlyozást csak akkor végeztem el, amikor már minden a tubuson volt. Itt is elkelt bőven asszonykám segítsége.

300_1200_1-s1

A távcső összeszerelés az új otthonában. Nemcsak apunak van kiskocsija. 🙂

A kihuzatba Paracorr Type2 kóma korrektor került, aminek egyik számomra áldásos mellékhatása, hogy az eredetileg 1200 mm-es fókuszt, 1380 mm-re nyújtja. Ez jól jön az apró objektumok esetén. A távcső fényereje viszont még így is f/4.5 marad. Apropó hosszú fókusz. Egy ilyen 1 métert már jelentősen meghaladó érték esetén még csak eszembe sem jutott, hogy külső vezetést alkalmazzak a fotózás során. Így, a Teleskop Service keskeny Off-Axis Guider adaptere követte a fényútban a kóma korrektort. Vezetésre a meglévő MGEN-emet használom. Egyelőre legalábbis. Rá kellett, hogy jöjjek az első tesztek során, hogy bár az MGEN szoftveresen egy remek eszköz, a kamerája egy ilyen felállásban már igen csak vaksi! A piacon ennél sokkal érzékenyebb vezető kamerák is kaphatóak ma már. Az Off-Axis Guider-hez kapcsolódik, az évek óta használt Lacerta szűrőváltóm, amit a jövőben majd szintén le fogok cserélni. Egyrészt automatizálni szeretném a szűrőváltást, másrészt az 1.25-ös szűrők már nem ideálisak ehhez a konfigurációhoz. Jelentős, bár még nem durva vignettázást okoznak. A harmadik ok pedig az, hogy vastag. Sajnos a Paracorr Type2 mögött igen csak limitált a fényút hossza a kamera szenzoráig. Most pár milliméterrel túl is lógok ezen. Igaz, ennek esetleges következménye eddig semmi hátrányt nem okozott. Végül az egész „szerelvényt” az SXVR-H18 CCD zárja le.

Pár kiegészítő még mindig hiányzott azonban, amit be kellett szereznem, vagy meg kellett építeni. Most csak az igazán fontosakat említeném meg.

A fókuszáláshoz a Bahtinov-maszkot az egyik hazai kereskedőnél rendeltem meg, melyet a 36 cm-es tubusátmérő miatt külön kellett legyártani. Igen kevés ingerenciát éreztem arra, hogy ekkora méretben saját magam készítsek egy ilyet.

A flat box saját tervek alapján készült. A doboz anyagának kartonplasztot választottam, mely könnyű, és viszonylag egyszerű vele dolgozni. Egy óbudai kreatív boltban vásároltam meg a 2 m x 1 m-es fehér táblát Csoknyai Attila tanácsára, akitől egyébként a kartonplaszt ötlete is származott. Kivitelezője azonban Nagy Tibor volt, aki a szerelés mellett még rengeteg jó ötlettel egészítette ki az eredeti tervet. Gyakorlatilag csak egyetlen kartonplaszt anyaga került felhasználásra. A merevítésről a levágott, és behajtogatott részek gondoskodtak. A megvilágításról LED-ek gondoskodnak, melyek fényereje villogás nélkül szabályozható. Ennek titka mindössze annyi, hogy PWM (Pulse-width modulation) LED Dimmer-t használok a szabályozására. A fény homogenitásáról két darab 50 cm x 50 cm-es 3 mm-es tejplexi gondoskodik. A LED panel és a két plexi egymástól nagyjából 10-10-10 cm-re helyezkedik el.

Flat_Box_01-s1

A flat box kivágva a kartonplaszt anyagból. Láthatóak a bemetszések is a tejplexik számára. Kezdődhet a hajtogatás!

Flat_Box_02-s1

A flat box összehajtva, és már megragasztva. Alul pedig kivágva, hogy azt a tubusra lehessen húzni.

Flat_Box_03-s1

A flat box oldalnézetben. Látszanak a plexi lapok is. A doboz úgy lett kialakítva, hogy a világítás felőli rész záruljon utoljára. Innen lehet szerelni az elektronikát, ha esetleg valami meghibásodna. A teljes megvilágító modul egy az egyben kicserélhetőre készült. Így az esetleges meghibásodás mellett felkészültem arra is, hogy a tesztek esetleg nem hozzák a kívánt eredményt. Vagyis esetleg nem lesz kellően homogén a megvilágítás.

Flat_Box_04-s1

A világításért felelős modul, mely a tubus számára kivágott nyílás korongjából készült. Nem magára a doboz fedélre lett rögzítve, hanem egy a kivágásból hátra maradt darabra. Teljesen önálló, és az alkalmazott ügyes hajtogatásnak köszönhetően szorul meg teljesen magától és párhuzamosan a plexi lapokkal, vagyis egyáltalán nem is kellett beragasztani.

