Az NGC5363 és NGC5364 galaxis páros – Az NGC5363 galaxis csoport

NGC5364-NGC5363-LRGB-20200513-T11-600s-TTK

Az NGC5364 spirál galaxis (balra) és az NGC5363 lentikuláris galaxis (jobbra) párosa

(Az NGC5363 galaxis csoportról készített fotóm kivágott részlete)

iTelescope.net T11 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI ProLine PL11002M CCD camera

A felvételek 2020-05-14 és 2020-05-20 között készültek – Új-Mexikó (Mayhill közelében) – 24 x 600 sec L (bin2), 10 x 600 sec R,G,B (bin2)

A Polaris Csillagvizsgálóban pár éve vettem át a „kisszakkör” vezetését, melyet a Magyar Csillagászati egyesület a 8-12 éves korosztály számára tart. A szakköri foglalkozásokra a tanévben szerdánként került sor. A COVID-19 helyzet miatt 2020 tavaszán a csillagvizsgálót is be kellett zárnunk. A sorozatnak így végé szakadt.

A tematikában éppen a galaxisok kerültek volna terítékre. Optimistán, bízva az újranyitásban, elkezdtem frissíteni a prezentációimat. Ezt egyébként is rendszerese megteszem, mikor felkészülök a következő foglalkozásra. A csillagászatban mindig vannak új eredmények és aktualitások. Mivel a szakkörök elmaradtak, így azokat az órákat arra használtam fel, hogy több anyagomat is átírtam, átszerkesztettem.

A gyűjteményemből nagyon hiányzott egy olyan illusztráció, ami szemléletesen megmutatja a spirál galaxisok és a lentikuláris/elliptikus galaxisok közötti különbségeket. Mindezt egyetlen fotón, hogy ne kelljen a diák között oda-visszaváltani. Ekkor merült fel bennem, hogy miért ne választhatnék olyan célpontokat a következő digitális észleléshez, ami egyben megfelel ennek az elvárásnak. Miért ne készíthetnék magam is ilyen asztrofotót?

Már csak a megfelelő jelöltet kellett kiválasztanom. Ebben nagy segítségemre voltak saját jegyzeteim, melyeket a korábbi megfigyelésekhez írt cikkekhez készítettem. Nem mindig használom fel ezeket az anyagokat, de gyakran merítek belőle újabb ötleteket. Most is így történt.

Merre találhatók ezek a galaxisok? Mit érdemes tudni róluk? Ismerkedjünk meg először röviden a Kozmosz legnagyobb struktúráival, hogy el tudjuk helyezni a látottakat!

Galaxishalmazok és kozmikus ritkulások

A világegyetem nagy léptékű szerkezete leginkább kusza pókhálóra hasonlít. A galaxisok, galaxis csoportosulásokba, galaxishalmazokba, szuperhalmazokba tömörülnek e gigantikus szálak mentén.

Ezek a definíciók a halmaztagok között lévő gravitációs kapcsolaton alapulnak, melyek különböző skálán működnek. A galaxis egy gravitációsan kötött rendszer. Gáz, por és csillagok milliói vagy milliárdjai alkotják. Ezt hierarchiában a galaxiscsoportok követik, melyek általában néhány tucat tagot számlálnak. A több száz vagy ezer galaxist tartalmazó galaxishalmaz egy ennél is nagyobb gravitációsan kötött objektum, ahol a kölcsönös vonzóerő elég erős ahhoz, hogy még a kozmikus tágulás sem fogja majd eltávolítani egymástól a galaxisokat.

A legközelebbi masszív galaxishalmaz a Virgo galaxishalmaz. Távolsága 16.5±0.5 Mpc (Mei és mások – 2007), vagyis 54 millió fényév. Becslések szerint 1500-2000 tagot számlál, melyek az égbolt közel 8 fokos területén oszlanak el. A halmaz átmérője 4.4 Mpc, ami 14.3 millió fényévnek felel meg (Fouqué és mások – 2001). Ez alig valamivel nagyobb, mint a Tejútrendszerünkkel együtt nagyjából 50 galaxist magában foglaló Lokális Csoport mérete, ami körülbelül 3 Mpc (10 millió fényév). Azonban, míg eme utóbbi tömege 2.3±0.7×1012 M (Peñarrubia és mások – 2014), addig a Virgo halmazé 1.2×1015 M (Fouqué és mások – 2001). Nagyságrendnyi különbségről van tehát szó. Nagyjából 2 billiónyi naptömeg az 1 billiárdnyi naptömeggel szemben. A Virgo halmaznak három, egyértelműen azonosítható alcsoportja is van. Ezek középpontjában az M87, az M86 és az M49 galaxis helyezkedik el. Valószínű, hogy a halmazt még mindig a formálódása közben figyelhetjük meg.

Galaxy-Clusters-around-the-Local-Group

Galaxis csoportok és galaxishalmazok a Lokális Csoport közelében.

Szerző: Andrew Z. Colvin

Az egymáshoz közeli csoportok és halmazok – melyek mindegyike gravitációs kötésben van –, egy még nagyobb struktúra gravitációs vonzásának hatása alatt állnak. Csakhogy, ott a gravitáció vonzó hatása már eltér a gravitációsan kötött rendszer csillagászati definíciójától. Ezeket hívják a csillagászok szuperhalmazoknak, melyek a világegyetem legnagyobb, galaxisokat tömörítő struktúrái.

Valójában nem is olyan egyszerű behatárolni ezeket. Évekkel ezelőtt még úgy gondolták a csillagászok, hogy a Lokális Csoport, és közel 100 másik halmaz és csoport is, a 100 millió fényév kiterjedésű Virgo Szuperhalmaz része. (Az elnevezést a legnagyobb tömegű tagja, a Virgo halmaz után kapta.) Kiderült azonban, hogy ez csak a jéghegy csúcsa. Ezek a halmazok együtt, még egy ennél is jóval nagyobb, és jól behatárolható struktúra részesei.

2014. szeptember 4-én jelent meg az a cikk a Nature-ben, melyben Brent Tully (University of Hawaii) és kutatócsapatának 8000 galaxis mozgásának megfigyelésén alapuló kutatási eredményét közölte. Az Ősrobbanás óta táguló világegyetem globális hatását figyelembe véve korrigálták a mért eredményeket, és ebből megkapták, hogy miként hatnak pusztás a galaxisok gravitációsan egymásra. Egy háromdimenziós térképet alkottak, mely teljesen újradefiniálta a szuperhalmazok fogalmát. A földrajzban is ismert vízválasztó vonalakhoz hasonló analógiával élve, a galaxisok csoportjai különböző gravitációs vonzócentrumok irányába igyekeznek, akárcsak a víz egy vízválasztó vonal két oldalán. Jól elhatárolható felületek vannak a világegyetemben, melyek egyik oldalán az egyik, míg a másik oldalán egy másik ilyen vonzócentrum felé mozognak a galaxisok, illetve azok csoportosulásai.

Mintegy 100 ezer társával egyetemben Tejútrendszerünk, a közel 160 Mpc (520 millió fényév) kiterjedésű Laniakea vagy más néven a Lokális szuperhalmazhoz tartozik. E szuperhalmaz összes galaxisa, legyen az magányos, vagy valamilyen kisebb csoport, esetleg népes halmaznak a tagja, mind a „Nagy Vonzó” („Great Attractor”) felé mozog. Tehát, a Lokális Csoport éppúgy részt vesz ebben a kozmikus áramlásban, mint a masszív Virgo halmaz.

A Laniakea szuperhalmaz. Azokat a filamenteket (szálakat), melyek mentén a galaxisokat összegyűjtötték a szerzők, és amely mentén a galaxisok együtt mozognak, halványkék színnel lettek jelölve. A vörös és fekete galaxisok különböző áramlásokhoz tartoznak. A videóban a Tejútrendszerünk van az origóban (zöld pötty), mely a feketével jelölt áramlásban vesz részt. Mint az látható, mi az ekképpen definiált Laniake szuperhalmaz külső peremén lakunk. A Lokális szuperhalmazban pedig különböző színekkel jelölték azokat a területeket, ahol a galaxisok sűrűbb, historikus csoportosulásai találhatók. Évtizedeken keresztül a csillagászok úgy vélekedtek, hogy mi a zöld régióval jelölt szuperhalmaznak vagyunk a részei. De kiderült, hogy ez is csak „kis szelete” valami sokkal nagyobbnak. A Laniakea hawaii nyelven mérhetetlen mennyet, mérhetetlen eget jelent. Ezzel az elnevezéssel próbálták a kutatók érzékeltetni, hogy milyen hatalmas struktúráról is van szó a világegyetemben. A 2014-ben Tully és kutatótársai által bevezetett új szuperhalmaz fogalom sokkal egyértelműbbé tette, hogy hol találhatóak eme grandiózus kozmikus képződmények határvonalai.

Forrás: R. Brent Tully, Helene Courtois, Yehuda Hoffman és Daniel Pomarède (Nature, vol 513, number 7516, p71 – 4 September 2014)

Laniakea-supercluster-TULLY

A Laniakea szuperhalmaz, és az új definíción (a galaxisok konvergáló mozgásán) alapuló, a Laniakea-t körülvevő szuperhalmazok. A kék pötty a Tejútrendszer pozícióját jelöli a szuperhalmazban.

Forrás: R. Brent Tully, Helene Courtois, Yehuda Hoffman és Daniel Pomarède (Nature, vol 513, number 7516, p71 – 4 September 2014)

A galaxisok, galaxishalmazok, szuperhalmazok kusza rostos hálózata mellett, legalább annyira érdekesek az ezeket elválasztó hatalmas ürességek. Azt is mondhatjuk, hogy a Univerzum buborékos szerkezetű, melynek „falain” helyezkednek el a galaxisok, illetve a korábban említett halmazok, szuperhalmazok. Pontosabb azonban, ha ezeket az ürességeket, inkább ritkulásoknak (Cosmic Void) nevezzük. A Világegyetem ezen területei ugyanis nem teljesen üresek. Bennük is találkozhatunk galaxisokkal, galaxishalmazokkal, de szignifikánsabban kevesebbel. A legközelebbi ilyen hatalmas „üreg”, a Lokális Ritkulás (Local Void) határa éppen extragalaktikus szomszédságunkban húzódik.

A Lokális Ritkulás létezését 30 évvel (1987) ezelőtt ismerte fel Brent Tully és Rick Fisher.  Tully és munkatársainak vizsgálata alapján a Lokális Csoportnál kezdőd ritkulás nagyjából 45-60 Mpc (150-200 millió fényév) kiterjedésű. Továbbá, centrumának távolsága legalább 23 Mpc-re (75 millió fényévnyire) van tőlünk. Meg kell jegyeznem azonban, hogy pontos kiterjedését a mai napig viszonylag nagy bizonytalanság övezi.

Laniakea-Local_Void1

Kozmikus áramlások és sűrűsödések a Laniakea szuperhalmazban. Ebben a metszetben jól látszik, hogy a Lokális Sűrűsödés elnyúlik egészen a Virgo galaxishalmaz mögé. A galaxisok kiáramlása a ritkulásból teljesen evidens ebben a nézetben.  Forrás: Hélène M. Courtois, Daniel Pomarède, R. Brent Tully, Yehuda Hoffman, Denis Courtois

A vizsgálatok tanúsága szerint a Lokális Ritkulás tágul. A Lokális Csoport és a környező galaxisok alkotta fal (Local Sheet) távolodik a ritkulás centrumától. Úgy tűnhet, mintha az „üresség” taszítana minket. A helyzet azonban nem ez. Arról van szó, ahogy azt már fentebb említettem, hogy a galaxisok mozgásából levonva a világegyetem tágulásának hatását, azok összeáramlása, koncentrációja figyelhető meg a Világegyetemben. Mindez meghatározott vonzócentrumok irányába történik, és a jelenség a gravitációnak köszönhető. De nemcsak e masszív képződmények játszanak fontos szerepet az egészben, hanem ellenpárjaik, a ritkulások is. A korábban említett vízválasztós példánál maradva, az is fontos tényező a víz áramlása szempontjából, hogy van-e magas hegy a közelben. A ritkulások pedig magas, meredek falú hegyeknek tekinthetők, ahol gyorsabban igyekszik a víz a völgybe. Vagyis, ezek közelében a helyi csoportok gyorsabban mozognak az „alacsonyabban fekvő”, vagyis a sűrűbb régiók felé, mint azt egyébként tennék. A nettó hatást pedig úgy érzékeljük, mintha a ritkulás „eltaszítaná” magától, a vonzócentrum pedig „húzná” maga felé a galaxisokat, és ennek a kettőnek a hatás pedig a tőlük való távolság függvényében összeadódik. A Lokális Ritkulást ugyan szinte teljesen galaxisok veszik körül, de ezek eloszlás nem egyenletes. Van olyan része, ahol szinte „semmi sincs”, erről a környékről így még több anyag képes távozni. Az analógiát tovább használva, a hegyek idővel egyre nagyobbá, kiterjedtebbé nőnek, miközben a róluk lezúduló víz a völgyekben összegyűlik. Az összeáramlással a ritkulások egyre nagyobb méreteket öltenek, és pontosan ez az, ami a Lokális Ritkulással is történik.

Egy 2017-es publikáció szerint létezik egy sokkal „meghatározóbb” ritkulás is, ami mintegy „eltaszít” minket magától. Így megoldás kínálkozik a Lokális Csoportnak a kozmikus mikrohullámú háttérsugárzáshoz viszonyított túlságosan nagy sebességére. Azonban, ezzel a mostani cikk keretein belül nem foglalkozom, mert nem egy átfogó kozmológiai cikk megírása volt a célom. Kizárólag a Lokális Ritkulásra koncentrálnék. Akit mégis érdekel a téma, annak Yehuda Hoffman, Daniel Pomarede, R. Brent Tully, Helene Courtois: The Dipole Repeller című cikkét ajánlom a figyelmébe, ami az arxiv.org-on szabadon elolvasható. A Nature-ben megjelent változat fizetős. Illetve, aki csak pár percet szánna rá, annak itt egy rövid kis videó.

Okkal emeltem ki külön a fentiekben a Virgo galaxishalmazt és a Lokális Ritkulást. Ezek nemcsak remek példái a Világegyetem galaxisokkal zsúfolt, illetve üresebb térségeinek, de a további mondandóm szempontjából is fontos szerepük lesz.

Galaxisok fonala a Lokális Ritkulás peremén és a Virgo galaxishalmaz között

Az elmúlt évtizedek teljes égboltra kiterjedő távcsöves felméréseinek hála, manapság már rengeteg galaxis radiális (látóirányú) sebességét és távolságát megmérték a csillagászok. Ezek a tömeges adatok, ahogy ezt fentebb is említettem, lehetőséget adnak arra, hogy a szakemberek megállapíthassák, a galaxisok látszólagos radiális mozgása (a valóságban ezt lehet csak mérni) mennyiben származik a tér tágulásából, és mennyiben egy halmazon vagy csoporton belüli lokális gravitációs hatás okozta mozgásából. A távolságok és a galaxisok pekuliáris mozgásának ismerete remek eszköz a csillagászok kezében, hogy feltérképezzék a masszív vonzócentrumokat és a ritkulásokat a Világegyetemben. (A galaxis pekuliáris sebessége alatt, az univerzum izotropikus tágulása miatti mozgáshoz viszonyított sebessége értendő, amit a Hubble áramlás ír le. Hubble áramlás pedig a tér tágulásából származó elmozdulása az anyagnak.)

Igor D. Karachentsev, Valentina E. Karachentseva és Olga G. Nasonova 2014-ben publikálták azt a cikket (Galaxy motions in the Bootes strip), melyben alaposan szemügyre vetették az általuk Bootes Sávknak (Bootes Strip) nevezett égterületet. A szerzők a Lokális Ritkulás és a Virgo halamaz között elhelyezkedő, szétszórt galaxisok alkotta Bootes Szálat (Bootes Filament) vizsgálták a galaxisok kinematikáján és elhelyezkedésükön keresztül. Tették mindezt azért, hogy következtetéseket vonhassanak le a Virgo halmaznak és a Lokális Ritkulásnak a környezetükre gyakorolt hatásáról.

Bootes-Strip-Stellarium-01-mark2

Az égboltnak azon szelete, melyet Karachentsev és munkatárai átvizsgáltak. A Bootes Sáv (Bootes Strip) galaxisai, a halvány vörössel megjelölt égterületen helyezkednek el.

Olyan galaxisokat választottak ki, melyek radiális (látóirányú) sebessége 2000 km/s-nál kisebb volt. A kutatásban összesen 361 galaxist használtak fel mintaként. Megállapították, hogy ezek 56%-a nem magányos csillagrendszer, hanem csoportokat és párokat alkotnak. Egészen pontosan, 13 galaxis csoportról és 11 párról van szó. A 700 km/s és 1300 km/s radiális (látóirányú) sebességű galaxisok legtöbbje a sáv nyugati oldalán helyezkedik el, a Virgo halmaz szomszédságában. E nyugati galaxisok legtöbbje a Virgo halmaz erős gravitációs hatása alatt áll, vagyis annak középpontja felé mozog.

Bootes-Strip-1

Az ábra a galaxisok radiális (látóirányú) sebességét mutatja a Bootes Sávban. 14h környékén látható körív rész (zero velocity surface) választja el a Virgo halmaz centruma felé mozgó galaxisokat azoktól, melyek részt vesznek a kozmosz tágulásban. Ennek a körnek a sugara 7.2 Mpc (23.5 millió fényév) vagy 25 fok az égbolton (Karachentsev és mások – 2014). Ábra forrása: Karachentsev és mások – 2014

A Bootes Sávban a galaxisok eloszlásának egyik legmeghatározóbb sűrűsödése az NGC5846 kompakt csoport. Korábbi becslések szerint körülbelül 250 darab -12 magnitúdónál (MR) is nagyobb abszolút fényességű tagja lehet (Mahdavi és mások – 2005) ennek a halmaznak. Az NGC5846 csoport két alcsoportból áll össze a röntgen tartományban végzett megfigyelések tanúsága szerint. A tagok jellemzően két meghatározó galaxis körül, vagyis az NGC5846 és az NGC5813 elliptikus galaxis körül gyülekeznek. Mindazonáltal, a kinematikai jellemzők megkülönböztetnek egy másik alcsoportot is az NGC 5846 mellett. 9 galaxist az NGC5838 lentikuláris galaxis gravitációja ural.

Bootes-Strip-6

Az NGC5846 és az NGC5746 galaxis csoportok közeli nézete a Bootes Sáv régióban. A csoportok tagjait vonalak kötik össze a domináns galaxissal. Ábra forrása: Karachentsev és mások – 2014

A Bootes Sáv 361 galaxisából álló mintából csak 161 galaxis (45%) esetében volt ismert a távolságérték. Ezekre építve állapították meg, hogy ezek a csillagrendszerek 17 és 27 Mpc (55.4 és 88 millió fényév) között helyezkednek el. Hozzávetőleg 2/3-uk távolsága a 25 ± 5 Mpc (82 ± 16 millió fényév) tartományba esik. Fontos megjegyezni, hogy a legtöbbjüknek a távolsága a Tully-Fisher reláción alapuló érték, melynek pontossága körülbelül 20%. Ennek vonzata, hogy a látóirányú vastagsága a Bootes Szálnak összemérhető a tipikus távolságmérési hibával. Mégis, az adatokból ki tudták következtetni, hogy a Bootes Szál galaxisainak nagy része távolabb van tőlünk, mint a Virgo halmaz. Továbbá, hogy enyhén ívelt, és a csillagrendszerek távolsága folyamatosan csökken a Virgo halmaz felé. Sikerült pontosítaniuk a Virgo halmaz attribútumait is, és egyértelműen kimutatták, hogy ennek a hatalmas halmaznak a gravitációja miként vonzza maga felé a környező galaxisokat. Ugyanakkor, a Lokális Ritkulás pontos kiterjedése és centrumának pozíciója még további vizsgálatokra szorul.

Bootes-Strip-4

A Bootes Szálnak a Virgo halmazhoz és a Lokális Ritkuláshoz képesti pozícióját mutatja az ábra. A megfigyelő a diagram bal alsó sarkában helyezkedik el (LG, Lokális Csoport). A nyilak a Virgo halmaz gravitációs vonzásának, és a Lokális Ritkulás (korábban említett) taszító hatását reprezentáló vektorok. Látható, hogy ezek eredője a Bootes Szál különböző részén más és más. A Virgo halmaz körüli körív (zero velocity surface) választja el a Virgo halmaz centruma felé mozgó galaxisokat azoktól, melyek részt vesznek a kozmosz tágulásban. Ennek a körnek a sugara 7.2 Mpc (23.5 millió fényév) vagy 25 fok az égbolton (Karachentsev és mások – 2014). Ábra forrása: Karachentsev és mások – 2014

Az NGC5363 csoport galaxisai

NGC5363GG-LRGB-20200513-T11-600s-TTK

Az NGC5363 csoport galaxisai

iTelescope.net T11 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI ProLine PL11002M CCD camera

A felvételek 2020-05-14 és 2020-05-20 között készültek – Új-Mexikó (Mayhill közelében) – 24 x 600 sec L (bin2), 10 x 600 sec R,G,B (bin2)

Karachentsev és szerzőtársai a Bootes Sáv galaxisainak morfológiai besorolását külön is elvégezték, és nem csupán az égbolt felmérő programok keretében született katalógusok adataiból dolgoztak. Az egyes csillagrendszereket három nagy populációba osztották be: korai, köztes, és késői típus.

Bootes-Strip-2

A Bootes Sáv galaxisainak morfológiai besorolása: korai (Early types), köztes (Intermediate types), és késői (Late types) típus. Ez az ábra volt nagy segítségemre a fotó témájául szolgáló csoport kiválasztásában. Ábra forrása: Karachentsev és mások – 2014

A korai típusú galaxisok vörös árnyalatúak, erősen koncentráltak és kerek/elliptikus alakúak. A késői típusú galaxisok ellenben kékes árnyalatúak, alacsony koncentrációjúak, és domináns a galaktikus korongjuk. A köztes típusú galaxisok, ahogy a nevük is mutatja, az átmenetet képviselik. Vöröses színűek, közepes koncentrációjúak és van galaktikus korongjuk.

Hubble_-_de_Vaucouleurs_Galaxy_Morphology_Diagram-mini

Ma már tudjuk, hogy a Hubble-de Vaucouleurs galaxis morfológiai diagrammon a galaxisok fejlődése nem a balról jobbra irányt követi (elliptikus, lentikuláris, spirál galaxisok). Azonban, a korai elképzelések miatt, ma is használják a korai, köztes, késői típus kifejezéseket a csillagászok.

Felhasználva Karachentsev csapatának ábráját, átnéztem az Interneten elérhető STScI Digitized Sky Survey felvételeit az egyes csoportokról. Kimondottan olyat kerestem közöttük, ahol az égbolt viszonylag szűk területén a fent említett galaxis populációk vegyesen fordulnak elő. Alaposabban megnézve az említett ábrát, láthatóan csak kevés számú csoport vagy galaxis páros felelt meg ennek a kritériumnak. Ezek közül számomra az NGC5363 galaxis csoport volt az „első látásra szerelem”. Pontosan valami ilyesmit kerestem: prominens lentikulásris és spirál galaxis párosa egyetlen látómezőben, ahol az utóbbi korongjára ferde szögben látunk rá.

Az rögtön kiderült számomra, hogy az össze tagot nem tudom majd egyetlen képen megörökíteni. Például az NGC5363 centrális lentikuláris és a valamivel kisebb látszólagos méretű NGC5300 spirál galaxis távolsága az égen kb. 2.3 fok. A bérelni kívánt távcső látómezője pedig ennél jóval kisebb volt. Arra törekedtem, hogy a legtöbb nagyobb méretű halmaztagot „rápréselhessem” a felvételre. Ennek megfelelően kalkuláltam ki a távcsőnek megadott égi koordinátákat.

NGC5363GG-LRGB-20200513-T11-600s-TTK-annotated

A látómező azon galaxisai, melyek az NGC5363 galaxis csoporthoz tartoznak

Objektum RA (2000.0) DEC Magnitúdó (NED – Bt) Távolság (Mpc)** Morfológiai besorolás*** Szerepel a felvételen?
NGC5300 J134816.0+035703 13.6 21.6 tf Sc Nem
PGC1283560 J135143.0+052647 16.2   dE Nem
UGC08799 J135319.8+054618 16.32 12.1 sbf dE Nem
NGC5348 J135411.2+051338 14.18 19.8 tf Sc Igen
NGC5356 J135458.4+052001 13.63 19.5 tf Sb Igen
PGC1277985 J135502.7+050525 17.1   dEn Igen
PGC1279452* J135504.5+051122 17.18 14.8 TF BCD Igen
NGC5360 J135538.7+045906 14.8 21.5 TF Sm Igen
NGC5363 J135607.3+051517 11.1 16.6 TF S0 Igen
AGC232142 J135609.4+053234 17.38 15.1 TF Ir Nem
NGC5364 J135612.0+050052 11.19 19.5 tf Sbc Igen
SDSSJ13562 J135621.3+051944 17.37   dE Igen
UGC08857 J135626.6+042348 15.26   Sab Nem
PGC049602 J135655.6+050907 15.82   dEn Igen
PGC1266441 J135714.1+041826 17.1   Sm Nem
PGC1285591 J135723.6+053427 16.3   Sph Nem
UGC08986 J140415.9+040644 15.03   dEn Nem

Az NGC5363 galaxis csoport tagjai (Karachentsev és mások – 2014). Megadtam a koordinátákat, amennyiben az olvasó is meg szeretné figyelni őket. Feltüntettem továbbá az integrált (B szűrővel mért) fényességüket, nem a vörös eltolódáson alapuló távolság adatukat (amennyiben szerepelt ilyen), a morfológiai besorolásukat. Továbbá megjelöltem, hogy szerepelnek-e a felvételemen.

* Karachentsev és munkatársainál AGC232141, én a PGC-ben (Principal Galaxies Catalogue) szereplő azonosítóját tüntettem fel itt.

** Különböző távolságmeghatározási módszerekkel kapott értékek: sbf (surface brightness fluctuations) – a galaxis felületi fényesség fluktuációján alapuló módszer; tf/TF: A Tully-Fisher reláción alapuló módszer (TF: Karachentsev és szerzőtársai által elvégzett távolságmérés)

*** Karachentsev és munkatársai szerint

Az NGC5363 galaxis csoport a Bootes Szál Virgo halmazhoz közeli részén helyezkedik el. Annak gravitációs hatása alatt áll, így tulajdonképpen inkább a Virgo halmaz egyik nyúlványának tekinthető. Megnézve a fenti táblázatot szembetűnő, hogy a nagyobb halmaztagok szinte mind spirál galaxisok: NGC5364, NGC5356, NGC5348, NG5300 (nem szerepel a felvételemen). Kivételt képez az NGC5363 központi galaxis, mely a lentikuláris galaxisok egyik szép példánya. A kisebb méretűek inkább a törpe elliptikus galaxisok, vagy ahogy újabban nevezik őket törpe szferoidális galaxisok (Kormendy és Bedner felvetése alapján), illetve az irreguláris galaxisok közé sorolhatók be.

Mielőtt rátérnék a spirál galaxisok és a lentikuláris galaxisok közötti különbségek ismertetésére, vagyis amiért maga a kép illusztráció gyanánt készült, hadd emeljek ki külön két galaxist. Ez a kettő számomra két külön izgalmas csemege. Bár mind a kettő megjelenésében már elsőre is van valami különös, de talán mégsem ezeken akad meg elsőre az ember szeme a felvételen. Izgalmas mellékszereplői a csoportról készült fotónak. Az egyik ezek közül az NGC5360, melynek megjelenése ugyan irregularitást mutat, azonban Karachentsev-ék szerint ez egy spirál galaxis, melynél teljesen hiányzik az úgynevezett központi dudor (bulge). A másik személyes apró kedvencem a felvételen a PGC1279452, ami egy kék kompakt törpe galaxis (BCD – Blue Compact Dwarf). Ezeknek a szabálytalan alakú törpéknek a tömege a Tejútrendszer tömegének nagyjából a tizedét teszi ki. Masszív és forró csillagok hatalmas halmazaival teletűzdeltek, s mivel ezek magas felszíni hőmérsékletük miatt kékes árnyalatúak, így az egész galaxis kékben tündököl. Ez a helyzet a PGC1279452 esetében is. A masszív csillagok tömegüktől függően mindössze néhány millió, vagy néhány tízmillió évig léteznek. (A kisebb tömegű csillagok hosszabb ideig élnek.) Az, hogy olyan óriási számban fordulnak elő, annak a bizonyítéka, hogy csillagászati értelemben nem is olyan régen még viharos ütemű csillagkeletkezés zajlott ebben a kompakt törpében, s talán zajlik még most is. Most alatt természetesen azt a pillanatot értem, mikor is a fényük elindult felénk. Ezek a csillagrendszerek nem tartalmaznak túl sok port, sem nem túl sok fémet. A csillagászok minden elemet a hidrogénen és a héliumon túl a periódusos rendszerben fémnek neveznek. Egy csillag fémtartalmát általában a Naphoz szokták hasonlítani a kutatók. A világegyetem története folyamán, a csillagoknak hála egyre dúsabb lett fémekben. Az újabb és újabb csillaggenerációk már egyre több fémet tartalmaztak. A fémszegény BCD galaxisok megfigyelése tehát közelebb viheti a csillagászokat ahhoz, hogy megértsék milyen folyamatokban alakultak ki a Világegyetemben a legelső csillaggenerációk.

NGC5364-NGC5363-LRGB-20200513-T11-600s-TTK

A 16.6 Mpc-re, azaz 54 millió fényévre (Karachentsev és mások – 2014) lévő NGC5363 (a képen jobbra) lentikuláris galaxis. Ezt a típust gyakran átmenetnek szokták tekinteni a spirál és az elliptikus galaxisok között. A lentikuláris galaxisok alapvetően diszk alakúak akárcsak a spirál galaxisok. Nincsenek azonban spirálkarjaik, a korongban nem figyelhetők meg határozott struktúrák. Jellemző rájuk, hogy a központi dudor a galaxis korongjához képest viszonylag nagyméretű, és meghatározó a galaxis felépítése szempontjából. A Spitzer infravörös űrtávcsővel végzett megfigyelések szerint, az NGC5363 is pontosan ezt a felépítést követi: nagy méretű központi dudor és galaktikus korong.

Ugyanakkor, bizonyos lentikuláris galaxisokban, a küllős spirál galaxisokhoz hasonlóan szerkezet (az angol nyelvű irodalomban: bar) figyelhető meg. Bennük a csillagok dinamikája is nagyon hasonlatos a spirál galaxisokéhoz, ugyanis eltolva az ezek esetében érvényes Tully-Fisher reláció diagramját megkapjuk a lentikuláris galaxisokra jellemzőt.

Nem mondhatók elliptikus galaxisoknak sem, bár kétségtelenül vannak nagyon hasonlatos jegyeik. Éppen ezért, az elliptikus galaxisokat és a lentikuláris galaxisokat gyakran nem is olyan könnyű megkülönböztetni egymástól. Például, a színképük az öreg csillag populációjuknak hála alig tér el. A prominens központi dudor szintén jellemző mind a kettőre. Ezekben a csillagok mozgása véletlen eloszlást mutat. Nincs sem kitüntetett iránya, sem kitüntetett síkja a csillagok keringésének a centrum körül. Ellenben, a lentikuláris galaxisok korongjában van kitüntetett keringési irány, és a pályák is síkba rendezettek. Ez pedig, határozottan megjelenik az egész galaxis dinamikájában. Tekintve, hogy az elliptikusoknak nincs korongja, így megfigyelve a galaxison belüli mozgások jellegét, különbséget tudunk tenni a lentikuláris és az elliptikus csillagrendszerek között.

A lentikuláris galaxisokban csekély mennyiségű molekuláris gáz található, ezért alacsony bennük a csillagkeletkezési ráta. 21 cm-es rádióemissziójuk is jelentéktelen, mivel alig van bennük atomos hidrogént tartalmazó intersztelláris anyag. Az ionizált hidrogént tartalmazó HII régiók hiányában Hα sugárzásuk sem számottevő. Eme utóbbi tulajdonságok amúgy az elliptikus galaxisokra is jellemzők, azonban a lentikuláris típusúak porban viszonylag gazdagok. Röviden és általánosságban ezek mondhatók el erről a típusról. Ám nincs olyan, hogy átlagos lentikuláris galaxis, ez a példány pedig némileg ki is lóg a sorból.

Az NGC5363 csillagainak túlnyomó többsége 8.5-9 milliárd éves (az illesztett modelltől függő érték). Főként öreg sárgás és vöröses fényű fősorozati, vagy a fősorozatról mer elfejlődött csillagok alkotják. Nem véletlen, hogy ezek árnyalatok dominálnak a galaxisban. Ennek a populációnak a kérész életű masszív csillagai már réges-régen kihunytak, s velük tovatűnt a hajdani kékes ragyogásuk. A galaxis vörös és halott (az angol nyelvű szakirodalomban használatos „red and dead” után). De valóban leállt volna teljesen a csillagkeletkezés? Az UV tartományban végzett megfigyelésekkel mégiscsak sikerült fiatal csillagok sugárzását detektálni az NGC5363-ban. Bár az UV sugárzásra más magyarázat is lehetne (például post-AGB csillagok, planetáris ködök), de a galaxisban sikerült még Hα sugárzást is detektálni. Így együtt ez már elég érv amellett, hogy fiatal csillagok populációja is megtalálható ebben a galaxisban, még ha a galaxis tömegének csak néhány százalékát (kb. 2%) teszi is ki. A legvalószínűbb, hogy egy másik galaxissal történt összeolvadás, annak bekebelezése válthatta ki ezt a csillagkeletkezési aktivitást. Ekkor tehetett szert az NGC5363 arra a gázra, melyből e csillagok keletkeztek. Majd a forró fiatal csillagok sugárzása ionizálta ezt a gázt, így létrehozva a megfigyelt Hα sugárzást. E lehetséges forgatókönyv a galaxis más egyéb tulajdonságait is megmagyarázza.

Az NGC5363 megjelenését nagyban meghatározza a benne található por. Nézzük csak meg azokat a porsávokat! Bár az optikai tartományban is nyilvánvaló, de igazán az infravörös tartományban tanulmányozható alaposabban. És amit a csillagászok így találtak, az még őket is nagyon meglepte: abnormálisan sok a por az NGC5363-ban. A galaxisokban az intersztelláris port az öregedő csillagok termelik az úgynevezett AGB fázisban (Asymptotic Giant Branch – Aszimptotikus óriás ág). A csillagok életük eme késői szakaszában jelentős mennyiségű tömeget veszítenek, az időszakonként eltérő sűrűségű és intenzitású csillagszél révén. Hihetetlen tűnik, de ebben a folyamatban könnyen kezdeti tömegüknek több mint a felétől is megszabadulhatnak. Ezek a Napnál akár ezerszer is fényesebb, vöröses árnyalatú óriás csillagok szó szerint ledobják külső rétegjeiket, és ennek egy részéből kondenzálódnak ki a porszemcsék. Azonban, a megfigyelések tanúsága szerint, százszor annyi por van a galaxisban, mint amit ezek az idősödő csillagok képesek lettek volna valaha is előállítani. Honnan ez a sok por? A legvalószínűbb, hogy ez is külső eredetű, akárcsak a fiatal csillagok kialakulásoshoz szükséges gáz. De az NG5363 héjakból álló felépítése (ami jobb monitoron a fotómon is felfedezhető), illetve a csillagok mozgása a galaxisban is egy korábbi kozmikus karambolra utal.

NGC5363-HII-Figure-Finkelman

Az NGC5363 belső vidékének R-band kontur térképe, a kontimuumból kivont Hα+[NII] képe és a B−R színindex térképe. Forrás: Finkelman és mások (2010).

Gondosan megvizsgálva az NGC5363 belső vidékének kontinuum képéből kivont Hα+[NII] képét, a HII régiók térbeli eloszlása küllős spirál szerkezetre emlékeztet. A B−R színindex térkép alapján pedig elmondható, hogy az erős takarásban lévő belső küllő egy összetettebb porszerkezet része, amely követi a spirálszerkezetet és a galaxis főtengelye mentén nyúlik tovább. Az NGC5363 azon lentikuláris galaxisok közé tartozik, melyeknek szorosan feltekeredett spirálkarja van, és ezekben csillagok keletkeznek. Nem sok ilyet ismerünk! Nagyon is kilóg a lentikuláris galaxisok sorából.

Az NGC5363 továbbá a LINER (Low Ionization Nuclear Emission Region) galaxisok csoportjába tartozik. A LINER-ek a nevüket magjuknak színképe alapján kapták, amiben tipikusan gyengén ionizált atomok (egyszeresen ionizált oxigén, nitrogén, kén, stb.) keskeny vonalai figyelhetők meg, míg az erősen ionizált atomok (például kétszeresen ionizált oxigén) vonalai viszonylag gyengék. A LINER galaxisok közel sem olyan ritkák, mint az elsőre gondolnánk. A megfigyelések azt mutatják, hogy a környezetünkben (486 elemű, legalább 12.5 magnitúdós (BT) galaxismintát tekintve) minden ötödik-harmadik galaxis ilyen. Érdekes, hogy túlnyomórészt inkább elliptikus és lentikuláris galaxisok esetén figyelhető meg ez a jelenség, bár számottevő a spirál galaxisok mennyisége is. Az irreguláris galaxisok között viszont csak elvétve akad ilyen.

Máig vitatott, hogy pontosan miért látjuk ezeket az emissziós vonalakat a LINER galaxisok színképében. Már abban sincs egyetértés a csillagászok között, hogy egyáltalán miként jön létre maga a gerjesztés. Egyesek szerint az intersztelláris gázban terjedő lökéshullámok (shock waves), míg mások szerint a fotoionizáció (intenzív UV sugárzás) okozza azt. Nemcsak az ionizációs mechanizmus kérdésében oszlik meg a kutatók véleménye, de annak forrását illetőleg is. A csillagászok egyik jelentős tábora szerint, e galaxisok esetében a centrumban tanyázó szupermasszív fekete lyukak okolhatók a gáz gyenge ionizációjáért. Az NGC5363 magjában is tanyázik egy ilyen szörnyeteg, melynek tömege 3.75418 x 108 naptömeg (Saikia és mások – 2015). Míg más csillagászok véleménye az, hogy a LINER galaxisok megfigyelhető tulajdonságai nem a központi fekete lyuk „munkálkodásának” eredménye.  Szerintük, a csillagkeletkezési régiók fiatal, masszív és egyben forró csillagai gerjesztik a gázt. Vannak olyan csillagászok, akik nem az aktív galaxismagban, vagy éppen az intenzív csillagkeletkezésben látják a megoldás kulcsát. Sőt, éppen ezek hiányával magyarázzák az egészet. Az 1 milliárd évnél öregebb, előrehaladott fejlődési állapotban lévő csillagok, az aszimptotikus óriás ág elhagyása után (post AGB phase) rövid ideig elég forrók ahhoz, hogy képesek legyenek gyengén ionizálni a környező csillagközi gázokat. Az emisszió megfigyelésére pedig azért nyílik egyáltalán lehetőségünk, mert sem az aktív mag, sem a fiatal forró csillagok keltette sugárzás nem ragyogja túl azt.

Az NGC5364 távolságadatai viszonylag nagy szórást mutatnak. Ne feledjük, hogy a Tully-Fisher reláción alapuló mérések pontossága nem éppen a legjobb! A NED (NASA/IPAC Extragalactic Database) oldalán felsorolt publikációkban található távolságok két szélsőértéke között közel 10 Mpc az eltérés. Csak az utolsó nagyjából két évtized méréseinek mediánja alapján, a galaxis távolsága 18.1 Mpc (59 millió fényév). Ehhez egészen jól illeszkedik Karachentsev és szerzőtársai által közölt 19.5 Mpc (63.6 millió fényév) távolság.