Minden együtt volt hát, már csak a derült égre kellett várnom. Az első éjszakán még magasan járt, és fényesen világított a Hold, de nem hagyhattam ki, hogy az első teszteket elvégezzem. Minden flottul ment, azonban a kollimáció nem volt tökéletes. Értetlenül álltam a dolog előtt, mert sötétedéskor még mindent jónak láttam. Mivel Szeri Laci is ébren volt még, éppen saját felvételeit készítette, így rácsörögtem. Majd egy órán keresztül próbálkoztam beállítani a tükröket Laci távoli tanácsai alapján, majd tesztfelvételekkel ellenőrizni a kollimációt, de mind hiába!  Nem tudtam elérni a kívánt eredményt. Nem egy olyan nagy varázslat a dolog, de mégsem ment. Miért? Nem találtam semmi műszaki okát. Nagyon felbosszantott a dolog, és visszatoltam a távcsövet a helyére. Később még egy holdas éjszakát elszúrtam, de csak nem akart tökéletes lenni a kép. Végül Laci ellátogatott hozzám az egyik nap, mert ő sem értette, hogy mi lehet a baj. Hagytam, hogy ő végezze el a beállításokat. Majd annál a pontnál, amikor a lézerpöttyöt a főtükör karikájának közepébe kell rakni, kibújt a szög a zsákból! Mutatta, hogy most van középen. Szerintem meg nem volt ott. Feleségem is kijött, hogy megnézze. Szerinte is középen volt. Ekkor belenéztem újra a tubusba, és egy kicsit elmozgattam a fejemet. A pont is elmozdult. Ahogy óvatosan forgattam a fejem a pont körbetáncolt. Ó! Istenem! Pár héttel korábban váltottam multifokális szemüvegre, mert az olvasáshoz már külön szemüvegre lenne szükségem, és nem akartam kettőt is magamnál hordani. A szemüvegemnek nincs egyetlen egzakt fókuszpontja. A dioptria a felületen egy mintázat szerint folyamatosan változik. Ez pedig a lézerpötty vándorlását okozza attól függően, hogy éppen hogy tartottam a fejem. A mindennapi életben ez nem jelent problémát, de a kollimációnál bizony igen! Miután végül a kollimációm már rendben volt, Laci még ragaszkodott hozzá, hogy több kört menjek a kertben a kiskocsival, méghozzá nem csak úgy óvatosan. Hadd dolgozzanak csak a buckák, és a fűcsomók! Újra ellenőriztük a beállításokat. A tükrök nem mozdultak el a kerti rally hatására. Még pár kört tettem. Még mindig rendben volt a dolog, és lekopogom, ez azóta is így van.

A harmadik derült, de teliholdas éjszakán végül megfelelően kollimált távcsővel láttam neki a teszteknek. Beállítottam a vezetést, objektumonként 4-6 felvételt vettem fel, más-más expozíciós idővel, bin1 és bin2 alkalmazásával. A mechanika és a vezetés tesztelése céljából az ég különböző pontjairól választottam célpontot. Az optika, a mechanika, a vezetés tette a dolgát. A végén, a kihuzatból nem is vettem ki a fotózásra használt „szerelvényt”. Elégedetten toltam a helyére a távcsövet, és végre igazán nyugodtan aludtam.

Másnap a véglegesítettem a kábelezést, felkerült a 100 W-os külön tápegység, ami biztosítja a 12 V-os ellátást a mechanikának, a vezetésnek, a ventilátoroknak. Egyedül a CCD-t hajtom meg a saját gyári tápegységéről biztos, ami biztos alapon. Innentől kezdve már csak ki kell tolnom a távcsövet, elindítani a ventilátorokat, és az előbb említett fél óra bőven elég az egyéb előkészületekhez. Vagyis, az asztalka, az észlelő/horgászszék és a notebook kicipelésére. Továbbá, a pólusra álláshoz, és a mechanika betanításához. Ennél már csak a saját csillagvizsgáló kinyitása lenne gyorsabb, de az már a jövő zenéje. Talán. Egyszer.

Az első éles bevetésre végül 2016. április 29-én került végül sor. Ekkor már azzal a tudattal mentem ki az ég alá, hogy működik a rendszer, és NGC6015-öt fogom végre lefotózni. Legalábbis bíztam benne, és így is lett. Sokat vártam erre! Kicsit sem zavart, hogy aznap éjjel az égbolt minősége még átlagosnak sem volt mondható gödi viszonylatban.

Külön köszönöm feleségemnek, hogy képes volt elviselni az elmúlt hónapokban (is)!

300_1200_wip-crv3-s1

Készül a kertben az NGC6015-ről a felvétel.

(A fotót természetesen a felvételek közötti bolygatás pillanataiban lőttem mobiltelefonnal. 😉 )

Felhasznált irodalom:

L. Verdes-Montenegroa, A. Bosma, and E. Athanassoula: The ringed, warped and isolated galaxy NGC 6015

H. M. Hernández-Toledo, J. Zendejas-Domínguez, and V. Avila-Reese: BVRI Surface Photometry of Isolated Spiral Galaxies

John Kormendy: Secular Evolution in Disk Galaxies

Ronald J. Buta: Galaxy Morphology

NGC3201 (Caldwell 79/Dunlop 445/Mel 99)

NGC3201-LRGB-20160208-T30-180s-TTK

NGC3201 (Caldwell 79/Dunlop 445/Mel 99)

iTelescope.net T30 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI-PL6303E CCD kamera

2016-02-08, 2016-02-09, 2016-02-12 – Siding Spring Observatory – 20 x 180 sec L, 8 x 180 sec R,G,B

Elöljáróban felhívnám az olvasó figyelmét a gömbhalmazokról korábban írt általános összefoglaló cikkemre, melyben részletesebben is bemutatom ezen égi objektumokat. A bejegyzés elkészítésekor mindenesetre szem előtt tartottam, hogy az említett cikk olvasása nélkül is érthető legyen. Bízom benne, hogy ez sikerült.

A gömbhalmazok több tízezernyi, több százezernyi, sőt akár milliónyi csillag (nagyjából) szférikus halmaza. A legnagyobbak átmérője, vagyis az a térrész ahol a gömbhalmaz gravitációs dominanciája még együtt tartja a csillagokat, akár a 200 fényévet is meghaladhatja. A Tejútrendszer halójának igen ősi objektumai, a legfiatalabbak is legalább 8-10 milliárd évesek. Csillagaik már akkor ragyogtak, mikor Naprendszerünk, és vele együtt bolygónk még csak nem is létezett.

A William Herschel által gömbhalmaznak keresztelt mély-ég objektumok fényesebb példányai a csillagászati bemutatók alkalmával is mindig osztatlan sikert aratnak. Kétségtelenül van valami varázslatos a látványukban. Népszerűségük titka talán az is, hogy az észlelési gyakorlattal egyáltalán nem rendelkezők számára is könnyen értelmezhető a megjelenésük a távcsőben. Itt természetesen csak a fényesebb, és nagyobb látszó mérettel rendelkező gömbhalmazokról van szó. Galaxisunk nagyjából 150 ismert gömbhalmaza között akadnak szép számmal olyanok, melyek megpillantása vagy éppen fotózása igazán komoly kihívást jelent (lásd Szabó Sándor: Az NGC-n túl: Terzan-gömbhalmazok, Meteor 2016/2. 58. oldal). Az NGC3201 azonban nem tartozik ezek közé, viszonylag könnyű célpontnak számít. Olyannyira, hogy Sir Patrick Alfred Caldwell-Moore saját katalógusában, vagy ahogyan 1995-ös publikációja után ismertté vált, a Caldwell katalógusban is szerepel. Ezek nem a szerző önálló felfedezései. Célja az volt, hogy összegyűjtse a Messier katalógusból hiányzó izgalmas, és viszonylag fényes mély-ég objektumokat, s ezeket mások figyelmébe ajánlja. A Caldwell katalógusban az objektumok deklinációjuk szerint következnek sorba. Továbbá az égbolt déli féltekének látnivalóiból is tartalmaz egy jókora merítést. Az NGC3201 éppen a hetvenkilencedik objektum a Caldwell katalógusban, így amatőrcsillagász körökben gyakran C79-ként is hivatkoznak rá. Nem csodálkozom, hogy Sir Patrick Alfred Caldwell-Moore beválogatta a déli égbolt eme szépségét, valóban figyelemreméltó objektum.

A Vela (Vitorla) csillagkép területén található gömbhalmaz hazánkban egyáltalán nem emelkedik a horizont fölé. Saját tapasztalatom szerint, azonban Gran Canaria-ról és Krétáról már kitűnően látható. Igaz, itt is viszonylag alacsonyan delel. Amennyiben lehetőségünk adódik, érdemes tehát még ennél is délebbre utaznunk a megfigyeléséhez.

NGC3201-Vela-map02

A Vela (Vitorla) csillagkép Ausztrália égboltján (Siding Spring 2016. 02. 08. 14:22 UT). Az NGC3201 a megjelölt pozícióban található.

NGC3201-Vela-map03b

Az NGC3201 gömbhalmaz a Vela (Vitorla) csillagképben.

A gömbhalmazt még a XIX. században fedezte fel a skót származású James Dunlop Ausztráliából. 1826. május 1-én a következőket írta a halmazról:

„Szép nagy kerek köd, 4ˊ-5ˊ átmérővel. Közepe felé fokozatosan sűrűsödik, és könnyen csillagokra bontható. Alakja meglehetősen szabálytalan, a csillagok szétszórtabbak a délnyugati oldalon. Némileg vegyes fényességű csillagok alkotják.”

Szerintem elég pontosan leírja a halmaz vizuális megjelenését. Sőt az említett jegyek a fotón is felfedezhetőek. Dunlop neve leginkább a déli égbolt felméréséről vált ismertté a korabeli Angliában. 7385 csillag katalogizálását végezte el, melyből igen jelentős számú volt a kettőscsillag. Szám szerint 256. Ez irányú megfigyeléseit 1829-ben publikálta (Approximate Places of Double Stars in the Southern Hemisphere, observed at Paramatta in New South Wales). Emellett feljegyezte azokat a fényesebb mély-ég objektumokat is, melyeket a katalogizált csillagok közelében észrevett. Nem is csoda, hogy John Herschel, aki szintén kiemelkedő eredményeket ért el a kettőscsillag és mély-ég objektumok felmérésben, nagy érdeklődéssel fogadta Dunlop déli égbolton folytatott munkásságának eredményeit. Amikor Herschel 1834-ben megérkezett Dél-Afrikába, azonnal nekilátott Dunlop megfigyeléseinek tüzetes ellenőrzéséhez. Herschel a következőket írta az NGC3201-ről:

„Gömbhalmaz szabálytalan köralakkal. Közepe felé fokozatosan fényesedik, nem igazán sűrű. Mérete 6ˊ. 13-15 magnitúdós csillagokra bontható.”

Herschel Dunlop megfigyeléseivel kapcsolatban több pontatlanságra is fényt derített. Ennek köszönhetően az addig a Brit csillagászok körében ünnepelt Dunlop népszerűsége ugyan jelentősen csökkent, de ez mit sem változtat azon a tényen, hogy több déli mély-ég objektumnak is ő a felfedezője, többek között az NGC3201-nek is. Továbbá, kettőscsillag katalógusokban igen gyakran találkozhatunk a DUN előtaggal. Nevét vitathatatlanul beírta a csillagászat történetébe. Nem ez az első, és remélhetőleg nem is az utolsó, hogy nevét meg kell említsem.