A galaxis korongjára srégen látunk rá (inklinációja 47 fok). Ebben a galaxisban szemmel láthatóan ma is aktív csillagkeletkezés zajlik. Tökéletes ellentéte az NGC5363-nak. Nem vörös és halott galaxis. Sőt! Figyeljük csak meg a karok kékes árnyalatát, és a HII régiók vöröses-rózsaszínes pöttyeit, melyek a csillagkeletkezés csalhatatlan jelei.

NGC5364-B-Band-and-Ha-Band

Az NGC5364 B szűrővel (balra) és Hα szűrővel készült felvétele. Az elsőn a csillagkeletkezési gyűrű és a spirál karok, míg az utóbbin a HII régiók eloszlása rajzolódik ki tökéletesen. Forrás: Grouchy és mások (2010)

Az NGC5364 egyik szembetűnő tulajdonsága a két szimmetrikus, egybefüggő és határozott spirálkar (grand design galaxy). A galaxis SA (r) bc morfológiai besorolású (Grouchy és mások – 2010). SA, mert nincs küllője. A karok a centrumból indulnak, én nem a küllő két végéről. A bc jelzés arra utal, hogy a karok nem szorosan ölelik körbe a centrumot. Az (r) jelzés pedig azt jelenti, hogy belső csillagkeletkezési gyűrűje is van.

A csillagkeletkezési gyűrűk jelenléte a nem küllős galaxisokban máig nagy talány. A numerikus szimulációk azt mutatják, hogy a gyűrűk létrejöttében a küllőnek (bar) esszenciális szerepe van. Annak gravitációs hatására a csillagközi gáz jól meghatározott régiókban képes felhalmozódni. Léteznek olyan elképzelések, hogy valaha ezeknek a galaxisoknak is volt küllője, de az mára feloszlott, vagy csak elhalványulva beleolvadt a galaktikus korongba. Vagy éppen ott van a küllő, csak éppen megfelelő hullámhosszon kell vizsgálni a galaxist. A XX. századba készült galaxis osztályozások (de Vaucouleurs és mások – 1991, Sandage és Tammann – 1981) egyedül a B (kék) szűrős felvételek alapján készültek. A kék színtartományban jól láthatóak a gyűrűk és a spirál karok a fiatal csillagok révén. A küllő viszont sokszor észrevehetetlen ezeken a fotókon, mivel az ezeket alkotó idősebb csillagpopulációk kevésbé sugároznak a kék tartományban. Ezek megfigyelésére sokkal alkalmasabb a közeli infravörös tartomány. Nem egy galaxisban sikerült utólag kimutatni a küllő jelenlétét az infravörös felméréseknek hála.

Az NGC5364 esetében azonban máig nincs tudomása a csillagászoknak arról, hogy lenne küllője. Pár kutató azonban meg van győződve arról, hogy kellően erős spirális sűrűséghullámok hatására is létrejöhetnek ezek a gyűrűk olyan galaxisokban, melyeknek korongjában korábban sosem alakult ki küllő (Rautiainen és Salo – 2010). A gyűrűk megfelelő körülmények között, a spirális hullámminta sebességének belső Lindblad-rezonanciájánál formálódnak az NGC5364-hez hasonló galaxisokban. Így, a sűrűséghullámok nemcsak a karok létezésért, de a csillagkeletkezési gyűrű létezéséjért is felelősek lehetnek ennél a galaxisnál.

Figyeljük meg, hogy ez a gyűrű mennyire látványosan kiugrik a galaxis belső korongjából a fotómon, és hogy a galaxisnak és a gyűrűnek a középpontja nem esik tökéletesen egybe! Ugyanígy hangsúlyos e fiatal behemót kék csillagok fénygyűrűje a fenti képen, a B (kék) szűrővel készült baloldali mozaikon is. A galaxis spirális struktúrája szintén igen markánsan megmutatja magát a kék tartományban. De a karokat határozottan követik az ionizált gáz HII régiói is. Kitűnik a Hα keskenysávban készült fotóról az is, hogy maga a gyűrű az északi oldalon sokkal intenzívebben sugároz ezen a hullámhosszon a déli oldalához képest. Ez a tendencia igaz az egész spirális szerkezetre is. Összességében, az ionizált gáz jelenléte a galaxis északnyugati oldalán sokkal dominánsabb. Hogy mi lehet mindennek az oka? Elképzelhető, hogy a tőle északra látható NGC5363 gravitációs hatása hagyott nyomot az NGC5364 morfológiáján (Grouchy és mások – 2010). És talán ennek köszönhető a galaxis nyugati és délnyugati oldalán lévő árapály képződmény is.

Végszó

Az NGC5363 galaxis csoportról készült felvételem révén hozzájutottam az általam áhított illusztrációhoz. Nem mondanám, hogy nem kötött le és nem volt szórakoztató az az 5-6 órányi pepecselés, amíg a képet feldolgoztam a Pixinsight nevű programmal. De mire elolvastam a galaxisokhoz tartozó tudományos publikációkat, már sokkal többet jelentett nekem egyetlen fotónál. Bepillanthattam a kép mögött rejlő titkokba. És azzal, hogy mindezt „papírra vetettem” megszületett a digitális észlelést lezáró szintézis is. Számomra így lett teljes az élmény. Ezzel természetesen még nem volt vége. Következő lépésként, a digitális észlelést feltöltöttem a Magyar Csillagászati Egyesület észlelési archívumába. Ott van igazán jó helyen, és nem a fiókomban, nem a saját oldalamon, nem egy közösségi médium oldalán.

Felhasznált irodalom:

Pascal Fouque, Jose M. Solanes, Teresa Sanchis, Chantal Balkowski: Structure, mass and distance of the Virgo cluster from a Tolman-Bondi model

M. A. Pahre, M. L. N. Ashby, G. G. Fazio, S. P. Willner: Spatial Distribution of Warm Dust in Early-Type Galaxies

Ido Finkelman, Noah Brosch, José G. Funes S.J., Alexei Y. Kniazev, Petri Väisänen: Ionized gas in E/S0 galaxies with dust lanes

A.E. Sansom, E. O’Sullivan, Duncan A. Forbes, R.N. Proctor, D.S.Davis: X-ray observations of three young, early-type galaxies

M.K.Patil, S.K.Pandey, D.K.Sahu, A.K.Kembhavi: Properties of dust in early-type galaxies

R. Brent Tully, Edward J. Shaya, Igor D. Karachentsev, Helene M. Courtois, Dale D. Kocevski, Luca Rizzi, Alan Peel: Our Peculiar Motion Away from the Local Void

Brent Tully: Our CMB Motion: The Local Void influence

Ido Finkelman, Noah Brosch, José G. Funes, S.J., Alexei Y. Kniazev, Petri Väisänen: Ionized gas in E/S0 galaxies with dust lanes

R. D. Grouchy, R. J. Buta, H. Salo, E. Laurikainen: Ring Star Formation Rates in Barred and Nonbarred Galaxies

Igor D. Karachentsev, Valentina E. Karachentseva, Olga G. Nasonova: Galaxy motions in the Bootes strip

Hélène M. Courtois, Daniel Pomarède, R. Brent Tully, Yehuda Hoffman, Denis Courtois: Cosmography of The Local Universe

R. Brent Tully, Helene Courtois, Yehuda Hoffman, Daniel Pomarède: The Laniakea supercluster of galaxies

CLUES (Constrained Local UniversE Simulations) projekt

Payaswini Saikia, Elmar Körding, Heino Falcke: The Fundamental Plane of Black Hole Activity in the Optical Band

Gustavo Morales, David Martínez-Delgado, Eva K. Grebel, Andrew P. Cooper, Behnam Javanmardi, Arpad Miskolczi: Systematic search for tidal features around nearby galaxies: I. Enhanced SDSS imaging of the Local Volume

NGC660

NGC660-LRGB-20191022-T11-600s-TTK

Az NGC660 Polárgyűrűs galaxis (Polar Ring Galaxy)

iTelescope.net T11 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI ProLine PL11002M CCD camera

A felvételek 2019-10-22 és 2019-11-01 között készültek – Új-Mexikó (Mayhill közelében) – 29 x 600 sec L (bin2), 8 x 600 sec R,G,B (bin2)

Ez a roppant érdekes alakú csillagrendszer a Halak (Pisces) csillagképben található. Az NGC660 egy kis csoportosulás tagja, melyet legfényesebb galaxisa után M74 csoportnak is neveznek. Az M74-től az égbolton látszó távolsága valamivel kevesebb, mint 2.5 fok.

Fényessége 11.2 magnitúdó (V szűrővel) . Mivel a galaxis halvány, így a távcső okulárjába tekintve érdemes türelmesnek lenni. Anno, a környékbeli csillagok beazonosítása után, nekem elfordított látással (nem közvetlenül az objektumra tekintünk, hanem mellé) sikerült csak megpillantanom elsőre egy 25 cm-es Dobson távcsőben az oldalról látszó korongját. Vizuális és fotografikus észlelése is kihívások elé állítja az amatőrcsillagászt. Mindenképpen sötét, fényszennyezéstől mentes égbolton érdemes felkeresni.

NGC660-map1

Az NGC660 a Halak (Pisces) csillagképben. Hazánkban 55-56 fok magasságban delel, így az év késő őszi, kora téli időszaka a legalkalmasabb a megfigyelésére.

Tőlünk való távolsága máig némi bizonytalansággal terhelt. Csak az elmúlt 10-15 évet tekintve a csillagászok többször is megkísérelték meghatározni azt. A kapott értékek, ha nem is nagyságrendi, de jelentős szórást mutatnak. A mérések alapvetően két módszeren alapultak.

A világegyetem tágulásának köszönhetően a galaxisok színképében megfigyelhető vöröseltolódás nagysága azok távolságával arányos. Ezt az összefüggést nevezik Hubble-törvénynek. Az ember elsőre a vöröseltolódást, mint a távolodás sebességét értelmezi. A Doppler-effektusból kiindulva, szokás a vöröseltolódás mértékéül azt a sebességet megadni, amivel a galaxis távolodik tőlünk. Gyakran mondják, hogy a galaxisok távolodnak tőlünk, méghozzá látszólag annál nagyobb sebességgel, minél nagyobb a távolságuk. Ugyanezt érzékelnénk, egy másik tetszőleges galaxisból szemlélve az eseményeket. A távoli csillagrendszerek vöröseltolódása valójában nem a Doppler-effektushoz köthető, vagyis nem a megfigyelőtől távolodó galaxis mozgása okozza. Arról van szó, hogy az egész tér tágulása miatt a fény hullámhossza „megnyúlik” azon az úton, míg az adott galaxistól hozzánk elér. Minél távolabb van tőlünk az objektum, annál hosszabb utat tesz meg az onnan érkező elektromágneses sugárzás, így az égitest spektrumában a színképvonalak a távolsággal arányosan egyre jobban a vörös szín felé tolódnak. A vöröseltolódást megmérve kiszámítható tehát a távolság.

A másik lehetséges módszer az NGC660 esetében, a Tully-Fisher reláció használata (elliptikus galaxisok esetén nem használható, csak spirális és lentikuláris galaxisoknál). Ez egy tapasztalati összefüggés a galaxisok tömege vagy luminozitása és emissziós vonalainak szélessége, vagyis a galaxison belüli szögsebességek között. A részletekbe nem nagyon elmerülve, arról van szó, hogy a viszonylag könnyen mérhető galaxison belüli sebességekből meghatározható a galaxis luminozitása, és ebből pedig távolsága. Ugyanis, a galaxis csillagainak dinamikáját a galaxis tömege határozza meg, mely összefüggésben áll annak luminozitásával. Az így kapott luminozitást felhasználva, a látszólagos fényesség ismeretében a távolság már meghatározható.

A fentebb említett vizsgálati módszerek alapján, az NGC660  távolsága valahol 13.3 millió pc (43.3 millió fényév) és 14.7 millió pc (47.9 millió fényév)  között lehet. Ennek fényében, a galaxis mérete hozzávetőlegesen harmada vagy fele a mi galaxisunkénak (a távolság értékétől függően).

Az NGC660 polárgyűrűs galaxis (Polar Ring Galaxy). Ezen galaxisok körül csillagokból, gázból és porból álló gyűrűszerű képződmény figyelhető meg, mely jellemzően a galaxis korongjára nagyjából merőlegesen helyezkedik el. Az első ilyen galaxist 1978-ban figyelték meg csillagászok, és azóta is csak mintegy tucatnyit ismerünk belőlük. Ritkaságszámba mennek tehát a csillagrendszerek között.

NGC_4650A_I_HST2002

A polárgyűrűs galaxisok egy másik példánya a Hubble űrtávcső felvételén. Az NGC4650A galaxis a Centaurus csillagképben található. Forrás: The Hubble Heritage Team (AURA/STScI/NASA)

A gyűrű létrejöttére több magyarázat is létezik. A közös ezekben a teóriákban, hogy két galaxis gravitációs kölcsönhatása okozza, csupán a mikéntben vannak különbségek.

A korongra merőleges gyűrűk kialakulása a szimulációk szerint két galaxis ütközésével magyarázható. A karambolozó feleknek azonban nem azonos a „súlycsoportja”. Továbbá, a kisebb galaxis szinte teljes mértékben merőleges ütközőpályán közelíti meg a nagyobb tömegű tag korongját. Ebben a találkozóban a nagyobb fél kis partnerét teljesen megsemmisíti, és annak anyagából jön létre a nagyobb galaxis korongjára merőleges gyűrű alakú formáció. Maga a gyűrű annak mementója, hogy Dávid és Góliát harcában ezúttal nem Dávid győzedelmeskedett. A gyűrű maga a gázban gazdag kis galaxis, legalábbis ami megmaradt belőle.

Ahogy említettem, nem ismerünk túlságosan sok példányt ebből a galaxis típusból, de az NGC660 fajtájának is egyedi képviselője. A legtöbb esetben a polárgyűrűs galaxis csoportba sorolt csillagvárosok korongja úgynevezett korai lentikuláris galaxis jellemzőit mutatja. Az NGC660 korongja viszont inkább a késői lentikuláris galaxisokéra hasonlít. Ráadásul, a gyűrű nem is merőleges a galaxis korongjára, annak inklinációja durván 45 fok. Éppen ezért pár csillagász sokkal inkább preferálja a ferde gyűrűs galaxis (IRG: Inclined Ring Galaxy)  besorolását.

Ennek a tábornak a képviselői szerint, az NGC660 ferde gyűrűje nehezen értelmezhető két galaxis merőleges ütközésével. És itt lép be a második elképzelés: az árapály akkréció. Az NGC660 és a felé közelítő gázban gazdag galaxis csupán elhaladtak egymás közelében. Ennek során az NGC660 gravitációs árapály hatása „megtépázta” a másik galaxist, begyűjtve és gyűrűt formálva gázkészleteinek tekintélyes részéből.

Az biztos, hogy akár az első, akár a második elképzelés is legyen az igaz, az NGC660 mintegy újjáéledt. Hogy mire is célzok pontosan? Térjünk vissza egy pillanatra a lentikuláris (lencse alakú) galaxisokhoz. Morfológiai szempontból ezek a galaxisok átmenetet képeznek a spirál galaxisok és az elliptikus galaxisok között.

NGC4036 lenticular galaxy

A Nagy Medve csillagkép területén elhelyezkedő NGC4036 lentikuláris galaxis a Hubble Űrtávcső felvételén. A korong szinte struktúra nélküli. Egyedül a csillagközi por, az ami megtöri a viszonylagos egyhangúságot. Bár csillagok kialakulásához szükséges  intersztelláris gáz  nincs igazán bennük (nincsenek bennük hideg hidrogénfelhők), de sokuk porban gazdag. Forrás: ESA/Hubble & NASA – Judy Schmidt

A lentikuláris galaxisok alapvetően diszk alakúak akárcsak a spirál galaxisok. Nincsenek azonban spirálkarjaik, a korongban pedig álltalában nincsennek határozott struktúrák. Ugyanakkor, bizonyos lentikuláris galaxisokban, a küllős spirál galaxisokhoz hasonlóan szerkezet (az angol nyelvű irodalomban: bar) figyelhető meg. Bennük a csillagok dinamikája is nagyon hasonlatos a spirál galaxisokéhoz, ugyanis eltolva az ezek esetében érvényes Tully-Fisher reláció diagramját megkapjuk a lentikuláris galaxisokra jellemzőt.

Rádiósugárzásuk a 21 cm-es hullámhosszon nem szignifikáns, mivel híján vannak az atomos állapotban lévő hidrogén gáznak. Szintén nincs, vagy csak nagyon minimális mennyiségben fordul elő bennük molekuláris állapotú hidrogén. Mivel a hideg molekulafelhők nélkülözhetetlenek a csillagok keletkezéséhez, így manapság már nem zajlik bennük intenzív csillagkeletkezés. Utánpótlás hiányában a nagyobb tömegű, kékes árnyalatú csillagok már régen kivesztek ezekből a csillagrendszerekből. Csillagászati értelemben röpke életük szupernóva-robbanással zárult. Mára, csak a kisebb tömegű, és éppen ezért hosszabb életű sárgás, vöröses csillagok maradtak hátra. Ezek dominanciája, és a bennük lévő tekintélyes mennyiségű pornak a vörösítő hatása határozza meg a lentikuláris galaxisok színét.

NGC 936

A 8.2 m tükörátmérőjű VLT-vel (Very Large Telescope) és B, V, R, I szélessávú szűrőkkel készült felvétel az NGC936 küllős lentikuláris galaxisról. Forrás: ESO (Cerro Paranal, Chile)

Nem mondhatók elliptikus galaxisoknak sem, bár kétségtelenül vannak nagyon hasonlatos jegyeik. Éppen ezért, az elliptikus galaxisokat és a lentikuláris galaxisokat gyakran nem is olyan könnyű megkülönböztetni egymástól. Például, a színképük az öreg csillag populációjuknak hála alig tér el. A prominens központi dudor szintén jellemző mind a kettőre. Ezekben a csillagok mozgása véletlen eloszlást mutat. Nincs sem kitüntetett iránya, sem kitüntetett síkja a csillagok keringésének a centrum körül. Ellenben, a lentikuláris galaxisok korongjában van kitüntetett keringési irány, és a pályák is síkba rendezettek. Ez pedig, határozottan megjelenik az egész galaxis dinamikájában. Tekintve, hogy az elliptikusoknak nincs korongja, így megfigyelve a galaxison belüli mozgások jellegét, különbséget tudunk tenni a lentikuláris és az elliptikus csillagrendszerek között.

Ez elsőre remekül hangzik, de a megfigyeléseket több dolog is nehezíti. A teljességre törekvés nélkül, csak párat említenék ezek közül. A Doppler-effektusnak hála, a színképvonalak eltolódása sok mindent elárul a galaxison belüli mozgásokról. Kezdjük is a színképelemzés buktatóival. A spirál galaxisok esetében éppen a 21 cm-es emissziójukat szokták felhasználni, hogy kinematikájukat feltérképezzék. A lentikuláris galaxisok esetében ugye ez nem lehetséges. Mivel nincs jelentős, a fiatal és masszív csillagok által ionizált hidrogénkészletük, így a Hα emissziós vonalak vizsgálata szintén lehúzható a listáról. Maradnak az abszorpciós színképvonalak, de azokkal csak kevésbé megbízható eredményt lehet produkálni. Tegyük fel, hogy ezekre alapozva mégis elvégeztük a méréseket. Az értelmezésükhöz ismernünk kell pontosan a korong inklinációját (látóirányunkba eső tengelyferdeségét). Ez elengedhetetlen, ha a tényleges keringési sebesség érdekel minket. Ezt viszont nem is olyan triviális meghatározni ezen galaxisoknál. Akkor ott van még, hogy adott pontban nem egyszerű a korongon belüli rendezett, és a dudoron belüli rendezetlen mozgások szétválasztása. És így tovább. Lehet tehát a galaxisok csillagainak dinamikája alapján is definíciót alkotni, hogy mikor beszélünk elliptikus, és mikor lentikuláris galaxisról, de csillagász legyen a talpán aki kifésüli és értelmezi a mérési eredményeket.

Gyakran, inkább a felületi fényesség profil alapján szokták eldönteni a galaxisról, hogy az melyik típusba tartozik. Ez a profil leírja, hogy miként változik a galaxis fényessége a centrumtól távolodva. A spirál galaxisok, illetve a lentikuláris galaxisok korongjának profilja tipikusan lapos, míg az elliptikusak szférikus része, illetve a lentikulárisok központi dudorának profilja meredek esésű. A gyakorlat azonban sosem ennyire egyszerű, ugyanis lentikuláris galaxisok esetén a központi dudor jellemzően dominánsabb a koronghoz képest. Tipikusan akkor kap a galaxis lentikuláris, és nem elliptikus besorolást, ha felületi fényesség profilja nem írható le egyetlen indexszel (Sérsic index). Vagyis, csak több, különböző meredekségű görbével ábrázolható.

Sersic_models

Felületi fényesség profilok különböző Sérsic index-ek esetén. A vízszintes tengelyen található a centrumtól mért távolság logaritmusa, míg a függőleges tengelyen a felszíni fényesség logaritmusa. Az n=1 a spirál galaxisokat és a lentikulárisok korongját, az n=4 az elliptikus galaxisokat írja le jól.

Ma két elfogadott elmélet van kialakulásukra. Az egyik szerint a spirális szerkezetét elvesztett galaxisokról van szó, melyben kifogyott a nyersanyag a csillagkeletkezéshez. Míg a másik elmélet szerint galaxisok összeolvadása hozta létre eme korong alakú csillagvárosokat.

Gondoljunk csak bele, hogy a „vörös és halott” galaxis (az angol szakirodalomban gyakran használják a „red and dead” kifejezést a csillagokat már nem produkáló galaxisokra) egy ütközésnek, vagy éppen csak egy erőteljes gravitációs kölcsönhatást követő akkréciónak hála még egy esélyt kapott, hogy csillagok újabb nemzedékének adjon életet.

Az éppen folyamatban lévő csillagkeletkezés indikátorai a forró, és ezért kékes színű masszív csillagok tömeges jelenléte. Egy spirál galaxis csillagpopulációját 70%-ban az úgynevezett M típusú, Napunknál is kisebb tömegű, halvány vörös törpe csillagok alkotják. Ez az arány 90% az elliptikus galaxisoknál, és hasonló ezek arány a lentikuláris galaxisok esetében is. Hiába nagyobb a kis tömegű sárgás-vöröses halvány csillagok aránya, heves csillagkeletkezés esetén oly iramban keletkeznek csillagok ezeken a területeken, hogy igen magas lesz a nagy tömegű csillagok száma is. Ezek pedig fényükkel könnyűszerrel túlragyogják a kisebb testvéreiket. Így végső soron, nekik köszönhetően világítanak a fiatal csillagok halmazai kékes fényfüzérekként az NGC660 gyűrűjében. A masszív csillagok azonban tömegüktől függően mindössze néhány millió, vagy néhány tízmillió évig léteznek. (A kisebb tömegű csillagok hosszabb ideig élnek, ahogy már fentebb is utaltam rá.) Létezésük tehát annak bizonyítéka, hogy legalább az említett időintervallumokon belül intenzív csillagkeletkezés folyt az adott területen. Hasonlóan a fiatal masszív csillagok sugárzása által ionizált hidrogén gázfelhői, vagyis a HII régiók vöröses-rózsaszínes pamacsai is az „éppen zajló” csillagkeletkezés jelei. Nagy távolságok esetén, ahol már távcsövünk felbontása kevés, ezek fénye már gyakorta elvész a kék behemótok ragyogásában. Érdemes itt egy pillanatra megállni, és a leírtak tudatában újra megszemlélni az NGC660-ről készített felvételemet.

ngc660_gemini_legacy

Bár a saját felvételemen is már látszanak valamelyest a gerjesztett hidrogén felhők vöröses-rózsaszínes pamacsai, de érdemes megnézni ezt a Hawaiion lévő Gemini óriástávcsővel készült felvételt. Ezen tömegével látszanak vörös csillagkeletkezési régiók a gyűrűben, illetve a fiatal és fényes nagytömegű kék csillagok alkotta halmazok. A felvétel g, r, I, és Hα szűrőkkel készültek. Az ezekhez hozzárendelt színek: kék, zöld, narancs és vörös. A látómező 9.3×5.6 ívperc. Forrás: Gemini Observatory / AURA

A Hubble űrtávcsővel több száz különálló objektumra bontható fel az NGC660 gyűrűje. Ezeknek az objektumoknak tekintélyes hányada kék és vörös szuperóriás csillag. A gyűrű populációkának ezek csupán a legfényesebb tagjai, de tökéletesen megfelelnek korbecsléshez. A vizsgálatok alapján, a legfiatalabb csillagok csak alig 7 millió évvel ezelőtt alakultak ki. Továbbá, a gyűrű kb. 1 milliárd éves lehet a szín-indexén (V-I) alapuló megfigyelések szerint. Összességében tehát elmondható, hogy a hosszú ideje tartó csillagkeletkezés a gyűrűben még mind a mai napig is zajlik.

Jogosan merül fel a következő kérdés az olvasóban, ahogy a csillagászok is megfogalmazták azt. Ha csak megközelítette a kisebb galaxis az NGC660-ot, akkor hol van most? Hol a tettes? Az igazság az, hogy a csillagászok erre nem tudják a pontos választ. Amennyiben 1 milliárd évvel ezelőtt történt az esemény, akkor lehetséges, hogy mostanra már egyszerűen tovább állt. Vagyis, kimozgott abból a látómezőből, ahol eddig a csillagászok keresték.

A másik érdekesség, hogy árapálycsóváknak semmi nyoma, mint például az NGC1316, az NGC6769 és NGC6770 párosa, NGC2442, vagy az Arp 271 kölcsönható, illetve kölcsönhatáson átesett galaxisok esetében. Hogy csak pár korábbi fotómat említsem. Az igazság az, hogy mindkét említett modell esetében létrejöhet úgy a gyűrű, hogy nem alakul ki árapálycsóva. A csóva hiánya nem perdöntő bizonyíték az egyik vagy a másik elképzelés mellett.

Természetes, hogy amikor az ember először erre a galaxisra tekint, akkor a sárgás korong előtt látható kusza porsávok sziluettje, és a gyűrű ami megragadja a tekintetét. Az NGC660 magvidéke viszont legalább ennyire érdekes. Ennek megfigyelése viszont már messze túlmutat az amatőrcsillagász műszerek lehetőségein, de adott esetben még a látható elektromágneses sugárzás tartományán is. Mégis szót kell ejteni róla, hogy összeálljon az olvasó fejében a teljes kép erről a csillagrendszerről.

A mag vizsgálata talán segíthet eldönteni a fentebb boncolgatott kérdést. Amennyiben összeolvadás történt volna, akkor az NGC660 magja kettőséget kellene, hogy mutasson. Ennek viszont semmi nyomát nem találták egyelőre a csillagászok. Nincs jele annak, hogy a galaxis centrumában két szupermasszív fekete lyuk is helyet foglalna. Több olyan galaxist is ismerünk, miben két masszív fekete lyuk is található, mely egyértelmű bizonyítéka, hogy az két másiknak az összeolvadásaként jött létre.

NGC6240-3blackholes

Már korábban is ismert volt az NGC6240-ben egy szupermasszív fekete lyuk. Mivel az volt a kutatók feltételezése, hogy ez a furcsa alakú galaxis két másik összeütközése révén jött létre, így a VLT UT4 (Yepun) távcsövére szerelt MUSE műszerrel alapos vizsgálatnak vetették alá a csillagrendszert.

Ekkor jött a meglepetés, hogy nem egy, hanem rögtön másik két szupermasszív fekete lyukat is találtak a csillagászok. Ez az elsőként talált ilyen eset (2019), hogy egy galaxis centrumán környékén három ilyen behemót is tanyázik. Nincsennek is messze egymástól. Mind a három, egy nagyjából 3000 fényév átmérőjű térrészen belül helyezkedik el, ami a galaxis teljes méretének 1%-ka sincs. Egyenként kb. 90 millió naptömegűek. Az NGC6240 tehát nem is egy, hanem három galaxis összeolvadásának az eredménye. Kép forrása: P. Weilbacher (AIP), NASA, ESA, the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration, and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University)

Az NGC660 a LINER (Low Ionization Nuclear Emission Region) galaxisok csoportjába tartozik. A LINER-ek a nevüket magjuknak színképe alapján kapták, amiben tipikusan gyengén ionizált atomok (egyszeresen ionizált oxigén, nitrogén, kén, stb.) keskeny vonalai figyelhetők meg, míg az erősen ionizált atomok (például kétszeresen ionizált oxigén) vonalai viszonylag gyengék. A LINER galaxisok közel sem olyan ritkák, mint az elsőre gondolnánk. A megfigyelések azt mutatják, hogy a környezetünkben (486 elemű, legalább 12.5 magnitúdós (BT)  galaxismintát tekintve) minden ötödik-harmadik galaxis ilyen. Érdekes, hogy túlnyomórészt inkább elliptikus és lentikuláris galaxisok esetén figyelhető meg ez a jelenség, bár számottevő a spirál galaxisok mennyisége is. Az irreguláris galaxisok között viszont csak elvétve akad ilyen.

Máig vitatott, hogy pontosan miért látjuk ezeket az emissziós vonalakat a LINER galaxisok színképében. Már abban sincs egyetértés a csillagászok között, hogy egyáltalán miként jön létre maga a gerjesztés. Egyesek szerint az intersztelláris gázban terjedő lökéshullámok (shock waves), míg mások szerint a fotoionizáció (intenzív UV sugárzás) okozza azt. Nemcsak az ionizációs mechanizmus kérdésében oszlik meg a kutatók véleménye, de annak forrását illetőleg is.

A csillagászok egyik jelentős tábora szerint, e galaxisok esetében a centrumban tanyázó szupermasszív fekete lyukak a okolhatók a gáz gyenge ionizációjáért. Szerintük a kis luminozitású aktív galaxismagok (Low-Luminosity Active Galactic Nuclei – LLAGN), ahová a kevésbé fényes magú Seyfert galaxisok, és a LINER-ek is tartoznak, illetve azok a galaxismagok, melyek színképe a LINER-ek és a HII régiók közt átmenetet mutat, csupán a nagyságrendekkel intenzívebben sugárzó Seyfert galaxisoknak és a kvazároknak a rokonai. Ezen utóbbiak magjában, a szupermasszív fekete lyuk felé áramló anyag akkréciós korongot formál, s miközben befelé örvénylik, egyre gyorsabban mozog és felhevül. A folyamatban a mozgási energiájának egy jelentős része elektromágneses sugárzássá alakul. Az akkréciós korong mindkét oldalán, a forgástengely mentén plazmából álló jet-ek jönnek létre. A jet a fekete lyukhoz közeli erős mágneses térben közel fénysebességre gyorsított, töltött szubatomikus részecskék fókuszált nyalábja. A relativisztikus sebességgel mozgó töltött részecskék a mágneses térben kifelé spirálozva felelősek az úgynevezett szinkrotronsugárzásért. A kis luminozitású aktív galaxismagok hasonlóan működnek e csillagászok vélekedése szerint, csak éppen kevésbé energikusak. Míg például a kvazároknál a jet-ek hossza elérheti akár a millió fényéves nagyságrendet is, addig a kis luminozitású aktív galaxismagok esetében inkább csak fényéves méretekről lehet beszélni, de extrémebb esetekben is csak pár száz fényévről mindössze. Az eltérések az aktív galaxis magok, és a kis luminozitású aktív galaxismagok között a fekete lyukak tömegére, az anyagbefogás ütemére, az akkréciós korong fizikai paramétereire, illetve a fekete lyukat körbevevő galaktikus környezetre (por és gáz, azok hőmérséklete stb.) vezethetők vissza, hogy csak pár lehetséges okot említsek. Amennyiben tényleg rokoni szálak fűzik őket össze, akkor a LINER galaxisok alkotják az aktív magú galaxisok legnépesebb alosztályát, számuk messze lekörözi a nagyobb luminozitású Seyfert galaxisok és kvazárok számát.

 

agn_tipusok

Aktív galaxismag sematikus vázlata.

Black Hole – Fekete lyuk, Torus of Neutral Gas and Dust – Ionizálatlan gázok és por tórusza, Accretion Disk – Akkréciós korong, Radio Jet – Rádió Jet

Míg más csillagászok véleménye az, hogy a LINER galaxisok megfigyelhető tulajdonságai nem a központi fekete lyuk „munkálkodásának” eredménye.  Szerintük, a csillagkeletkezési régiók fiatal, masszív és egyben forró csillagai gerjesztik a gázt. Való igaz, hogy pár LINER galaxis esetében találtak erre utaló jeleket a közeli infravörös tartományban végzett spektroszkópiai vizsgálatok során. De a Spitzer űrtávcsővel is folytattak kampányt a csillagászok, melyben 33 LINER galaxist vetettek alá alapos spektroszkópiai vizsgálatnak a közép infravörös tartományban. Az átfogó minta elemzésével sikerült kapcsolatot kimutatni a fényes infravörös galaxisok (Luminous Infrared Galaxies – LIRGs) LINER emissziója és a csillagkeletkezési aktivitás között. Ezek olyan távoli galaxisok, amelyek főként a Világegyetem abban a korszakában léteztek, amikor a csillagkeletkezési ráta még jelentősen nagyobb volt a ma megfigyelhetőnél. A tömegével születő csillagokat egy ideig még körbevették azok a gázfelhők, amelyben keletkeztek. Az ezekben a felhőkben lévő por a csillagok fényének jelentős részét elnyelte, majd pedig visszasugározta infravörösben. Ezek az intenzív csillagkeletkezést produkáló galaxisok így nem is a látható fényben, hanem sokkal inkább infravörösben igazán fényesek. Innen származik a nevük is. Megjegyzem, hogy aktív galaxismag jelenlétét is detektálták pár esetben. Ellenben, ugyanezen vizsgálat eredményei szerint, a környező normál (nem csillagontó), az infravörösben kevésbé fényes galaxisok LINER emissziója nem a csillagkeletkezésre vezethető vissza. Nem utolsósorban az elliptikus és lentikuláris galaxisokban nem jellemző a masszív és éppen ezért forró fiatal csillagok jelenléte. Ugyanis, ezek csillagászati értelemben rövid ideig, tömegüktől függően mindössze néhány millió, néhány tízmillió évig élnek csak. Ezeknél a galaxisoknál pedig már sokkal régebben véget ért az aktív csillagkeletkezés korszaka.

Vannak olyan csillagászok, akik nem az aktív galaxismagban, vagy éppen az intenzív csillagkeletkezésben látják a megoldás kulcsát. Sőt, éppen ezek hiányával magyarázzák az egészet. Az 1 milliárd évnél öregebb, előrehaladott fejlődési állapotban lévő csillagok, az aszimptotikus óriás ág elhagyása után (post AGB phase) rövid ideig elég forrók ahhoz, hogy képesek legyenek gyengén ionizálni a környező csillagközi gázokat. Az emisszió megfigyelésére pedig azért nyílik egyáltalán lehetőségünk, mert sem az aktív mag, sem a fiatal forró csillagok keltette sugárzás nem ragyogja túl azt. Ez a magyarázat akár működőképes is lehet. Ehhez csak némi gázra és 1 milliárd évesnél öregebb csillagokra van szükség. Ez az elképzelés arra is választ adhat, hogy a LINER-ek miért főként öreg csillagok alkotta masszív galaxisok, amikben már igen kicsi a csillagkeletkezési aktivitás. Ugyanakkor azt se felejtsük el, hogy akadnak aktív magú LINER galaxisok is.

Nem könnyű eldönteni, hogy pontosan melyik teória a helyes, mert oly változatos morfológiájúak, annyira eltérő tulajdonságúak a LINER galaxisok. Könnyen lehet, és éppen e mellett teszik le a voksukat a legutóbb vázolt elmélet képviselői is, hogy az aktív magnak, a fiatal csillagok ionizációs hatásának, és a LINER tulajdonságnak a kérdését teljesen külön kell kezelni. Ez pedig jelentősen átrajzolhatja a galaxisokról alkotott képet, mivel évtizedek óta a LINER tulajdonságot az aktív mag indikátorának tekinti a kutatók jelentős része.

Mint említettem, az elliptikus és lentikuláris galaxisokban álltalában nem jellemző a masszív és éppen ezért forró fiatal csillagok jelenléte. De az NGC660 esetében a rádiótávcsöves vizsgálatok ennek ellentmondani látszanak. A galaxis központjának durván 32 fényév kiterjedésű régiója igen erős rádiósugárzást bocsájt ki. A csillagászok úgy vélik, hogy az NGC660 és a másik galaxis közötti kölcsönhatás eredményeként tekintélyes mennyiségű gáz áramolhatott a mag vidékére. Illetve, a gravitációs kölcsönhatás lökéshullámokat hozott létre ezekben a gázfelhőkben. Így, a magban is intenzív csillagkeletkezés indult be. Vagyis, nemcsak az NGC660 gyűrűjében zajlanak egyedül viharos csillagkeletkezési folyamatok. A magban hatalmas számban keletkeztek forró, fényes, kékes árnyalatú csillagok. És talán éppen ezen fiatal csillagoknak a környezetükre gyakorolt hatása felelős magáért a rádiósugárzásért. Ezek, az akár 100 naptömeget is meghaladó óriási „csillagszörnyek” rövid idő elteltével szupernóvaként robbantak fel. Ezáltal újabb lökéshullámokat keltve az intersztelláris anyagban. Végső soron, beindítva az újabb csillagkeletkezési hullámokat a csillagrendszer centrumában. Az egészet, mint egy megszaladó folyamatot kell elképzelni. Az NGC660 nemcsak polárgyűrűs, vagy mások értelmezése szerint ferde gyűrűs galaxis, de úgynevezett csillagontó galaxis is (starburst galaxy).

Mindenkit csak arra biztatnék, hogy észlelje bátran ezt az izgalmas galaxist, miközben eltöpreng egy picit a fenti dolgokon. Szemünk előtt a galaktikus evolúció egy ritka példánya. Egyetlen csillagrendszer, megannyi zavarba ejtő tulajdonsággal. Legalábbis, amíg a csillagászok ki nem bogozzák az összes szálat.

Felhasznált irodalom:

G.M.Karataeva, N.A.Tikhonov, O.A.Galazutdinova, V.A. Hagen-Thorn, V.A.Yakovleva: The stellar content of the ring in NGC 660

Brian E. Svoboda, Jeff Mangum: Temperature and Heating Mechanisms in the Polar Ring Galaxy NGC660

R. Riffel, A. Rodriguez-Ardila, I. Aleman, M. S. Brotherton, M. G. Pastoriza, C. J. Bonatto, O. L. Dors Jr: Molecular Hydrogen and [Fe II] in Active Galactic Nuclei III: LINERS and Star Forming Galaxies

Jeffrey G. Mangum, Jeremy Darling, Christian Henkel, Karl M. Menten, Meredith MacGregor, Brian E. Svoboda, Eva Schinnerer: Ammonia Thermometry of Star Forming Galaxies

R. Buta, K. Sheth, E. Athanassoula, A. Bosma, J. Knapen, E. Laurikainen, H. Salo, D. Elmegreen, L. Ho, D. Zaritsky, H. Courtois, J. Hinz, J-C. Muñoz-Mateos, T. Kim, M. Regan, D. Gadotti, A. Gil de Paz, J. Laine, K. Menendez-Delmestre, Sebastien Comeron, S. Erroz Ferrer, M. Seibert, T. Mizusawa, B. Holwerda, B. Madore: A Classical Morphological Analysis of Galaxies in the Spitzer Survey of Stellar Structure in Galaxies (S4G)

R. E. Mason, A. Rodriguez-Ardila, L. Martins, R. Riffel, O. Gonzalez Martin, C. Ramos Almeida, D. Ruschel Dutra, L. C. Ho, K. Thanjavur, H. Flohic, A. Alonso-Herrero, P. Lira, R. McDermid, R. A. Riffel, R. P. Schiavon, C. Winge, M. D. Hoenig, E. Perlman: The Nuclear Near-Infrared Spectral Properties of Nearby Galaxies

Megan Argo, Ilse van Bemmel, Sam Connolly, Robert Beswick: A new period of activity in the core of NGC660

Arp 271 (NGC5426 és NGC5427)

Arp271-NGC5426-NGC5427-LRGB-20180604-T30-300s-TTK

ARP 271, vagyis az NGC5426 (a képen balra) és az NGC5427 (a képen jobbra)

iTelescope.net T30 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI-PL6303E CCD kamera

A felvételek 2018-06-04 és 2018-06-11 között készültek – Siding Spring Observatory – 25 x 300 sec L, 10 x 300 sec R,G,B

(Kép orientációja: észak jobbra, kelet felül)

Szemezgetve a különböző csillagászati katalógusokból és felmérésekből, amatőrcsillagászként már sok évvel ezelőtt összeállítottam a saját kölcsönható galaxisokkal kapcsolatos észlelési listámat. Az egyik ilyen katalógus, Halton Arp nevéhez köthető. Arp 1966-ban megjelent Atlas of Peculiar Galaxies publikációja 338 olyan felvételt tartalmazott, melyeken a galaxisok alakja elért a szokványostól. Mindegyik valamiféle rendellenességet, különös sajátosságot mutatott. Arp célja nem volt más, mint a galaxisok fejlődésének megértése. Ugyan magyarázatai a galaxisok fejlődésével kapcsolatban mára már meghaladottá váltak, munkássága mégis rávilágított a csillagrendszerek közötti interakciók fontos szerepére.