Ez a 8.24 (V) magnitúdó fényességű gömbhalmaz több olyan tulajdonsággal is rendelkezik, mellyel felhívja magára a figyelmet. Más gömbhalmazokkal összehasonlítva rögtön igen szembetűnő, ahogyan Dunlop és Herschel is leírta, hogy szerkezete laza, csillagaik a mag felé kevéssé koncentráltak. A Shapley–Sawyer 12. fokozatú osztályozás szerint a besorolása: X. Ezen a skálán római számokkal jelölik a koncentráció mértékét. Az I. osztályúak a legkoncentráltabbak, míg a XII. osztályba tartoznak a leglazább halmazok.

Az NGC3201 látszólagos mérete 18.2ˊ, nemcsak igen laza a felépítése, de igen kiterjedt is. Minthogy 10°-nál alacsonyabb galaktikus szélességen helyezkedik el (l=277.2°, b=8.6°), így Tejútrendszerünk viszonylag sűrű csillagmezején keresztül látunk rá. A felvételen is mindössze egy 8ˊ-10ˊ átmérőjű, kissé aszimmetrikus terület az, ami elsőre megragadja a tekintetet. Hosszabban szemlélve a képet, azonban összeáll a látvány, és az ember rádöbben, hogy a külső régiók halványabb csillagai szinte mindenütt ott vannak a látómezőben. (Az említet látszó méretek érzékeltetése végett megjegyzem, hogy a kép jobb felső részében található két fényes, kékes színű előtércsillagot nagyjából 5.5ˊ választja el egymástól.) Természetesen a csillagászok nem a látványra hagyatkoznak, amikor halmaztagokra „vadásznak” a látómezőben. Könnyen előfordulhat, hogy a magvidéken látható fényes csillag valójában közelebb van hozzánk, míg a képen a magtól távolabb lévő csillag nem is előtércsillag.

Tekintve, hogy a halmaz csillagai gravitációsan kötődnek egymáshoz, így együtt mozognak a térben. Amennyiben a halmaz közeledik, vagy távolodik tőlünk, akkor a Doppler-effektusnak köszönhetően csillagainak színképvonalai eltolódnak a kék, illetve a vörös irányba. Ennek mértékéből kiszámolható a csillagok radiális sebessége (látóirányú sebessége). Ebből pedig következtetni lehet a csillagok hovatartozására, ugyanis a tagok, egy az egész halmazra jellemző radiális sebesség értékhez közel mutatnak szórást. A csillagok sajátmozgása (látóirányunkra merőleges mozgása), akár csak a radiális sebessége, szintén segíthet eldönteni azt a kérdést, hogy azok a halmazhoz tartoznak-e, vagy sem. A gömbhalmazok nagy távolsága miatt a sajátmozgás kimérése már sokkal nehezebb feladat, azonban közel sem lehetetlen. Vagyis a spektroszkópián alapuló eljárásokkal, illetve a csillagok sok év alatt történő elmozdulását felhasználva, megfelelő matematikai módszerekkel kiválogathatóak a gömbhalmazhoz tartozó csillagok.

Az NGC3201 esetében a színképvonalak, a Doppler-effektusból származó kék eltolódása arról tanúskodik, hogy a gömbhalmaznak 494 km/s a radiális sebessége, vagyis őrült tempóban közeledik felénk. Ezzel ő tartja a pozitív radiális sebességrekordot a gömbhalmazok között (az NGC6934 negatív rekorder is „csak” 411 km/s-mal távolodik tőlünk). Ennek a kiugróan magas értéknek köszönhetően e halmaz csillagai jól elkülönülnek a látómező többi csillagától. De honnan ez a hatalmas radiális sebesség? Valójában mi is egy „száguldó vonaton ülünk”, ugyanis a Nap a galaxisunk centruma körüli keringési sebessége igen tekintélyes: nagyjából 230 km/s. A vizsgálatok tanulsága szerint az NGC3201 a galaxis centruma körül igen elnyúlt (nagy excentricitású), a galaxis síkjával jelentős (18°) szöget bezáró pályán, durván 250 km/s-os sebességgel kering a Napunkkal és a galaxis korongjának csillagaival ellentétes irányba. Mozgása tehát retrográd, és éppen ennek köszönhetően látjuk hatalmas sebességgel közeledni felénk. Az extrém sebességű retrográd pályára a legkézenfekvőbb magyarázat az lenne, hogy az NGC3201 nem a Tejútrendszerünkben született. Amennyiben egy befogott, majd később szétszaggatott galaxisban keletkezett volna, vagy éppen egy néhai törpe galaxis magja lenne, akkor annak összetételében meg kellene mutatkoznia. Mindezidáig azonban a spektroszkópiai alapú kémiai vizsgálatoknak ezt nem sikerült igazolnia. Bár a kinematikája alapján valószínűnek tűnik extragalaktikus eredete, azonban kémiai evolúciója nagyban hasonlít a többi, feltehetőleg „őshonos” galaktikus gömbhalmazéhoz.