Ma úgy gondolják a kutatók, hogy a nagyobb galaxisok mind ütközések, és összeolvadások révén jöttek létre. Igen, még a Tejútrendszer is. A „galaktikus kannibalizmus” már a kezdetektől fogva fontos szerepet játszott a csillagrendszerek fejlődésében. Noha ezek a kölcsönhatások, összeolvadások emberi időskálán nézve mérhetetlen hosszú ideig zajlanak, a csillagászok abban a szerencsés helyzetben vannak, hogy népes számú mintán keresztül tanulmányozhatják a Világegyetemet. Éppen ezért is fontos a kölcsönható rendszerek megfigyelése. Azt se felejtsük el, hogy a fény véges terjedési sebessége miatt, minél távolabb tekintünk a Világegyetemben, annak annál korábbi állapotát tanulmányozhatjuk. Így a kutatóknak lehetősége van arra, hogy feltérképezzék azon események lehetséges láncolatát, mely elvezett egészen a környezetünkben manapság megfigyelhető „modern” csillagrendszerekig.

A galaxisok közötti gravitációs kölcsönhatások igen viharos események. A másik csillagrendszer keltette árapály erők akár teljesen el is torzítják a galaxisok eredeti alakját. Csillagjaiknak egy része szétszóródhat a galaxisok közötti űrben. De hasonló sorsra juthat a bennük lévő intersztelláris médium is akár. Az árapály erők azonban nem csupán pusztítani képesek, de teremthetnek is. A gázfelhőkben olyan lökéshullámok keletkezhetnek, melynek hatására megindul azok csillagokká tömörülése. Egy új felfokozott csillaggenezis gyakorta két galaxis gravitációs interakciójának vagy éppen összeolvadásának következménye. Ne feledjük, hogy a csillagok között óriási távolságok vannak. Nagyon kicsi annak az esélye, hogy két galaxis összeolvadásakor összeütközzenek. Az intersztelláris anyag esetében már más a helyzet. Azok ütközése a már fentebb említett lökéshullámok kialakulásához vezet. Már amennyiben a galaxisoknak már eleve jelentős gázkészlete volt. Hogy mi a történet folytatása? A spirál galaxisok összeolvadása a mai elképzelések szerint terméketlen elliptikus, vagy éppen lentikuláris galaxisok kialakulásához vezet. Ezekben a csillagkeletkezés szinte teljesen leáll. Az ütközések felmelegíthetik annyira a gázt, hogy az kiszabaduljon a galaxisból, vagy éppen megakadályozza azok összetömörülését (a csillagok keletkezéséhez hideg és kellően sűrű molekuláris gázfelhőkre van szükség). Illetve, a másik lehetőség, hogy szintén az ütközésnek köszönhető heves csillagkeletkezésben egyszerűen felemésztik a gázkészleteiket.

A fotómon látható NGC5426 és NGC5427 párosa Arp 271 néven is ismert. Az égen a Szűz csillagkép irányába látszódnak, így hazánkból a megfigyelésükre a tavaszi időszak a legkedvezőbb. Az NGC5426 látszólagos mérete 3.0ʹ, míg az NGC5427 2.3ʹ. Megjegyzem, hogy ezen értékek meghatározása nem is olyan egyszerű, mivel a két galaxis átfedi egymást.

Arp271-map1

Az Arp 271 a Szűz csillagképben. A páros helyét a négyzet jelöli. A térkép delelés környékén (amikor a legmagasabbra emelkedik a horizont fölé) mutatja az ég állapotát Gödről nézve. A megfigyeléshez tehát nem szükséges távcsövet bérelni Ausztráliában. Bár kétségtelen, hogy ott a delelés sokkal magasabban következik be, így kedvezőbbek a feltételek az Arp 271 megfigyeléséhez/fotózásához.

Vajon tényleg két kölcsönható galaxisról van szó, vagy ez csupán illúzió? Ahhoz, hogy bizonyosak legyünk abban, hogy a galaxisok nem csupán egy irányba látszanak, érdemes tudni a távolságukat. Sajnálatos módon ez máig is csak meglehetősen pontatlanul ismert. A csillagászok az évtizedek folyamán több különböző módszerrel is próbálták.

Az egyik ilyen módszer az úgynevezett Tully-Fisher reláción alapul. A Tully-Fisher reláció (elliptikus galaxisok esetén nem használható, csak spirális és lentikuláris galaxisoknál) egy tapasztalati összefüggés a galaxisok tömege vagy luminozitása és emissziós vonalainak szélessége, vagyis a galaxison belüli szögsebességek között. A részletekbe való elmerülést mellőzve, arról van szó, hogy a galaxison belüli sebességekből következtetni lehet a galaxis luminozitására, és ebből pedig a távolságára. Ugyanis, a galaxis csillagainak dinamikáját a galaxis tömege határozza meg, mely pedig összefüggésben áll annak luminozitásával. Az így kapott luminozitást felhasználva a látszólagos fényesség ismeretében a távolság már meghatározható.

A Tully-Fisher reláción alapuló mérések 110 és 135 millió fényév közötti értékek között szórnak.

A világegyetem tágulásának köszönhetően a galaxisok színképében megfigyelhető vöröseltolódás nagysága azok távolságával arányos. Ezt az összefüggést nevezik Hubble-törvénynek. Az ember elsőre a vöröseltolódást, mint a távolodás sebességét értelmezi. A Doppler-effektusból kiindulva, szokás a vöröseltolódás mértékéül azt a sebességet megadni, amivel a galaxis távolodik tőlünk. Gyakran mondják, hogy a galaxisok távolodnak tőlünk, méghozzá látszólag annál nagyobb sebességgel, minél nagyobb a távolságuk. Ugyanezt érzékelnénk, egy másik tetszőleges galaxisból szemlélve az eseményeket. A távoli csillagrendszerek vöröseltolódása valójában nem a Doppler-effektushoz köthető, vagyis nem a megfigyelőtől távolodó galaxis mozgása okozza. Arról van szó, hogy az egész tér tágulása miatt a fény hullámhossza „megnyúlik” azon az úton, míg az adott galaxistól hozzánk elér. Minél távolabb van tőlünk az objektum, annál hosszabb utat tesz meg az onnan érkező elektromágneses sugárzás, így az égitest spektrumában a színképvonalak a távolsággal arányosan egyre jobban a vörös szín felé tolódnak. A vöröseltolódást megmérve kiszámítható tehát a távolság.

A NED adatbázisban szereplő vöröseltolódási értékeket és a Hubble-törvényt felhasználva az jön ki, hogy nagyjából 136-138 millió évet utazott a fény, míg az Ausztráliában lévő távcső detektoráig elért. A két galaxis vöröseltolódásában mutatkozó különbség alapján az NGC5426 van az előtérben, míg az NGC5427 a távolabbi. Szintén ebből a különbségből adódik az, hogy a kettőjük távolsága 2 millió fényév körül lehet. (Összehasonlításképpen a Tejútrendszer és az Androméda-galaxis távolsága 2.54 ± 0.11 millió fényév). Ha viszont hozzátesszük azt is, hogy a különböző katalógusokban a távolságadatok 6 millió fényéves bizonytalanságot mutatnak, akkor pusztán a szeparációjuk alapján már nem is tekinthető annyira egyértelműnek, hogy kölcsönhatásban állnak. Összefoglalva: pusztán a pillanatnyilag rendelkezésünkre álló távolságadatokra támaszkodva nem lehetünk biztosak a dologban.

Az NGC5427-re majdnem merőlegesen látunk rá, míg az NGC5426-ra srégen (az inklinációja 59). Orientációjuk olyan, hogy az NGC5426 nyugati (alsó) karja van hozzánk közelebb, míg az NGC5427 délkeleti (bal felső) oldala. Első ránézésre a spirál galaxisok korongjai nem mutatnak semmiféle kölcsönhatásra utaló jelet. Pontosabban, mintha nem mutatna torzulást. Azonban alaposan megnézve az NGC5426 nyugati (alsó) karját, olybá tűnik, mintha ezen keresztül összeköttetésben állna a másik galaxissal. Gyakori, hogy kölcsönható galaxisok között ehhez hasonló porból, gázból és csillagokból álló összeköttetés figyelhető meg. A gravitációs erők játéka által formált, a szakirodalomban hidaknak (bridge like structure) nevezett képződményeken keresztül gáz „pumpálódik át” a galaxisok között. Az átáramló gázfelhők más felhőkkel ütközve összenyomódnak. Ez pedig, nagyban hozzájárul a csillagkeletkezési ráta megugrásához.

Az éppen folyamatban lévő csillagkeletkezés indikátorai a forró, és ezért kékes színű masszív csillagok tömeges jelenléte. Egy spirál galaxis csillagpopulációját 70%-ban az úgynevezett M típusú, Napunknál is kisebb tömegű, halvány vörös törpe csillagok alkotják (ez az arány 90% az elliptikus galaxisoknál). Azonban hiába nagyobb a kis tömegű sárgás-vöröses halvány csillagok aránya, heves csillagkeletkezés esetén oly iramban keletkeznek csillagok ezeken a területeken, hogy igen magas lesz a nagy tömegű csillagok száma is. Ezek pedig a kisebb testvéreiket fényükkel könnyűszerrel túlragyogják. Így végső soron, nekik köszönhetően világítanak a fiatal csillagok halmazai kékes fényfüzérekként a galaxisban. A masszív csillagok azonban tömegüktől függően mindössze néhány millió, vagy néhány tízmillió évig léteznek. (A kisebb tömegű csillagok hosszabb ideig élnek.) Létezésük tehát annak bizonyítéka, hogy legalább az említett időintervallumokon belül intenzív csillagkeletkezés folyt az adott területen. Hasonlóan a fiatal masszív csillagok által ionizált gázfelhők, vagyis a HII régiók vöröses-rózsaszínes pamacsai is az „éppen zajló” csillagkeletkezés jelei. Nagy távolságok esetén, ahol már távcsövünk felbontása kevés, ezek fénye már gyakorta elvész a kék behemótok ragyogásában.

Bár jellemzően a spirál galaxisok karjaiban gyakoriak a csillagkeletkezési régiók, de itt szemmel láthatóan a galaxisok közötti interakció hatására robbanásszerűen megugrott a csillagok gyártása (starburst) a különböző területeken. Az NGC5426 esetében a hatalmas HII régiói különösen csomósak és gyakoribbak is a társához közelebbi oldalon. Inkább a nyugati oldala (alsó fele) bővelkedik ezekben. Míg a keleti, délkeleti oldalán gyakorlatilag nincsenek meghatározó HII területek. Hasonlóan az NGC5427-nek sincs szégyenkezni valója. Ebben a csillagrendszerben inkább az északkeleti része pöttyözött csillagkeletkezési területekkel. Az egyik monumentális régió azonban e csillagrendszer nyugati (alul) karjának vége felé helyezkedik el. Ez a kar egyébként is meglepően egyenes. Mintha árapály erők „roppantották” volna meg, tépték volna ketté a kart. Egyáltalán nem követi a „szokásos” (logaritmikus) spirális mintázatot. Érdekes, hogy a keleti karban (a karokat az indulási oldaluk alapján nevezik el) ott ér véget az intenzív csillagkeletkezés, ahol az egyenes szakasz kezdődik, majd ezt zárja le az előbb említett masszív HII „pamacs”. De nemcsak a spirálkarokban, hanem az előbb említett hidakban is megfigyelhetők a csillagkeletkezés jegyei.

Arp271-Ha-Fuentes-Carrera_et-al

Az a) ábrán a B szűrős felvétel látható az Arp 271-ről (The Carnegie Atlas of Galaxies. Volume II” – Sandage & Bedke 1994. A b) ábrán az Arp 271 monokromatikus Hα felvétele (levonva belőle a kontinuum). A HII régiókat ez a technika jól kiemeli. Még szembetűnőbb az NGC5426-ról és az NGC5427-ről leírtak. A nyíl az NGC5427 keleti karjának egyenes szakaszát mutatja. A pontozott vonal pedig azt mutatja, hogy milyennek kellene lennie egy „klasszikus” spirálkarnak. Az I. és II. régiók a hidak gázaihoz köthetők. Kép forrása: Fuentes-Carrera és mások

Hogy átfogóbb képet alkossanak a csillagászok a két galaxis egymásra gyakorolt hatásáról, spektroszkópiát alkalmazva megfigyelték az egyes galaxisokon belüli mozgásokat (Fuentes-Carrera és mások, 2003). Arra voltak kíváncsiak, hogy miként, és mennyire szabályosan rotálnak a csillagok és gázfelhők az galaxisok centrumai körül. Vajon ebben és/vagy a radiális (látóirányú) sebességekben mutatkozik-e valamiféle szabálytalanság?

A radiális sebességeket tekintve az NGC5426 mindössze igen kis dísztorziót mutat. Az NGC5427 esetében azonban a „kiegyenesített” kar radiális (látóirányú) sebessége már eltérést mutat a másik kar és ennek a karnak a többi szakaszához képest. A HII régiókhoz köthető radiális sebességek szépen kirajzolják a két galaxis közötti összeköttetést, vagyis a hidat. A legtöbb itt elhelyezkedő gázfelhő radiális sebessége inkább az NGC5426-ben megfigyelthez esik közelebb, így ezek valószínűleg ehhez a galaxishoz tartoznak. Csak a híd északkeleti részének radiális sebessége esik közel a másik galaxiséban megfigyelthez. Így, talán ez a rész az NGC5427 spirálkarjához tartozik.

A rotációs görbék tanulmányozása is érdekes eredményre vezetett. A hídnak azon a részén, ami a radiális sebességek alapján az NGC5426-hoz tartozik, több csillagkeletkezési terület (pontosabban HII régió) rotációs sebessége jól láthatóan alatta marad a galaxis átlagos rotációs sebességének. Kivételt ez alól csak az NGC5426-hoz közel esők képeznek. Ezek nem is igazán a híd részei, sokkal inkább a korongé. Az NGC5427 rotációs görbéje kevesebb anomáliát mutat. A legfigyelemreméltóbb az a hirtelen rotációs sebességcsökkenés az egyenes kar nyugati végén, melyet az utolsó előtti és a hatalmas csillagkeletkezési régió között figyeltek meg.

Az előzőekben a csillagkeletkezési régiókról volt szó. Ami még igazán különössé teszi a dolgot, hogy csakis a híd csillagait tekintve, azok egyik galaxis struktúrájához sem igazán illeszkednek. Nem követik azokat.  Orientációját tekintve, a híd szinte merőleges az NGC 5427 déli karján lévő lineáris szegmensre, és a csillagok mozgása nem azt tükrözi, hogy azok az NGC 5426 nyugati karjának részét képeznénk. Nem egyedi esetről van szó. Hasonlót megfigyeltek már az Arp 96 és az M100 esetében is. A különbség a csillagok és a gázok mozgása között elképzelhető, hogy nem gravitációs eredetű. Lehet ennek oka például a galaxist körbevevő forró gázok okozta torlónyomás (ram pressure). Vagy éppen a heves csillagkeletkezés okozta kiáramlások, illetve a jelen lévő mágneses mező. Ugyanakkor az sem zárható ki, hogy ez mégiscsak a spirális szerkezet azon része, amit a kölcsönhatás kitérített a galaxis síkjából.

Később az Arp 271-et a 4.2 méteres William Herschel távcsővel (Observatorio del Roque de los Muchachos, La Palma) is vizsgálták (Hernandez és mások, 2007). A GHαFaS Fabry-Perot interferométer spektrométerrel nyert adatokból a csillagászok megállapították (Font és mások, 2011), hogy az NGC5427 korongja mögött gázfelhők áramlanak be a galaxisba. Eredetét tekintve ez az NGC5427 közelsége miatt szakadt ki NGC5426-ból.

Több jel is utal arra, hogy a két galaxis a kölcsönhatás kezdeti fázisában áll egymással.

Arp-271-clouds-falling-towards-NGC-5427-Font

Az Arp 271 képi ábrázolása, beleértve az NGC 5427 felé zuhanó gázfelhőket. Az optimális megjelenítés érdekében két nézetben is látható az NGC5427: ahogy az égbolton látszik (bal oldali panel), és amely a felhőket a galaxis síkja mögött mutatja (orientáció észak jobbra, a kelet felfelé), és oldalnézetben (jobb oldali panel), amely érzékelteti a gázfelhők korongtól becsült távolságát. – Kép forrás: Font és mások, 2011

A kinematikai vizsgálatok alapján a csillagászok azt is megpróbálták meghatározni, hogy miként helyezkedik el a két galaxis az űrben, hogyan mozognak egymáshoz képest, és mi fog velük történni az elkövetkező néhány millió évben (Fuentes-Carrera és mások, 2003). Ami biztos, hogy az NGC5427 parabolikus mozgást hajt végre az NGC5426-hoz képest, és a másik galaxis mögül az előtérbe fog majd kerülni. Képzeljünk egy hihetetlenül hosszú életű lakót az NGC5427 valamelyik csillagjának bolygóján. Ő azt tapasztalná, hogy a közeledés során az NGC5426 korongja szinte tökéletesen merőlegesen állna a saját galaxisának síkjára. És éppen a két galaxis merőlegessége miatt nem látunk az NGC5427-ből kiinduló árapálycsóvát vagy hidat. Ahogyan, ezt az elméleti megfontolások és a szimulációk is alátámasztják. Mindazonáltal, a kölcsönhatás mégis kiváltja a heves csillagkeletkezést benne. Továbbá, a NGC5426-ból kiinduló hidat is a galaxisok térbeli orientációja miatt látjuk halványabbnak. Ugyanis, a galaxis nagy dőlésszöge (inklinációja) miatt a por eltakarja sugárzásának jelentős részét. Ez is annak a bizonyítéka, hogy az NGC5426 van a kettőjük közül közelebb hozzánk.

Tényleg bekövetkezik majd az ütközés és azt követően az összeolvadás? Vagy mindössze egy gyengébb gravitációs interakció után eltáncol egymás mellet a két galaxis? Erre jelenleg nem tudjuk a választ. Én bizonyára nem élem meg a végkifejletet, de bármi is legyen a két galaxis sorsa, afelől semmi kétségem, hogy ez a galaktikus duó nemcsak érdekes, de egyben szemet gyönyörködtető is. Mindenkinek csak ajánlani tudom, hogy tegyen próbát vele. Távcsőre fel!

Arp271-moving-Fuentes-Carrera_et-al

Az NGC5426 és NGC5427 lehetséges találkozója az elkövetkező millió években. Az NGC5426-ot mozdulatlannak tekintve szaggatott nyíl mutatja az NGC5427 mozgását hozzá képest. A kis nyilak a galaxisok rotációjának irányát mutatják. Az ábrán a korongok 3D-s orientációja is jól látható. (A vastagon satírozott réssel érzékeltette a szerző, hogy melyek a hozzánk közelebb eső peremek). Ábra forrása: Fuentes-Carrera és mások

Felhasznált irodalom:

I. Fuentes-Carrera, M. Rosado, P. Amram, D. Dultzin-Hacyan, I. Cruz-Gonzalez, H. Salo, E. Laurikainen, A. Bernal, P. Ambrocio-Cruz, E. Le Coarer: The isolated interacting galaxy pair NGC 5426/27 (Arp 271)

Beverly J. Smith, Curtis Struck, Mark Hancock, Philip N. Appleton, Vassilis Charmandaris, William T. Reach: The Spitzer Spirals, Bridges, and Tails Interacting Galaxy Survey: Interaction-Induced Star Formation in the Mid-Infrared

Joan Font, John E. Beckman, Margarita Rosado, Benoît Epinat, Kambiz Fath, Olivier Hernandez, Claude Carignan, Leonel Gutiérrez, Monica Relaño, Javier Blasco-Herrera: Detection of infalling hydrogen in transfer between the interacting galaxies NGC 5426 and NGC 5427

Beverly J. Smith, Javier Zaragoza-Cardiel, Curtis Struck, Susan Olmsted, and Keith Jones: A Comparative Study of Knots of Star Formation in Interacting vs. Spiral Galaxies

Michael König (szerző), Stefan Binnewies (szerző), Phillip Helbig (fordító): The Cambridge Photographic Atlas of Galaxies (ISBN 978-1-10718-948-5)

Manuel Brea-Carreras, Michael Thiel, Markus Pössel: Simulating Tidal Interactions between Galaxies: A Pre-University Student Project

NGC2442 – A kobra és a titkai

NGC2442-LRGB-20180115-T30-300s-TTK

NGC2442 (balra) a PGC21457 (jobbra) társaságában

iTelescope.net T30 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI-PL6303E CCD kamera

A felvételek 2016-02-05 és 2018-01-18 között készültek – Siding Spring Observatory – 34 x 300 sec L, 10 x 300 sec R,G,B

(Kép orientációja: észak alul, kelet jobbra) 

Mindig is lenyűgözött az NGC2442 morfológiája, így azóta rajta volt a digitális észlelési listámon, amióta csak belevágtam asztrofotózásba. Tekintve, hogy ez a spirális szerkezetű galaxis a déli Repülő Hal csillagkép (Piscis Volans, röviden ma már csak Volans) területén található, így hazánkban sosem emelkedik a horizont fölé. Ezért döntöttem úgy, hogy távcsőidőt bérlek az iTelescope-nál. Az ausztráliai obszervatóriumuk (Siding Spring Observatory) közel fél méter átmérőjű tükrös távcsövét választottam a múltbéli tapasztalatok alapján. Megjegyzem, hogy a cirkumpoláris (mindig a helyi horizont fölött látható) csillagrendszer még ott is csak kb. 51° magasságba emelkedik maximum, így igyekeztem a delelés környékén fotózni. Előre elkészítettem a script-eket, így a felvételek készítését teljesen automatikusan hajtotta végre a távcső. Nem valami nagy ördöngösség ez, a webes felületükön pár kattintással össze lehet rakni. Kell a célpont neve vagy koordinátája. Meg kell adni az expozíciók hosszát, azok darabszáma, monokróm CCD esetén a használni kívánt szűrők. Egyéb beállításokra is van lehetőség. Ilyen például a fókuszálás gyakorisága (bár ezt magától is rendszeresen elvégzi, ha változik a hőmérséklet, vagy szűrőváltás történik), legyen-e vezetés (a mechanikák elméletileg maguktól is képesek vezetés nélkül is 5-10 percen keresztül követni a célpontot az égen), történjen-e bolygatás (dithering) a felvételek között, stb. Belegondolva, nem nagyon van ez másként a saját távcsövünk esetében sem, azok is félig meddig robotok ma már. A különbség csupán annyi, hogy az iTelescope.net esetében szolgáltatást veszünk igénybe. Nekem ez kényelmes, praktikus, és mivel távoli hozzáférésről van szó (nincs utazás!), így időt is takarít meg. De persze döntse el mindenki saját maga!

A déli pólushoz közeli NGC2442 galaxis, az ausztrál égen cirkumpoláris Repülő Hal (Volans) csillagképben. Forrás: ESO, IAU, Sky & Telescope

A képhez a felvételek közel 2 éves időintervallumban készültek. Meg kell mondjam, nem így terveztem. Történt ugyanis, hogy 2016 februárjába elszúrtam a koordináták megadását. Teljesen banális módon nem vettem figyelembe a téglalap alakú látómező égi tájolását. A felvételre nem pontosan az, továbbá nem pontosan úgy került, ahogy azt én elképzeltem. A saját balgaságom annyira felbosszantott, hogy inkább belevágtam az NGC3201 gömbhalmaz fotózásába, mely a következő célpont volt a sorban. Az expozíciók eredményét azonban nem töröltem le.

2017/2018 tele nem volt bőkezű a derült, mély-ég megfigyelésre is alkalmas éjszakák tekintetében. Saját távcsövem már több hónapja arra várt, hogy újra kitoljam az udvarra. Januárban eszembe jutott a „2016-os fiaskó”. Felvetődött bennem a folytatás gondolata. A korábbi bosszúság már a múlt halványuló emléke volt csupán. Megnéztem, hogy mit is lehetne kihozni az adott helyzetből. Arra jutottam, hogy egyszerűen majd más lesz a kivágás. Ennek felismeréséhez 1 perc sem kellett. Nem is értettem, miért reagáltam anno túl a dolgot. Az NGC2442 és a PGC21457 galaxisok úgyis rajta lesznek a képen, és amúgy is ezek köré szerettem volna a látványt „szervezni”. Akkor meg? Nem változtattam a programon, hagytam lefutni ugyanazokkal a koordinátákkal, csupán a színszűrős felvételek elkészítését adtam hozzá. 2018 áprilisának utolsó hetében pedig végre lett időm, hogy az egyik este feldolgozzam a felvételeket.

Közelebbi törpe vagy távolabbi óriás?

Amennyiben felütünk néhány régebben kiadott könyvet, vagy egy-egy régebbi cikket elolvasunk az interneten, akkor azzal találkozunk, hogy az NGC2442 távolsága 50-54 millió fényév. (Az interneten a szerzők gyakorta egyszerűen csak átveszik az adatokat egymástól, így akár még friss cikkekben is előfordulnak ezek a számok). Ezek a régebben elfogadott értékek javarészt még a múlt században végzett, az úgynevezett Tully-Fisher relációt felhasználó méréseken alapultak (például R. B. Tully: Nearby Galaxy Catalog, 1988).

A Spirál és lentikuláris galaxisoknál használható módszer lényege nagyon röviden annyi, hogy a viszonylag könnyen mérhető galaxison belüli sebességekből meghatározható a galaxis luminozitása, és ebből pedig távolsága. Ugyanis, a galaxis csillagainak dinamikáját a galaxis tömege határozza meg, mely pedig összefüggésben áll annak luminozitásával. Az így kapott luminozitást felhasználva a látszólagos fényesség ismeretében a távolság már meghatározható. (Elliptikus galaxisok esetén a Tully-Fisher reláció nem használható.)

Időközben a műszerek és a vizsgálati módszerek azonban jelentősen fejlődtek. Így például Tully és munkatársai is új katalógust publikáltak 2009-ben, melyben az NGC2442 távolságát is felülvizsgálták. Újabb eredményeik alapján 70 millió fényév (21.5 Mpc) a galaxis távolsága.

Pár évre rá a sors újabb „mérőpálcát” adott a csillagászok kezébe. Az Ia típusú szupernóvák úgynevezett sztenderd gyertyák a csillagászatban. De mik is ezek az objektumok? Alapvetően két elképzelés uralkodik erről a csillagászatban Az egyik vezető elmélet szerint a robbanásra akkor kerül sor, amikor a fehér törpe kísérőjétől elegendő anyagot gyűjtött ahhoz, hogy tömege átlépje a kritikus Chandrasekhar-határt (1.44 naptömeg). A másik elmélet szerint két fehér törpe kering egy kettős rendszerben, egymáshoz folyamatosan közeledve. Míg végül egymásba spiráloznak, és ekkor történik az Ia típusú szupernóva-robbanás. Sokáig úgy tűnt, hogy a megfigyelések majd eldöntik a kérdést, de egyre inkább valószínű, hogy egyetlen modell nem írja el ezeket, feltételezhetően legalább két altípusból állnak. (Akit a téma részletesebben is érdekel, annak a Magyar Csillagászati Egyesület hírportálján megjelent ismeretterjesztő cikket ajánlom a figyelmébe.

Mivel roppant fényesek, így igen-igen távoli galaxisokban is megfigyelhetők. Mindenféle típusú galaxisban elfordulnak. Ráadásul, csillagászati értelemben viszonylag gyakori jelenségről van szó, mivel jellemzően egy-egy Tejútrendszer méretű galaxis életében átlagosan 1000 évente következik be Ia típusú szupernóva-robbanás. Figyelembe véve a megfigyelhető galaxisok roppant nagy számát, bizonyos megfontolások szerint havonta (nagyságrendileg) 12+ ilyen robbanást kell látnunk. Természetesen, amennyiben megfelelő rendszerességgel képesek vagyunk pásztázni az egész égboltot. De mitől sztenderd gyertyák, és hogyan használhatók a távolság kiszámítására? Az Ia típusú szupernóvák maximális fényessége nem egyezik meg teljesen. Azonban, Mark Phillips, Mario Hamuy több közreműködő kutatóval együtt kimutatta, hogy a kisebb maximális fényességűek gyorsabban fényesednek fel, majd gyorsabban el is halványodnak, míg a fényesebbek lassabban halványodnak (Phillips relationship). Maximális fényességük és fénygörbéjük karakterisztikája között kapcsolat van tehát. Nem kell mást tenni, mint a halványodás lefolyását megfigyelni (mennyit halványodott az első 15 napban), és ebből (egyéb korrekciók után) már kellő pontossággal meghatározható az abszolút fényességük. (Az abszolút fényesség megmutatja, hogy milyen fényes lenne az adott objektum, ha az 10 pc távolságra lenne tőlünk.) A látszólagos fényesség és az abszolút fényesség ismeretében a távolságuk pedig már kiszámítható. (Azonos abszolút fényesség esetén, a látszólagos fényesség a távolság négyzetével fordítottan arányos.)

Némileg árnyalja a képet, hogy a módszer a „normál” Ia típusú szupernóvák esetén működik csak. Az esetek 70%-ban tehát használható, de vannak „renitensek” az Ia-k között, akik jól láthatóan kissé másként is viselkednek. De, ahogy fentebb is utaltam rá, egyre világosabban látszik az, hogy az Ia típusra nem tekinthetünk többé teljesen homogén halmazként. Ez persze nem ássa alá magának a módszernek a használhatóságát. A „normál” Ia típus tagjai továbbra is hatalmas messzeségből látszódó, jól meghatározható abszolút fényességű objektumok. Megfelelő sztenderd gyertyák, afféle „kozmikus méterrudak”.

Igen, jól sejti az olvasó. Az NGC2442-ben is sikerült ilyen robbanást elcsípni.  Libert A. G. Monard (ismertebb néven Berto Monard) 2015 márciusában fedezte fel, a később SN2015F-ként katalogizált Ia típusú szupernóvát. Monard az AAVSO prominens tagja, ismert változócsillag észlelő (MLF névkóddal). Igaz, hogy amatőrcsillagász (vagyis nem csillagászként végzett), azonban tagja a Nemzetközi Csillagászati Uniónak is. Az SN2015F alapján a galaxis távolsága (a használt szűrők függvényében) 69-71 millió (21.2-21.8 Mpc) fényévnek adódott. Ahogy a ezt a mérést taglaló cikk szerzői, R. Cartier és munkatársai is megjegyzik, ez igen jó egyezik Tully 2009-es eredményeivel.

A Changsu Choi and Myungshin Im (Seoul National University) készítette animáció az SN2015F feltűnését és elhalványodását mutatja be. A szerzők szintén az iTelescope egyik műszerét vették igénybe tudományos megfigyeléseikhez. Céljuk a szupernóva fényességváltozásnak nyomon követése volt.

Adam G. Riess és munkatársai az NGC2442 távolságát egy harmadik, a Cepheida változócsillagokon alapuló módszer segítségével is meghatározták. Henrietta Swan Leavitt még 1912-ben felfedezte fel a Cepheida-k fényváltozási periódusa és abszolút fényessége között fennálló kapcsolatot, miután a Nagy Magellán-felhő Cepheida változóiról készült több száznyi fotólemezt áttanulmányozta. E csillagok szintén sztenderd gyertyának tekinthetünk, vagyis ezek is jól használhatók távolságmérésre. A Cepheida periódusából adódik, annak abszolút fényessége. Ennek, és a mért látszólagos fényességnek a birtokában a távolság már meghatározható. A kutatók valójában a Hubble-állandó értékének bizonytalanságát igyekeztek leszorítani. Olyan galaxisok voltak a célpontjaik melyben korábban már detektáltunk Ia típusú szupernóvát, továbbá megfelelnek annak a kritériumnak, hogy a Hubble űrtávcső képes ezeket csillagokra bontani. De legalábbis a Cepheida változóik azonosíthatók. Reiss és kutató társai 65.5 millió fényévben (20.1 Mpc) határozták meg az NGC2442 távolságát. Ez a csillagászatban még mindig elég jó egyezésnek számít a fenti három adattal.

Most már válaszolhatunk a fejezet címében szereplő kérdésre. Látszólagos méretére 5.5 x 4.9 ívpercet ír a NED (NASA/IPAC Extragalactic Database), azonban a SIMBAD (SIMBAD Astronomical Database) az infravörös megfigyelések alapján 6.2 x 5.4 ívpercet közöl. Ezekkel az értékekkel, illetve a fent felsorol három távolságadattal számolva a galaxis átmérője 100-130 ezer fényév körül lehet. A felvételen tehát egy a Tejútrendszerünkhöz hasonló, nagyobb méretű spirál galaxis látható.

Az NGC2442 megjelenéséről, avagy megannyi nyitott kérdés

NGC2442-LRGB-20180115-T30-300s-TTK-label

Az NGC2442 mellett a felvételemen látható három fényesebb galaxis. A háttérben még több érdekes galaxis is megbújik, de ezekről a cikkben nem teszek említést.

(Kép orientációja: észak alul, kelet jobbra)

Az NGC2442 kampóra emlékeztető formájára már felfedezője, John Herschel is utalt. Később aztán a csillagrendszerre akasztották a Húskampó galaxis elnevezést. Jómagam sokkal jobban kedvelem azt a hasonlatot, ami a galaxist áldozatát üldöző (PGC21457) kobrának tekinti. A képet én is ennek megfelelően forgattam el, vágtam ki. Persze bárki bármi mást is láthat benne, és ha esetleg mindössze csak magát a galaxist, az is teljesen rendjén van.

Az NGC2442 látványos megjelenését kétségtelenül a külső deformált spirálkarjainak köszönheti. Belül a spirál karok a galaxis centrumát igen szorosan ölelik körbe. Ezzel olyan benyomást keltve, mintha óriási északkeleti-délnyugati orientációjú küllője lenne a csillagrendszernek. Igaz, hogy az NGC2442 küllős spirál galaxis, azonban a valódi küllő csak 66 ívmásodperc hosszú, és keleti-nyugati irányban döfi keresztül a magvidéket. Ha már az apró struktúráknál tartunk, akkor megemlítendő, hogy a magot elliptikus alakban molekula felhők és csillagkeletkezési régiók veszik körbe (circum-nuclear ring). Ennek az ellipszisnek a nagytengely körülbelül 12.5 ívmásodperc, orientációja pedig megegyezik a küllőjével.

NGC_2442-HST-1-740px

A Hubble űrtávcső felvétele az NGC2442-ről, mely a saját fotómnál is jobban mutatja a centrum körüli vidéket.

Felhívnám az olvasó figyelmét a magtól srégen jobbra lent lévő háttér galaxisra, melyet az NGC2442-őn keresztül láthatunk. Meglepő ugye, hogy ennyire átlátszók a galaxisok? A figyelmesebbek a saját felvételemen is felfedezhetik ezt, bár ott közel sem ennyire szembetűnő. Én el is siklottam volna felette, ha korábban már nem láttam volna ezt a fotót. Egyszerűen csak az NGC2442 struktúrájának részeként tekintettem volna rá. Aki nagyon szemfüles, az több ilyet galaxist is találhat a Hubble fotóján.

Forrás: NASA és ESA

A küllő végéből kiinduló két kar az első 2 ívpercet követően teljesen aszimmetrikussá válnak. Az északi elnyúlt kar a markánsabb. Érdemes megfigyelni, hogy a prominens porsávok miként ágaznak el benne, és hogy kifelé tartva miként vesz 90 foknál is „élesebb kanyart”. A déli kar már korántsem ennyire karakteres, bár szélesebb. Itt a porsávok pedig roppant kaotikus mintázatot mutatnak. Ez a kar kívül 180 fokban fordul vissza, majd egyre kevésbé feltűnő jelenség.

De mi ennek a különös aszimmetriának az oka? Minek köszönheti ez a galaxis különös megjelenését?

Az NGC2442 az LGG 147 kompakt galaxiscsoport legnagyobb tagja. A csoporthoz még vagy egy tucatnyi kisebb galaxis tartozik. Teljesen kézenfekvő ötlet, hogy a csoport valamelyik másik galaxisát gyanúsítsuk meg azzal, hogy valamikor a múltban megközelítette az NGC2442-őt. Ilyen közeli találkozók alkalmával a két galaxis közötti gravitációs kölcsönhatás közben fellépő árapályerők erősen megtépázzák a résztvevő galaxisokat. Ezek az erők akár teljesen el is torzíthatják a galaxisok eredeti alakját. Csillagjaiknak egy része szétszóródhat a galaxisok közötti űrben. De hasonló sorsra juthat a bennük lévő intersztelláris médium is akár. Az árapály erők azonban nem csupán pusztítani képesek, de teremthetnek is. A gázfelhőkben olyan lökéshullámok keletkezhetnek, melynek hatására megindul azok csillagokká tömörülése. Felfokozott csillagkeletkezés veheti kezdetét a galaxisok egyes területein.

Chris Mihos és Greg Bothun 1997-ben tették közzé tanulmányukat melyben az NGC2442 megfigyelhető tulajdonságaiért a PGC21457 (AM 0738-692) galaxist tették felelőssé. Ha megnézzük eme utóbbi csillagrendszert, akkor valóban annak is szemmel láthatóan torzult az alakja. Valamit szemmel látni nem feltétlenül elég! Alapos morfológiai és kinematikai vizsgálatnak vetették alá az NGC2442-őt. Illetve, numerikus szimulációkat futtattak. Modellezték, ahogyan a két galaxis megközelíti egymást, kölcsönhat, majd eltávolodik egymástól. Találtak is olyan megoldást, ami az NGC2442 legtöbb tulajdonságát egészen jól megmagyarázta. Arra a következtetésre jutottak, hogy a találkozóra valamikor 150-250 millió évvel ezelőtt kerülhetett sor. Továbbá, a modelljük szerint az északi kar kialakulásában sokkal inkább a két galaxis közötti gravitációs kölcsönhatás játszotta a fontosabb szerepet, mintsem a spirál galaxisok karjait megformáló sűrűséghullám. Nem is klasszikus értelemben vett spirálkar tehát, hanem úgynevezett árapály-csóva (tidal tail). Amennyiben valóban erről van szó, az jól megmagyarázza a prominens porsáv létét, a felfokozott csillagkeletkezést, és e terület különös színképprofilját. A déli kar sokkal diffúzabb a gáz itt kevésbé tömörült össze.

A karok kinézete, kinematikája egyaránt a randevú históriáját mesélik el. Mikor a PGC21457 megközelítette az NGC2442-őt, akkor korongjának hozzá közelebbi oldalán az árapályerők nyíróhatása igen jelentős volt, igy a két galaxis közötti ideiglenesen kialakuló árapály-híd (tidal bridge) csillagai és gázfelhői hamar szét is szóródtak. Ezzel ellentétben a korong túloldala valamivel enyhébb, de még mindig elég effektív árapályhatásnak volt kitéve. Így itt egy sokkal koherensebb árapály-csóva alakult ki. A szimuláció szerint a kis galaxis az NGC2442 déli részét közelítette meg a legjobban. Mivel a korong külső része mára szignifikánsan elfordult, így ez a pont átkerült az északkeleti részre (a Földről tekintve a galaxisra). A két szerző még arra is jóslatot adott, hogy az NGC2442 és a PGC21457 nagyjából 3 milliárd év múlva egy végső találkozás folyamán összeolvad majd.

Az NGC2442 és a PGC21457 (AM 0738-692) galaxisok kölcsönhatását modellező numerikus szimuláció képkockái. Forrás: Chris Mihos és Greg Bothun

Az NGC2442 és a PGC21457 (AM 0738-692) galaxisok kölcsönhatását modellező numerikus szimuláció vizualizációja. Forrás: Chris Mihos és Greg Bothun

Chris Mihos és Greg Bothun modellje látszólag választ ad a feltett kérdésre. Van azonban némi bökkenő. Először is a PGC21457 nem mutatja egyértelmű jelét annak, hogy ő lenne a tettes. Nemhogy ez a galaxis nem, de semelyik sem az NGC2442 környékén. Természetesen lehet, hogy a lövés eldördült, de akkor kellene lennie füstölgő puskacsőnek is. Egyelőre ilyet nem találtak a csillagászok. Találtak azonban valami egészen mást.

A századforduló környékén zajlott a HI Parkes All Sky Survey (HIPASS) projekt. Célja a semleges hidrogén feltérképezése volt a 21 cm-es hullámhosszon. Korábban nem volt olyan jellegű program, ami ezen a hullámhosszon a teljes déli égboltot lefedte volna. A felmérés kiterjedt egészen az északi ég +25 deklinációig. Ehhez az ausztráliai 64 méter átmérőjű Parkes rádiótávcsövet, vagy becenevén „A Tányért” használták a csillagászok. A projekt egyik legérdekesebb felfedezése a HIPASS J0731-69 gázfelhő az NGC2442 közelében. Kinematikáját tekintve leginkább egy diffúz gázáramláshoz hasonlít. Az objektumban egyetlen csillag sincs, így az az optikai tartományban nem is látható. 1 milliárd naptömegű semleges hidrogéngázról van szó. Ez a tekintélyes mennyiség nagyjából harmada az NGC2442 teljes atomos gázkészletének.

NGC2442 - HIPASS - 0103099v1.f1

A HIPASS program keretében felfedezett HIPASS J0731-69 óriási gázfelhő, ami valaha talán az NGC2442 része lehetett. Forrás: Stuart D. Ryder és mások

Stuart D. Ryder és csapata, 2001-ben az Astrophysical Journal-ban megjelent cikkében azt feltételezi, hogy ez a hatalmas mennyiségű atomos hidrogéngáz mind az NGC2442-ből származik. De hogyan történhetett ez? Ryder-ék körül járták azt a lehetőséget, miszerint egy másik galaxissal történt kölcsönhatás tépte ki a gázt „a horgos” galaxisból. Kompakt galaxiscsoportokban egyáltalán nem ritkák az ilyen események. Esetenként, akár 100 ezer fényév hosszúságú árapály-csóvák is megfigyelhetők. Gondoljunk csak a tavaszi égbolt egyik látványosságára! A Leo hármasban (Leo triplet: M65, M66, és NGC3628) pont ilyen jelenség figyelhető meg, ami akár amatőrcsillagász műszerrel is lefotózható. Ne feledjük azonban, hogy a HIPASS J0731-69 felhőt esélyünk sincs megpillantani, az csak a rádiótartományban sugároz (eddigi ismeretek szerint).

A galaxisok közötti interakción alapuló elképzelést több dolog is bizonytalanná teszi, ugyanakkor nem elvetendő az ötlet. Sajnos a HIPASS adatai kevéssé adekvátok ahhoz, hogy eldönthető legyen egyetlen gázfelhőről van-e szó, vagy felhők csoportjáról. A felmérésből azt sem lehet egyértelműen kijelenteni, hogy van-e anyaghíd, ami összeköti az NGC2442-vel. Természetesen ismert volt a szerzők számára Chris Mihos és Greg Bothun szimulációja. Azonban, kevéssé tartották valószínűnek, hogy a PGC21457 (AM 0738-692) valaha ennyi gázt tartalmazott volna, vagy éppen ekkora mennyiséget képes lett volna kiszakítani az NGC2442-ből. Ez a galaxis „túl ártatlan ahhoz”. Ha már csillagrendszerek gravitációs csatájáról van szó, akkor csak sokkal masszívabb jelöltek jöhetnek szóba. Talán az NGC2443 elliptikus galaxis északnyugatra. Talán az NGC2397 és NGC2397A párosa. Talán. Ennek megerősítéséhez, ahogy fentebb is utaltam rá, ezeknek a galaxisoknak is mutatni kellene valami olyan tulajdonságot, ami a múltban lezajlott kölcsönhatásra utal. Ilyenről pedig egyelőre nem tudni.

Ryder és csillagászkollégái szerint azonban felvetettek egy másik eshetőséget is, amivel az NGC2442 torzult alakját és a HIPASS J0731-69 felhő létezését esetleg meg lehet magyarázni. A galaxisok közötti tér sem teljesen üres. Több halmaz esetében igen forró (10-100 millió K) gáz tölti azt ki (IGM – Inter Galactic Medium). Ennek azonban 10-4-10-2 elektron/cm3, vagyis extrém alacsony a sűrűsége. Sok-sok nagyságrenddel kisebb, mint a galaxisok atomos hidrogénjének sűrűsége, ami 0.2-100 atom/cm3. Elsőre azt gondolhatnánk, hogy a halmazban mozgó galaxisokra nincs hatással a roppant ritka gáz. Több galaxishalmaz megfigyelése azonban azt mutatta, hogy miközben a galaxisok ebben a gázban mozognak, torlónyomás lép fel, ez pedig képes letépni a csillagrendszer korongjának külső területeiről a csillagközi anyagot (Ram Pressure Stripping). Hasonlóan ahhoz, ahogy a menetszél kerékpározás közben lefújja az ember fejéről a sapkát. Ehhez nem kell más, csak az, hogy a galaxis relatív nagy sebességgel mozogjon a halmazon belül, és elég sűrű legyen a halmazon belüli gáz.

Több példát is felsoroltak a szerzők. Szerintük az NGC2276, NGC4273, NGC7421, NGC4388, NGC4654, NGC4522 esete ékesen bizonyítja, hogy érdemes foglalkozni a kérdéssel. Több esetben a Föld körül keringő műszerekkel is sikerült kimutatni a röntgentartományban a halmazon belüli gázt, bár ahogy szerzők is megjegyzik, ez azért nem minden esetben annyira nyilvánvaló. Ahogy a felvételeken is látható, az NGC2442 korongjának északi része elég éles határvonalú, míg a délkeleti, délnyugati rész igen diffúz. Ez a Hα keskenysávú felvételeken még sokkal nyilvánvalóbb. Ebből arra lehet következtetni, hogy a csillagrendszer mintegy „keresztülfúrja” magát az intergalaktikus gázon. Amennyiben tényleg helyes az elképzelés, akkor az északi kar képviseli azt az NGC2442 előtti lökéshullámot (orr-hullám, bow shock), ami a korong anyagának és a galaxisok közötti gáz ütközésének következménye. Hogy könnyebben elképzelhessük az egészet, tekintsünk a galaxisra, mint egy csónakra. A csónak orra az északi kar keleti részénél van (a képen a galaxis centrumától jobbra és le). A csónakkal ellentétben a galaxis korongja viszont forog, ami a lökéshullámot elnyújtja, és a gáz az északi kar mentén áramlik a galaxis „mögé”. A HIPASS J0731-69 tulajdonképpen a galaxis „mögött” húzódó gázáramlat, ami akár talán teljesen le is szakadhatott róla. Korábbi megfigyelések eredményei (Houghton 1988), mely a galaxisban a semleges hidrogéngáz mozgására vonatkoztak, alátámasztani látszanak ezt a teóriát.  Pontosabban, akár ezzel is magyarázhatók. A ROSAT HRI felvételein, vagyis a röntgentartományban viszont alig látszik az NGC2442, nem is beszélve bármiféle forró gázról a környékén.

Bár nem történt meg az egész galaxis molekuláris gázainak feltérképezése (12CO emissziós vizsgálat), de úgy tűnik, hogy az jelentős koncentrációt mutat az északi kar keleti részén, ahol az visszahajlik. Tekintve, hogy a molekuláris gáz inkább a galaxis korongjára jellemző, így bármiféle aszimmetria annak eloszlásában, az az árapály elképzelés malmára hajtja a vizet. Továbbá, a csillagászok tapasztalata alapján a torlónyomás (ram pressure) a molekuláris hidrogént inkább összetömöríti, míg az atomos hidrogént pedig kisöpri a galaxisból. Az atomos és molekuláris gáz aránya az NGC2442-ben viszont teljesen közel áll ahhoz, ami az ilyen típusú (Sbc) galaxisoknál megszokott.

Mit lehet ezek fényében mondani? Pillantson csak az olvasó újra ennek a résznek a címére! Elképzelhető, hogy az NGC2442 felépítése annak köszönhető, hogy korábban valamelyik környékbeli galaxis megközelítette. Hogy melyik, abban nem lehetünk egyelőre biztosak. Azonban, nem zárható ki, hogy a galaxisok között lévő gázzal való ütközés formálta ilyenre az alakját. Konkrét válaszok helyett – kevés biztos akad, inkább azt szerettem volna megmutatni, hogy miként működik a csillagászat tudománya. Megfigyelés és analitikus gondolkodás folyamata ez. Ebben az esetben is van még bőven feladvány. Újabb megfigyelésekre, újabb megfontolásokra lesz még szükség.

Az NGC2442-nek nemcsak a megjelenése lenyűgöző, hanem az is, ahogy egyelőre féltve őrzi titkait. Én mindenesetre továbbra is figyelni fogom a vele kapcsolatos újabb fejleményeket. A fotó elkészítésével még nem ért véget a kettőnk közötti „affér”.

Felhasznált irodalom:

Chris Mihos, Greg Bothun: NGC 2442: Tidal Encounters and the Evolution of Spiral Galaxies

S. D. Ryder, B. Koribalski, L. Staveley-Smith, V. Kilborn, D. Malin, G. Banks, D. Barnes, R. Bhatal, W. de Blok, P. Boyce, M. Disney, M. Drinkwater, R. Ekers, K. Freeman, B. Gibson, P. Henning, H. Jerjen, P. Knezek, M. Marquarding, R. Minchin, J. Mould, T. Oosterloo, R. Price, M. Putman, E. Sadler, I. Stewart, F. Stootman, R. Webster, A. Wright: HIPASS Detection of an Intergalactic Gas Cloud in the NGC 2442 Group

J. Harnett, M. Ehle, A. Fletcher, R. Beck, R. Haynes, S. Ryder, M. Thierbach, R. Wielebinski: Magnetic fields in barred galaxies III: The southern peculiar galaxy NGC 2442

Anna Pancoast, Anna Sajina, Mark Lacy, Alberto Noriega-Crespo, Jeonghee Rho: Star formation and dust obscuration in the tidally distorted galaxy NGC 2442

https://arxiv.org/abs/1009.1852

Adam G. Riess, Lucas M. Macri, Samantha L. Hoffmann, Dan Scolnic, Stefano Casertano, Alexei V. Filippenko, Brad E. Tucker, Mark J. Reid, David O. Jones, Jeffrey M. Silverman, Ryan Chornock, Peter Challis, Wenlong Yuan, Peter J. Brown, Ryan J. Foley: A 2.4% Determination of the Local Value of the Hubble Constant

R. Cartier, M. Sullivan, R. Firth, G. Pignata, P. Mazzali, K. Maguire, M. J. Childress, I. Arcavi, C. Ashall, B. Bassett, S. M. Crawford, C. Frohmaier, L. Galbany, A. Gal-Yam, G. Hosseinzadeh, D. A. Howell, C. Inserra, J. Johansson, E. K. Kasai, C. McCully, S. Prajs, S. Prentice, S. Schulze, S. J. Smartt, K. W. Smith, M. Smith, S. Valenti, D. R. Young: Early observations of the nearby type Ia supernova SN 2015F

 

NGC185 elliptikus törpegalaxis és gömbhalmazai

NGC185-LRGB-20170730-0142-sx-bin2-360s-TTK

NGC185

2017-07-30, 2017-08-21, 2017-08-25 – Göd

21 x 360 sec L (Bin2), 10 x 360 sec R (Bin2), 10 x 360 sec G (Bin2), 10 x 360 sec B (Bin2)

300/1200 Newton távcső – Paracorr Type2 kóma korrektor – eredő fókusz 1380 mm

SkyWatcher EQ-6 Pro GoTo mechanika

SXVR-H18 CCD kamera, Hutech IDAS P2 LPS filter és Baader RGBL fotografikus szűrőszett

Nagyon is jól emlékszem az estére, amikor az első felvételeket rögzítettem ehhez a fotóhoz. Az amúgy sem hosszú nyári éjszaka nagy részét azzal töltöttem, hogy ismerkedtem a nemrég beszerzett Stralight Xpress Lodestar X2 Autoguider vezető kamerámmal és a PHD2 programmal. A Lacerta MGEN standalone autoguider-t, mely évekig szolgált, ezzel a felállással váltottam ki. Már vészesen közeledett a hajnali 2 (NYISZ), mikor úgy éreztem, most már tényleg minden rendben, és nem kívánok már többet foglalkozni a hosszabb expozíciók készítéséhez elengedhetetlen vezetéssel. Elégedett voltam a beállításokkal, a PHD2-ről pedig éppen eleget tudtam már. Volt még idő pirkadatig, és mivel eleget szereltem, kábeleztem, teszteltem a rendszert ezen az estén, úgy éreztem, jár nekem némi jutalom. Különben is jobban szeretem, ha én dolgoztatom a műszereket, és nem ők engem. Igaz, meghálálják a törődést.

Az elmúlt években az érdeklődésem egyre jobban a galaxisok és a gömbhalmazok felé fordult. Ó, nem mintha a többi, a Naprendszer határain túli úgynevezett mély-ég objektum nem lenne érdekes és csodálatos! Nagyon is az! Egyszerűen csak engem eme két objektum típus megismerése, megfigyelése, esetleges megörökítése lelkesít a legjobban. Nyilván mások preferenciái eltérők, de így van ez rendjén. És akkor még a Naprendszer béli égitesteket nem is említettem. Mostanában egyre gyakrabban kapom magam azon, hogy holdas éjszakákon kint vagyok az udvaron, és távcsővel fürkészem kísérőnket, mint kezdetekben. Néha még képet is készítek egy-egy alakzatról a felszínén.

Visszatérve a galaxisokra és a gömbhalmazokra, akkor hajnal felé az a gondolatom támadt, hogy miért ne lehetne ötvözni a kettőt. Legyen a célpont valamelyik „szomszédos” csillagrendszer és annak gömbhalmazai! Az Androméda, a Cassiopeia csillagképek és ezek környezet már elég magasan járt az égbolton ahhoz, hogy a megfelelő jelölt fényképezésébe belevágjak. Hamar leszűkítettem a kört, mert a városi égbolt, a távcsövem látómezője, és az átlátszóság behatárolta a lehetőségeimet. Érdekes, hogy a légköri nyugodtság a szokásoshoz képest egészen jó volt. Választhattam volna a 2.5 millió fényévre lévő Androméda-galaxist (M31) és a gömbhalmazait is akár, de ennek 3.167° × 1° kiterjedése miatt mozaik felvételeket kellett volna készítenem. Elhessegettem ezt a gondolatot. Az elmúlt években egyébként is sok szép észlelés és fotó készült róla. Az Andromédának több tucatnyi szatellit galaxisa van azonban, melyek közül akadnak olyanok, amik amatőr műszerekkel is megfigyelhetők. Nem egynek pedig régóta ismert több gömbhalmaza.

Az NGC147 és az NGC185 elliptikus törpegalaxisok között vívódtam. Ezt a kettő, az M31-et kísérő csillagrendszert 58′ választja el egymástól az égen, de a valóságban is csak nagyjából 300 ezer fényév (kb. 93 kpc) a köztük lévő távolság. A látszólagos közelségük miatt gyakorta egyetlen fényképen szokták megörökíteni ezeket a rövidebb fókuszú amatőr távcsövekkel. Az én műszeremmel viszont nem lehet ekkor égterületet átfogni. Választanom kellett. Az NGC185 távolsága 2.02 millió, míg az NGC147 távolsága 2.3 millió fényév. Az NGC185 valamivel közelebb van tehát. Mondhatnánk, hogy némileg több az esély a részletek megörökítése tekintetében. Valójában azonban nem ez volt az egyetlen szempont, hogy az NGC185 mellett tettem le a voksomat. A két törpegalaxis egészen más megjelenésű és felépítésű. Régebbi vizuális megfigyeléseim alapján még jól emlékeztem rá, hogy az NGC185 felületi fényessége számottevően nagyobb, mint az NGC147 galaxisé, így a fényszennyezett égen az előbbi lefényképezése jóval több sikerrel kecsegtetett.

NGC185-map4

Az NGC185 a Cassiopeia csillagképhez tartozó égboltterületen látható, nagyjából „félúton” helyezkedik el az Androméda csillagkép és a Cassiopeia jellegzetes „W” alakot formáló csillagai között. Vagy, ha úgy tetszik, akkor „félúton” az Androméda-galaxis és a Cassiopia Shedar nevű csillaga között. Az Androméda-galaxishoz nemcsak látszólag, de valójában is közel van. A két galaxis távolsága 600 ezer fényév (181 kpc).

Továbbá, ahogy Walter Baade is írta a múlt század negyvenes éveiben: „Az NGC185 egyike azon elliptikus ködöknek, ahol a fényelnyelő anyag jelenléte teljesen nyilvánvaló. Két ilyen sötét köd is van az NGC185 centrumának közelében.”. Ezek az én felvételemen is jól láthatók, egy markáns és egy jóval kevésbé sötét ív formájában. A semleges hidrogén megfigyelésével kapcsolatos vizsgálatok alapján ma már tudjuk, hogy az NGC185 gázkészlete közel 300 ezer naptömeg. Az infravörös tartományban készült felvételek tanúsága szerint pedig nagyjából 5000 naptömegnyi por van jelen ebben a galaxisban. Ezzel szöges ellentétben, az NGC147-ben nincs számottevő, azaz észlelhető mennyiségű por és gáz. Ez volt az a másik különbség a két galaxis között, ami még vonzóbbá tette számomra az NGC185-öt.

Meg kell mondjam, hogy ezek a látszólagosan kicsiny porívek számomra különösen izgalmassá teszik ezt a galaxist. Jogosan merül fel a kérdés, hogy miként lehetséges a csillagközi por és a gáz jelenléte az NGC185-ben, míg a tőle nem is oly távoli NGC147 szegényes intersztelláris médium tekintetében. A legvalószínűbb magyarázat, hogy más evolúciós utat jártak be, mivel eltérő az M31 körüli pályájuk konfigurációja. Az NGC147-et a múltban sokkal gyakrabban és nagyobb mértékben érintette az M31 gravitációs hatása. Pályáján közel kerülve az Androméda-galaxishoz, az óriás spirális csillagrendszer kiszakította belőle a port és a gázt. Míg az NGC185 keringési periódusa elég nagy ahhoz, hogy az Androméda-galaxissal csak kevesebb számú „gravitációs csatát vívott”. Továbbá, pályájának pericentruma távolabb esik az Androméda-galaxistól, mint az NGC147-é, így ezek a „csaták” kevésbé voltak intenzívek. Összességében, mivel az az NGC185 csak ritkábban, és kevésbé közelítette meg az M31-et, így megőrizhette por és gáz készleteinek bizonyos részét.

Az NGC185 „felülete” nem véletlenül kelt a fotómon szemcsés zajos benyomást. Ez nem a felvételek rögzítésének, illetve a feldolgozásuknak a hibái. 300 mm átmérő és 1380 mm (a korrektor miatt) fókusztávolság esetén a galaxis fotografikusan már mutatja a csillagokra való bontás legelső jeleit. Ezt igyekeztem finoman még szembetűnőbbé tenni a kép kidolgozásakor. (Az általam használt PixInsight csillagászati képfeldolgozó program ehhez remek eszközökkel van felvértezve.) Már a megtisztított és összeadott képet először látva olyan benyomásom támadt, mintha az okuláron keresztül egy már a csillagokra bontás határán lévő halvány, „grízes” gömbhalmazt néznék. Bár a felvételemen már látszik „valami”, de többnyire ez összeolvadó csillagok fénye. Ahhoz, hogy ez a galaxis valóban teljesen csillagjaira essen szét, ennél azért tekintélyesebb átmérőre és jóval hosszabb fókuszra van szükség. Mondjuk a Hooker távcsőre, amivel több mint hét évtizeddel a saját felvételem előtt ez először sikerült. Néhány gondolat erejéig tekerjük most vissza az idő kerekét!

Walter Baade a II. világháborús elsötétítések miatt kiváló körülmények között dolgozhatott a világ akkor legjobb távcsövével. A Mount Wilson-on álló 100 hüvelykes távcsőre ma is legendaként tekintenek a csillagászok. Baade minden korábbinál nagyobb határfényességű képeket készített az Androméda-galaxisról, és igen meghatározó felismerést tett: a galaxis különböző területeire más-más típusú csillagok a jellemzők. Míg a karokban a kékes fényű csillagok domináltak a felvételein, addig a magvidéken a vörösebb, és halványabb csillagok. Bevezette a csillagpopulációk fogalmát. A fémekben gazdag csillagokat az I. populációba, míg a fémekben szegényeket II. populációba sorolta. A csillagászok minden elemet a hidrogénen és a héliumon túl a periódusos rendszerben fémnek neveznek. Az 1940-es évek igen termékenyek voltak a csillagászat terén. Nemcsak a megfigyelő csillagászat élte a forradalmát, de a kutatók addigra megértették a csillagok energiatermelési folyamatait. A csillagok belső felépítésével és fejlődésükkel kapcsolatos első számítások is ehhez az évtizedhez köthetők. Még ha csak a kezdetekről is beszélünk. Idővel világossá vált a csillagászok számára mi is okozza a kémiai összetétel különbségét a populációk között. Egy csillag fémtartalmát általában a Naphoz szokták hasonlítani a kutatók. A világegyetem története folyamán, a csillagoknak hála egyre dúsabb lett fémekben. Az újabb és újabb csillaggenerációk egyre több fémet tartalmaztak, így minél alacsonyabb fémtartalmú egy csillag a Naphoz képest, vélhetőleg annál ősibb objektum. A Baade féle populációk tehát csillaggenerációk, ahol az I. populáció a fiatalabb, a II. populáció pedig az idősebb csillagok tartoznak. Igaz, hogy napjainkra ezt a csoportosítást már tovább finomították, és nem csak két populációról szoktak beszélni, de a felismerés jelentőségéből ez mit sem von le. Sőt, Baade munkássága nemcsak a galaxisok csillagösszetételéről alkotott elképzeléseket változtatta meg, de a Világegyetem méreteivel kapcsolatosakat is.

A szomszédos óriás spirál galaxis, az M31 csillagait korábban már Edwin Hubble is tanulmányozta a 100 hüvelykes Hooker távcsővel.  Hubble Cepheida típusú változócsillagokat keresett az Androméda-galaxisban, hogy meghatározhassa annak távolságát.

Henrietta Swan Leavitt még 1912-ben felfedezte fel a Cepheida-k fényváltozási periódusa és abszolút fényessége között fennálló kapcsolatot, miután a Nagy Magellán-felhő Cepheida változóiról készült több száznyi fotólemezt áttanulmányozta. E csillagok úgynevezett standard gyertyaként használhatók a csillagászatban távolságmérésre. A Cepheida periódusából adódik, annak abszolút fényessége. Ennek, és a mért látszólagos fényességnek a birtokában a távolság pedig már meghatározható.

Hubble-nek sikerült is azonosítania ilyen típusú változócsillagokat az M31-ben. A periódus-fényesség relációjuk felhasználásával bizonyította 1926-ban, hogy az Androméda-galaxis a Tejútrendszeren kívül elhelyezkedő önálló csillagváros, és ezzel pontot tett egy régóta húzódó vita végére. Azt is fontos megemlíteni, hogy Hubble még pontatlanul, csak 1.5 millió fényévet kapott a galaxis távolságára. Mostani ismereteink szerint ez 2.54 millió fényév. Csak Baade jött rá később, így Hubble még nem tudhatta, hogy bár a Cepheida változóknak mind a két populációban vannak képviselőik, ezeknek azonban némileg eltérő a periódusa és fényessége közötti összefüggés (a két populáció Cepheida változói eltérő fényességűek). Az Univerzum „hirtelen nagyobb lett”, az Androméda-galaxis pedig „távolabb került” tőlünk.

Baade vizsgálatai nemcsak az M31-re, de annak két kísérő galaxisaira is kiterjedt 1943-ban. Az M32, illetve az M110 törpe galaxisok különálló csillagai is szépen látszottak a Hooker távcsővel készült fotólemezeken. Itt is sikerült kimutatnia a két jól megkülönböztethető populáció jelenlétét. Illetve megfigyelései megerősítették, hogy ezek egyértelműen az M31 szatellit galaxisai. Bár ezt addig is sejtették a csillagászok, mert az M31-hez hasonlónak találták a radiális sebességüket, és gömbhalmazaik látszólagos mérete is összemérhető volt az Androméda-galaxis gömbhalmazaiéval. Azonban az a tény, hogy a legfényesebb csillagok látszólagos fényessége nagyon hasonló az M31-ben, az M32-ben és az M110-ben még jobban alátámasztotta ezt.

De nem állt meg ennél a két törpe méretű csillagrendszernél, és az az NGC185-ről és az NGC147-ről is készített felvételeket. A két galaxis csillagait tanulmányozva megállapította, hogy érdekes módon az NGC147 csak II. populációba tartozó csillagok alkotják. Az NGC185 esetében viszont érdekes dolgot sikerült konstatálnia: bár a csillagok itt is túlnyomórészt II. populációjúak, de a centrum környékén talált egy tucatnyi kék színű csillagot, melyek az I populációt reprezentálják ebben a galaxisban. Mondhatjuk, hogy ez meghökkentette, mindenesetre speciálisnak (peculiar) jelölte meg a galaxist. Úgy gondolta, hogy az NGC185 csillagkeletkezési folyamatai sajátságosak lehettek.

M. Geha és munkatársai a Hubble űrtávcsővel 2009/2010 telén vizsgálták a környező törpegalaxisokat, és munkájuknak hála ma már többet tudunk az NGC185 csillagkeletkezési történetéről. De miért foglalkoztatja ennyire például az NGC185 a csillagászokat? (Az említett tanulmánynak része az NGC147 is, ezzel az objektummal e helyütt most nem foglalkozom). Az elliptikus törpegalaxisok jobbára, ha nem szinte kizárólagosan, galaxishalmazokban, galaxis csoportosulásokban fordulnak elő. Éppen ezért a környezeti hatások roppant fontos szerepet játszottak kialakulásukban és fejlődésükben. E galaxisok morfológiája azonban olyan sokszínűséget mutat, hogy manapság sem lehet leírni kialakulásukat egyetlen folyamattal. Ugyan mások már korábban tanulmányozták például a Fornax és Virgo halmaz törpegalaxisait, de ezek oly messze vannak, hogy igazán pontosan nem sikerült megállapítani, hogy mennyi bennük az öreg és középkorú csillagok aránya, és a csillagkeletkezési történetükre sem derült fény. A Lokális Csoportban három olyan elliptikus törpegalaxis is van (M110/NGC205, NGC185, NGC147) melyek alapvetően hasonló tulajdonságokat mutatnak, mint a távolabbi galaxishalmazok törpéi. Ami pedig a legfontosabb, ezek kellően közel vannak ahhoz, hogy a Hubble űrtávcső csillagokra bontsa őket, oly módon, hogy még a fősorozat csillagai is részletesen tanulmányozhatóvá váljanak, és nemcsak az ezeknél jóval fényesebb óriás ágak csillagai. Így ez a három csillagrendszer kitűnő terepet nyújt az elliptikus törpegalaxisokkal kapcsolatos vizsgálatokhoz. Mondhatjuk, hogy a mai műszerezettég mellett ezek jelentik a belépőt a megismerésükhöz.

A kutatók programjuk során fotometriai vizsgálatoknak vetették alá az NGC185 csillagait, és felvették annak szín-fényesség diagramját (Color Magnitude diagram – CMD), mely tulajdonképpen a klasszikus Hertzsprung-Russel diagram (HRD) „gyakorlatias” változata. A vízszintes tengelyen két különböző szűrővel mért fényesség értékek különbsége (jelen esetben HST ACS F606W-F814W) van feltüntetve a színképosztály helyett. A függőleges tengelyen pedig ezek közül az egyik színszűrővel (HST ACS F606W szűrő) felvett fényességérték szerepel.

NGC185-CMD2

Az NGC185 szín-fényesség diagramja. A fekete pöttyök az NGC185 három külön területén megfigyelt csillagokat reprezentálják. A vörös pöttyök azok a csillagok melyek spektrumát a Keck/Deimos programban vették fel. Az ábra jobb felén az egyes fényességekhez tartozó hibahatárok vannak feltüntetve (1 sigma error bars). Forrás: M Geha és mások

A csillagok egy részét spektroszkópiai elemzésnek is alávetették földi óriástávcsövekkel (Keck/DEIMOS study of Local Group dEs), vagyis információt nyertek a csillagok kémiai összetételéről (fémtartalmáról). Ez utóbbi elengedhetetlen volt, mivel fel akarták térképezni, hogy tulajdonképpen hányféle korosztály található a galaxisban. Ne feledjük, ahogy fentebb már említettem, az újabb csillaggenerációk már a korábbiak által legyártott elemekkel beszennyezett gázfelhőkből alakultak ki. Továbbá, az azonos tömegű, de különböző kémiai összetételű csillagok más-más fejlődési utat járnak be a szín-fényesség diagramon. Ez pedig fontos tényező, amikor a csillagfejlődési elméleteket felhasználva megpróbálják a csillagászok adott csillagok halmazának korát meghatározni úgynevezett izokron illesztésével. Az izokron a csillagfejlődésben használt kifejezés, mely a szín-fényesség diagramon az azonos korú csillagokat összekötő görbét jelöli. Tekintve, hogy az egyszerre született, vagyis azonos fémtartalmú, illetve azonos kémiai összetételű csillagok megfigyelhető fejlődési állapota csak a kiindulási tömegtől függ, és mivel a masszívabb csillagok gyorsabban fejlődnek, így adott időpillanatban minden csillag meghatározott helyet foglal el a szín-fényesség diagramon. Más-más kémiai összetételekhez azonban más-más izokron tartozik.

csillaghalmazok_kora

Az egyszerre született (azonos fémtartalmú!) csillagok megfigyelhető fejlődési állapota csak a kiindulási tömegtől függ. A nagyobb tömegű fényesebb és forróbb csillagok hamarabb elhasználják hidrogén készleteiket, és elhagyják a fősorozatot. Az idő előrehaladtával már csak a kisebb tömegű, és kevésbé fényes csillagok maradnak a fősorozaton. Ahogy idősödik az adott csillaggeneráció, annál lejjebb tolódik az a pont (Turn Off Point) a fősorozaton, ahol a csillagok „elkanyarodnak” az óriás ág felé, így az adott generáció kora meghatározható. Az Myr millió évet, a Gyr milliárd éveket jelent. Animáció forrása: http://astro.berkeley.edu/~dperley/univage/univage.html

A kutatók végül arra pontra illesztették az eltérő kémiai összetételhez, és azon belül a különböző korú csillagokhoz tartozó izokronokat a szín-fényesség diagramon, ahol a fősorozaton a csillagok elkanyarodnak az óriás ág felé (Turn off point). A vörös kupacra (Red Clump – RC az ábrán), illetve a horizontális ágra való illesztést végül elvetették, mert ezeket nem tudtak kellően megbízhatóan modellezni. (A vörös óriás ágat elhagyó csillagokkal, vagyis a magjukban már héliumot égető csillagokkal kapcsolatos modellekben még akadnak kérdőjelek.) A legmegfelelőbb izokronokat alkalmazva, illetve a modellezett szín-fényesség diagram alapján pedig levonták a következtetéseiket.

NGC185-CMD-izokron-modell2

Balra a megfigyeléseken alapuló Hess diagramja az NGC185-nek. A Hess diagram a csillagok előfordulásának relatív sűrűségét ábrázolja a Hertzsprung-Russell diagram különböző szín-fényesség pozícióiban. Figyeljük meg a Hess diagramon az illesztett izokronokat (Padova csillagfejlődési modell alapján képzettek). A színek a különböző fémtartalmakhoz tartoznak: [Fe/H] = −2 (zöld), −1 (kék) és 0.0 dex (vörös). Adott kémiai összetételhez, három különféle csillagkorhoz tartozó izokron került illesztésre. Ezek rendre 2, 8 és 12 milliárd év.

Jobbra a modellezett csillagkeletkezési történetek közül a megfigyelésekre legjobban illeszkedő szintetikus csillagpopulációkból képzett szín-fényesség diagramja az NGC185-nek.

A sárga szaggatott vonaltól balra eső, továbbá fölötte lévő területeket a csillagászok nem vették figyelembe az illesztéskor.

Forrás: M Geha és mások

Az NGC185 csillagainak 70%-ka legalább 12.5 milliárd éves. A maradék nagyobb része pedig valamikor 8 és 10 milliárd évvel ezelőtt formálódott. A galaxisban a csillagkeletkezés legalább 3 milliárd éve leállt, de legalábbis csillagainak 90%-át biztosan legyártotta akkora a galaxis. „Baade kék csillagai” pedig egy nem túl szignifikáns csillagkeletkezési hullámban születtek, mely a galaxis centrumának 650 fényéves (200 pc) környezetében zajlott 100 millió éve.

Fontos megjegyezni, hogy míg a Tejútrendszer és az Androméda-galaxis nagyobb luminozitású törpegalaxisait főleg idős és középkorú csillagok keveréke alkotja, addig érdekes módon az NGC185 inkább a Sextans és a Draco törpékre hasonlít, ahol az ősi csillagok jelentősen dominálnak a középkorúakhoz képest. A Sextans törpe esetében bizonyosnak látszik, hogy csillagait körülbelül 600 millió éves időskálán gyártotta le, és az egész folyamat véget ért nagyjából 12.9 milliárd éve, mivel a II. típusú szupernóvák egyszerűen kisöpörték a gázkészleteket ebből a galaxisból. Ez hamarabb megtörtént, minthogy befejeződött volna a Világegyetem reionizációs korszaka, tehát maga a galaxis fosszília ebből a korból. Csakhogy az NGC185-ben a csillagok össztömege (vizsgálati módszertől függően) 100-700 millió naptömeg körül mozog. Ez a Sextans és a Draco törpékénél hozzávetőlegesen 100-szor nagyobb, így valószínűtlen, hogy rá is hasonló csillagkeletkezési forgatókönyv lett volna az érvényes. Nem beszélve arról, hogy még mindig található benne intersztelláris anyag, ellentétben a másik kettővel. Sokkal valószínűbb, hogy az Androméda-galaxissal történt közelebbi találkozások vezényelték a születési hullámokat, illetve a csillagok keletkezésének elcsendesülését. Ennek megerősítéséhez mindenesetre még részletes sajátmozgás vizsgálatokra van szükség a jövőben, hogy a radiális sebességekkel együtt felrajzolhassák a csillagászok az NGC185, és a többi szatellit 3D-s mozgását az M31 körül.

Az NGC185 több olyan objektum típus is található, amelyet általában amatőrcsillagászként előszeretettel figyelnénk meg ha ezek a közelben lennének, és nem egy másik galaxisban. Mivel az NGC185-ben rengeteg a fejlődésben előrehaladott, a fősorozatot már régen maga mögött hagyó csillag, így bővelkedik hosszú periódusú változócsillagokban (90-800 napos periódus). Az ismert Míra, félszabályos, az szabálytalan (irreguláris) változók száma 513-ra rúgott 2011-ben. De planetáris-köd jelöltekből is akad jónéhány. Sőt a galaxis centruma környékén egy öreg szupernóva-maradvány is található, melyet az OIII (kétszeresen ionizált oxigén) vonalak hiánya miatt talán nem is kollapszus-szupernóva (core collapse supernova) hozott létre, hanem úgynevezett Ia típusú szupernóva. Ugyan ezekről amatőrcsillagász műszeremmel le kell mondanom, de még mindig ott vannak az NGC185 gömbhalmazai. Még akkor is, ha nem többek apró fényfoltocskáknál.

NGC185-LRGB-20170730-0142-sx-bin2-360s-TTK-label4

Az NGC185 gömbhalmazai. Történeti okokból az FJJ VI-ot is feltüntettem, de arról a Hubble űrtávcsővel történt vizsgálatok megállapították, hogy távoli elliptikus galaxis. A PAN-N185 pedig viszonylag friss felfedezés (J. Veljanoski és munkatársai, 2013.)

Valószínűleg nem lepem meg az olvasót azzal, hogy az NGC185 első két gömbhalmazát még Baade fedezte fel 1944-ben. Paul W. Hodge 1974-ben újabb hárommal gyarapította a törpegalaxis körül ismert halmazok számát. Holland C. Ford, George Jacoby és David C. Jenner a NGC185 és az NGC47 planetáris ködjeiről írt munkájuk appendixében a Baade és Hodge által felfedezett halmazok listáját még újabb néggyel egészítette ki, ám Hodge egyik halmazát elhagyták a sorból (Hodge 2), mivel az nem bizonyult gömbhalmaznak. A későbbiekben a csillagászok átvették Fordnak és munkatársainak nomenklatúráját, akik I-VIII-ig számozták a halmazokat, és a későbbi szakirodalmakban már FJJ I-VIII névvel hivatkoztak rájuk. Douglas Geisler és munkatársai 1999-ben számoltak be az IAU az évi szimpóziumára készült publikációjában az NGC185 (és az M110/NGC205) törpegalaxisok gömbhalmazaival kapcsolatos, a Hubble űrteleszkóppal végzett vizsgálatainak első eredményeiről. Az FJJ VIII-at leszámítva az összes többit egyenként megvizsgálta, és az FJJ VI kivételével mindegyikről megerősítette, hogy azok valóban gömbhalmazok. Az FJJ VI-ról azonban kiderült, hogy valójában egy távoli elliptikus galaxis. Geisler csapata, a Hubble WFPC2 kamerájának hála, bámulatos felbontást tudott elérni. Az 1999-es tanulmányban például bemutatták az FJJ V (előzetes, még korrekciókra szoruló) szín-fényesség diagramját, de már a másik két halmazzal kapcsolatban is voltak eredményeik. Már akkor megállapították, hogy ezek a gömbhalmazok a szín-fényesség diagram szerint szinte csak idős csillagokból állnak. Legalábbis a felső aszimptotikus óriás ágon a csillagok hiánya arra utalt, hogy a középkorú csillagok aránya elenyésző lehet. A spektroszkópiai elemzések pedig azt mutatták, hogy fémekben szegények az NGC185 gömbhalmazai. Mára ezek az észrevételek az összes többi esetében is megerősítést nyertek.

Az NGC185 ismert gömbhalmazainak sorát (a cikk írásának pillanatában) a Pan-Andromeda Archaeological Survey (PAndAS) keretében felfedezett PAN-N185 zárja. Bár halványabb, mint a többiek, de a felvételemen mégis látszik. Hogy miért nem akadták rá eddig? Egyszerűen korábban nem kerestek ilyen távolságban gömbhalmazt az NGC185 körül. Igazából pont a PAandAS mutatott rá, hogy például az M31 halója sokkal távolabbra terjed ki, mint az korábban gondolták a csillagászok. Érdemes tehát gömbhalmazokat keresni az adott galaxis centrumától távolabb is.