Nincs is túlságosan messze tőlünk, sőt a legközelebbi gömbhalmazok egyike. De honnan tudjuk mindezt? A gömbhalmazok bővelkednek RR Lyrae típusú pulzáló változócsillagokban. Ezen halmazváltozóknak is nevezett csillagok fényességváltozásának periódusa és abszolút fényessége között reláció áll fenn, így tökéletesek távolság meghatározásra. Elég megmérni a periódusukat, amiből meghatározható abszolút fényességük, vagyis milyen fényesek lennének, ha 10 pc távolságba lennének tőlünk. Az látszó fényesség és a számított abszolút fényességből a távolság már meghatározható. Az NGC3201 esetében csak a mag durván 1/2° sugarú környezetében 86 RR Lyrae csillag található, melyek közül az elsőket még 1919-ben fedezték fel. Van tehát bőven miből válogatni, nagyszámú minta áll a csillagászok rendelkezésére. A kutatóknak azonban egy jelentős nehezítő körülménnyel is meg kellett küzdeniük. Ahogy fentebb is említettem az NGC3201 nem sokkal a galaxis síkja fölött látszik, és bizony erre nemcsak sok előtércsillag, de tekintélyes mennyiségű por is található. A por pedig vörösíti a csillagok fényét, illetve a látszó fényességükre is hatással van. Hogy a dolog még több kihívással legyen teli, ez a hatás változó a gömbhalmaz különböző területein. A csillagászok azonban előbb utóbb mindig kitalálnak valamit, hogy a fizika az ő kezükre játsszon. Már a múlt század hatvanas éveiben észrevették, hogy ezen változó csillagok „színe” közel hasonló minimum környékén. Tudományosabban megfogalmazva a B és V szűrőkkel felvett minimumbeli fényességek különbsége (kis korrekciók után) nagyon hasonló. Így az előtér okozta vörösödés már meghatározható. A kétezres évek elején kiderült, hogy a V és I szűrőkkel felvett minimumbeli fényességek különbsége még jobb indikátor. Mindenesetre a csillagászok kezében mára megvannak a megfelelő eszközök, hogy az RR Lyrae csillagokat felhasználva, és a vörösödést csillagonként figyelembe véve viszonylag nagy pontossággal meghatározzák az NGC3201 távolságát.  Egy 2014-es vizsgálat tanulsága szerint a gömbhalmaz távolsága 5 kpc (kb. 16300 fényév) ± 0.001 kpc (statisztikai hiba) ± 0.220 (szisztematikus hiba).

NGC3201-TTK-animvar2

Változócsillagok az NGC3201-ben. A könnyebb azonosítás végett párat külön megjelöltem.  A „pislákoló”, fényüket változtató csillagok többsége RR Lyrae típusú. Az animáció egy-egy nyers kép felhasználásával készült. A két felvétel között közel 22.5 óra telt el. (Az apró fel, majd eltűnő pixelek nem csillagok, azok a kamera műtermékei.)

Nem az RR Lyrae típusú változócsillagok az egyedüliek a gömbhalmazokban melyek felhasználhatóak a távolság meghatározására. Az SX Phoenicis (SX Phe) gyors pulzációt (0.7-1.9 óra) mutató csillagok fényváltozása és fényessége között is van reláció. Az előbb említett tanulmány szerzői e független módszer segítségével is meghatározták az NGC3201 távolságát és szintén 5 kpc távolságot kaptak eredményül.

NGC3201-f01

Az NGC3201 elhelyezkedése Napunkhoz és a galaxis centrumához képest a Tejútrendszer északi pólusa felől nézve.

NGC3201-o01

Az NGC3201 elhelyezkedése Napunkhoz és a galaxis centrumához képest a Tejútrendszer síkjával párhuzamos nézetből. Napunk 8 kpc távolságban van a centrumtól. Az 5 kpc-re lévő NGC3201 gömbhalmaz pozíciója a galaktikus koordinátarendszerben szintén ismert. Így elmondható, hogy a gömbhalmaz 0.8 kpc távolságban van a Tejútrendszer síkjától, illetve 8.94 pc-re a galaxis magjától.

A távolság ismeretében az égen látszó méretek átszámolhatóak valós méretekké. Az NGC3201 csillagai közel 43 fényéves sugarú szférikus tartományát tölti ki a világűrnek (18.2ˊ látszó méret és 16300 fényéves távolság esetén). Méreteit tekintve nem számít nagy gömbhalmaznak a Tejútrendszerben, csak nagyjából fele akkora, mint például az M3. A mag sugara, vagyis az a távolsága, ahol a halmaz centrumától fokozatosan csökkenő luminozitás a felére esik vissza 6.2 fényév (r. A gömbhalmaz fényének 50%-ka pedig mindössze 14.7 fényév sugarú tartományból származik (rh=3.1ˊ).

ngc3201-BV-VI-V-CMD

Az NGC3201 szín-fényesség diagramja.

A gömbhalmaz B-V színindexe 0.94, vagyis csillagait „összemosva” sárgás színt kapnánk, némi narancsos árnyalattal. Ebben igen nagy szerepe van a fentebb említett galaktikus por vörösítő hatásának, azonban sokkal fontosabb, hogy miféle csillagok alkotják, és milyen mértékben járulnak hozzá a fényéhez.

Ahogy az idő múlásával én is lassan ráncosodom, hajam ritkább és őszebb lesz, úgy a gömbhalmazok fölött is eljár az idő. Születése óta eltelt durván 11.5 milliárd év nem múlt el nyomtalanul.