Vannak még terveim az NGC185-tel kapcsolatban. Igen, még készíthetnénk több felvételt mondjuk jobb átlátszóságú égbolt esetén. Vagy magam mögött hagyva a kisvárost, elmehetnék sötétebb ég alá, hogy ott folytassam. De minek? Az NGC185 főbb vonásai és gömbhalmazok már látszanak a fotón. A terv pedig pontosan ez volt. Sokkal inkább vágyom arra, hogy egy 50-60 cm tükör átmérőjű távcsővel a saját szememmel is lássam a gömbhalmazokat. Tudomásom van arról, hogy vannak olyan szerencsés amatőrcsillagászok akiknek ez már megadatott. Én is szívesen tartoznék közéjük!

Az NGC185 gömbhalmazainak égi koordinátái, fényessége, és a távolságuk alapján kalkulált abszolút fényessége.

ID  RA(J2000)  Dec. (J2000)  V0  MV0  
  (h m s)  (d m s)  (mag)  (mag) 
FJJ I  00 38 42.7  +48 18 40.4  17.70 ± 0.03  −6.26 
FJJ II  00 38 48.1  +48 18 15.9  18.00 ± 0.03  −5.96 
FJJ III  00 39 03.8  +48 19 57.5  15.99 ± 0.173  −7.97 
FJJ IV  00 39 12.2  +48 22 48.2  17.37 ± 0.02  −6.59 
FJJ V  00 39 13.4  +48 23 04.9  16.12 ± 0.02  −7.84 
FJJ VII  00 39 18.4  +48 23 03.6  18.10 ± 0.02  −5.85 
FJJ VIII  00 39 23.7  +48 18 45.1  17.04 ± 0.01  −6.92 
PA-N185  00 38 18.8  +48 22 04.0  18.41 ± 0.01  −5.55 

Felhasznált irodalom:

H. C. Ford, G. Jacoby, D. C. Jenner: Planetary nebulae in local group galaxies. IV – Identifications, positions, and radial velocities of nebulae in NGC 147 and NGC 185

Doug Geisler, Taft Armandroff, Gary Da Costa, Myung Gyoon Lee, Ata Sarajedini: HST Color-Magnitude Diagrams of Globular Clusters in NGC 185 and NGC 205

Jenny C. Richardson, Mike J. Irwin, Alan W. McConnachie, Nicolas F. Martin, Aaron L. Dotter, Annette M. N. Ferguson, Rodrigo A. Ibata, Scott C. Chapman, Geraint F. Lewis, Nial R. Tanvir, and R. Michael Rich: PAndAS’ Progeny: Extending the M31 dwarf galaxy cabal

D. Lorenz, T. Lebzelter, W. Nowotny, J. Telting, F. Kerschbaum, H. Olofsson, H.E. Schwarz: Long-period variables in NGC147 and NGC185

J. Veljanoski, A. M. N. Ferguson, A. P. Huxor, A. D. Mackey, C. K. Fishlock, M. J. Irwin, N. Tanvir, S. C. Chapman, R. A. Ibata, G. F. Lewis, A. McConnachie: Newly-Discovered Globular Clusters in NGC 147 and NGC 185 from PAndAS

D. Crnojević, A. M. N. Ferguson, M. J. Irwin, A. W. McConnachie, E. J. Bernard, M. A. Fardal, R. A. Ibata, G. F. Lewis, N. F. Martin, J. F. Navarro, N. E. D. Noël, S. Pasetto: A PAndAS view of M31 dwarf elliptical satellites: NGC147 and NGC185

M. Geha, D. Weisz, A. Grocholski, A. Dolphin, R. P. van der Marel, P. Guhathakurta: HST/ACS Direct Ages of the Dwarf Elliptical Galaxies NGC 147 and NGC 185

Roya H. Golshan, Atefeh Javadi, Jacco Th. van Loon, Habib Khosroshahi, Elham Saremi: Long period variable stars in NGC 147 and NGC 185. I. Their star formation histories

Jeff Kanipe and Dennis Webb: Annals of the Deep Sky, Volume 4 (ISBN-13: 978-1942675051)

M. Bettinelli, S. L. Hidalgo, S. Cassisi, A. Aparicio, G. Piotto: he star formation history of the Sextans dwarf spheroidal galaxy: a true fossil of the pre-reionization era

NGC6503 – Magányos (???) galaxis a „semmi” peremén

NGC6503-LRGB-20170517-2304-sx-bin2-360s-TTK

Az NGC6503 galaxis a Sárkány csillagképben.

2017-05-17, 2017-06-19, 2017-06-20 – Göd

34 x 360 sec L (Bin2), 10 x 360 sec R (Bin2), 10 x 360 sec G (Bin2), 10 x 360 sec B (Bin2)

300/1200 Newton távcső – Paracorr Type2 kóma korrektor – eredő fókusz 1380 mm

SkyWatcher EQ-6 Pro GoTo mechanika

SXVR-H18 CCD kamera, Hutech IDAS P2 LPS filter és Baader RGBL fotografikus szűrőszett

Lokális Ritkulás

A világegyetem nagy léptékű szerkezete leginkább egy óriási pókhálóra hasonlít. Egyes részei szinte teljesen sötétek és üresek, míg mások galaxisokkal zsúfoltak. Galaxisok, galaxis csoportosulások, galaxishalmazok, szuperhalmazok alkotják ezt a kusza „szövetet”.

cosmic_web2_s

A kozmikus pókháló – Kép forrása: Volker Springel/Max Planck Institute For Astrophysics/SPL

A galaxisok eloszlása a Lokális Univerzumban. Az animáció a Lokális Csoporttól indul (Tejútrendszer, Androméda-galaxis, stb.), és egészen a 10000 km/s vöröseltolódáshoz tartozó távolságig mutatja be a galaxisok eloszlását. Figyeljük meg, hogy a Lokális Csoport szinte a közvetlen közelében helyezkedik el a Lokális Ritkulásnak (The Local Void), melyben szinte alig találhatunk galaxisokat. Az egységnyi területre eső galaxisok száma itt igen alacsony.

Forrás: CLUES Projekt (https://www.clues-project.org/cms/observations/) – H. Courtois, D. Pomarède; SDvision

A világegyetem legnagyobb, galaxisokat tömörítő struktúrái az úgynevezett szuperhalmazok. 2014. szeptember 4-én jelent meg az a cikk a Nature-ben, melyben Brent Tully (University of Hawaii) és kutatócsapatának 8000 galaxis mozgásának megfigyelésén alapuló kutatási eredményét közölte. Az Ősrobbanás óta táguló világegyetem globális hatását figyelembe véve korrigálták a mért eredményeket, és ebből megkapták, hogy miként hatnak pusztás a galaxisok egymásra. Egy háromdimenziós térképet alkottak, mely teljesen újradefiniálta a szuperhalmazok fogalmát. A földrajzban is ismert vízválasztó vonalakhoz hasonló analógiával élve, a galaxisok csoportjai különböző gravitációs vonzócentrumok irányába igyekeznek, akárcsak a víz egy vízválasztó vonal két oldalán.  Jól elhatárolható felületek vannak a világegyetemben, melyek egyik oldalán az egyik, míg a másik oldalán egy másik ilyen vonzócentrum felé mozognak a galaxisok, illetve azok csoportosulásai.

Mintegy 100 ezer társával egyetemben Tejútrendszerünk, a közel 520 millió fényév (160 Mpc) kiterjedésű Laniakea vagy más néven a Lokális szuperhalmazhoz tartozik. E szuperhalmaz összes galaxisa, legyen az magányos, vagy valamilyen kisebb csoport, esetleg népes halmaznak a tagja, mind a „Nagy Vonzó” („Great Attractor”) felé mozog. A körülbelül 10 millió fényév kiterjedésű, a Tejútrendszerrel együtt valamivel több mint 50 galaxist tömörítő Lokális Csoport is részt vesz ebben a kozmikus áramlásban.

A Laniakea szuperhalmaz. Azokat a filamenteket (szálakat), melyek mentén a galaxisokat összegyűjtötték a szerzők, és amely mentén a galaxisok együtt mozognak,  halványkék színnel lettek jelölve. A vörös és fekete galaxisok különböző áramlásokhoz tartoznak. A videóban a Tejútrendszerünk van az origóban (zöld pötty), mely a feketével jelölt áramlásban vesz részt. Mint az látható, mi az ekképpen definiált Laniake szuperhalmaz külső peremén lakunk. A Lokális szuperhalmazban pedig különböző színekkel jelölték azokat a területeket, ahol a galaxisok sűrűbb, historikus csoportosulásai találhatók. Évtizedeken keresztül a csillagászok úgy vélekedtek, hogy mi a zöld régióval jelölt szuperhalmaznak vagyunk a részei. De kiderült, hogy ez is csak „kis szelete” valami sokkal nagyobbnak. A Laniakea hawaii nyelven mérhetetlen mennyet, mérhetetlen eget jelent. Ezzel az elnevezéssel próbálták a kutatók érzékeltetni, hogy milyen hatalmas struktúráról is van szó a világegyetemben. A 2014-ben Tully és kutatótársai által bevezetett új szuperhalmaz fogalom sokkal egyértelműbbé tette, hogy hol találhatóak eme grandiózus kozmikus képződmények határvonalai.

Forrás: R. Brent Tully, Helene Courtois, Yehuda Hoffman és Daniel Pomarède (Nature, vol 513, number 7516, p71 – 4 September 2014)

Ma már tudjuk, hogy a Föld csupán harmadik bolygója a Naprendszernek. Csillagunk nagyjából 27000 fényévre kering galaxisunk centrumától. A Tejútrendszerünk „másodhegedűs” az Androméda-galaxis mellett egy nem túl népes csoportosulásban. A Lokális Csoport pedig a Laniakea szuperhalmaz külső, mondhatni félreeső részén helyezkedik el.  Nem vagyunk semminek sem a középpontjában, ahogy ezt hosszú időn keresztül gondolta az emberiség. Peremvidéki lakosok vagyunk. Ráadásul nemcsak „a valami”, hanem „a semmi” határán. Bár ahogy ezt mindjárt látni fogjuk, van ebben azért némi túlzás.

A galaxisok, galaxishalmazok, szuperhalmazok kusza rostos hálózata mellett, legalább annyira érdekesek az ezeket elválasztó hatalmas ürességek. Pontosabb azonban, ha ezeket inkább ritkulásoknak tekintjük. A továbbiakban ezt a kifejezést fogom használni az angol „Cosmic Void” magyar fordításaként. A Világegyetem ezen területei ugyanis nem teljesen üresek. Bennük is találkozhatunk galaxisokkal, galaxishalmazokkal, de szignifikánsabban kevesebbel. A legközelebbi ilyen hatalmas „üreg”, a Lokális Ritkulás (Local Void) határa éppen extragalaktikus szomszédságunkban húzódik.

Local_Group_and_its_immediate_vicinity.jpg

Az ábrán a Lokális Csoport közvetlen szomszédsága látható két különböző vetületben. A három koncentrikus kék kört nagyjából 6.5 milliló fényév (2 Mpc = 150 km/s) választja el egymástól. A felső vetületen figyelhetők meg a legjobban az egyes csoportok szeparációja. A sötét pöttyök, a szürke négyzetek, a háromszögek az egyes galaxisokat jelölik, annak megfelelően, hogy azok (sorrendben) nagyjából ebben a síkban, vagy inkább e fölött, vagy az alatt helyezkednek el. Az alsó vetületen jól látszik, hogy a galaxisok többsége közelítőleg egy síkban koncentrálódik (Local Sheet). Továbbá azt is jól szemlélteti, hogy e sík fölött mennyire üres a kozmosz. Forrás: Hélène M. Courtois, Daniel Pomarède, R. Brent Tully, Yehuda Hoffman, Denis Courtois

A Lokális Ritkulás létezését 30 évvel (1987) ezelőtt ismerte fel Brent Tully és Rick Fisher.  Tully és munkatársainak vizsgálata alapján a Lokális Csoportnál kezdőd ritkulás nagyjából 150-200 millió fényév (45-60 Mpc) kiterjedésű. Továbbá, centrumának távolsága legalább 75 millió fényévnyire (23 Mpc) van tőlünk. Meg kell jegyeznem azonban, hogy pontos kiterjedését a mai napig viszonylag nagy bizonytalanság övezi. A galaxisok által kevésbé benépesített területek pontos feltérképezése nem könnyű, mivel összességében kevés elektromágneses sugárzás érkezik onnan. Csekély számú, és a legtöbb esetben halvány galaxisok tanulmányozására nyílik csak lehetőség. Mondhatni a sötétben tapogatóznak a csillagászok. Illetve, a fényesebb, galaxisokkal benépesített régiók tulajdonságai alapján igyekeznek következtetést levonni.

Igazából nem is egyetlen nagy összefüggő térségről van szó. A Lokális Ritkulás Tully-ék szerint három elkülönülő szegmensből áll, melyeket galaxisok alkotta vékony szálak választanak el egymástól. A Lokális Csoport az úgynevezett Belső Lokális Ritkuláshoz kapcsolódik.

A Lokális Ritkulás régiói. A kék ellipszis a Belső Lokális Ritkulásnak nevezett szektort jelöli. Ennek a falához tapad a Lokális Csoport, és szűkebb környezete (Local Sheet). Az Északi kiterjesztést a szaggatott világoskék, a Déli kiterjesztést a szaggatott zöld ellipszis jelöli. Az egyes szektorokat vékony, galaxisok alkotta filament-hidak választják el egymástól. Az egyes síkokban a Lokális Ritkulástól való távolodásunk irányát, relatív sebességének nagyságát a vörös vektor (nyíl) mutatja. Forrás: R. Brent Tully, Edward J. Shaya, Igor D. Karachentsev, Helene M. Courtois, Dale D. Kocevski, Luca Rizzi, Alan Peel

Laniakea-Local_Void1

Kozmikus áramlások és sűrűsödések a Laniakea szuperhalmazban. Ebben a metszetben jól látszik, hogy a Lokális Ritkulás elnyúlik egészen a Virgo galaxishalmaz mögé. A galaxisok kiáramlása a ritkulásból teljesen evidens ebben a nézetben.  Forrás: Hélène M. Courtois, Daniel Pomarède, R. Brent Tully, Yehuda Hoffman, Denis Courtois

A vizsgálatok tanúsága szerint a Lokális Ritkulás tágul. A Lokális Csoport és a környező galaxisok alkotta fal (Local Sheet) távolodik a ritkulás centrumától. Úgy tűnhet, mintha az „üresség” taszítana minket. A helyzet azonban nem ez. Arról van szó, ahogy azt már fentebb említettem, hogy a galaxisok mozgásából levonva a világegyetem tágulásának hatását, azok összeáramlása, koncentrációja figyelhető meg a Világegyetemben. Mindez meghatározott vonzócentrumok irányába történik, és a jelenség a gravitációnak köszönhető. De nemcsak e masszív képződmények játszanak fontos szerepet az egészben, hanem ellenpárjaik, a ritkulások is. A korábban említett vízválasztós példánál maradva, az is fontos tényező a víz áramlása szempontjából, hogy van-e magas hegy a közelben. A ritkulások pedig magas, meredek falú hegyeknek tekinthetők, ahol gyorsabban igyekszik a víz a völgybe. Vagyis, ezek közelében a helyi csoportok gyorsabban mozognak az „alacsonyabban fekvő”, vagyis a sűrűbb régiók felé, mint azt egyébként tennék. A nettó hatást pedig úgy érzékeljük, mintha a ritkulás „eltaszítaná” magától, a vonzócentrum pedig „húzná” maga felé a galaxisokat, és ennek a kettőnek a hatás pedig a tőlük való távolság függvényében összeadódik. A Lokális Ritkulást ugyan szinte teljesen galaxisok veszik körül, de ezek eloszlás nem egyenletes. Van olyan része, ahol szinte „semmi sincs”, erről a környékről így még több anyag képes távozni. Az analógiát tovább használva, a hegyek idővel egyre nagyobbá, kiterjedtebbé nőnek, miközben a róluk lezúduló víz a völgyekben összegyűlik. Az összeáramlással a ritkulások egyre nagyobb méreteket öltenek, és pontosan ez az, ami a Lokális Ritkulással is történik.

Egy 2017-es publikáció szerint létezik egy sokkal „meghatározóbb” ritkulás is, ami mintegy „eltaszít” minket magától. Így megoldás kínálkozik a Lokális Csoportnak a kozmikus mikrohullámú háttérsugárzáshoz viszonyított túlságosan nagy sebességére. Azonban, ezzel a mostani cikk keretein belül nem foglalkozom, mert nem egy átfogó kozmológiai cikk megírása volt a célom. Kizárólag a Lokális Ritkulásra koncentrálnék. Akit mégis érdekel a téma, annak Yehuda Hoffman, Daniel Pomarede, R. Brent Tully, Helene Courtois: The Dipole Repeller című cikkét ajánlom a figyelmébe, ami az arxiv.org-on szabadon elolvasható. A Nature-ben megjelent változat fizetős. Illetve, aki csak pár percet szánna rá, annak itt egy rövid kis videó.

NGC6503

Vonzott a gondolat, hogy a galaxishalmazok, kompakt galaxiscsoportok után az űr „sötétebb” tartományait is megfigyeljem. Való igaz, hogy ezek feltérképezése a hivatásos csillagászok terepe, és az eredményeiket sem pusztán egyetlenegy galaxis szimpla lefényképezésével érték el, de amatőrcsillagászként nekem nem is ez volt a szándékom. Átfutott az agyamon, hogy a Lokális Ritkulás mélyéről válasszak csillagrendszert, de végül az NGC6503 katalógusjelű galaxis mellett tettem le a voksom. Nem voltam biztos abban, hogy a gödi ég minősége, illetve műszerem, kamerám megfelelő lenne a többi jelölt megörökítéséhez. Már akkor izgatottság lett rajtam úrrá, midőn megláttam az NGC6503 első nyers „digitális lenyomatát” a laptop képernyőjén. „A semmi határán lebegő” galaxis. Az alapvetően is felfoghatatlanul üres kozmosz partját bámultam, melyen túl még nagyobb üresség kezdődik. A csillagászatban gyakran találkozunk extrém adatokkal, de a földi hétköznapokhoz szokott elménk ezekkel csak nehezen tud mit kezdeni.

ESO 461-36 - NGC6503 - 15 ivpec - 2

Jobbra: az ESO 461-36 a Lokális Ritkulásban. A felvétel középen az apró fényfolt maga a galaxis.

Balra: az NGC6503 a Lokális Ritkulás peremén. Ez a galaxis a középső régióját tekintve, viszonylag nagy felületi fényességű.

A felvételek az SDSS (The STScI Digitized Sky Survey) adatbázisból származnak, azonos módon készültek, a feldolgozás is teljesen identikus. A látómező 15 x 15 ívperc.

A Sárkány csillagképben található galaxist Georg Friedrich Julius Arthur von Auwers (1835-1897) fedezte fel 1854-ben. A később az asztrometria területén szép karriert befutó csillagász ekkor még a Göttingeni Egyetemen tanult. Minthogy Auwers saját 2.6 hüvelykes (6.6 cm) Fraunhofer refraktorával akadt rá a galaxisra, így arra gondoltam, hogy megkeresem az égen a jó öreg 20×60-as Tento binokulárommal. Addig sem unatkozom, míg a 300/1200-as Newton távcsővel készülnek a felvételek. A csillagkörnyezetre rá is akadtam, de a galaxist nem sikerült meglátnom. Ennek persze több oka is lehetett. Talán a kisvárosi égboltom aznapi minősége akadályozott meg ebben. Talán, ha lett volna állványom. Talán, ha még úgy látnék, mint régen.

Három hónappal később, a Meteor 2017 Távcsöves Találkozó második éjszakáján egy Kínából rendelt kis elektronikus egységet teszteltük Nagy Tiborral. A cél az volt, hogy a tableten futó SkySafari programmal vezéreljük a SkyWatcher HEQ-5 Pro mechanikát, melyre a UMA-GPU APO Triplet 102/635 távcsövem került fel. Tibor már korábban elvégezte laptopjáról a néhány dolláros modul beállítását, de ég alatt még sosem próbáltuk ki.  Az elgondolásunk a gyakorlatban is bevált, már csak be kell majd dobozolni, hogy a nyákra szerelt LED-ek vakító fénye ne zavarja az észlelőt. Egymás után böködtük a különböző célpontokra. A mechanika tette a dolgát, mi pedig a távcsőbe pillantva élveztük az éppen beállított objektum látványát. Ekkor jutott eszembe újra az NGC6503. Tarján égboltja jobb, mint az én otthonim, és ez a távcső már bőven elég kell legyen a galaxis megpillantásához! Ha Auwers látta a 2.6 hüvelykes Fraunhofer refraktorával, akkor nekem is menni fog! Az okulárba pillantva azonnal felismertem a csillagkörnyezetet, és a 8.6 magnitúdós csillag (a fényes sárgás árnyalatú csillag a képen) mellett ott volt a galaxis orsó alakú foltja. A belső fényesebb rész inhomogenitást mutatott, de ez nem volt azonnal nyilvánvaló. A külső, halvány régió szinte teljesen simának tűnt. Azonban, a keleti-délkeleti oldalán mintha egy fényesebb foltot érzékeltem volna. Vizuális megjelenése alapján kb. 4 x 1 ívpercesnek saccoltam a galaxist. Nehéz leírni, hogy mennyire örültem annak, hogy végre a saját szememmel is láthattam.

NGC6503-map1

Az NGC6503 a Sárkány csillagképben.

NGC6503-map2

A Sárkány csillagkép NGC6503 körüli részlete. A narancs színű ellipszis jelöli a galaxis pozícióját, ami az Alahakan-tól (χ Dra, 44 Dra) 3.5° távolságra van. 

A Simbad adatbázis szerint látszó mérete az égbolton 4.7 x 1.5 ívperc, míg a NED 7.1 x 2.4 ívpercet közöl. A saját felvételem alapján én az utóbbi értéket tekintem elfogadhatóbbnak. Az elmúlt három évtizedben tucatnyi publikáció közölt értékeket a távolságával kapcsolatban, melyek 17 és 20 millió fényév között szórtak. Az utóbbi években megjelent publikációk zöme inkább a 17.2 millió fényévet (5.27 ± 0.53 Mpc) veszi alapul a számításaihoz. A továbbiakban az ennek megfelelő értékek lesznek olvashatók. Átmérője (a NED által megadott látszólagos mérete alapján) 35 ezer fényév körüli. Vagyis, kiterjedése mindössze harmada, negyed a Tejútrendszerének. Éppen ezért, sokan a törpe spirál galaxisok közé sorolják.

NGC6503 2015-06-10 HST

Az NGC6503 a Hubble űrtávcső felvételén. Forrás és szerzők: NASA, ESA, D. Calzetti (University of Massachusetts), H. Ford (Johns Hopkins University), Hubble Heritage Team

Az NGC6503 viszonylag közeli galaxis, így a Hubble űrtávcsővel és a legnagyobb földi műszerekkel nem jelent különösebb problémát a csillagokra bontása. De legalábbis, a fényesebb csillagok tanulmányozhatók általuk. A galaxist azonban nemcsak a látható fény, hanem az elektromágneses sugárzás szélesebb spektrumán is megvizsgálták a csillagászok. Minden egyes hullámhossz hozzáadott valamit felépítésének megértéséhez, illetve több esetben e részeredmények kombinációjából született meg a konklúzió.

A galaxisra majdnem az éléről látunk rá, inklinációja 75.1 (kb. ±1° a különböző publikációkban). Szerencsére a kutatóknak megvannak a megfelelő matematikai módszereik, hogy az ebben a projekcióban rögzített megfigyeléseiket olyan nézetbe transzformálják, mintha csak merőlegesen látnánk rá az NGC6503 korongjára. Továbbá, rendelkezésükre állnak speciális képfeldolgozási eljárások, melyekkel a galaxis bizonyos struktúráit ki tudják emelni. Adott esetben azonban „a látványt” önmagában nehéz lenne értelmezni alapos fotometriai és spektroszkópiai elemzések nélkül. Példának okáért, a galaxis felületi fényességének változása a centrumtól mért távolság függvényében, illetve a galaxis belső dinamikája sok mindenről árulkodik. Fontos azonban megemlíteni, hogy a csillagászok erősen támaszkodnak a korábbi megfigyelésekből kapott eredményekre, tapasztalati törvényekre. Továbbá, modellek jóslataira, szimulációkból származó eredményekre próbálják illeszteni a saját méréseikből származó adatokat. (A továbbiakban legfeljebb vázlatosan fogok ezekről említést tenni, a cikk után felsorolt felhasznált irodalomban megtalálhatóak a pontos részletek.)

A galaxis kicsiny, kompakt magja intenzíven sugároz. Az NGC6503 a LINER (Low Ionization Nuclear Emission Region) galaxisok csoportjába tartozik. A LINER-ek a nevüket magjuknak színképe alapján kapták, amiben tipikusan gyengén ionizált atomok (egyszeresen ionizált oxigén, nitrogén, kén, stb.) keskeny vonalai figyelhetők meg, míg az erősen ionizált atomok (például kétszeresen ionizált oxigén) vonalai viszonylag gyengék. Máig vitatott, hogy pontosan miért látjuk ezeket az emissziós vonalakat a LINER galaxisok színképében. Egyesek szerint az intersztelláris gázban terjedő lökéshullámok (shock waves), míg mások szerint a fotoionizáció (intenzív UV sugárzás) okozza azt. Nemcsak az ionizációs mechanizmus kérdésében oszlik meg a kutatók véleménye, de annak forrását illetőleg is. A csillagászok egyik jelentős tábora szerint, e galaxisok esetében a centrumban tanyázó szupermasszív fekete lyukak a felelősek a gáz gyenge ionizációjáért. Elképzelésük szerint a LINER-ek mindössze kis luminozitású aktív galaxismagok, vagyis a Seyfert galaxisok és a kvazárok kevésbé energetikus rokonai. Az eltérések az aktív galaxis magok, és a kis luminozitású aktív galaxismagok között a fekete lyukak tömegére, az anyagbefogás ütemére, az akkréciós korong fizikai paramétereire, illetve a fekete lyukat körbevevő galaktikus környezetre (por és gáz, azok hőmérséklete stb.) vezethetők vissza, hogy csak pár lehetséges okot említsek. Mások szerint a csillagkeletkezési régiók fiatal, masszív és egyben forró csillagai gerjesztik a gázt. Egy harmadik elképzelés szerint, az 1 milliárd évnél öregebb, előrehaladott fejlődési állapotban lévő csillagok, az aszimptotikus óriás ág elhagyása után (post AGB phase) rövid ideig elég forrók ahhoz, hogy képesek legyenek gyengén ionizálni a környező csillagközi gázokat. Az emisszió megfigyelésére pedig azért nyílik egyáltalán lehetőségünk, mert sem az aktív mag, sem a fiatal forró csillagok keltette sugárzás nem ragyogja túl azt. (Akit a LINER-ekkel kapcsolatos ismeretek mélyebben érdekelnek, annak érdemes elolvasnia a Hickson68 kompakt galaxiscsoportról írt cikkem ezen részét.)

Az NGC6503 spirál galaxis centrumában „miniatűr”, galaxismagbeli spirális struktúra (nuclear spiral structure) figyelhető meg a Hubble űrtávcső F814W szűrőjével (szélessávú közeli infravörös szűrő) készült felvételén. A magot, és a spirál alakú képződményt közvetlenül körbevevő tartomány feltérképezése viszont közel sem bizonyult már ennyire egyszerűnek. Itt a képfeldolgozási eljárások már nem sokat értek. E. Freeland és munkatársai szimulált sebesség profilokra, pozíció-sebesség profilokra, felszíni fényesség profilokra, stb. próbálták illeszteni az észlelések eredményeit. A felhasznált „teoretikus minták” egyik csoportját korábban azért alkották meg, hogy könnyeben eldönthessék a nagy inklinációjú spirál galaxisokról, hogy azok küllősök-e, vagy sem. A küllő (bar) jelenléte ugyanis, a galaxison belüli irányultsága és erőssége függvényében otthagyja kézjegyét az említett profilokon. Megint más „teoretikus minták” pedig a galaxismagot körülvevő korongok (circumnuclear disk) kimutatására alkalmasak. A látható fényben, és a közeli infravörösben egyaránt megvizsgálták a galaxis belső vidékeit. Ennek köszönhetően például a galaxison belüli intersztelláris anyag okozta extinkciót (fényelnyelést) is számításba tudták venni a felületi fényesség profiloknál. (A por okozta extinkció effektívebb a rövidebb hullámhosszokon.) Kiderült, hogy a galaxismagbeli spirális struktúra egy korongban foglal helyet. Ennek a galaxismagot körülvevő korongnak a mérete pedig durván 250-330 fényév (89 ± 13 pc). Azt is megállapították, hogy az e korongon kívüli tartomány esetében a megfigyelések csak olyan küllő jelenlétével értelmezhetőek, amire a vége felől látunk rá. A küllő méretére 2000 fényév (660 pc) adódott. Korábban nem így gondolták, de az NGC6503 (nagy valószínűséggel) küllős spirál galaxis. Megjegyzem, hogy mindebből nemcsak a saját, de a Hubble fenti felvételén sem érzékelhető semmi. A következőkben az NGC6503 olyan tulajdonságairól ejtek szót, melyek amatőrcsillagászati műszerekkel készült felvételeken is látszanak, vagy tetten érhetők.

NGC6503-nuclear-spiral

A Hubble űrtávcső felvétele a galaxis centrumáról, mely F814W (szélessávú közeli infravörös) szűrővel készült. A képet utólag képfeldolgozási eljárásokkal élesítették. A fehér ellipszis a galaxismag körüli korongot reprezentálja. Forrás: E. Freeland, L. Chomiuk, R. Keenan, T. Nelson

NGC6305-bar-spiral-NIR

Az NGC6503 központi területe a közeli infravörös hullámhosszon (1.6 μm).  A vége felől látszó küllő csak kör alakú foltnak látszik a kép közepén. A felvételen kivehetők még a küllő átellenes végén induló prominens spirálkarok is. A belső szürke ellipszis a galaxismag körüli korongot jelöli. Forrás: E. Freeland, L. Chomiuk, R. Keenan, T. Nelson – A felvétel a Kitt Peak Nemzeti Obszervatórium 3.5 méteres WIYN távcsövének infravörös kamerájával készült (WHIRC – WIYN High Resolution Infrared Camera)

A fotómra pillantva is látszik, hogy a galaxis kompakt magját porsávokkal szabdalt sárgás-vöröses terület öleli körül. A színért a kisebb tömegű, előrehaladottabb fejlődési állapotban lévő idősebb csillagok a felelősek. A centrumtól kifelé haladva, a szorosan „feltekeredett” spirál karokban egyre sűrűbben fordulnak elő a Napunknál jelentősen nagyobb tömegű, forró és fiatal csillagok. Ezek a kisebb tömegű testvéreiket kékes fényükkel könnyűszerrel túlragyogják, így az én műszeremmel elért felbontáson egyre inkább a kék szín válik dominánssá. Csillagászati értelemben ezek csak rövid ideig, mindössze néhány millió, néhány tízmillió évig léteznek. Jelenlétük annak indikátora, hogy itt a közelmúltban intenzív csillagkeletkezés zajlott, és ez valószínűleg még ma is tart. Ha nem lenne folyamatos az utánpótlás, akkor az említett időtartamon belül mind kivesznének. A masszív csillagok nemcsak beragyogják a galaxisnak ezen területeit, de gerjesztik is a környezetükben található gázködöket intenzív UV sugárzásukkal, melyek ennek hatására vöröses/rózsaszínes árnyalattal világítanak. A felvételemen e régiók közül csak azok látszanak, melyek kellőképpen nagyok és fényesek.

Már az első Hα keskenysávú szűrőkkel készült fotók azt sejtették, hogy a csillagkeletkezési régiók gyűrűt képeznek a galaxis korongjában. De pontosan miként bocsájtanak ki Hα (Hidrogén alfa) sugárzást ezek a vöröses/rózsaszínes csillagközi gázfelhők a 656.81 nm-es hullámhosszon? Az atomban meghatározott, diszkrét energiaszintek tartoznak az elektronhoz. Az elektron mindig igyekszik elfoglalni a legalacsonyabb, n=1 energiaszintet. A fényes, fiatal, kék csillagok által kibocsátott nagyenergiájú fotonok gerjesztik, ionizálják a közelükben lévő gázfelhők hidrogén atomjait, vagyis az elektront egy magasabb energiaszintre „lökik”, vagy akár le is szakítják magáról a hidrogén atomról. Az előbbi a gerjesztés, az utóbbi az ionizáció jelensége. Annak a valószínűsége, hogy az n=3-as energiaszintre kerüljön az elektron anélkül, hogy leszakadna a hidrogén atomról, roppant kicsi. Vagyis, ha akkora energiát „közlünk” az elektronnal, ami az n=3 szintre juttatná, a hidrogén atom ionizálódik. A szabad elektron hamar találkozik egy elektron nélküli csupasz hidrogén atommaggal, egy protonnal, és új hidrogén atom jön létre (rekombináció). Ebben a folyamatban az elektron bármilyen energiaállapotot felvehet, de végül kaszkád folyamatban visszatér az alapszintre (n=1). A „lefelé lépéskor” a szintek különbségével megegyező energiájú foton sugárzódik ki. Nagyjából az átmenetek felét képezi az n=3 szintről az n=2 szintre történő átmenet, amikor is a 656.81 nm-es sugárzás keletkezik. Végső soron a Hα emisszió annak köszönhető, hogy az atomos hidrogén korábban ionizálódott. A csillagászok ezen a hullámhosszon tudják a legkönnyebben feltérképezni a gázfelhők hidrogénjét az optikai tartományban. Pontosabban, az úgynevezett HII régiókat, vagyis az ionizált hidrogént tartalmazó területeket.

NGC6503 Ha-NIR

Ez a speciális, felvétel a Hubble űrtávcsővel készült az NGC6503-ról. A látómező 3.3 x 1.8 ívperc. A színek nem véletlenül furcsák, ugyanis ez egy úgynevezett bicolor (hamis színes) felvétel. A vörös szín abból a 28 perces expozícióból származik, mely olyan szűrűvel készült (F658N keskenysávú szűrő), ami csak a Hα emissziót engedi át. A vörös szín tehát a HII régióktól származik, amelyek a csillagkeletkezési régiókhoz köthetők. Majd ezt, a közeli infravörös tartományban (F814W szűrő) rögzített 12 perces felvétellel kombinálták, melyet a megfelelő kontraszt kedvéért kékre színeztek. Figyeljük meg, hogy a HII területek egy széles gyűrűben foglalnak helyet. A csillagkeletkezési gyűrű más hullámhosszokon még ennél is evidensebb. Forrás és szerzők: ESA/Hubble és NASA

A csillagászokat azonban nemcsak az ionizált hidrogén, hanem a galaxis teljes hidrogénkészletének mennyisége, illetve eloszlása is érdekelte. Hogy a HI régiókról képet kaphassanak a csillagászok, a VLA (Very Large Array) rádiótávcső rendszerrel a 21 cm-es hullámhosszon figyelték meg az NGC6503-at. A HI régiók olyan intersztelláris felhők, melyeket javarészt atomos hidrogén alkot (a területek ionizációs foka jellemzően igen alacsony: 1:10000) némi héliummal, és a héliumnál nehezebb elemekkel szennyezve. A 21 cm-es rádiósugárzás a hidrogén hiperfinom szerkezetében nagyon kis spontán valószínűséggel (A=2.88×10−15 s−1 ≈ 1/107 év) végbemenő átmenetnek köszönhetően keletkezik. Nagyon leegyszerűsítve, tekintsük a hidrogén atom protonjának és elektronjának spinjét kvantummechanikai impulzusmomentumnak. Egy adott spin állapot hiperfinom állapotokra bomlik a proton és az elektron spinjei szerint. Nagyobb energiájú állapotról van szó, amikor a proton és az elektron spinje megegyezik, azzal szemben, amikor éppen ellentétes. A két energiaállapot közötti hiperfinom átmenetkor keletkezik az említett sugárzás.  Mivel ez a jelenség csak roppant kis valószínűséggel következik be, így jelentős mennyiségű atomos hidrogéngáznak kell jelen lennie ahhoz, hogy ezen a hullámhosszon a csillagászok megfigyelhessék a sugárzásukat.

21cm-es_sugarzas

A hiperfinom átmenet keltette 21 cm-es sugárzás. Ne feledjük, hogy a spin, mint kvantummechanikai impulzusmomentum csak egy analógia, de segít megérteni a jelenséget.

A galaxis rádiótérképén jól látszott, hogy a HI régiók gyűrűbe tömörülnek. A csillagászoknak az ebben található semleges hidrogénkészlet tömegét 200 millió naptömegben határozták meg (E. Greisen és mások, 2009), vagyis a gyűrű tetemes mennyiségű csillag előállításához szükséges anyagot tartalmaz. Érdekes, hogy abban a két végpontban, ahol a küllő metszi a gyűrűt csak igen kevés gáz található. Pedig, a tapasztalatok szerint, általában éppen a küllők végeinél szokott az atomos és molekuláris hidrogén felhalmozódni, továbbá a hidrodinamikai szimulációk is ezt jósolják. Talán az NGC6503 esetében egy nem is olyan rég lezajlott hevesebb csillagkeletkezés az oka ennek a devianciának. E. Freeland és munkatársainak feltételezések szerint, a HI régiók hiánya csak temporális jellegű. A csillagkeletkezés talán kimeríthette az itteni készleteket, vagy éppen az intenzív csillagszél, illetve szupernóva-robbanások söpörhették tisztára a régiót.

NGC6503-HI

A HI régiók rádió kontúrja a GALEX (Galaxy Evolution Explorer) ultraibolya (NUV) tartományban készült felvételére montírozva. Csak a legfényesebb HI régiók kerültek rá a képre, hogy a gyűrű egyértelműen látszódjon. A hidrogénfelhők kiterjedése a korongban ennél sokkal nagyobb (55-72 ezer fényév), de ezek sűrűsége több nagyságrenddel kisebb, mint a gyűrűben lévőé. Figyeljük meg, hogy az UV felvételen is mennyire szembetűnő a gyűrűs struktúra! Forrás: Forrás: E. Freeland, L. Chomiuk, R. Keenan, T. Nelson

Nem véletlen, hogy a fenti képen a GALEX (Galaxy Evolution Explorer) űrtávcső ultraibolya tartományban készült felvételére került rá a HI területek 21 cm-es rádiókontúrja. A csillagkeletkezési gyűrű ugyanis az UV hullámhosszokon igen tisztán látszik, hála a nagytömegű fiatal csillagoknak. Ezek sugárzása itt még erőteljesebb, mint a látható spektrum kék végén. A másik adaléka annak, hogy a csillagászok a két felvételt fedésbe hozták, hogy így figyelembe tudták venni a GALEX adatainak kiértékelésénél a HI régiók vörösítő hatását. A gyűrű tőlünk távolabb eső (felső) fele valamivel „vörösebb”, mint a hozzánk közelebbi (alsó) fele. Mivel a GALEX két UV hullámhossz régióban (FUV: 180-275 nm, NUV: 140-170 nm) is készített felvételeket, ezáltal külön-külön egyfajta „UV színt” is hozzá lehetett rendelni a gyűrűben található csillagkeletkezési régiókhoz. A „színből”, vagyis a két felvétel intenzitás különbségeiből, pedig meg lehet becsülni a csillagkeletkezési régiók korát. Az FUV – NUV < 1 reláció azt indikálja, hogy ezek 500 millió évnél is fiatalabbak.

Az NGC6503 vizsgálata a LEGUS (Legacy ExtraGalactic UV Survey) felmérésnek is része volt. A LEGUS projekt keretében a Hubble űrtávcsővel 50 darab, 12 Mpc-nél közelebbi galaxist fényképeztek le a WFC3 és ACS képrögzítő műszereit használva. Olyan célpontokat választottak, melyekben jelenleg is aktív csillagkeletkezés zajlik.  A célpontok közelsége miatt a galaxisokat alkotóelemeikre, vagyis csillagokra, csillaghalmazokra, asszociációkra tudták bontani. Több különböző szűrőt (WFC3/F275W, WFC3/F336W, WFC3/F438W, WFC3/F555W, WFC3/F814W, ACS/F435W, ACS/F814W, ACS/F606W) is használtak, így egyaránt lefedték a közeli infravörös, az optikai és az UV hullámhosszokat.

NGC6503-LEGUS-comp1cl1

Az NGC6503-ról a LEGUS projekt keretében készült felvételek. A felső „hibrid kép” baloldalán a galaxis optikai, a jobboldalán az UV „megjelenése” látható. Az optikai képhez használt szűrők és a hozzájuk rendelt színek: F435W (kék), F555W (zöld), és F658N (vörös). Az UV képhez használt szűrők és a hozzájuk rendelt színek: F275W (kék), F336W (zöld), és F435W (vörös). Figyeljük meg, hogy miként rajzolja ki a csillagkeletkezési gyűrűt az alsó, UV tartományban készült felvételen a masszív csillagok sokasága. Forrás:  Legacy ExtraGalactic UV Survey/STScI

A LEGUS NGC6503-mal kapcsolatos fotometriai eredményeit felhasználva D. A. Gouliermis és munkatársai úgynevezett kontúralapú térképelemzés technikát vetettek be annak érdekében, hogy a felszíni csillagsűrűség alapján következtetéseket vonhassanak le a csillagkeletkezési gyűrűről. (A cikk után, a felhasznált irodalomban megtalálhatók a pontos részletek.) Az elemzést szűrőpárok szerint válogatott minták segítségével végezték el. A használt párosítások hullámhossz (nm) szerint: F275 – F336, F336 – F438, F438 – F555, F555 – F814. Tulajdonképpen a párokkal a különböző színű csillagokat válogatták le. Az első páros a kékes árnyalatú csillagokat fedi le, míg a negyedik a vörösöket.

NGC6503-LEGUS-Blue-Red

A csillagok térbeli eloszlása az NGC6503-ban. Balra fent a „kék színű csillag” minta (F275 – F336 szűrőpár), jobbra fent a „vörös színű csillag” minta (F555 – F814). Alul ezek „felülnézetbe transzformált” képe látható, a galaxis inklinációját figyelembe véve. A kék csillagok már szemmel láthatóan is kirajzolják a csillagkeletkezési gyűrűt. A vörösök sokkal nagyobb területen oszlanak el. Mindazonáltal, eme utóbbiaknál is sejthető, hogy némileg követik a csillagkeletkezési régiókat. Fontos megjegyezni, hogy a küllő a hiányos fotometriai felmérés miatt nem jelenik meg a vörös csillagok eloszlásában. A kék csillagok hiánya a centrum környékén azonban valós. Forrás: D. A. Gouliermis és mások.

Mint az fentebb már kiderült, a kék csillagok kijelölik a csillagkeletkezési régiókat. Az NGC6503-ban ezek eloszlását vizsgálva a centrumtól mért távolság függvényében, a kutatók meghatározták a gyűrű külső és belső sugarát is. Az előbbire 1 kpc (326 fényév), míg az utóbbi 2.5 kpc (815 fényév) értéket kaptak. A gyűrű tehát a galaxis küllőjén kívül helyezkedik el.

A csillagászoknak összesen 244 kék csillagokból álló struktúrát sikerült behatárolniuk különböző bizonytalansággal. Határozottan tehát nem jelenthető ki, hogy mind a 244 struktúra valós halmaz, vagy valós asszociáció. Jelentős részük lehet, hogy csak véletlen fluktuáció az adatokban. A tudomány már csak így működik. Az elemzésük szerint, ezek 95%-a hierarchikusan, a gyűrű mentén elhelyezkedő 3 domináns szuper-struktúrához tartozik.

A gyűrűben a fiatal csillagoknak valamivel több mint a fele halmazok, asszociációk része, míg a többiek ezen komplexumok között oszlanak el. Elmondható az is, hogy inkább a legfiatalabbak (legfényesebbek) tömörülnek ilyen struktúrákba, míg a némileg idősebbek, de még mindig fiatal csillagok, inkább szerteszóródottabbak. De a struktúrák mérete és sűrűsége is mutat korrelációt a korral. A legfiatalabb csillagok inkább a kisebb és kompaktabbak lakói, míg a valamivel idősebbek, a lazább és nagyobb kiterjedésűekhez tartoznak. D. A. Gouliermis és szerzőtársai szerint, ez alátámasztja azt az elképzelést, hogy a csillagképződést a gyűrű gázfelhőiben turbulenciák szabályozzák, s melyek aztán felszabdalják azokat (turbulent fragmentation). Vagyis, a nagyobb felhők belsejében idővel kisebb felhők tömörödnek össze, azaz a hideg csillagközi anyag hierarchikus felhőkbe rendeződik (multi-fraktál). Az NGC6503 kék mintájában (F275 – F336 szűrőpár) sikerült is tetten érni a folyamatot. A vizsgált kék csillagok nagyjából 100 millió éves időskálán belül keletkeztek. A legfiatalabb körülbelül 4 millió, míg a legidősebb 110 millió éves lehet, míg maga a fragmentáció pedig nagyjából 60 millió éves időskálán zajlott le.

A turbulenciákat a gyűrűben azok a nyíróerők táplálják, melyek annak belső és külső pereme közötti jelentős forgási sebességkülönbség miatt lépnek fel. Tekintettel arra, hogy 100 millió év alatt a gyűrű belső pereme három fordulatot is végez, az NGC6503 esete azt bizonyítja, hogy ezek a „nyírómechanizmusok” sokkal inkább fenntartják a csillagkeletkezést, mintsem megakadályozzák azt. Továbbá, a LEGUS projekt eredményein alapuló, az NGC6503 kapcsolatos megfigyelések támogatják azt az elképzelést is, hogy a galaxisokban gyűrűk rezonancia jelenségek, melyeket egy forgó küllő vagy éppen valami más nem tengelyszimmetrikus korongbéli zavar hoz létre. Igaza lehet tehát azoknak, akik szerint a gyűrűk a küllős galaxisok dinamikájának természetes következményei (Buta és Combes, 1996).

Kimondottan viszonylagos közelsége, de főleg izoláltsága révén övezi különleges érdeklődés ezt a galaxist. Általánosan elmondható, hogy az izolált galaxisok nem állnak kölcsönhatásban más galaxissal, illetve halmaztagok sem fejtenek ki rá hatást. Így van ez szinte a világegyetem keletkezése óta, de legalább azóta, hogy tömegüknek a felét összegyűjtötték. Az ilyen típusú csillagvárosok ideálisak, hogy a csillagászok ellenőrizzék a galaxisok evolúciójával kapcsolatos elméleteiket. Továbbá fontos a szerepük abban, hogy jobban megérthessék a környezeti hatásokat a népes galaxis halmazokon belül, és megválaszolhassák, e hatások miként befolyásolják egy-egy galaxis, illetve a halmaz egészének fejlődését.

Azonban J. Koda és munkatársainak a közelmúltban (2015) megjelent publikáció azt sugallja, hogy az NGC6503 talán mégsem annyira magányos, mint azt korábban gondolták. A Subaru távcsővel még 2013-ban készítettek felvételeket az NGC6503-ról és környezetéről B, V, R, I, és NA656 (Hα) szűrőket használva, a Subaru extended ultraviolet disk survey program keretében. Az eredeti tudományos cél az NGC6503 optikai korongján is túlnyúló, kiterjedt UV sugárzásnak (XUV) a tanulmányozása és megértése volt. Ez viszonylag gyakori jelenség, mert a közeli galaxisok nagyjából 30%-a mutat ehhez hasonló jegyeket, de pontosan még ma sem tudják a csillagászok, hogy mi lehet ennek a sugárzásnak az oka. A Subaru ekkor készült felvételein akadtak rá a csillagászok, az utólag NGC6503-d1-nek elkeresztelt halvány törpe galaxisra.

NGC6503-d1

NGC6503-d1 törpe galaxis, mely átmenetet képez a törpe irreguláris galaxisok (dIrrs), és a törpe szferoidális galaxisok (dSph) között. Irreguláris megjelenését a néhány 100 millió éve történt csillagkeletkezésnek köszönheti. Míg a szimmetrikusabb alrendszert az idősebb, több milliárd éves csillagok alkotják. Az NGC6503-d1 igencsak „pehelysúlyú” a galaxisok között, mert összességében mindössze 4 millió naptömegű. Érdekes, hogy a becslések szerinti 3.6 milliói naptömeggel, a 8 milliárd évnél idősebb csillagok teszik ki a galaxis tömegének tetemes részét. Ehhez képest a fiatal generáció tömege csupán 280 ezer naptömeg körüli.

(a): A Subaru B, V, R szűrős felvételeiből képzett színes kép (pseudo-color), (b) DSS (Digitized Sky Survey), (c) Subaru V szűrős felvétele logaritmikus skálázással – ez kiemeli az öreg csillagok szimmetrikus alrendszerét, (d) GALEX NUV (ultraibolya) – itt a fiatalabb csillagok tűnnek elő, (e) Subaru Hα – a kis kör az egyetlen detektált HII régiót jelöli

A DSS felvétel esetén 30.2 x 12.7 ívperc a látómező, a többinél  2 x 2 ívperc.

Forrás: J. Koda és mások

Az NGC6503-d1 és az NGC6503 távolsága az égbolton 17 ívperc. A számítások szerint az NGC6503 500 ezer fényévnyi (150 kpc) területét képes „gravitációjával uralni”. Ez a távolságát figyelembe véve, 100 ívpercnyi területét jelenti az égboltnak. Így, ha a két galaxis nagyjából azonos távolságra van tőlünk, akkor az NGC6503-d1 az NGC6503 kísérője.

Az NGC6503-d1 látszólagos mérete és fényessége alapján (ezek távolságfüggő paraméterek) ennek megvan a valószínűsége. Legalábbis, a csillagászok erre a következtetésre jutottak, amikor a csillagrendszert a Lokális Csoport törpe galaxisaival hasonlították össze. Egészen pontosan a központi felületi fényesség, a fél-fényesség sugár (half-light radius – az a sugár, amiből a rendszer fényességének 50%-ka származik), és az abszolút fényesség korrelációját vizsgálták. Megállapították, hogy strukturális felépítése azokhoz a Lokális Csoportban található halvány törpe galaxisokéhoz hasonlít, melyek abszolút fényessége (MV) kb. -10.5 magnitúdó, fél-fényessége sugara (re) nagyjából 1300 fényév (400 pc), és központi felszíni fényessége (μ0,V) 25.2 magnitúdó/ívmásodperc2. Ezekből az adatokból pedig már következtetni tudtak a csillagrendszer távolságára.

Az NGC6503-d1 távolságának meghatározásához a vörös óriás ág legfényesebb csillagait is felhasználták indikátorként a csillagászok. De min alapszik ez a módszer? A vörös óriások eloszlását felrajzolva egy szín-fényesség diagramon, ahol a szín a vizuális és a közeli infravörös tartományban megfigyelt fényességek különbsége (V-I), míg a fényesség a közeli infravörös tartományban látszó fényesség (I), azok eloszlása egyszerű hatványtörvényt követ. A csillagfejlődési elméletek és a megfigyelések szerint is, a vörös óriásoknak a közeli infravörös tartományban van egy jól definiált maximális luminozitása. Ezt a pontot az első vörös óriás ág tetejének nevezik, illetve az angol nyelvű szakirodalomban ez a „Tip of the Red Giant Branch” (TRGB). Megfelelő matematikai apparátus birtokában meghatározható a TRGB látszólagos közeli infravörös fényessége. Az idős (több milliárd éves) vörös óriás csillagok esetén, melyek fémtartalma kicsi ([Fe/H] ≤ -0.7), a közeli infravörös tartományban a TRGB abszolút fényessége független azok fémtartalmától. Ez már nem teljesen igaz a fiatalabb, így nagyobb fémtartalmú csillagokra. (A csillagászok minden olyan elemet, ami nem hidrogén vagy hélium, fémnek neveznek.) A csillagok fémtartalma fontos szerepet játszik fejlődésükben, és ennek köszönhetően kissé más utat járnak be. A nagyobb fémtartalmú vörös óriások életpályája a szín-fényesség diagramon kissé a kék tartomány felé tolódik. A módszer egyik lényeges sarokköve tehát, hogy a csillagok fémtartalma, vagyis kora egy tág intervallumban (>2 milliárd év) nem befolyásolja szignifikánsan a távolság meghatározás pontosságát. Éppen ezért is, a vörös óriás ág (TRGB) tetejének fényessége, mint sztenderd gyertya, a csillagászatban előszeretettel használt távolságmérési módszer. Nem is beszélve arról, hogy nagy fényességüknek köszönhetően, ezek a vörös óriások igen messziről látszanak.

M106-NGC4254-TRGB-example

Példa szín-fényesség diagram a vörös óriások eloszlásának és a TRGB-nek a szemléltetéséhez. Nem véletlen, hogy nem az NGC6503-d1 diagramja szerepel itt. A kisszámú mintán közel sem lenne ennyire szemmellátható a dolog! (Az NGC6503-d1 esetén alkalmazott módszer leírása az eredeti publikációban megtalálható.) Az M106 (NGC4258) galaxis szín (V-I) és közeli infravörös fényesség diagramjának forrása: Barry F. Madore, Violet Mager, Wendy L. Freedman

A csillagászoknak nem volt könnyű a dolga az NGC6503-d1 esetén. Nagyjából 300 csillagot tudtak felbontani a galaxisban. Ezekből kellett a következtetéseiket levonni, illetve a TRGB fényességét is ezek alapján próbálták meghatározni. Természetesnek mondható, hogy az ilyen relatíve kisszámú minta hagy bizonytalanságot az eredményekben.

Külön-külön a fentebb leírt módszerek és megfontolások magukban még nem lennének elegendők, hogy egyértelműen kijelenthető legyen: az NGC6503-d1 az NGC6503 kísérője. Azonban, ezek kombinációja már valószínűvé teszi azt. Így, a publikáció egyik konklúziója, hogy az NGC6503-d1 távolsága nagyjából 17 millió fényév (5.25 Mpc), és valószínű, hogy az NGC6503 szatellit galaxisa. Itt az ideje elfelejteni a magányos jelzőt e galaxis esetében? J. Koda és szerzőtársai szerint: igen. Azt sem tartják kizártnak, hogy a jövőbeli felmérésekben további, az NGC6503-d1-nél halványabb kísérő törpe galaxisok nyomára bukkannak majd az NGC6503 környékén.

Felhasznált irodalom:

R. Brent Tully, Edward J. Shaya, Igor D. Karachentsev, Helene M. Courtois, Dale D. Kocevski, Luca Rizzi, Alan Peel: Our Peculiar Motion Away from the Local Void

R. Brent Tully: Our CMB Motion: The Local Void influence

E. Freeland, L. Chomiuk, R. Keenan, T. Nelson: Evidence for a Strong End-On Bar in the Ringed Sigma-Drop Galaxy NGC 6503

Hélène M. Courtois, Daniel Pomarède, R. Brent Tully, Yehuda Hoffman, Denis Courtois: Cosmography of The Local Universe

R. Brent Tully, Helene Courtois, Yehuda Hoffman, Daniel Pomarède: The Laniakea supercluster of galaxies

Jin Koda, Masafumi Yagi, Yutaka Komiyama, Samuel Boissier, Alessandro Boselli, Alexandre Y. K. Bouquin, Jennifer Donovan Meyer, Armando Gil de Paz, Masatoshi Imanishi, Barry F. Madore, David A. Thilker: Discovery of New Dwarf Galaxy near The Isolated Spiral Galaxy NGC 6503

Dimitrios A. Gouliermis, David Thilker, Bruce G. Elmegreen, Debra M. Elmegreen, Daniela Calzetti, Janice C. Lee, Angela Adamo, Alessandra Aloisi, Michele Cignoni, David O. Cook, Daniel Dale, John S. Gallagher III, Kathryn Grasha, Eva K. Grebel, Artemio Herrero Davo, Deidre A. Hunter, Kelsey E. Johnson, Hwihyun Kim, Preethi Nair, Antonella Nota, Anne Pellerin, Jenna Ryon, Elena Sabbi, Elena Sacchi, Linda J. Smith, Monica Tosi, Leonardo Ubeda, Brad Whitmore: Hierarchical Star Formation across the ring galaxy NGC 6503

Luca Rizzi, R. Brent Tully, Edward J. Shaya, Ehsan Kourkchi, Igor D. Karachentsev: Draining the Local Void

CLUES (Constrained Local UniversE Simulations) projekt

Az SN2016gkg szupernóva az NGC613 spirál galaxisban

NGC613-LRGB-20161020-T32-300s-TTK-label

1. ábra. Az SN2016gkg szupernóva az NGC613 spirál galaxisban.

2016-10-20, 2016-10-23, 2016-11-01, 2016-11-21 – Siding Spring Observatory

20 x 300 sec L, 8 x 300 sec R, 8 x 300 sec G, 8 x 300 sec B

iTelescope.net T32 – Corrected Dall-Kirkham Astrograph Planewave 17″ – 43 cm, f/6.8  – FLI Proline 16803 CCD kamera

A képre kattintva, az nagyobb felbontásban is elérhető.

Azok a csillagok, melyek kiindulási tömege (MZAMS) meghaladja a 8-9 naptömeget, életük végén, mikor az energia-utánpótlásuk kimerül, szupernóvaként robbannak fel. Fényük saját galaxisukat is túlragyogja, miközben anyaguk jelentős része szétszóródik az űrben beszennyezve azt a csillagban korábban létrejött és a robbanáskor keletkezett elemekkel. Minden egyes ilyen úgynevezett kollapszus-szupernóva (core collapse supernova) megfigyelésével a csillagászok közelebb jutnak a robbanást kiváltó, és a közben lejátszódó folyamatok mechanizmusának megértéséhez. Fontos ez, mert e masszív ragyogó csillagok nemcsak életükkel, de halálukkal is jelentős hatást gyakorolnak környezetükre. A szupernóva-robbanás teremt és pusztít. A táguló maradvány a közeli por és gáz ködökben lökéshullámot keltve, beindíthatja az újabb csillagok keletkezését. Más esetekben pedig tisztára söpörve a környezetét akár véget is vethet ennek az egésznek. Fontos szerepet játszanak a galaxisok fizikai és kémiai evolúciójában. Valószínűnek látszik, hogy Naprendszerünk keletkezését is egy ilyen robbanás indította be, és hogy létezésünkben benne van a kezük. Kutatásukkal eredetünk kérdésének megválaszolásához is közelebb juthatunk.

Az SN2016gkg jelölést kapott szupernóvát Victor Buso és Sebastian Otero fedezte fel 2016. szeptember 20-án az NGC613 spirál galaxisban. Az akkor még csak 17.6 (CV) magnitúdós szupernóváról nem sokkal később kiderült, hogy különleges a maga nemében. Ez inspirált arra, hogy felvételeket készítsek róla, majd azokat kimérjem. Csábított a lehetőség, hogy annyi év után újra a TTK névkóddal ellátott észlelésekkel gyarapítsam az MCSE és az AAVSO változócsillag adatbázisát. Miért? Röviden: változócsillagokat észlelni jó! Azon kevés elfoglaltságok egyike, melynek során személyesen is meggyőződhetünk róla, hogy a Naprendszeren túl elterülő világ nem is annyira örök és statikus, mint ahogyan azt sok-sok, a világegyetem életében csak röpke szempillantásnak tűnő emberöltőn keresztül elődeink gondolták. Nem is beszélve arról, hogy ebben az esetben nem hogy a Naprendszeren túl, de egy másik galaxisban volt a megfigyelésem célpontja. Ha pedig a szorgosan gyűjtött fényességértékek még tudományos célra is használhatóak, az csak külön öröm. Egyedül azonban mindez nem sikerült volna. Tordai Tamás nagyon nagy segítségemre volt a felvételek kiértékelésében. Tamás amatőrcsillagászként magas szinten űzi a fotometriát (lásd Tordai Tamás: Hogyan észlelek változókat? – Meteor 2016/2. 46-51.). Külön kiemelném a V404 Cygni jelű fekete lyuk kettős fényváltozásával kapcsolatos megfigyeléseit, mely révén egy a Nature-ben is megjelent cikk társzerzője.

Talán meglepi az olvasót, de a digitális változócsillag észleléséhez nem is kellenek feltétlenül bitang drága műszerek. A siker kulcsát nem egyedül a költséges távcső, mechanika, és képrögzítő eszköz jelenti. Ha pedig valaki a vizuális észlelésbe szeretne belekóstolni, annak elég mindössze csak binokulárt, és az összehasonlító csillagok fényességét tartalmazó csillagtérképet ragadni. A többi már csak kitartás és az időközben szerzett rutin kérdése. Érdemes kipróbálni!

Amatőrcsillagászati szempontból szerencsés korban élünk, mert noha az NGC613 a déli Szobrász (Sculptor) csillagképben található, ki se kell mozdulnom ahhoz, hogy belevágjak frissen kitalált programomba. Több helyen is bérelhetünk távcsőidőt az interneten keresztül. Az elhatározásom után alig 20 perccel már el is készült az első nyers felvétel, és nem jelentett különösebb problémát az ezt követő időszakban se a nyomon követése. A programok automatikusan lefutottak (ha éppen derült volt az ég), miközben én éltem mindennapi életemet.

Legfőbb célom tehát a szupernóva fényességváltozásának követése volt, melyhez alkalmanként akár egyetlen darab jól sikerül nyers felvétel is elegendő, de azért nem árt, ha van pár kontroll fotó is a tarsolyunkban. A cikk elején látható LRGB kép kidolgozása másodlagos szempontként szerepelt a terveimben. Előttem már eléggé sűrűn betáblázták a távoli távcsövet, így a saját programomat már csak a megmaradt lyukakba tudtam elhelyezni. A megfigyelési ablakok kiválasztásakor még egyáltalán nem tudhattam, hogy derült lesz-e az éjszaka, és milyen lesz az ég minősége. Nem tagadhatom, hogy végül örültem annak, hogy összegyűlt kellő számú, megfelelő minőségű kontroll felvétel. Ezekből és a második napon felvett RGB szűrős képekből végül elkészíthettem a saját illusztrációs képemet, ugyanis már csak maga a galaxis is elég érdekes ahhoz, hogy szenteljünk neki némi időt.

NGC613

A galaxist William Herschel fedezte fel 18.7 hüvelykes (47.5 cm-es) f/13-as műszerével a Szobrász (Sculptor) csillagképben. Ő még nem ismerte fel valódi természetét. Erre egészen 1912-ig kellet várni, mikor is elkészült róla az első fotó. Ezen jól kirajzolódtak az „örvények, és bennük a csillag kondenzációk”, így az NGC613 a spirál köd besorolást kapta. Direkt az akkori szóhasználattal éltem. Akkoriban még vita folyat arról, hogy ezek az örvénylő ködök vajon Tejútrendszerünkhöz tartoznak, vagy éppen ellenkezőleg, maguk is távoli csillagszigetek. A kérdést végérvényesen Edwin Hubble döntötte el, aki a Lokális Csoport több galaxisát is sikeresen csillagokra bontotta. Az Androméda galaxisban azonosított Cepheida típusú változócsillagok periódus-fényesség relációját felhasználva kiszámította azok távolságát. Az így kapott távolságadatokkal bizonyította 1926-ban, hogy az a Tejútrendszeren kívül helyezkedik el. Nem volt kérdéses többé, hogy a spirál ködök távoli galaxisok. Bár az elmúlt két évtizedben többször is meghatározták, azonban az NGC613 távolsága továbbra is csak elég bizonytalanul ismert. A legutóbbi, nem a vöröseltolódáson alapuló vizsgálat szerint galaxisunktól 26.4±5.3 Mpc (Nasonova és mások – 2011), vagy másképpen 86 millió ± 17 millió fényév választja el.

A galaxis különböző régióinak fényessége nagyon nagy intenzitásbeli különbségeket mutat. (Olyannyira, hogy a képek feldolgozás során erre külön figyelmet kellett fordítanom.) A kisméretű, de roppant fényes centrális régióból indulnak ki a vastag küllők. Ezek mentén porsávok kígyóznak, míg az egyik küllőt (a felvételemen a felsőt) a mi látóirányunkból nézve szinte teljes egészében vastag porfelhők takarják. A lencseszerű központi területet is porsávok szabdalják, melyek nem túl határozottan, de spirális mintázatot rajzolnak ki. Amíg a legtöbb küllős spirál galaxis esetében mindössze egy-egy kar indul ki a küllők végéből (összesen tehát csak két karjuk van), addig az NGC613 esetében több határozott kar is megkülönböztethető. A küllők végénél, illetve az ovális részt gyűrűként körbefonó karokban, de még a külső karokban is megfigyelhető kékes csomók fiatal csillagok halmazai. Ezt a színt a legnagyobb tömegű, legfényesebb tagjaik kölcsönzik nekik. Ezek könnyűszerrel túlragyogják kisebb tömegű, hűvösebb és éppen ezért inkább sárgás és vöröses árnyalatú társaikat. A vöröses árnyalatú pamacsok pedig az ionizált hidrogént tartalmazó (HII) régiók. Az itt lévő gázfelhőket az előbb említett forró csillagok intenzív sugárzása gerjeszti. E behemót csillagok élettartama tömegüktől függően mindössze néhány millió, illetve néhányszor 10 millió év. A kékes és vöröses pöttyök sora tehát mind a folyamatosan zajló csillagkeletkezésnek az egyértelmű jelei, melyek szemmel láthatóan a küllők vége környékén a legintenzívebb. Távolodva a csillagoknak életet adó területektől, a karok fényessége ugrásszerűen csökken, és lassan belevész az űr sötétjébe.

Megnézve a felvételemet, azon is szembetűnő az NGC613 kompakt, az egész galaxishoz képest fényes magja. Ez az attribútum általában az aktív galaxis magok (AGN – Active Galactic Nucleus) jellemzője. Elsőre, a mag aktivitása azonban közel sem volt teljesen nyilvánvaló. Az optikai spektruma alapján három évtizeddel ezelőtt (1997) a kompozit objektum besorolást kapta. A centrum színképe egyfelől ugyan halványan az aktív galaxis mag jellegzetességeit mutatta – az az úgynevezett Seyfert típusú galaxisokéra hajazott -, de legfőképpen ionizált gázfelhők (HII régiók) jelenlétére utalt. Éppen ezért a legtöbb katalógusban a Seyfert/HII jelölés szerepel a csillagrendszer neve mellett. 2009-ig kellet várni, míg a Spitzer infravörös műholddal felvett színkép alapján bizonyosságot nyert az AGN létezése, később ezt a röntgen tartományban működő XMM-Newton távcsővel végzett megfigyelések is megerősítették. Vagyis, az NGC613 kompakt fényes centrumában egy szupermasszív központi fekete lyuk (SMBH: supermassive black hole) bújik meg a kíváncsi tekintet elől, fontos szerepet játszva a mag aktivitásában.

VLA_Finley3_med

2. ábra. A VLA (Very Large Array) tányérantennái Új Mexikóban (Socorro). Az első nagy felbontású rádióészlelések az NGC613-ról ezzel a rádiótávcső rendszerrel rögzítették a csillagászok. Az eredményeket 1987-ben, illetve 1992-ben publikálták. A 27 darab 25 méter átmérőjű antennával fogott jeleket kombinálva egy 36 km átmérőjű rádióantenna felbontása, és egy 130 méter átmérőjű rádióantenna érzékenysége érhető el. Kép forrása: NRAO

Valójában erre már az első nagyobb felbontású rádiófelvételek is utaltak (1987, 1992). Ezeken a rádió kontinuum képeken a galaxis centrumában egy intenzíven sugárzó, elnyúlt terület volt látható. Azt ezt követő vizsgálatok megmutatták, hogy ez a nagyságrendileg 300 pc (1000 fényév) kiterjedésű képződmény három diszkrét komponensből áll.

NGC613-SINFONI-Flux-velocitydisp-VLA

3. ábra. Az NGC613 centrumának Fe II fluxus és sebesség diszperzió térképe (VLT/SINFONI). A térképre a VLA rádió kontúrok is rákerültek, melyen jól elkülönül az egy egyenes mentén elhelyezkedő három diszkrét rádióforrás. Figyeljük meg az egybeeséseket! Forrás: J. Falcón-Barroso és mások

A rádiótávcsövekkel kapott eredményeket az optikai tartomány eredményeivel kombinálva a kutatók megállapították, hogy az elnyúlt alakzatban a középső rádiófolt, és az optikai centrum szinte tökéletes (0.1ʺ-es) egybeesése nem lehet véletlen. A galaxis magja ez a rádióforrás. Az NGC613 centrumának optikai és a közeli infravörös tartományban elvégzett spektroszkópiai elemzésből nyert galaxison belüli sebességeloszlások, illetve a rádió kontinuum morfológiája pedig arra világított rá, hogy a másik két folt a magból kiinduló energikus rádió kiáramlás következménye. E rádió jet orientációja elég közel esik az égbolt síkjához, így a galaxis síkjától sem lehet túlságosan messze, melynek inklinációja 35°.

The VLT telescopes are ready for observation at sunset

4. ábra. A VLT (Very Large Telescope) 4 darab 8.2 méteres tükörátmérőjű távcsöveinek felkészítése folyik a közelgő éjszakai megfigyeléshez (Cerro Paranal, Chile). A csillagászok a Hubble űrtávcső mellett, a VLT-t használták a közeli infravörös és a látható tartományban végzett megfigyelésekhez (VLT/SINFONI). Kép szerzője: Gerhard Huedepohl

De hogyan jönnek létre ezek a jet-ek? A galaxis középpontjában található fekete lyuk gravitációjukkal csapdába ejtve, mohón próbálják elnyelni a környezetükben található anyagot. Az étekként szolgáló intersztelláris gáz és por, mely a környező felhőkből, vagy éppen szétszaggatott csillagokból származik, akkréciós korongot formál. A korongot kívülről sűrűbb, lassabban keringő gázfelhők veszik körül. Az akkréciós korong anyaga miközben befelé örvénylik, egyre gyorsabban mozog és felhevül. A folyamatban a mozgási energiájának egy jelentős része elektromágneses sugárzássá alakul. Az akkréciós korong mindkét oldalán, arra merőlegesen, a forgástengely mentén plazmából álló jet-ek jönnek létre, melyek a fekete lyuk közeli erős mágneses terében közel fénysebességre gyorsított, töltött szubatomikus részecskékből állnak. Ezek a töltött részecskék a mágneses térben kifelé spirálozva úgynevezett szinkrotronsugárzást hoznak létre. A jet-ek létrejöttének pontos mechanizmusa még a mai napig vita tárgyát képezi a kutatók körében. Valószínűsíthető, hogy az akkréciós korongban felcsavarodó mágneses térnek kitüntetett szerepe van abban, hogy a forgástengely mentén keskeny nyalábba terelődik a kiáramlás. Más galaxisok esetében megfigyelték már, hogy az aktív magból kiinduló rádió jet-ek képesek felgyorsítani, illetve felfűteni a környezetükben lévő molekuláris gázokat, melyek gyakran a kiáramlások tömegének jelentős részét adják. Az, hogy a két rádió tartományban megfigyelhető szélső folt ténylegesen a központi fekete lyukból kiinduló egy vonalban elhelyezkedő különálló entitások, vagy pedig a beeső sugárzás által felmelegített intersztelláris gáz buborékjai, még tisztázásra szorul.

agn_tipusok

5. ábra. Aktív galaxis mag sematikus vázlata.

A VLA rádiótávcső rendszerrel készült rádióképen a mag körül egy gyűrű alakú képződmény (nuclear ring) is felfedezhető. Ez a nagy felbontású optikai felvételeken is sejthető, de a galaxis centrumában lévő nagy mennyiségű por jórészt elfedi, és éppen ezért sokkal inkább a közeli infravörös tartományban tanulmányozható. Az infravörös megfigyelések tanulsága szerint, a gyűrű 7 különálló fényes területre bomlik. De mi ez a gyűrű, és mik ezek a csomók benne?  A galaxisban lévő intersztelláris anyag a küllők tengelye mentén áramlik be erre a területre. Olyan, mintha egy körtáncba folyamatosan emberek érkeznének két egymással szemben lévő irányból. A gáz összesűrűsödik ezeken a pontokon (ODR – Over Density Region) és beindul a csillagok rövid ideig tartó robbanásszerű keletkezése. A megszületett csillagok halmaza pedig folytatja megkezdett „körkörös táncát” a gyűrűben. De a csillagok születése csak addig zajlik, míg az első szupernóvák ki nem söprik a gázt a környezetükből. Ahogy keringése során távolodik a halmaz ezektől a sűrűsödésektől folyamatosan öregszik. Idővel újabb sűrűsödések jönnek létre a „belépési pontok” környékén, és így ott új halmaz születik. A csillagok keletkezése tehát epizodikus jellegű, a „legyártott” halmazok pedig tovahaladnak a körkörös „galaktikus futószalagon”. Így alakul ki a gyöngyökből álló nyaklánchoz hasonló formáció (pearls on a string scenario).

POS-3

6. ábra. A gyűrűn belüli folyamat sematikus ábrája. A két átellenes ponton (vastag nyilak) gáz áramlik a gyűrűbe, ahol sűrűsödések jönnek létre (ODR). A robbanásszerű, rövid ideig tartó csillagkeletkezésben kialakult halmazok pedig folytatják keringésüket a gyűrűben, miközben öregszenek. Forrás: Forrás: J. Falcón-Barroso és mások

NGC613-ring-l

7. ábra. Az NGC613 magját körbevevő gyűrű alakú képződmény (nuclear ring) a HST felvételén (F450W, F606W, F814W szűrőkkel készült kompozit kép).

NGC613-multiple-flux

8. ábra. A VLT-vel a közeli infravörös tartományban készített felvételeken még szembetűnőbbek az NGC613 „forró foltjai”, vagyis a fiatal halmazok és csillagkeletkezési régiók. A képeken speciálisan megválasztott, különböző hullámhosszakon megfigyelt emissziós fluxus látható. A fluxus térképek balról jobbra a következők: Brγ (Bracket Gamma: 2.16 μm), [Fe II] (1.64 μm), H2 (2.12 μm), kompozit színes fluxus kép. A kompozit kép színei három különböző emissziótól származnak: He I – kék, Brγ – zöld, [Fe II] – vörös,. A képek körülbelül 700 pc (kb. 2300 fényév) szélesek. Észak felül, kelet pedig balra van.

A 8. ábra fluxus térképei közül a kompozit kép illusztrálja az egész folyamatot a legjobban. Kitűnően látszik rajta a csillagkeletkezés evolúciója. A halmazban a legnagyobb tömegű csillagok a legforróbbak, de egyben a legrövidebb életűek is. Miközben a halmaz a gyűrű mentén keringve tovahalad, távolodik a sűrűsödési ponttól, ezek a csillagok pusztulnak ki a legelőször. Életük végén ezek szupernóvaként lángolnak fel. Vagyis, ha az elképzelés helyes, akkor minél távolabb van egy halmaz a sűrűsödési ponttól, annál öregebb, és így annál kevesebb benne a nagytömegű forró csillag.

A He I és Brγ emissziós vonalak létrejötte annak köszönhető, hogy a forró O és B típusú csillagok intenzív UV sugárzása fotoionizálja a környezetét. A rekombinációkor kibocsájtott foton pedig létrehozza az emissziót. Az elektron azonban közel sem biztos, hogy az alap energiaállapotra tér vissza. Gyakran gerjesztett marad, és idővel innen lép alacsonyabb energiaszintre. Ez az oka, hogy különböző színképvonal sorozatok tartoznak egy adott elemhez. A Brγ például a Brackett sorozat egyik vonala.

A He I emisszió létrejöttéhez nagyobb ionizációs energia kell, mint a Brγ-hoz, vagyis forróbb, és így nagyobb tömegű csillagra van ehhez szükség. A He I fluxus gyorsan leesik nem sokkal a robbanásszerű csillagkeletkezés után. Gyorsabban, mint a Brγ fluxus. A masszív csillagoknál ugyanis csak a még masszívabbak élik le sokkal gyorsabban az életüket. A két emisszió arányából így 0-10 millió éves időskálán meg lehet becsülni a halmaz korát. Az [Fe II] emisszió pedig a szupernóva-robbanások által felfűtött (fast shock, shock-heating) intersztelláris anyag nyomon követésére alkalmas. Az [Fe II] fluxus a tapasztalatok szerint 3-35 millió éves időskálán közel állandó marad, majd élesen letörik. E három emisszió fluxusának arányából megbecsülhető a halmazok kora 0-35 millió éves intervallumban. Mivel a gáz és a csillagok a gyűrűben körülbelül ennyi idő alatt tesznek meg egy teljes keringést, így ezzel a módszerrel ellenőrizhető, hogy a fentebb vázolt elképzelés a gyűrűvel kapcsolatban tényleg helyes-e.

Ahelyett, hogy a konkrét módszert ismertetném, győződjünk meg inkább a dologról a szemünk által. A kompozit képen látható, hogy a legnagyobb tömegű csillagok a halmazokban, a beáramlásnál kialakuló sűrűsödések közelében a leggyakoribbak. Itt a legdominánsabb a He I emisszió (kék szín) a csomókban. Kissé tovább, az óramutató járásával ellentétes irányban, a He I emisszió fluxusa jelentősen lecsökken. A kék zöldbe megy át. Majd az [Fe II] vöröse uralkodik el. A felvázolt modellt tehát ez a megfigyelés alátámasztja. Legalábbis ez a helyzet a gyűrű déli szakaszán.

De miért mutat más képet a gyűrű a „felső”, északi régióban? Ahogy a 2. ábrán is látható, a rádiótartományban intenzíven sugárzó terület hossztengelye merőleges a perspektíva miatt ellipszisnek látszó gyűrű nagytengelyére. Elfogadva, hogy a gyűrű valós alakja ténylegesen a körhöz közeli, annak inklinációja körülbelül 55°. Mint azt fentebb is említettem, a rádió jet orientációja a galaxis síkjához közeli, melynek inklinációja pedig 35°. A gyűrű e szakaszán tehát azért nem tapasztalható számottevő Brγ, [Fe II], H2, He I emisszió, mert a kúp alakú kiáramlás kisöpörte onnan a port és a gázt. Az aktív galaxis magok jelentős hatást képesek gyakorolni a galaxison belül a gázra, s mivel a jövendő csillaggenerációk számára ez jelentheti az alapanyagot, így magára a csillagkeletkezésre is.

Érdekes továbbá, hogy a gyűrűn belül a magvidéken tetemes gázkészlet található az NGC613-ban. Ehhez elég csak egy pillantást vetni a 8. ábra harmadik fluxus térképére. Nagyságrendekkel több, mint a gyűrű csillagkeletkezési csomóiban. Mégis, szinte nyoma sincs a csillagkeletkezésnek. A 8. ábra Brγ fluxus térképe a magnál szinte teljesen fekete. Elképzelhető, hogy itt is hullámokban születnek a csillagok. A legutolsó hullám körülbelül 10 millió éve történhetett, és a modellek szerint fél millió évnél hamarabb nem is várható a következő ilyen esemény. Ha egyáltalán be fog következni. Az igazat megvallva még mindig nem teljesen világos, hogy a rádió jet pontosan hogyan befolyásolja a csillagkeletkezést a magvidéken. Lehet, hogy megakadályozza? Vagy éppen segíti azt? Nem tudjuk. Az aktív galaxis magok és a csillagkeletkezés kapcsolata még mindig kevéssé ismert a csillagászok előtt.