Egy csillaghalmazról sok mindent elmond a szín-fényesség diagramja, mely tulajdonképpen a klasszikus Hertzsprung-Russel diagram modern, „gyakorlatias” változata. A vízszintes tengelyen két különböző szűrővel mért fényesség értékek különbsége (ebben az esetben B-V és V-I) van feltüntetve a színképosztály helyett. A függőleges tengelyen pedig az egyik színszűrővel (V szűrő) felvett fényességérték szerepel.

Megnézve az NGC3201 felül látható szín-fényesség diagramját rögtön szembetűnő, hogy a jelentősebb fényességű, a Nap tömegét jelentősen meghaladó nagytömegű csillagok már mind hiányoznak a fősorozatról, sőt már ki is hunytak, miután szupernóvaként lángoltak fel. A nagyobb tömegű csillagok gyorsabban leélik az életüket. Mára csak a közepes tömegű (0.5-10 naptömeg) csillagok alsó tartományának képviselői maradtak meg a halmazban.

csillaghalmazok_kora

A sematikus animáción látható, hogy a csillaghalmazok szín-fényesség diagramja az idők folyamán megváltozik. A nagyjából azonos időben keletkezett csillagok közül először a nagyobb tömegűek vándorolnak el a fősorozatról, miután magjukban felhasználták a hidrogén fúzióhoz szükséges készleteiket. Mivel nagyobb tömegűek, így ezek a csillagok forróbbak is, s éppen ezért kékebbek. Az elvándorlás folytatódik, ahogy telik az idő, méghozzá a kisebb tömegű, ezért hűvösebb, vörösebb csillagok irányába. Az Myr millió évet, a Gyr milliárd éveket jelent. (Forrás: http://astro.berkeley.edu/~dperley/univage/univage.html)

A Nap tömegének nagyságrendjébe eső, a fősorozatot elhagyó csillag esetén a hidrogén fúzió már régen nem a magban zajlik. Ekkorra, a hidrogén héliummá történő átalakítása már a magot körülvevő külső héjba tevődik át, melynek következtében a csillag felfúvódik, és külső része lehűl, így jut el a vörös óriás fázisba. A horizontális ág tagjai pedig a magjukban már héliumból szenet hoznak létre. Ez a folyamat a kék szín irányába tolja a csillag fényét. Az óriások és a horizontális ág közötti rés baloldalán találhatóak a már korábban említett RR Lyrae csillagok. Azért van ott a rés, mert csillagászati értelemben, a két fejlődési állapot közötti utat a csillagok hamar bejárják. Az RR Lyrae váltózó csillagok magjában már javában folyik a hélium szénné alakítása. Miután a hélium is elfogy az addigra szénben és oxigénben gazdag magban, a fúzió az azt körülvevő külső héjba tevődik át. Az energia nagy része azonban nem itt keletkezik, hanem a külsőbb hidrogén héjban. A csillag külső rétegei ismét felfúvódnak és lehűlnek. Ennek köszönhetően a csillag fényessége ismét megnő túlszárnyalva a korábbi vörös óriás fázist, színe pedig ismét a vörös felé tolódik. A csillag elfoglalja helyét az aszimptotikus óriás ágon. Ezen csillagok tömege már nem elég nagy, hogy a héliumnál nehezebb elemek fúziója beinduljon. A héjakban is idővel elfogynak a tartalékok, leáll a fúzió. A csillag külső rétegeit a világűrbe pöfékelve megindulnak a fehér törpévé válás útján.

NGC3201-CMD-var-bs-02

Az NGC3201-ről készült felvételemen is az aszimptotikus óriáság ág, és a korábban említett vörös óriások narancsos, vöröses színű csillagai uralják a látványt. Ehhez társulnak, az NGC3201 más gömbhalmazokhoz képest viszonylag népes horizontális ágán lévő csillagainak sárgás, sárgásfehér, kékesfehér színű csillagai.

Nem minden kékesfehér csillag tartozik azonban a horizontális ághoz. Amennyiben a kedves olvasó még egyszer alaposan megnézi a fenti ábrán a HRD-t feltűnhet neki valami furcsaság, hacsak eddig nem tűnt már fel. A fősorozatot meghosszabbítva ott, ahol az az óriás ág felé elkanyarodik (Turn Off Point), csillagokkal találkozunk a diagramon. (A piros szaggatott vonallal határolt területről van szó). Ezek a csillagok nagyon nem illenek bele abba a képbe, amit éppen az imént vázoltam fel. A fősorozat közelében abban a tartományban találhatóak, ahonnan korábban a nagytömegű kékes csillagok már régen elfejlődtek. Mit keresnek mégis ott, ezek a kék vándoroknak nevezett égitestek?

Létezésükre a ma elfogadott egyik magyarázat, hogy halmaztagok összeolvadásával jönnek létre. Az így keletkező csillag potenciálisan nagyobb tömegű, mint a fősorozaton tartózkodó társaik. A nagyobb tömegű csillagok pedig forróbbak és így kékebbek is. Az ellentmondás ezek fényében mindössze csak látszólagos. Az összeolvadást látszik megerősíteni, hogy jellemzően a gömbhalmaz sűrűbb régiói környékén fordulnak elő. Illetve, sokuk igen gyorsan forog. A leggyorsabban forgók pedig a centrum körül figyelhetőek meg, melyek közül ráadásul néhány igen gyorsan, hiperbola pályán mozog. Ezek sorsa már megpecsételődött, úton vannak, hogy végleg elhagyják a halmazt. A másik favorizált elmélet szerint e csillagokat a kezdetben nagyobb tömegű párjuk hizlalta fel. Mivel a társ nagyobb tömegű volt, így gyorsabban fejlődött. A fősorozatot elhagyva felfúvódott és kitöltötte a Roche-térfogatát, így a ma a kék vándorok jellegzetességeit mutató komponens megszerezhette annak anyagát. Ezt az elméletet látszik alátámasztani, hogy bizonyos kék vándorok felszínének szén és oxigén tartalma jóval kevesebb, mint az szokásos. Ez pedig anyagátadásra utal.