SN2016gkg

Az SN2016gkg a felfedezését követő egy napon belül több magnitúdónyit fényesedett. Ennek, és a következő napok fényesedésének üteme, a későbbi vizsgálatok szerint tökéletesen egybevágott az ilyen típusú szupernóvákkal kapcsolatos elméleti jóslatokkal. Ezek szerint pontosan ilyen fénygörbe várható a kollapszus-szupernóvák esetében az úgynevezett hűlési fázisban, azt követően, hogy a kifelé tartó pusztító lökéshullám áttörte a csillagfelszínét (shock break-out).

SN1016gkg-AAVSO-Calendar_Date-crd

9. ábra. A szupernóva közel 2 hónapot átfedő fénygörbéje. A megfigyelések amatőrcsillagászoktól származnak, melyet akár csak én, elküldtek az AAVSO-nak. A zöld négyzetek V szűrővel, a kék csillagok B szűrővel, a sötétzöld négyzetek csillaggal a belsejükben pedig L szűrővel, vagy szűrő nélkül meghatározott fényességet jelölik. Érdemes megfigyelni, hogy a szupernóva fényessége mennyivel gyorsabban hanyatlott a maximum után B szűrővel vizsgálva, mint V szűrővel. Vagyis, a B-V színindexe (a két fényesség különbsége) miként nőtt. Látható, hogy a kezdetben inkább kékesebb árnyalata idővel hogyan vált egyre vörösebbé.

Már az első kisfelbontású spektroszkópiai vizsgálatok is arra utaltak, hogy II típusú szupernóva lángolt fel az NGC613-ban, vagyis egy nagytömegű csillag halálát nézhettük végig. A nagyfelbontású spektroszkópiával sikerült az altípust is meghatározni. Az SN2016gkg színképe, és annak időbeli változása a IIb altípus jellegzetességeit mutatta. Ezek viszonylag ritkábbak, ugyanis a II típusú szupernóvák mindössze egytizede tartozik a IIb altípusba.

Történeti okokból a színképük alapján a szupernóvákat két fő típusba, és azokon belül altípusokba sorolják. II típusúnak nevezik azokat a szupernóvákat, melyek színképében a maximum környékén (pontosabban a fotoszferikus fázisban) erős hidrogén vonalak figyelhetőek meg. E típus képviselői mind kollapszus-szupernóvák. Az egyes altípusok közti különbségek a szülőcsillagok paramétereinek eltéréséből fakad. Az I típus színképéből hiányoznak a hidrogén vonalai. Ráadásul az Ia altípus esetén a kataklizmát nem is a korosodó csillag magjának energia-utánpótlás hiányában összeomló magja okozza. Az egyik vezető elmélet szerint a robbanásra akkor kerül sor, amikor a fehér törpe kísérőjétől elég anyagot gyűjtött ahhoz, hogy tömege átlépje a kritikus Chandrasekhar-határt (1.44 naptömeg). A másik elmélet szerint két fehér törpe kering egy kettős rendszerben, egymáshoz folyamatosan közeledve. Míg végül egymásba spiráloznak, és ekkor történik az Ia típusú szupernóva-robbanás. Az I típus többi altípusa esetén (Ib/Ic), a szupernóva-robbanások minden részlete még nem teljesen tisztázott, de valószínűleg ezek is kollapszus-szupernóvák. Ennél sokkal mélyebben most nem mennék bele a témába, ennyi is elegendő a továbbiak megértéséhez. (Nyomtatásban és az interneten több alapos publikáció is fellelhető a témában. Lásd Vinkó József cikkét a felhasznált irodalmaknál.)

Az SN2016gkg spektrumában, a tipikus IIb szupernóvákra jellemzően, kezdetben P Cygni profilú hidrogénvonalak voltak megfigyelhetőek. Ezek aztán a maximum után gyorsan gyengülni kezdtek, hogy helyüket átadják a domináns hélium abszorpciós vonalaknak. Mindez azzal magyarázható, hogy a kidobódott hidrogénburok csak viszonylag vékony lehetett, és éppen ezért igen gyorsan szét is terjedt. Így rövid idő elteltével láthatóvá vált az alatta lévő héliumban gazdag csillaganyag.

p_cygni_profil

9. ábra. Az úgynevezett P Cygni profil a kidobódott, nagy sebességgel táguló gázburoknak köszönhető. A színképben a széles emissziós komponensre egy rövidebb hullámhosszak felé eltolódott abszorpciós komponens rakódik rá. Baloldalon látható a megfigyelt a spektrum intenzitása a hullámhossz függvényében. Míg a jobboldalon látható, hogy honnan származnak az emisszió egyes részei, és minek köszönhető az abszorpció. A Doppler-effetusnak miatt a felénk legnagyobb sebességgel közeledő gázburok abszorpciója erősen a kék felé tolódik. A tőlünk legnagyobb sebességgel távolodó, a gázburok túl felöli részének emissziója pedig a legnagyobb a vöröseltolódású. A vonalak kiszélesedéséből kiszámolható a tágulás sebessége. Ábra forrása: Vinkó József

De miért ilyen vékony a hidrogénburok? Mitől ennyire speciálisak a IIb szupernóvák? Ma a legvalószínűbbnek az tűnik, hogy ezek szülőcsillagai kettősrendszerek tagjai.

Egy kettős rendszerben mindkét komponens esetén megvan az a térrész, amit az adott égitest gravitációja ural. Ezt Roche-térfogatnak nevetik. Ami azon kívül kerül az akár el is hagyhatja a rendszert, vagy a páros körüli pályára áll. A belső Langrange-ponton keresztül azonban anyag áramolhat át az egyik Roche-térfogatból a másikba. Ez meg is történik akkor, mikor a nagyobb tömegű, és ezért rövidebb életű komponens késői fejlődési fázisában kitölti a saját Roche-térfogatát. A kisebb tömegű társ így elszipkázza a nagyobb külső rétegeinek anyagát. Az anyagátadás ténye megmagyarázza a hidrogénburok vékonyságát, illetve egyes IIb szupernóvák közvetlen környezetének sajátosságait. Vajon az SN2016gkg is alátámasztja ezt az elképzelést?

Roche-lobes-corrected

10. ábra. A Roche-térfogat. Az L1 a szövegben is említett belső Langrange-pont. Az eredeti ábra forrása: Wikipedia.org (az eredeti ábra hibás volt, így módosítottam)

Ahogy a bevezetőben is írtam, minden egyes kollapszus-szupernóva (core collapse supernova) megfigyelésével a csillagászok közelebb jutnak a robbanást kiváltó, és a közben lejátszódó folyamatok mechanizmusának megértéséhez. Kiváltképp szerencsés a helyzet, ha sikerül azonosítani a szupernóva szülőcsillagát (progenitor). Az 1987A, a Nagy Magellán-felhőben 1987. február 23-án feltűnt szupernóva volt az első ilyen eset. Az azonosításkor több minden is a csillagászok kezére játszott. A Nagy Magellán-felhő, a nagyjából 163 ezer fényéves távolságával a Tejútrendszerünk legközelebbi kísérő galaxisai közé tartozik. (A felrobbant csillagot mindössze 168000 fényév választotta el tőlünk a későbbi mérések szerint.) A szülőcsillag pedig elég fényes volt ahhoz, hogy ilyen távolságból is jól látszódjon a korábban készült felvételeken. Ez utóbbira számítottak is a csillagászok. Amit azonban az SN1987A pozíciójában találtak a fotókon, az mégis meglepte a csillagászokat. Az elődobjektum, a Sanduleak -69° 202 ugyanis kék szuperóriás csillag volt. Akkoriban a nagytömegű csillagok fejlődésével kapcsolatos elméletek inkább a vörös szuperóriásokat tartották potenciális szupernóva jelölteknek.

Ma az azonosított szülőcsillagok száma 20 körül van. Nem hatalmas a minta, de ahhoz elég, hogy bizonyos következtetéseket le lehessen vonni. Az egyik ilyen, hogy eltekintve pár esettől, a B-V színindexük, vagyis B szűrővel felvett fényességük és V szűrővel felvett fényességük különbsége nagyobb, mint 0.3. Ebből következően effektív felszíni hőmérsékletük 7300 K alatti. A sikeresen azonosított szülőcsillagok legtöbbje, pedig valóban vörös szuperóriás volt. Különösen érdekesek tehát az olyan szülőcsillagok, melyek színe (színindexe) és fényessége (luminozitása) eltér „a megszokottól”. Ezek próbára teszik a csillagfejlődési elméleteket, illetve a szupernóvák fizikájával kapcsolatos ismereteket.

Charles D. Kilpatrick-nek és munkatársainak sikerült a Hubble űrtávcső WFPC2 (Wide Field Planetary-Camera 2) műszerével készült korábbi felvételein ráakadnia a szülőcsillagra.

SN2016gkg-KECK-HST-F-cut1

11. ábra. A felső fotó a Keck-II 10 méteres távcsővel, a közeli infravörös tartományban (NIRC2 – Near-Infrared Camera 2), adaptív optikai eljárással készült. A megjelölt fényes objektum az SN2016gkg, míg a vörös karikával jelölt 10 darab objektum referencia csillag az asztrometriai mérésekhez. Az alsó fotó a Hubble űrteleszkóppal korábban készült felvétel. A 10 vörös kör, azokat a felső felvételen is szereplő referencia csillagokat jelöli, melyhez képest meghatározták a szülőcsillag pozícióját, s amely elég jól egybeesett a megjelölt kékes színű pontforrással. Forrás: Charles D. Kilpatrick és mások.

A szülőcsillag azonosítását követően külön-külön megmérték annak fényességét a Hubble három különböző színszűrővel készített archív felvételén, majd figyelembe véve az intersztelláris anyag hatását, a kapott magnitúdó értékeket korrigálták. Ez után megkeresték, hogy milyen típusú csillag színképe illeszkedik erre a három fényességértékre a legjobban. Eredményül azt kapták, hogy a szülőcsillag egy 9500 K felszíni hőmérsékletű, A0Ia színképosztályú, vagyis kékes-fehér színű szuperóriás volt. Ismét egy újabb eset, mikor is a várt vörös szuperóriás helyett forróbb, kékes árnyalatú szuperóriás csillagot találtak. Fontos megjegyezni, hogy nem ez az első. Korábban is akadt már példa arra, hogy a IIb szupernóvák elődobjektuma a vörös szuperóriásoknál némileg melegebb sárga szuperóriásnak, illetve kék szuperóriásnak bizonyult.

Kilpatrick és csapata nem állt meg itt. Az aktuális csillagfejlődési modellek leírják, hogy adott kiindulási tömegű (MZAMS), és fémtartalmú csillag milyen utat jár be a születésétől a haláláig a Hertzsprung-Russell diagramon. Ilyen modellszámítások kettős rendszerek esetén is léteznek, ahol a tömegátadás miatt a tagok kölcsönösen befolyásolják egymás életútját. A csillagászoknak csupán olyan kezdő tömegparamétert, kettős csillag esetén pedig kezdő tömegpárosítást kellett választaniuk (a fémtartalom ismert volt), ahol a csillag végül eljut a Hertzsprung-Russell diagram azon pontjába, ahol az SN2016gkg szülőcsillaga is tartózkodott a robbanás előtt. A modellezett csillag életútja végén tehát pont a megfigyelt fényességet (luminozitást), és a kiszámított felszíni hőmérsékletet kellett, hogy felvegye.

Először magányos csillaggal próbálkoztak, de nem találtak olyan fejlődési útvonalat, mely annak közelében ért volna véget, ahol az SN2016gkg szülőcsillaga tartózkodott. Volt azonban másik érv is a magányos csillag elképzelés ellen. Kétségtelen, hogy a nagytömegű csillagok képesek a végstádiumban, még a szupernóva-robbanás előtt ledobni szinte a teljes külső hidrogénburkukat. Pontosan ez figyelhető meg az úgynevezett Wolf-Rayet csillagoknál. Ahhoz azonban, hogy a csillagot a halála előtt kiterjedt, ám csak kicsiny tömegű hidrogénburok vegye körül, nagyon finoman hangolt tömegvesztési folyamat szükséges. Máskülönben nem jön létre a IIb szupernóváknál megfigyelhető fénygörbe, spektrum, illetve a szülőcsillag fizikai paraméterei is mások lesznek.

A kettős rendszerek csillagfejlődési modelljei között azonban több olyan életpályát is találtak, ahol a csillag a szupernóva-robbanás pillanatában az SN2016gkg szülőcsillagához elég közel tartózkodott a Hertzsprung-Russel diagramon. A kettőscsillag modellekkel már sokkal meggyőzőbb eredményre jutottak. A legjobban illeszkedő életpálya esetén a főkomponens kiindulási tömege 15 naptömeg, míg az 1000 napos keringési periódusú kisebb társ kiindulási tömege mindössze 1.5 naptömeg volt. Azonban az anyagátadást is figyelembe vevő modell szerint, közvetlenül a szupernóva-robbanást megelőzően már csak 5.2 naptömeg volt a főkomponens tömege. Ez a modell nemcsak hogy produkálta a végpontban a megfigyelthez nagyon közeli luminozitást, és felszíni hőmérsékletet, de a megmaradt hidrogénburok tömegére kapott 5 x 10-3 naptömeg is jól illett a IIb szupernóvákról alkotott képbe.

Természetesen nagy fegyvertény lenne a modellbeli másodkomponens megtalálása, mely eredendően sokkal halványabb, mint az SN2016gkg szülőcsillaga volt. Mindazonáltal, talán a jövőben lehetséges lesz a detektálása a megfelelően „mély” felvételeken, miután a szupernóva már jelentősen elhalványodott. Elfogadva a galaxis korábban említett távolságát, a Hubble űrtávcső WFPC2 detektorával, és az F300W (300 nm, U-Band) szűrő alkalmazásával egy 25.9 magnitúdós csillagot kellene keresni az adott helyen.

SN2016gkg-eletpalyak

12. ábra. Balra a magányos szülőcsillagok, jobbra a kettős rendszerbeliek életpályája látható a Hertzsprung-Russell diagramon az aktuális csillagfejlődési modellek alapján, különböző kiindulási tömeg, de adott fémtartalom mellett. Az SN2016gkg-t vörössel jelölték (a felszíni hőmérséklet, és a luminozitást csak némi bizonytalansággal sikerült meghatározni). E szupernóva mellett más IIb típusú szupernóvák szülőcsillagai is feltüntetésre kerültek. Részletekért lásd a szöveget. Forrás: Charles D. Kilpatrick és mások.

Beillesztve Kilpatrick és csillagász kollégáinak az SN2016gkg és szülőcsillagával kapcsolatos munkáját a korábbi IIb típusú szupernóvákkal kapcsolatos vizsgálatok sorába úgy tűnik, hogy bár nem elképzelhetetlen, hogy a IIb szupernóvák szülőcsillagainak kis része talán mégis csak magányosan élte le életét, de sokkal valószínűbb, hogy a nagytöbbség kettősrendszer tagjaként jutott el a szupernóva-robbanásig.

A kutatók mindenesetre folytatják a jövőben is és újabb IIb és más típusú szupernóvák szülőcsillagainak azonosítását, vizsgálatát. Ezzel párhuzamosan a csillagfejlődési modelleket is folyvást tökéletesítik. Úgy gondolom, hosszú még az út, hogy pontosan megértsük a kollapszus-szupernóvákat. Ráadásul én ebben a cikkben csak a IIb típusról tettem mindössze említést. Az olvasót e mellett csak arra tudom biztatni, hogy amennyiben módja van rá, kövesse nyomon egy-egy szupernóva fényváltozását. Remek elfoglaltság a természet jelenségeinek megfigyelése. Azt meg sosem lehet tudni, talán a beküldött adatokat egyszer tudományos céllal is felhasználják. Ez utóbbi két kijelentés amúgy szinte bármely változócsillag észlelés esetében megállja a helyét. 

Felhasznált irodalom:

Stephen James O’Meara: Deep-Sky Companions: Southern Gems (ISBN: 1-10701-501-4)

Martin Bureau and E. Athanassoula: Formation and Evolution of Galaxy Bulges (IAU S245) (Proceedings of the International Astronomical Union Symposia and Colloquia)

West, R. M.; Lauberts, A.; Schuster, H.-E.; Jorgensen, H. E.: Astrometry of SN 1987A and Sanduleak-69 202

Veron, P., Goncalves, A. C., & Veron-Cetty, M.-P.: AGNs with composite spectra

Andy D. Goulding, David M. Alexander, Bret D. Lehmer, James R. Mullaney: Towards a Complete Census of AGNs in Nearby Galaxies: The Incidence of Growing Black Holes

Olga G. Nasonova, José A. de Freitas Pacheco, Igor D. Karachentsev: Hubble flow around Fornax cluster of galaxies

Vinkó József: Rejtélyes csillagrobbanások

P. Castangia, F. Panessa, C. Henkel, M. Kadler, A. Tarchi: New Compton-thick AGN in the circumnuclear water maser hosts UGC3 789 and NGC 6264

J. Falcón-Barroso, C. Ramos Almeida, T. Böker, E. Schinnerer, J. H. Knapen, A. Lançon, S. Ryder: The circumnuclear environment of NGC613: a nuclear starburst caught in the act?

Charles D. Kilpatrick, Ryan J. Foley, Louis E. Abramson, Yen-Chen Pan, Cicero-Xinyu Lu, Peter Williams, Tommaso Treu, Matthew R. Siebert, Christopher D. Fassnacht, Claire E. Max: On the Progenitor of the Type IIb Supernova 2016gkg

L. Tartaglia, M. Fraser, D.J. Sand, S. Valenti, S. J. Smartt, C. McCully, J. P. Anderson, I. Arcavi, N. Elias-Rosa, L. Galbany, A. Gal-Yam, J.B. Haislip, G. Hosseinzadeh, D. A. Howell, C. Inserra, S. W. Jha, E. Kankare, P. Lundqvist, K. Maguire, S. Mattila, D. Reichart, K. W. Smith, M. Smith, M. Stritzinger, M. Sullivan, F. Taddia, L. Tomasella: The progenitor and early evolution of the Type IIb SN 2016gkg

 

NGC7331

NGC7331-LRGB-20160707-0135-sx-bin2-360s-TTK

NGC7331 / Deer Lick csoport

2016-07-07, 2016-08-05, 2016-08-26 – Göd

27 x 360 sec L (Bin2), 10 x 360 sec R (Bin2), 10 x 360 sec G (Bin2), 10 x 360 sec B (Bin2)

300/1200 Newton távcső – Paracorr Type2 kóma korrektor – eredő fókusz 1380 mm

SkyWatcher EQ-6 Pro GoTo mechanika

SXVR-H18 CCD kamera, Hutech IDAS P2 LPS filter és Astronomik RGBL fotografikus szűrőszett

Pegazus (vagy Pégaszosz) a görög mitológia szárnyas lova, aki Poszeidón és Medúza „nászából” fogant. Annak előtte Medúza még szépséges szűz volt, és Pallasz Athéné kísérője. Büntetésül maga Athéné Istennő változtatta szörnyű teremtménnyé, miután (egyes változatok szerint) Poszeidón erőszakot tett rajta, ártatlanságát elvesztette. Medúza fejéről kígyók tekeregtek alá, s pillantásával a halandókat kővé változtatta. Életének végül Perszeusz vetett véget, mikor az Athénétől(!) kapott pajzzsal és egy sarlóval felszerelkezve levágta annak fejét. Pegazus és Khrüszaór gigász ekkor pattant elő teljes életnagyságban anyja testéből. Pegazus további sorsát illetően már az ókorban többféle elbeszélés létezett. A reneszánsz során ezek a történetek kissé át is alakultak. Például több szerepet kapott Perszeusz történetében. A klasszikus görög mítoszokban még a Hermésztől kapott mágikus sarkantyút használta Perszeusz a sziklához kötözött Androméda megmentésekor. Azonban, a XV-XVI században már úgy mesélték, illetve ábrázolták, hogy Perszeusz Pegazus hátán érkezett, hogy a Cettől a királylányt megmentse.

Pegazus kulcsszerepet játszott Bellerophontész mítoszában is. A hős segítségével győzte le Khimairat, az oroszlántestű nőstényszörnyet, melynek hátán kecskefej meredezett, és farka kígyófejben végződött. Az amazonok ellen vívott harcban, hősünk szintén kihasználta Pegazus nyújtotta magaslati előnyét. Bellerophontészt végül sikerei olyannyira elvakították, hogy Pegazus hátán egyenesen az Olimposzra lovagolt, mert úgy gondolta, hogy magának is az istenek között a helye. Zeuszt feldühítette az arcátlanság, és böglyöt küldött, mely megcsípte Pegazust. A ló levetette hátáról Bellerophontészt, aki visszazuhant a földre. Új gazdája maga Zeusz lett. S mivel Pegazus hűen szolgálta őt, hordta villámait, Zeusz tiszteletből csillagképpé változtatta.

Ez hát Pegazus mítosza. Az viszont maga a valóság, hogy a Pegazus egyike annak a 48, Ptolemaiosz által felsorolt csillagképnek (Almageszt), melyet a mai napig használunk. Ma összesen 88 csillagkép létezik, melyeket a Nemzetközi Csillagászati Unió (International Astronomical Union, IAU) 1922-ben fogadott el.

Pegasus_IAU.svg

A Pegazus csillagkép, és a hozzá tartozó területek. A Pegazus-négyszög igen jellegzetes alakzat, noha annak „bal felső” csillaga (α Andromedae) már az Androméda csillagképhez tartozik. 

A Pegazus vidéke hemzseg a látnivalóktól. Kimondottan, ha valaki galaxisokra vadászik. Igaz, legtöbbjük olyan apró és halvány, hogy nagyobb méretű amatőrtávcsőre van szükség a megpillantásukhoz, illetve lefényképezésükhöz. Akad azonban könnyebb célpont is. Az NGC7331 katalógus számú galaxis a Pegazus csillagkép legfényesebb, és talán legismertebb galaxisa. A Matar (η Peg) nevű csillagától nem egészen 4.5 fokra, észak-északnyugatra, nem is nehéz ráakadni erre a 9.5 (V) magnitúdós és 10.5 x 3.7 ívperc látszólagos kiterjedésű csillagvárosra.

A csillagrendszert William Herschel fedezte fel 1784-ben. Érdekes, hogy Charles Messier több hasonló paraméterrel rendelkező mély-ég objektumot katalogizált, véleményem szerint ennél nehezebben megpillanthatóakat is, de ez a galaxis valamiért mégis kimaradt gyűjteményéből. Természetesen, ez mit sem von le Messier érdemeiből.

NGC7331-Pegazus-02

Az NGC7331 nem egészen 4.5 fokra, észak-északnyugatra található a Pegazus csillagkép Matar (η Peg) nevű csillagától.

Ha már megemlítettem Messier nevét, akkor megjegyzem, hogy az általa felsorolt 110 objektum megfigyelése szerintem egy nagyszerű program kezdő mély-ég észlelők számára. Gyakorlott megfigyelőknek pedig a Messier-maraton kitűnő szórakozás, melynek során egyetlen éjszaka alatt kell a lehető legtöbb Messier objektumot teljesíteni. Erre az egyik legkitűnőbb alkalom április elejének környéke. Hazánkból már többen is teljesítették a kihívást, eljutva egészen 109 objektumig (az M30 megfigyelése hazánkból lehetetlen ebben az időpontban).

Az idők folyamán azonban több katalógus, pontosabban szólva gyűjtemény is napvilágot látott, mely egyfajta további észlelési programot ad azok kezébe, akik már felkeresték az összes Messier objektumot, és a távoli világűr további szépségére is kíváncsiak. Úgy gondolom, minden lelkes mély-ég észlelő életében eljön ez a pillanat. A Messier katalógus közel sem tartalmazza az égbolt fényesebb mély-ég objektumainak teljes listáját. Nem is ezzel a céllal született. Sir Patrick Alfred Caldwell-Moore viszont azon a véleményen volt, hogy szükség lenne egy kiegészítésre, kimondottan amatőrcsillagászoknak. Ezzel az indíttatással állította össze, és publikálta saját katalógusát 1995-ben, mely Caldwell katalógusként lett ismert.

CaldwellStarChart-2000px

Caldwell objektumok az égbolton.

Ezek nem az ő önálló felfedezései, csupán összegyűjtötte az égbolt izgalmas, és viszonylag fényes mély-ég objektumait, melyeket mások figyelmébe szeretett volna ajánlani, és melyek hiányoztak a Messier katalógusból. A Caldwell katalógusban az objektumok deklinációjuk szerint következnek sorba. Továbbá az égbolt déli féltekének gyönyörűségeiből is tartalmaz egy jókora merítést. Az NGC7331 éppen a harmincadik objektum a Caldwell katalógusban, így amatőrcsillagász körökben gyakran C30-ként is szoktak rá hivatkozni.

NGC7331-LRGB-20160707-0135-sx-bin2-360s-TTK-label

A felvételen elsőként a négy apró galaxisokkal körülvett NGC7331 spirál galaxis vonja magára a szemlélő figyelmét, és természetesen ott van a csillagokkal telehintett látómező. A csillagok mind a Tejútrendszerünkhöz tartoznak. De mi a helyzet a galaxisokkal? Vajon van fizikai kapcsolat a Deer Lick csoport tagjai, vagyis az NGC7331, az NGC7336, az NGC7335, az NGC7340 és az NGC7337 között?

Az NGC7331 távolságát az elmúlt évtizedekben több módszerrel is megpróbálták meghatározni. A spirál galaxis felépítése és nagy inklinációja (kb. 73°) ideális körülményeket biztosított az úgynevezett Tully-Fisher reláció használatára. A Tully-Fisher reláció (elliptikus galaxisok esetén nem használható, csak spirális és lentikuláris galaxisoknál) egy tapasztalati összefüggés a galaxisok tömege vagy luminozitása és emissziós vonalainak szélessége, vagyis a galaxison belüli szögsebességek között. A részletekbe nem nagyon elmerülve, arról van szó, hogy a galaxison belüli sebességekből meghatározható a galaxis luminozitása, és ebből pedig távolsága. Ugyanis, a galaxis csillagainak dinamikáját a galaxis tömege határozza meg, mely pedig összefüggésben áll annak luminozitásával. Az így kapott luminozitást felhasználva a látszólagos fényesség ismeretében a távolság már meghatározható. Ezzel a módszerrel a kilencvenes évek elején végzett alapos vizsgálatok után 12Mpc (kb. 39 millió fényév) távolságot kaptak a csillagászok.

Ezt követően nem sokkal, a kilencvenes évek közepén indult egy projekt (The Hubble Space Telescope Extragalactic Distance Scale Key Project), melyben a Hubble űrtávcsővel kívánták meghatározni 20 Mpc-en belül 18 galaxis távolságát a benne található Cepheida típusú változócsillagok segítségével.

A Cepheida változócsillagok radiálisan pulzálnak. Az átmérőjükben és hőmérsékletükben bekövetkező változás az oka, hogy fényességük meghatározott, stabil periódus szerint változik.

Henrietta Swan Leavitt még 1912-ben felfedezte fel a Cepheida-k fényváltozási periódusa és abszolút fényessége között fennálló kapcsolatot, miután a Nagy Magellán-felhő Cepheida változóiról készült több száznyi fotólemezt áttanulmányozta. E csillagok úgynevezett standard gyertyaként használhatók az őket tartalmazó halmazok, galaxisok távolságának meghatározására. A Cepheida periódusából adódik, annak abszolút fényessége. Ennek, és a mért látszólagos fényességnek a birtokában a távolság pedig már meghatározható.

Maga Edwin Hubble is Cepheida típusú változócsillagokat használt az Androméda galaxis távolságának meghatározásához. Sikeresen azonosította őket, majd a periódus-fényesség relációjuk felhasználásával bizonyította 1926-ban, hogy az Androméda galaxis a Tejútrendszeren kívül elhelyezkedő önálló csillagváros.

Hubble_V1

Edwin Hubble egyik felvétele, rajta az Androméda galaxisban azonosított Cepheida változókkal.

Ezúttal a Hubble-ről elnevezett űrtávcsőn volt a sor, hogy megismételje azt a bravúrt, amit a Hooker távcső itt a Földön közel 70 évvel ezelőtt. A kitűzött távolság azonban ebben az esetben 25-ször nagyobb volt. Végül a kutatók 13 Cepheida változót azonosítottak biztosan az NGC7331-ben, és ezeket használták fel a galaxis távolságának meghatározására.

NGC7331-Ceph-HST

Cepheida típusú változócsillagok az NGC7331-ben a Hubble űrtávcső felvételén.

Az 1998-ban publikált eredmények szerint a galaxis távolsága 15.1 (+1.0/-0.9) Mpc, vagyis nagyjából 49 millió fényév.

A csillagászok a „kis” galaxisok távolságát is meghatározták. Ezek jóval távolabb vannak, mint az NGC7331. Olyannyira, hogy még a Hubble űrtávcső is képtelen megpillantani bennük az amúgy igen fényes Cepheida változócsillagokat. E négy galaxis esetében egészen más módszert is használtak.

A világegyetem tágulásának köszönhetően a galaxisok távolodnak tőlünk, méghozzá annál nagyobb sebességgel, minél nagyobb a távolságuk. Ez az összefüggést nevezik Hubble-törvénynek. A Doppler-effektus miatt, a távolodó égitest spektrumában a színképvonalak a sebességgel arányosan a vörös szín felé tolódnak. Megmérve a vöröseltolódást kiszámítható a távolodás sebessége, ebből pedig a Hubble-törvény alkalmazásával már következik a galaxis távolsága.

Az NGC7335, NGC7337, és az NGC7340 hasonló távolságra vannak, de jóval az NGC7331-en túl. Szám szerint, 264 millió fényévre, 275 millió fényévre, 268 millió fényévre. Az NGC7336 a maga 371 millió fényéves távolságával azonban, még rajtuk is túltesz.

A fentebb feltett kérdésre válaszolva: a Deer Lick csoport tagjai, bár pompásan mutatnak így együtt, három jelentősen eltérő távolságban vannak. A csoportosulás mindössze látszólagos.

Az NGC7331 valójában tényleg része egy galaxis csoportnak. Ez nem túlságosan sűrű, és tagjai az égbolt viszonylag nagy területén, szétszórtan helyezkednek el. Elég nagy területen ahhoz, hogy az én látómezőmbe már ne férjenek bele. E csoport fényesebb tagjai: az NGC7217 (kb. 6° távolságra az NGC7331-től, ez a második legfényesebb), az NGC7320, az NGC7292, az NGC7457 (a harmadik legfényesebb), az UGC12060, az UGC12082, az UGC12212, az UGC12311, és az UGC 12404. Talán az NGC7320 a leginkább ismert közülük, a Stephan´s Quintett révén. Igaz, nincs fizikai kapcsolatban az ötös másik négy galaxisával. Megint csak egy véletlen egybeesés!

Gyakran beszélnek, vagy éppen írnak az NGC7331-ről, mint galaxisunk ikertestvéréről. Ez azonban csak félig-meddig igaz.

A 49 millió fényév körüli távolságot elfogadva, a galaxis átmérője nagyjából 100000 fényév, vagyis Tejútrendszerünk és az NGC7331 hasonló méretű spirál galaxis. Szintén, a Cepheida változócsillagokra alapozott távolságát alapul véve, látszólagos fényességéből már következik a valódi fényessége (luminozitása). Ez utóbbi és a galaxis kinematikai vizsgálatainak eredménye alapján tömege 4.6 x 1011 naptömeg (Tully-Fisher reláció). Kijelenthető tehát, hogy az NGC7331 a saját galaxisunkkal egy „súlycsoportjába” tartozik. Morfológiai típusa SA(s)b D. Ellentétben saját Tejútrendszerünkkel, ez a spirális csillagrendszer nem küllős, vagyis a galaxis karjai közvetlenül a magból indulnak. Ha már mindenképpen az NGC7331 ikertestvérét keressük „a közelben”, akkor morfológiáját tekintve, az az Androméda-galaxis (M31).

 Hubble_-_de_Vaucouleurs_Galaxy_Morphology_Diagram-mini

A Hubble – de Vaucouleurs galaxis morfológiai diagram.

Bár a korai elképzelések miatt, ma is használják a korai típusú (elliptikus, lentikuláris galaxisok), és a késői típusú galaxis elnevezést (spirál galaxisok, irreguláris galaxisok), ma már tudjuk, hogy valójában a galaxisok fejlődése nem a balról jobbra irányt követi az ábrán. Most csak a spirál galaxisokra koncentrálva, ezek három osztályba sorolhatóak. Normál spirál galaxisok (felül), átmeneti spirál galaxisok (középen), küllős spirál galaxisok. Figyeljük meg, hogy ez utóbbi esetben a küllőből indul a spirálkar. A Hubble Űrtávcső 2000 galaxist magában foglaló felmérése, a Cosmic Evolution Survey (COSMOS) eredményei szerint a múltban kisebb volt a küllős galaxisok aránya a spirális galaxisok között. A mai univerzumban a spirál galaxisok körülbelül 65% rendelkezik küllős szerkezettel, míg a múltban ez az arány, mindössze 20% volt. 7 milliárd év alatt megháromszorozódott a számuk. Az is kiderült, hogy a galaxis tömege is fontos szerepet játszik abban, hogy mikor válik egy spirális galaxis küllőssé, vagyis mikor éri el a fejlettség/érettség eme szintjét. A nagytömegűek gyorsan legyártják csillagaikat, miközben felélik intersztelláris gázkészletük jelentős részét. A rövidéletű forró kék csillagok kihalásával, az újabb populációk utánpótlásának hiányában, vörös korongokká válnak az űrben. A kisebb tömegű galaxisok azonban nem fejlődnek olyan gyorsan. Náluk később alakul ki a küllős struktúra. A csillagászok ma úgy vélik, hogy a küllős szerkezet létrejötte a spirál galaxisok fejlődésének egyik állomása.

Első ránézésre az NGC7331 átlagos spirál galaxis benyomását kelti. A kilencvenes években azonban furcsa felfedezést tett csillagászok egy csoportja, miközben a Kanári-szigeteken (La Palma) lévő 4.2 méter tükörátmérőjű William Herschel Távcsővel megvizsgálták a galaxist a közeli infravörös tartományban. Felvételeket készítettek, illetve spektroszkópiai méréseket végeztek. A galaxis felépítését, szerkezetét, a galaxison belüli sebesség eloszlásokat igyekeztek feltérképezni. Megfigyeléseik igen meghökkentő eredménnyel zárultak. Megállapították, hogy a galaxis központi régiója lassú ellentétes irányú forgást végez a gyorsan forgó koronghoz képest. De mi lehet ez a furcsa háromtengelyű képződmény a belső 5ʺ sugarú területen? Erre két lehetséges magyarázattal is szolgáltak a felfedezők. Az első szerint elképzelhető, hogy mégis küllős galaxis az NGC7331, és a küllő éppen a végével fordul felénk. A második lehetőség azonban a sokkal valószínűbb, miszerint ez külső eredetű, és egy korábbi nagyobb méretű, galaxisok közötti összeolvadás eredménye. Az ellentétes irányba forgó rendszer nem más, mint a másik galaxis maradványa. Amennyiben, ez valahogy mégiscsak belső eredetű lenne, az nagyon feladná a leckét a csillagrendszerek kialakulásával foglalkozó kutatóknak és elméleteiknek.

Infravörös tartományban azonban nemcsak a Föld felszínéről vizsgálták az NGC7331-et, hanem a NASA Spitzer űrtávcsövével is. Ez az objektum is része volt annak a programnak (Spitzer Infrared Nearby Galaxies Survey), melyben 75 viszonylag közeli galaxis infravörös tartományban történő feltérképezését tűzték ki célul. A Spitzer olyan dolgokat is képes volt meglátni, ami a látható fény tartományban többnyire rejtve marad előlünk.

NGC7331-PIA06322-rot

Az NGC7331 az infravörös tartományban a Spitzer űrtávcsővel készült felvételen.

A fényképen négy szín jelöli a különböző hullámhosszú infravörös sugárzást: 3.6 mikron a kék, 4.5 mikron a zöld, 5.8 mikron a sárga és végül 8.0 mikron a vörös szín. A rövidebb hullámhosszú sugárzás (kék és zöld szín) az idősebb hidegebb csillagoktól származik, főleg ezek sugárzása uralja ezt a tartományt. A hosszabb hullámhosszakon (sárga és vörös szín) a csillagok már kevésbé sugároznak, ott a porfelhők válnak hangsúlyossá.  Egészen pontosan az úgynevezett policiklusos aromás szénhidrogének (PAH – Polycyclic Aromatic Hydrocarbons) sugárzását láthatjuk ezeken a hullámhosszakon.

A csillagok sugárzása által felmelegített por emissziója folytonos az infravörös tartományban. Ezt a folytonos spektrumot szilikát elnyelési vonalak (vagy sávok), illetve a policiklusos aromás szénhidrogének emissziós vonalai (vagy sávjai) tarkítják. A Spitzer teleszkóp infravörös kameráját pedig kimondottan úgy tervezték, hogy eme utóbbi megfigyelésére (is) alkalmas legyen. A csillagászok korábban azt tapasztalták, hogy ahol előfordul a csillagközi por, ott a policiklusos aromás szénhidrogének is előfordulnak. A csillagok sötét helyeken, sűrűs gáz- és porfelhők mélyén keletkeznek, ahová optikai tartományban vajmi kevés esélyünk van bepillantani. Az 5.8 és 8.0 mikronos emisszió azonban elárulja e fészkek helyét. Nemcsak elárulja, de egyben fel is tárja a részletek. Amíg a csillagkeletkező régióknak csak sziluettjét látjuk mindössze az optikai tartományában, addig a policiklusos aromás szénhidrogének szépen kirajzolják a ködök struktúráját.

A felvételen tisztán látszik, hogy a központi rész szinte csak öreg csillagokat tartalmaz, míg a karok bővelkednek porban és gázban, de nemcsak a karok. A galaxis centrumát egy 20000 fényév sugarú gyűrű alakú aktív csillagkeletkezési terület veszi körül. A Spitzer adatai alapján nagyjából még 4 milliárd Naphoz hasonló tömegű csillag keletkezéséhez elég gáz lehet ebben a hatalmas gyűrűben. E roppant méretű struktúra a rádió és infravörös megfigyelések előtt teljes mértékben ismeretlen volt. Ez az optikai tartományban, így az én felvételemen sem látható. Ez is azt mutatja, hogy mennyire fontos a világegyetem folyamatainak megértése szempontjából a teljes elektromágneses spektrumot lefedő kutatás. Ezt azonban a csillagászokra hagyom, én amatőrcsillagászként (egyelőre) maradok az optikai tartományban történő észlelésnél, saját kedvtelésre.

A felvételről dióhéjban

Pár éve már készítettem felvételt az NGC7331-ről. Akkori főműszerem egy UMA-GPU APO Triplet 102/635 volt, melyhez ASI 120MM monokróm kamerát használtam. Mindig is dédelgettem a tervet, hogy egyszer majd egy nagyobb távcsővel és jobb dinamikával rendelkező kamerával visszatérek erre a galaxisra, vagy legalább újra feldolgozom a képet. Nem voltam sosem teljesen elégedett az eredménnyel, de akkor ennyit tudtam. Természetesen ma sem tartom magam nagy mágusnak. 🙂

Ennek a fotónak az L (Luminance) komponenseit mégsem azzal a céllal készítettem, hogy valóra váltsam az említett tervet. Egészen más témát fotóztam, és nem voltam tökéletesen elégedett a vezetéssel. Nem volt rossz, de mintha bolyongott volna kissé a mechanika. Kíváncsi voltam, hogy a jelenség függ-e attól, hogy milyen irányban néz, és milyen magasan áll a távcső. Ehhez az egyik tesztobjektum az NGC7331 volt. Kiderült, valóban a mechanikán kellett állítani, de erre nem azon az éjszakán került sor. A teszt közben készült felvételeket először ki akartam dobni, de külső unszolásra végül mégsem tettem. Augusztusban felvettem a színszűrős felvételeket is. Közel másfél hónap után pedig végre arra is lett időm, hogy kidolgozzam a képet, és felújítsam a korábbi cikket. Megérdemelne még a téma némi törődést (több L kép, alaposabb kidolgozás), de most ennyi fért bele.