Egyes kutatások arra engednek következtetni, hogy a két mechanizmus akár egyszerre is jelen lehet a gömbhalmazokban. Míg az anyagátadásos „megfiatalodás” inkább a külső régiókra, addig az ütközéses/összeolvadásos keletkezés inkább a halmaz magja környékén lehet jellemző. Az igazság az, hogy nehéz eldönteni, hogy melyik elmélet a helyes. Könnyen lehet, hogy ez a kérdés nem is a gömbhalmazokban dől majd el.

Kék vándorok nyílthalmazokban is előfordulnak. Csillagászok a Hubble Űrteleszkóppal megvizsgálták az NGC188 21 kék vándorát. Miért éppen nyílthalmaz volt a célpont? Mert a gömbhalmazokkal ellentétben nem zsúfolt csillagkörnyezetben kellett elvégezni a megfigyeléseket. Azért választották ezt a nyílthalmazt, mert 7 milliárd éves korával az egyik legöregebb a Tejútrendszerben, s így a kék vándoraik sem annyira „kékek”, megkönnyítve a kísérők kimutatását. Több jelöltről már eleve tudható volt, hogy kettős rendszer része. Az egymáskörül „táncoló” tagok vagy közelednek felénk, vagy távolodnak tőlünk. A spektrumukban pedig mindez megmutatkozik (Doppler-effektus). A kettősség másik jele, hogy a főkomponens spektrumára rárakódik a második tag színképe. Vagyis valójában nem egy, hanem két csillag spektrumát látjuk. Ezek a spektroszkópiai kettőscsillagok. Az izgalmas kérdés a kísérő mibenléte volt. A kék vándorok emissziójában kerestek olyan UV többletet, melyet csak egy fehér törpe társ okozhat, és 7 csillag esetében találtak is ilyet.

A közvetett bizonyítékok mellett, így közvetlen bizonyíték is van már arra, hogy a kék vándoroknak a fejlődésben előrehaladott kísérőik vannak. Ezek a fehér törpék a Nap tömegével nagyjából megegyező, illetve nem sokkal nagyobb tömegű csillagoknak a felfúvódást követő végstádiumai. A fúziós folyamatok már megszűntek bennük, így szép lassan kihűlnek. 7 csillag esetén meglett tehát a társ, akitől korábban a ma kék vándorok „gúnyáját” viselő csillagok anyagot szereztek. A vizsgálati módszer limitációjának köszönhetően az öregebb, 11000 K alá hűlt fehér törpék már nem ragyognak elég fényesen az UV tartományban, így a Hubble-el azokat már nem lehet detektálni. Vagyis, csak az utóbbi 250 millió évben kialakult fehér törpék megfigyelésére volt csupán mód. Mindazonáltal további 7 csillag színképe, és kísérőjének kikövetkeztetett tömege alapján arra gyanakodnak a kutatók, hogy azok körül is fehér törpe kísérő keringhet. Nagyon óvatosan fogalmazva, a következő a konklúziója a publikációnak: a tömegátadásos folyamatok alsó limitje 33% körüli, vagyis legalább a kék vándorok egyharmada köszönheti ennek a létét. Jóval kisebb valószínűséggel ugyan, de ez a limit akár 67% is lehet. Mindenesetre az NGC 188 21 csillagának kutatását még nem zárta le a csapat, és tervezik folytatni a munkát.

NGC3201-LRGB-20160208-T30-180s-TTK-blue_stragglers1

Az NGC3201-ről készült felvételemen külön megjelöltem két kék vándort, melyek egyben az SX Phe változócsillagok családjába is tartoznak. Az SX Phe változócsillagok ismert gömbhalmazbeli példányai egytől egyig kék vándorok.

Az NGC3201 különlegessége, hogy ő a második olyan gömbhalmaz (az M4 után), ami annak ellenére, hogy nem tartozik a masszív halmazok közé, mégis kimutathatóan inhomogén csillagpopulációval rendelkezik.

A gömbhalmazokat sokáig úgy kezelték, amiben minden csillag egyszerre keletkezett. A kutatók azonban felfedezték, hogy bizonyos gömbhalmazok nem is egy nemzedék csillagaiból állnak. Van olyan példánya ezen objektumoknak, melyeknél az első nemzedék után 100 millió évvel alakult ki a következő. De olyan is akad, ahol 3 különböző generációt sikerült kimutatni. Minderre a gömbhalmazok utóbbi időben elvégzett spektroszkópiai és fotometriai elemzése világított rá.

A különböző brancsoknak más a hélium és fémtartalma, melynek oka az eltérő életkoruk. Ugyanis, a később született csillagok már tartalmazták a korábbi generációk által legyártott elemeket, melyeket azok késői fejlődési fázisukban kibocsájtott csillagszél, illetve a nagyobb tömegűek halálakor bekövetkező szupernóva-robbanások révén juttattak az akkor még a gömbhalmazokban jelenlévő intersztelláris gázba. Éppen ezért, az ebből a szennyezett gázból születő újabb populációk már héliumban és fémekben jóval gazdagabbak lettek.

Ha veszünk két azonos tömegű, de eltérő kémiai összetételű csillagot, majd megvizsgáljuk, milyen életpályát futnak be a szín-fényesség diagramon, akkor azt fogjuk tapasztalni, hogy kissé különböző görbéket fognak majd követni. Ugyanabban az életszakaszban az egyik kissé kékebb vagy éppen fényesebb lesz, mint a másik. Fotometriai vizsgálatokkal a csillagászoknak sikerült összefüggést feltárni az NGC3201-ben a csillagok színe, fényessége és a halmazon belüli eloszlása között, vagyis az előbbiek alapján, különböző csillagpopulációk jelenlétére bukkantak.

Ehhez a szubóriás és óriás ág csillagait vették górcső alá. Leegyszerűsítve, a szín-fényesség diagram e két sávját felszeletelték kékebb és vörösebb, illetve fényesebb és halványabb részekre, majd vizsgálták ezek eloszlását a gömbhalmazon belül a centrumtól mért távolság függvényében. Azt tapasztalták, hogy a szubóriás ág U szűrővel fényesebbnek mutatkozó tagjai kevésbé koncentráltak a mag felé, mint a halványabb társaik. Hasonlóan, távolodva a centrumtól, növekszik az óriás ág kékebb tagjainak aránya. Ezt a kutatást követte egy külön spektroszkópiai elemzése a halmaznak, mely megerősítette a fotometriával kapott eredményt. Az NGC3201 óriáságának kémiai összetétele alapján megállapították, hogy a második generáció óriáscsillagai nagyobb koncentrációt mutatnak a halmaz centruma felé, mint a korábban születettek. Ez jó összhangban van a gömbhalmazok kialakulásával és fejlődésével kapcsolatos multi populációs elméletekkel.

Ugyan még sok részlete nem tisztázott annak, hogy miként is születtek a csillagok különböző generációi a gömbhalmazokban. Nem teljesen világos az sem, hogy pontosan milyen mechanizmusok révén szennyezték be az elsők a következő nemzedék bölcsőjéül szolgáló por és gázfelhőket. Az NGC3201 mindenesetre fontos darabja a kozmikus „kirakós játéknak”. Rajta keresztül (is) talán egyszer még ennél is pontosabban megértjük majd a gömbhalmazokat, s így a Tejútrendszerünk kialakulását és fejlődését. Az azonban látszik, hogy a csillagászoknak addig is akad még bőven teendőjük.

Végére egy személyes megjegyzés. Sok éven keresztül követtem vizuális megfigyelőként, amatőrcsillagászként csillagok fényességváltozását. Éppen ezért, mióta elkezdtem asztrofotózással foglalkozni dédelgettem a tervet, hogy egyszer magam készítette felvételek segítségével mutathassam meg egy gömbhalmaz változócsillagait. Talán meglepi az olvasót, de nekem a monokróm felvételen pislogó csillagok nagyobb élményt jelentettek, mint a végső színes kép. Noha tagadhatatlan, hogy a csillagok színes kavalkádja is nagyszerű látvány.

Felhasznált irodalom:

Stephen James O’Meara: Deep-Sky Companions: Southern Gems (ISBN: 9781107015012)

Guillermo Gonzalez, George Wallerstein: Elemental abundances in giants in NGC 3201, A globular cluster with a retrograde orbit

D. I. Casetti-Dinescu, T. M. Girard, D. Herrera, W. F. van Altena, C. E. López, D. J. Castillo: Space Velocities of Southern Globular Clusters. V. A Low Galactic Latitude Sample

V. Kravtsov, G. Alcaíno, G. Marconi, F. Alvarado: Multi-color photometry in wide field of the Galactic globular cluster NGC 3201

Paust, Nathaniel E. Q.; Reid, I. Neill; Piotto, Giampaolo; Aparicio, Antonio; Anderson, Jay; Sarajedini, Ata; Bedin, Luigi R.; Chaboyer, Brian; Dotter, Aaron; Hempel, Maren; Majewski, Steven; Marín-Franch, A.; Milone, Antonino; Rosenberg, Alfred; Siegel, Michael: The ACS Survey of Galactic Globular Clusters. VIII. Effects of Environment on Globular Cluster Global Mass Functions

V. Kravtsov, G. Alcaino, G. Marconi, F. Alvarado: Evidence of the inhomogeneity of the stellar population in the differentially reddened globular cluster NGC 3201

C. Muñoz, D. Geisler, S. Villanova: The Origin and Chemical Evolution of the Exotic Globular Cluster NGC3201

Mirko Simunovic, Thomas H. Puzia: Blue Straggler Star Populations in Globular Clusters: I. Dynamical Properties of Blue Straggler Stars in NGC 3201, NGC 6218 and ω Centauri

A. Arellano Ferro, J.A. Ahumada, J.H. Calderón, N. Kains: Fourier Decomposition of RR Lyrae light curves and the SX Phe population in the central region of NGC 3201

Natalie M. Gosnell, Robert D. Mathieu, Aaron M. Geller, Alison Sills, Nathan Leigh, Christian Knigge: Implications for the Formation of Blue Straggler Stars from HST Ultraviolet Observations of NGC 188