Felhasznált irodalom:

F. Prada, C. Gutierrez, R.F. Peletier, C.D. McKeith: A Counter-rotating Bulge in the Sb Galaxy NGC 7331

Hughes, Shaun M. G.; Han, Mingsheng; Hoessel, John; Freedman, Wendy L.; Kennicutt, Robert C., Jr.; Mould, Jeremy R.; Saha, Abhijit; Stetson, Peter B.; Madore, Barry F.; Silbermann, Nancy A.; Harding, Paul; Ferrarese, Laura; Ford, Holland; Gibson, Brad K.; Graham, John A.; Hill, Robert; Huchra, John; Illingworth, Garth D.; Phelps, Randy; Sakai, Shoko: The Hubble Space Telescope Extragalactic Distance Scale Key Project. X. The Cepheid Distance to NGC 7331

Kartik Sheth, Debra Meloy Elmegreen, Bruce G. Elmegreen, Peter Capak, Roberto G. Abraham, E. Athanassoula, Richard S. Ellis, Bahram Mobasher, Mara Salvato, Eva Schinnerer, Nicholas Z. Scoville, Lori Spalsbury, Linda Strubbe, Marcella Carollo, Michael Rich, Andrew A. West: Evolution of the Bar Fraction in COSMOS: Quantifying the Assembly of the Hubble Sequence

Johannes Ludwig, Anna Pasquali, Eva K. Grebel, John S. Gallagher III: Giant Galaxies, Dwarfs, and Debris Survey. I. Dwarf Galaxies and Tidal Features Around NGC 7331

Joshua Davidson, Sanjoy K. Sarker, Allen Stern: Possible Evidence of Thermodynamic Equilibrium in Dark Matter Haloes

Guillermo A. Blanc, Tim Weinzirl, Mimi Song, Amanda Heiderman, Karl Gebhardt, Shardha Jogee, Neal J. Evans II, Remco C. E. van den Bosch, Rongxin Luo, Niv Drory, Maximilian Fabricius, David Fisher, Lei Hao, Kyle Kaplan, Irina Marinova, Nalin Vutisalchavakul, Peter Yoachim: The VIRUS-P Exploration of Nearby Galaxies (VENGA): Survey Design, Data Processing, and Spectral Analysis Methods

Abell1060 (Hidra I Halmaz)

Abell1060-LRGB-20160527-T32-300s-bin2-TTK

Abell1060

2016-05-27, 2016-05-29, 2016-05-30, 2016-05-31 – Siding Spring Observatory

19 x 300 sec L (Bin2), 9 x 300 sec R (Bin2), 9 x 300 sec G (Bin2), 9 x 300 sec B (Bin2)

iTelescope.net T32 – Corrected Dall-Kirkham Astrograph Planewave 17″ – 43 cm, f/6.8  – FLI Proline 16803 CCD kamera

A képre kattintva, az nagyobb felbontásban is elérhető.

A kertem azon zuga, ahonnan saját távcsövemmel az eget szoktam fürkészni viszonylag védett az utcai fényektől. Természetesen Budapest fényeivel, illetve északi irányban, 5-6 km-re lévő ipari parkkal nem tudok mit kezdeni. Szerencsére a mostani szomszédjaimat sikerült meggyőzni arról, hogy éjszaka nincs sok értelme a felém néző lámpákat égetni, kimondottan akkor nem, amikor már ők régen alszanak. Tudomásul vették, hogy mellettük lakik valami fura fickó, aki derült éjszakákon a távcsöve mellett gubbaszt. Direkt pedig miért is babrálnának ki vele? Elvégre, mindenkinek lehet valami furcsa heppje! Csendes őrült. Gondolják ők!

A házam nagyjából 30 fok magasságig kitakarja az eget ÉNY-É-ÉK irányba, így közvetlenül nem látok rá azokra az égtájakra, ahonnan a felhőket gyakorta fölém sodorja az áramlat. Ősszel és telente a köd is gyakorta erről szokott támadni. Éppen ezért, miközben hátul a kertben a távcső végén dolgozik a kamera, alkalmanként átsétálok a telkem északi oldalára, az utcafrontra, hogy lássam közelít-e valami, mely véget vethet az éjszakai mókának. Ilyenkor az utcalámpák narancsos ragyogásában, hunyorogva kémlelem a messzi horizontot, reménykedve abban, hogy a csillagok fénye még mindig töretlen.

Így tettem azon az éjszakán is, mikor az NGC6015 izolált galaxisról rögzítettem az első felvételeket. Hátamat a falnak vetve azon töprengtem, hogy ha már itthonról magányos galaxis fotózásába kezdtem, akkor az iTelescope hálózat Ausztráliában lévő egyik távcsövével belefogok valamelyik távoli galaxis halmaz fotózásába. De melyik legyen az? Még tavaly ősszel készítettem egy listát azon galaxis halmazokról, melyeket a jövőben majd le szeretnék fotózni. Időközben sok publikációt is elolvastam róluk, ugyanis nagyon érdekelt ez a csillagászati téma.

A lehetséges célpontok között volt az Abell1060 is. A halmaz tagjaira két sziporkázó, a Tejútrendszerünkhöz tartozó csillag fénye mögött látunk rá. Kápráztatóak, akárcsak a nátrium utcalámpák a csillagos égbolt előtt. Sosem gondoltam volna, hogy az éjszaka fölénk boruló Univerzum látványától megfosztó közvilágításról valaha is az Abel1060-nak, az SDSS (The Sloan Digital Sky Survey) program keretében készült fotója fog beugrani. Az észlelési programomba, ha élhetek ezzel a kifejezéssel, viszont nem kimondottan a látványa, sokkal inkább érdekességei miatt került be anno. Hamarosan ezekből fogok majd szemezgetni, s rajtuk keresztül igyekszem majd képet festeni a galaxis halmazok világáról. Előbb azonban, had szenteljek egy kis figyelmet magának az Abell katalógusnak, és megalkotójának.

Az Abell katalógus (Abell catalog of rich clusters of galaxies)

Abell1976

George Ogden Abell (1927-1983) előadást tart 1976-ban a Summer Science Program keretében. A program nyári foglalkozásaival a tudományos pálya felé igyekezett terelni a tehetséges középiskolásokat. Megismertette a résztvevőket a csoportos kutatómunka nagyszerűségével. Nappal elméleti képzést kaptak (csillagászat, fizika, matematika, szférikus trigonometria, szoftverfejlesztés, stb.), éjszaka pedig például kisbolygó megfigyeléseket végeztek, és kiszámolták pályájukat. Abell fontosnak tartotta, és sokat is tett azért, hogy a fiatalokat oktassa. Nemcsak kiváló tudós, de igen népszerű tanár is volt a hallgatók körében. Fotó: Ken Nordhauser

George Ogden Abell megfigyelő csillagászként kezdte pályafutását a Palomar Égboltfelmérő Programban (Palomar Sky Survey). A Palomar Obszervatórium 48 hüvelykes Schmidt típusú távcsövét használta a projekt fotólemezeinek elkészítéséhez. A Schmidt távcsövek (szokás még Schmidt kamerának is hívni) speciális felépítésüknek köszönhetően egyszerre az égbolt viszonylag nagy területéről képesek éles képet rögzíteni. Bernhard Schmidt-nek, a távcsőtípus feltalálójának pontosan egy ilyen rendszer megalkotása volt a célja. Az ötvenes évektől szinte az ezredfordulóig három nagy Schmidt távcső, köztük a Samuel Oschin (régebben Palomar Schmidt) biztosította az egész égboltra kiterjedő felmérésekhez a fotografikus források túlnyomó többségét.

George Abell preparing to take plate with 48-inch Schmidt telescope

A fiatal George Ogden Abell a Palomar Obszervatórium Samuel Oschin 48 hüvelykes (1.2 méteres) Schmidt távcsövével. Abell ezzel a távcsővel készítette a Palomar Égboltfelmérő Programhoz a felvételeket. A távcső napjainkban már teljesen automatizált, praktikusan működésközben senki sincs fizikailag a kupolában. A fotólemezeket pedig CCD technológia váltotta fel. Teljesen hasonlóan készült a saját felvételem is az Abell1060-ról. Az iTelescope távcsöve teljesen önállómódon, az általam megadott program alapján készítette el a kívánt felvételeket. – A kép forrása: Caltech

Egy-egy felvétel az égbolt nagyjából 6 fokos területét fedte le. Összehasonlításként, a Hold látszólagos mérete mindössze ½ fok. A teljes ég nagyjából 75%-át sikerült lefényképezni a program keretében, mely magában foglalta majdnem a teljes északi éggömböt, illetve a délinek egy részét. Abell 879 fotólemezt használt fel a 935-ből, hogy a galaxis halmazok után kutasson. Egyenként átnézte ezeket, s olyan régiókat keresett, ahol az átlagosnál nagyobb volt a galaxisok koncentrációja. 1958-ban publikálta katalógusát, mely 2712 galaxis halmazt tartalmazott. Vizsgálatait munkatársaival később a déli égboltra is kiterjesztette. Ehhez, a UK Schmidt teleszkóppal az 1970-es években készült felvételeket használta fel. E távcső otthonául ugyanaz a Siding Spring Observatory szolgál, ahol az iTelescope ausztráliai robottávcsövei találhatóak. A felvételem az Abell1060 halmazról egészen közel készült egy olyan távcsőhöz, ami maga is kulcsfontosságú szerepez játszott Abell munkássága során. A kiegészített katalógusának előzetes változata 1983-ban került bemutatásra, de egy hónappal későbbi halála miatt félbemaradt a projekt. A munkát végül társzerzői fejezték be, és 1989-ben került kiadásra, s így az Abell katalógusba az egész égboltot lefedő kutatás után 4073 galaxisokban gazdag halmaz került be.

Az Abell katalógus meghatározó munka volt már az 1958-as megjelenésekor is, ugyanis elég nagy mintát jelentett ahhoz, hogy össze lehessen hasonlítani az egyes halmazok karakterisztikáját. Továbbá először kínálkozott alkalom a galaxisok térbeli eloszlásának vizsgálatára a felmérés nagyságrendjének és kiterjedtségének köszönhetően.

Abell a halmazokat a szerint osztályozta, hogy azok mennyire gazdagok galaxisokban (Richness). Ha belegondolunk, akkor a halvány galaxisokat egyáltalán nem könnyű detektálni. Abell úgy próbált fogást venni a problémán, hogy egy bizonyos luminozitási (fényességi) tartományba eső tagokat számlálta meg. Saját definíciója szerint, az m3 és az m3+2 tartomány számosságát vette figyelembe, ahol m3 a halmaz harmadik legfényesebb tagjának a fényessége (magnitúdóban). A kapott érték alapján 6 külön csoportba osztotta a halmazokat.

Munkájához távolság adatokra is szüksége volt, ami akkoriban közel sem állt rendelkezésre a halmazok legtöbbje esetén. Azt a korábbi tapasztalati összefüggést használta fel, miszerint minden egyes népes halmaznak a 10 legfényesebb tagja meghatározott fényességű. Csillagász kollégái alig két évvel korábban publikálták az első eredményeket a halmazok luminozitás függvényével kapcsolatban (Humason, Mayall, és Sandage – 1956). Abell így a fényesebb tagok látszó fényességét, mint távolságindikátort használta fel. Ez a módszerrel ugyan csak igen durva becsléseket tett lehetővé, de arra éppen megfelelt, hogy eldönthető legyen egy-egy halmazról, hogy az közelebbinek vagy távolabbinak számít-e. Végül a halmazokat 7 különböző csoportba sorolta a fenti módszerrel a távolságuk alapján.

Arra is metodikát dolgozott ki, hogy miként jelölje ki a halmazokat és tagjaikat. Tudatában volt annak, hogy vannak előtér, és háttér galaxisok. Látóirányunkban lehetnek véletlen egybeesések, s így talán nem is egy valódi halmazt látunk.  Megszámolta a galaxisokat a fotólemez egyes területein. S, hogy minimalizálja az előbb említett hibákat, azt mondta, hogy akkor beszélünk halmazról, amennyiben az, adott sugárban 50 vagy több galaxist tartalmaz a centruma körül. Vagyis, a távolság függvényében a fotólemezen meghatározott méretűnek látszó körön belül kell lennie annak a minimum 50 galaxisnak, melyek luminozitása átlép egy bizonyos küszöböt. Későbbi kutatásokból kiderült, hogy nem is járt messze az igazságtól. Erre az általa definiált, halmazokra érvényes „standard” sugárra manapság Abell rádiuszként (AR) szoktak hivatkozni, és a Hubble-állandó elfogadott értéke alapján pedig 2 Mpc a mérete. Az eredetileg a katalógusában szereplő 2712 galaxis halmaz jelölt közül, végül 1682 esetében jelentette ki, hogy statisztikailag ezek valószínűsíthetően tényleg valódi halmazok.  És valóban, mások ezt követő tanulmányai szerint, az esetek túlnyomó többségében igaza is lett.

Az Abell névvel azonban nemcsak galaxis halmazok nevében találkozhatunk amatőrcsillagászként. Egyik korai munkája az alacsony felületi fényességű planetáris ködök tanulmányozása volt. Ehhez szintén a Palomar Égboltfelmérő Program során készült fotólemezeket használta fel. A 48 hüvelykes Schmidt távcső ideális volt a nagy kiterjedésű, de halvány felületi fényességű objektumok megörökítéséhez. 1966-ban kiadott publikációja 86 planetáris ködöt tartalmazott. Ezekre nem mind ő akadt rá. Nagyjából a felük Albert George Wilson, míg a maradék hozzá, illetve Robert George Harrington és Rudolph Minkowski nevéhez köthető. Bár 4 planetáris köd jobban ismert más katalógusokból, és szintén 4-ről később kiderült, hogy valójában más objektum, de Abell-nek Peter Goldreicher-rel karöltve fontos szerepe volt abban, hogy a csillagászok kapcsolatot teremtsenek a vörös óriás csillagok életének végső fázisa és a planetáris ködök között. Vagyis, neki is köszönhető, hogy a nagyjából a Napunk tömegével rendelkező csillagok halálához vezető útja elkezdett kirajzolódni.

Abell1060 (Hidra I Halmaz)

Abell1060-LRGB-20160527-T32-300s-bin2-TTK-label

Abell1060 – A felvételemen szereplő galaxisok NGC és PGC azonosítói, melyek közül többre is hivatkozom majd a lenti szövegben.

A két fényes csillag (HD 91964 balra, HD 92036 jobbra) távolsága alig valamivel több, mint 16 ívperc, vagyis nagyjából fele, mint a Hold mérete az égen. A felvételen szereplő, két legnagyobbnak látszó galaxis mérete pedig, a katalógusok szerint 3.5 ívperc (NGC3311), illetve 3.2 ívperc (NGC3312). A fotóm az égbolt durván Hold méretű területét fedi le. A halmaz 157 tagja viszont az égbolt nagyjából 2 fokos szeletén helyezkedik el. Én mindössze csak a központi részt örökítettem meg.

A képre kattintva, az nagyobb felbontásban is elérhető.

E galaxis halmaz megfigyeléséhez mindenképpen érdemes délre utaznunk, ugyanis hazánkból a legnagyobb delelési magassága is mindössze 14-16 fok körüli. Én is ennek okán választottam Ausztráliát a felvétel elkészítéséhez.

A látómező legfényesebb objektuma a HD 92036 katalógusszámú vörös óriás csillag (színképosztály: M1III). 4.85 (V) magnitúdós fényességével szabad szemmel is megpillantható a Hidra csillagképben. Távolsága 488 fényév. Ha jóval közelebb lenne hozzánk, akkor könnyen megcsodálhatnánk pompás színét, mely leginkább a Betelgeuse narancsos vöröséhez hasonlatos. Így aki látta már téli egünk ezen égkövét, az el tudja képzelni milyennek is látnánk saját szemünkkel. Valójában a HD 92036 egy árnyalattal még vörösebb is, ugyanis B-V színindexe 1.64, míg a Betelgeuse B-V színindexe 1.52.

A másik fényes csillag a képen a HD 91964. Ez szintén vörös óriás csillag (pontosabban narancs óriás, színképosztály: K4/K5III), azonban már távolabb, 1042 fényévre van tőlünk. Fényessége 6.65 (V) magnitúdó, így ezzel már a szabadszemes láthatóság határa alatt marad.

Ez a két csillag, akár csak a többi a felvételen, mind a Tejútrendszerhez tartozik, és igen csak közelinek számítanak a háttérben látható galaxisokhoz képest. Az Abell1060, vagy más néven a Hidra I halmaz (Hydra I Cluster) távolsága nagyjából 51-54 Mpc (166-176 millió fényév), vagyis ezek a csillagrendszerek durván 36 ezerszer távolabb vannak, mint a fényesen ragyogó HD 92036.

Abell1060-map04

Az Abell1060 a Hidra csillagképben található, nagyjából 4 foknyira a Légszivattyú (Antlia) csillagkép legfényesebb csillagától (α Antliae).

Az egész Univerzum galaxisok alkotta bonyolult hálózat. Leginkább egy óriási pókhálóra hasonlít. Egyes részei szinte teljesen sötétek és üresek, míg mások galaxisokkal zsúfoltak. Galaxisok, galaxis csoportosulások, galaxis halmazok alkotják ezt a kusza „szövetet”.

cosmic_web2_s

A kozmikus pókháló – Kép forrása: Volker Springel/Max Planck Institute For Astrophysics/SPL

A legnagyobb struktúrák az úgynevezett szuperhalmazok. A népes Hidra I halmaz, akár csak hozzá képest eltörpülő Lokális Csoport, melynek Tejútrendszerünk is része, a Laniakea vagy Lokális szuperhalmazhoz tartozik. A Lokális szuperhalmaz létezéséről teljes bizonyossággal nem is olyan régen tudunk.

2014. szeptember 4-én jelent meg az a cikk a Nature-ben, melyben Brent Tully (University of Hawaii) és kutatócsapatának 8000 galaxis mozgásának megfigyelésén alapuló kutatási eredményét közölte. Az Ősrobbanás óta táguló világegyetem globális hatását figyelembe véve korrigálták a mért eredményeket, és ebből megkapták, hogy miként hatnak pusztás a galaxisok egymásra. Egy háromdimenziós térképet alkottak, mely teljesen újradefiniálta a szuperhalmazok fogalmát.

A földrajzban is ismert vízválasztó vonalakhoz hasonló analógiával élve, galaxisok csoportjai különböző gravitációs vonzócentrumok irányába mozognak, akárcsak a víz egy vízválasztó vonal két oldalán.  Jól elhatárolható felületek vannak a világegyetemben, melyek egyik oldalán az egyik, míg a másik oldalán egy másik ilyen vonzócentrum felé mozognak a galaxisok halmazai. A galaxisok mozgása alapján felfedezett, 500 millió fényévénél valamivel nagyobb képződményt Laniakea szuperhalmaznak nevezték el. A Laniakea hawaii nyelven mérhetetlen mennyet, mérhetetlen eget jelent. Ezzel az elnevezéssel próbálták a kutatók érzékeltetni, hogy milyen hatalmas struktúráról is van szó a világegyetemben. A Laniakea szuperhalmazban a galaxisok halmazai a „Nagy Vonzó” („Great Attractor”) felé mozognak, míg például a szomszédos Perseus-Halak szuperhalmazban egy másik pont felé igyekeznek.

A Nature Youtube csatornáján publikált angol nyelvű videó, mely bemutatja a Laniakea szuperhalmazt. Érdemes figyelni, a videón a Lokális Csoport (Local Group) mellett, a Hidra I Halmaz (Hydra I Cluster) is feltűnik (2:21)!

(Akiket ennél is mélyebben érdekel a téma, azoknak a tanulmány egyik társszerzőjének Youtube csatornáján lévő szintén angol nyelvű videót is érdemes megnéznie.)

A fotóm az égbolt durván Hold méretű területét fedi le. A teljes halmaz azonban hozzávetőlegesen 2 fok kiterjedésű, így a képen csak az Abell1060 központi, de egyben legizgalmasabb része látszik.

Abell1060-LRGB-20160527-T32-300s-bin2--NGC3311-NGC3309-TTK-cut1-l1cAz galaxis halmaz dinamikai központjában, tőlünk nagyjából 51-54 Mpc-re (166 -176 millió fényévre) az NGC3311 óriás diffúz galaxis foglal helyet. Morfológiai típusa: cD.

Nem egyedi jelenségről van szó. Igen gyakori, hogy a népes, nagyobb galaxis halmazok középpontjában egy olyan óriás galaxis figyelhető meg, mely gravitációjával uralja a halmazt. Az angol szakirodalomban ezeket BCG-nek (Brightest Cluster Galaxy) is nevezik, és a Világegyetem legnagyobb csillagrendszereinek többsége közülük kerül ki. Az óriási elliptikusak mintegy egyötödét kitevő alosztály a cD típus, melyek óriás méretüket roppant kiterjedt, de kis felületi fényességű halójuknak köszönhetik. Nem ritka, hogy a galaxis sűrűbb, belső régióját akár százezer, több százezer, vagy extrém esetekben millió fényéves haló veszi körül. Az NGC3311 esetében a centrumtól körülbelül 24-30 kpc távolságig sikerült nyomon követni a csillagászoknak a külső halót, így a galaxis átmérője hozzávetőlegesen 156-196 ezer fényév, valamivel több, mint másfélszerese a Tejútrendszerünkének. (A külső haló olyan halvány, hogy az éppen csak előbújik a felvételemen.)

De hogyan nőnek ekkorára? Miként jönnek létre? Erre a válasz a galaxis csillagaiban keresendő.

A különböző régiók kémiai összetétele, fémtartalma, illetve az egyes elemek egymáshoz viszonyított aránya árulkodik a csillagok koráról, a kialakulásuk körülményiről, és származási helyéről. A csillagászok minden elemet a hidrogénen és a héliumon túl a periódusos rendszerben fémnek neveznek. Egy csillag fémtartalmát általában a Naphoz szokták hasonlítani a kutatók. A világegyetem története folyamán, a csillagoknak hála folyamatosan dúsult fémekkel. Az újabb és újabb csillaggenerációk egyre több fémet tartalmaztak, minél alacsonyabb fémtartalmú egy csillag az adott rendszerben, vélhetőleg annál ősibb objektum. A fémtartalom azonban nemcsak a csillagok korától függ, hanem attól is, hogy milyen körülmények között alakultak ki.

Az NGC3111 esetébe, a centrum 8.4-8.9 kpc sugarú területének fénye, a galaxis nagyon korai időszakában kialakult, közel 13 milliárd éves ősi csillagaitól származik. De ezen távolságon túl is jelentős a hozzájárulásuk a galaxis fényéhez. Az ilyen korú csillagokhoz képest relatíve magas a fémtartalmuk. Ez arra utal, hogy a galaxis már fejlődése kezdetén is tekintélyes tömegű volt, s az erős gravitáció nem engedte a szupernóvák által a csillagközi anyagba szétterített fémeket eltávozni a galaxisból.

Ezekben a csillagokban az alfa elemek aránya a vashoz képest szintén viszonylag magas. Hogy mi következik ebből? Ennek megértéséhez tegyünk egy kis kitérőt.

Az alfa folyamat (alpha process) az egyik fajtája annak a termonukleáris fúziónak, amiben a csillagok életük későbbi szakaszában héliumból nehezebb elemeket hoznak létre. Ehhez egy hélium-4 atommag (alfa részecske) és egy héliumnál nehezebb néggyel osztható rendszámú elemre van csak szükség a vasig bezárólag. A másik héliumot felhasználó fúzió a 3-alfa folyamat, amiben 3 hélium-4 atommagból végül szén jön létre. Az alfa elemek ezekben folyamatokban keletkeznek, melyeket aztán a szupernóvák terítenek szét a galaxisban. A masszív nagytömegű, és ezért rövid életű csillagok II típusú szupernóva-robbanásai az O, Ne, Mg, Si, S, Ar, Ca, Ti (az alfa folyamatok termékeivel), továbbá az N és Na elemekkel szennyezik be a környezetet. Az I típusú szupernóvák ugyan szintén szórnak szét alfa elemeket, de jellemzően a Fe és Cr elemek tekintetében mutatnak jelentős csúcsot. Ez utóbbi esetben viszont nem egy rövid életű masszív csillag haláláról van szó. Éppen ellenkezőleg. Ezek a robbanások kisebb tömegű, és ezért tovább élő csillagok végső állapotát jelentő fehér törpékhez köthetőek, melyek kettős rendszer tagjai.  Az egyik vezető elmélet szerint a robbanásra akkor kerül sor, amikor a fehér törpe kísérőjétől elég anyagot gyűjtött ahhoz, hogy tömege átlépjen a kritikus Chandrasekhar-határt (1.44 naptömeg). A másik elmélet szerint két fehér törpe kering egy kettős rendszerben, egymáshoz folyamatosan közeledve. Míg végül egymásba spiráloznak, és ekkor történik a szupernóva-robbanás. Akármelyik elmélet is igaz az I típusra, az biztos, hogy a galaxisok csillagainak megszületése után sokkal hamarabb került sor II típusú robbanásra, mint I típusúra. Vagyis az Univerzum korai idejében az alfa elemek aránya relatíve nagyobb volt a vashoz képest.

Itt az ideje megválaszolni a fentebb feltett kérdést. Az NGC3311 belső területének csillagaiban az alfa elemek aránya a vashoz képest azért viszonylag magas, mert rövid időintervallumon belül, a galaxis születése után keletkeztek. Az NGC3311 élete tehát igen heves és nagymennyiségű csillag keletkezésével kezdődött.

A haló csillagai azonban már egyáltalán nem mutatják ezt a homogén kémiai összetételt. Ott a fémtartalom, és az alfa elemek aránya a vashoz képest is változó, több csúcs és hullámvölgy is megfigyelhető az eloszlásban. Ellentétben tehát az NGC3311 belső részéhez képest, ezek nem annak a korai gyors, és intenzív csillagszületési hullámnak a produktumai, amelyben a galaxis kialakulásakor összehúzódó gázfelhők, egyesülő sűrű gázcsomósodások játszották a főszerepet. Sokkal inkább valószínű, hogy a haló fényének 40%-ért felelős csillagok, különböző kiindulási tömeggel és más csillagfejlődési történettel megáldott galaxisokkal történt interakciókból kerültek oda. Ezt támasztják alá az NGC3311 csillagaival kapcsolatos kinematikai vizsgálata is. A befogott csillagoknak, a galaxis maradványoknak csillagászati értelemben sok időre van szüksége, hogy elvegyüljenek a többiek között (viszonylag hosszú a relaxációs idő), és ez az a jelenség, ami megfigyelhető az NGC3311 esetében is.

NGC3311-multiband

Az ábra az NGC3311 nagyméretű struktúráit mutatja a külső halóban. Az „A” panelen a galaxis optikai tartományban (V szűrővel) készült  intenzitás térképe látható. A „B” panelen a külső haló excentrikus alrendszere speciális módszerrel kiemelve. (Az NGC3311 felületi fényessége a centrumtól mért távolság függvényében jól leírható egyetlen úgynevezett Sérsic profillal, vagyis egy matematikai függvénnyel, amennyiben az úgynevezett Sérsic index n=10. Azonban, ha e Sérsic profil adta szimmetrikus modellt, a levonjuk a felvételből, akkor a maradékból előbukkan az említett struktúra.) A „C” panel XMM-Newton röntgen műhold felvétele forró gáz jelenlété mutatja a galaxis halmaz középpontjában. A vörös körök az NGC3311 körüli törpe galaxisokat jelöli. Forrás: Barbosa és mások

A külső halónak ráadásul van egy alrendszere, aminek centruma nem esik egybe a galaxiséval, attól nagyjából ÉK-i irányba található. Az optikai tartományban ez igen halvány. A haló fényének mindössze 30%-át adja. Az excentricitás legjobban a központi galaxis és a körülötte lévő törpe galaxisok sötét anyagból álló halójának, vagy esetleg (de közel sem biztosan!) az NGC3311 és az NGC3309 sötét halóinak kölcsönhatásával értelmezhető. Vagyis, az ezek okozta árapályerők tehetőek felelőssé azért, hogy a galaxis és a külső haló ezen alrendszerének centruma nem esik egybe. Míg a szimmetrikus haló jelentős részére korábban, más galaxisokkal történt kölcsönhatások eredményeként tett szert ez a csillagrendszer, addig az excentrikus haló létezése annak is a bizonyítéka, hogy e kiterjedt struktúra építése az NGC3311 körül még mindig folyamatban van.

A jelenségnek nemcsak az optikai tartományban van nyoma. Jellemzően a galaxis halmazok központja környékén, a csillagrendszerek között, forró (10-100 millió K), és ezért a röntgentartományban sugárzó ritka gáz (Intercluster Medium, ICM) található. Ezt leegyszerűsítve, még a halmaz kialakulásakor felszabaduló gravitációs potenciális energia táplálta lökéshullámok fűtötték fel, illetve később fontos szerep jutott ebben a galaxisok szupernóváinak, a masszív csillagok kibocsájtotta csillagszélnek, összefoglalóan az úgynevezett galaktikus szélnek is. Egyes teóriák az aktív galaxisok magjában található fekete lyukak jet-jeinek is nagy jelentőséget tulajdonítanak. A galaxisok közti anyag, ahogy a neve is mutatja, nem köthető a halmaz egyik tagjához sem, ha csak nincs a rendszer gravitációs központjában domináns galaxis. Az XMM-Newton röntgen műhold felvételén is jól látszik a forró intergalaktikus anyag, illetve az, hogy az excentrikus külső haló területén sugárzási többlet figyelhető meg. A röntgen tartományban intenzívebben sugárzó régió körül találhatóak a fentebb említett, a Hidra halmazhoz képest relatíve nagy látóirányú sebességgel rendelkező törpe galaxisok csoportja. Ezek a szemünk előtt zuhannak az Abell1060 központi csillagrendszerébe, felkavarva és tovább hizlalva annak külső halóját.

Abell1060-LRGB-20160527-T32-300s-bin2--NGC3311-NGC3309-HCC1-l-TTK-cut1

Az NGC3311 körüli törpe galaxisok a felvételemen. A fotón még éppen kivehető leghalványabb törpék: HCC35 – 19.15 magnitúdó, HCC45 – 19.91 magnitúdó. A pozíciók forrás: Misgeld és mások (2008), NED

Az NGC3311-gyel kapcsolatos imént ismertetett megfigyelési tapasztaltak jól egybevágnak azokkal az elméletekkel, melyek szerint az óriás elliptikusak kialakulása két fázisban történik. A fejlődésük legelején bekövetkező igen gyors, a centrumtól kifelé terjedő, intenzív csillagontást a galaktikus kannibalizmus követi. Megjegyzem, hogy hasonló eredményre vezettek más cD galaxisokkal kapcsolatos kutatások is. Továbbá, a Hidra I halmaz óriása és környezete kitűnő terepet nyújt a csillagászoknak, hogy ellenőrizzék és csiszolgassák a galaxisok fejlődésben igen fontos szerepet betöltő sötét anyaggal kapcsolatos elméleteiket.

Az NGC3311 olyan érdekességeket is tartogat, amik a saját felvételemen már nem látszanak, mégis érdemes róla szót ejteni. 1999-ben Hilker és munkatársainak tanulmányában bukkantak fel először az ultrakompakt törpe galaxisok (Ultra-Compact Dwarf galaxy, UCD galaxy). A kutatók e különös objektumokra először a Fornax galaxis halmazban akadtak rá. Majd más, népes halmazokat átfésülve újabb, és újabb példányok kerültek elő. Ősi, a világegyetem korával összemérhető korú csillagok alkotta objektumok ezek. Abszolút fényességük (MV) -9 és -14 magnitúdó közé esik, míg fél-fényesség sugaruk (half-light radius, rh), vagyis az a sugár, amiből a rendszer fényességének 50%-ka származik 10 pc és 100 pc közötti. Ahhoz tehát túl halványak és kompaktak, hogy törpe galaxisoknak lehessen őket nevezni, ahhoz viszont túlontúl nagyok és fényesek, hogy a konvencionális gömbhalmaz elnevezést használják rá a csillagászok.

De hogyan jöttek létre? Ezek galaxisok vagy inkább óriási gömbhalmazok? Éppen e kérdések miatt gyakran törpe galaxisok és gömbhalmazok közötti átmeneti objektumoknak (Dwarf-Globular Transition Objects, DGTOs) is hívják őket tudományos cikkekben. A lehetséges válaszok alapvetően három csoportba oszthatóak. Az első szerint ezek valaha törpe galaxisok voltak, hasonlatosak azokhoz melyek bőségesen találhatóak a Hidra I halmazban is. Mostani megjelenésüket annak köszönhetik, hogy a halmazon belüli pályájukon, akár többször is, túl közel merészkedtek az óriás galaxisokhoz, azok pedig könyörtelenül megtépázták őket. E törpék elveszítették diffúz külső burkukat, s csupán lecsupaszított sűrű magjuk maradt hátra, így manapság UCD galaxisok képében figyelhetjük meg őket. De az is lehetséges, hogy több csillaghalmaz egyesüléséből jöttek létre, még azokban az időkben, mikor az ősi galaxisok sűrű csomóiban megindultak a robbanásszerű csillagkeletkezési folyamatok. A harmadik elmélet szerint pontosan ugyanúgy keletkeztek, mint kisebb tömegű unokatestvéreik a gömbhalmazok. Ebben az esetben, az UCD-k valójában ultra nagytömegű gömbhalmazok.

Az UCD galaxisok eredetét tisztázandó, a csillagászok az Abell1060 népes halmaz központját is átvizsgálták. Kimondottan annak a ténynek a tudatában, hogy az NGC3311 bővelkedik gömbhalmazokban. Becslések szerint 16000 ilyen csillaghalmaznak szolgál otthonául, így ezzel a számmal simán versenybe száll a Virgo halmaz óriásával, az M87-tel. Érdekességként és összehasonlításként megjegyzem, hogy a Tejútrendszerünkben, a jelölteket is beleszámítva, mindössze valamivel 150 fölött van az ismert gömbhalmazok száma, de a teljes populáció sem lehet sokkal több 180-200-nál.

NGC3311-Gemini-20080310ngc33110001-cut1-rot

Az NGC3311-ről, Chilében, a Cerro Pachón hegyen álló 8.1 méteres Gemini South teleszkóppal készült felvétel. A látómezőben az NGC3309 elliptikus galaxis mellet törpe galaxisok egész garmadája látható. A apró kis pöttyök pedig a galaxis gömbhalmazai. Nem egy pötty azonban a vizsgálatok tanulsága szerint ultrakompakt törpe galaxis (Ultra-Compact Dwarf, röviden UCD). Érdemes a képre kattintani, és nagyobb felbontásban is megszemlélni a képet. A látvány igen csak lenyűgöző. A kép forrása: Gemini Observatory

A vizsgálatokhoz a Gemini South távcsövének GMOS (Gemini Multi-Object Spectrographs) műszerét használták a kutatók. A fenti képre pillantva is látható, hogy még nagy távcső esetén sem olyan egyszerű azonosítani a keresett objektumokat, ezek még a 8.1 méteres távcsőre szerelt kamera számára is csillagszerűek. Első lépésként ki kellett zárni, hogy a kiválasztott „pöttyök” a felvételen esetleg saját galaxisunk csillagai. De azt is meg kellett állapítani nagy bizonyossággal, hogy a vizsgálni kívánt objektum tényleg a Hidra I halmaz, pontosabban az NGC3311 távolságában van, és nem csak egy még nagyobb távolságban lévő háttér galaxis. Először is, ha ezek előtér csillagok lennének, akkor színük sokkal egyenletesebb eloszlást mutatna, ugyanakkor pedig a látómezőben véletlenszerűbben oszlanának el. A lenti ábrákra tekintve látható, hogy nem ez a helyzet.

NGC3311-UCD2

Az NGC3311 körüli UCD jelöltek. Kép forrása: Elizabeth M. H. Wehner és William E. Harris

NGC3311-UCD1

A NGC3311 gömbhalmazainak, és a vörös téglalapban az UCD jelöltjeinek vagy masszív gömbhalmazainak szín-fényesség diagramja. A vízszintes tengelyén a csillag vizuális és közeli infravörös fényesség különbsége, míg a függőleges tengelyén a közeli infravörös fényessége szerepel. Az ábrán szerepeltetett adatok már az intersztelláris anyag okozta vörösödéstől megtisztított értékek. Jól látszik a diagramon is, hogy az UCD jelöltek egy jól definiálható tartományban csoportosulnak. Ábra forrása: Elizabeth M. H. Wehner és William E. Harris

Mivel megjelenésük csillagszerű, továbbá nem csomókban helyezkednek el, ez valószínűtlenné teszi, hogy ezek galaxisok a háttérben, pontosabban távoli galaxis halmazok tagjai. Természetesen az igazán meggyőző bizonyítékot nem a „szemrevételezés”, hanem az eloszlás alapos matematikai vizsgálata jelenti. Az analízisből kiderült, hogy az UCD jelöltek nagyon nagy bizonyossággal az NGC3311 körül csoportosulnak, és legalább annyira koncentráltak, mint a gömbhalmazok.

Ahogy ezt a fenti szín-fényesség diagramon is látható, az NGC3311 esetében az UCD-k a gömbhalmazok folytatásaként értelmezhetőek. A vörös és fémekben viszonylag gazdag gömbhalmaz populáció és az UCD-k között fölfelé fokozatos az átmenet.

Az objektumok tömegére tömeg-fényesség reláció, vagyis az (M/L)V arányszám alapján próbáltak becslést adni a kutatók. Tipikus gömbhalmazok esetén ez 1 és 3 közötti érték. UCD-k esetén ezt eredetileg 6 és 9 közöttinek gondolták, ám az UCD és az óriás galaxisok közötti kölcsönhatást is figyelembevevő szimulációk inkább a 3 és 5 közötti értékeket valószínűsítik. Más modell, inkább arra fektette a hangsúlyt, hogy a legfontosabb tényező a csillagrendszerek 12 milliárd évnél is idősebb kora. Ezen utóbbi szerint 1 és 6 közötti az arányszám. Nem folytatnám a sort, a csillagászatban ez a fokú bizonytalanság egyáltalán nem szokatlan. Végül, mivel az NGC3311 körüli UCD-k a szín-fényesség diagramon elfoglalt helyük, és eloszlásuk alapján is leginkább a gömbhalmazokhoz hasonlítnak, így e megfigyelésben részt vett tudósok az „arany középutas” 3 mellett tették le a voksukat, és ezzel számoltak. Az UCD jelöltek, vagy ha úgy tetszik, az ultra nagytömegű gömbhalmazok tömegének alsó határára 6 x 106 naptömeget, míg felső határára 3 x 107 naptömeget kaptak. A Fornax és Virgo halmazbeli rokonaiknál némileg kisebb tömegűek, melyek tömege inkább a 107-108 naptömegű intervallumba esik.

Nemcsak a tömegre próbáltak azonban becslést adni, hanem a méretekre is. Összehasonlításképpen, a normál törpe galaxisok 300 pc mérettartományba esnek. Mivel a Gemini South GMOS műszerével a felvételek éjszakáján 0.5ʺ felbontást értek el, és az UCD-k még mindig csillagszerűek voltak, így méretük bizonyosan kisebb, mint 50 pc. Pár ilyen objektumra, korábban a Hubble űrteleszkóp WPFC2 kamerájával készült felvételek között is ráakadtak, így annak felbontása alapján a UCD-k effektív átmérője nagyon nagyjából 20 pc lehet. Bár az alkalmazott módszerrel mindössze csak durva becslést adtak, mégis az eredmény összeegyeztethető a Fornax és Virgo halmazbeli UCD-k méreteivel.

A 29 UCD jelölt, továbbá más korábbi tanulmányok alapján végül a csillagászok igen érdekes konklúzióra jutottak. Az NGC3311 UCD jelöltjei világosan megmutatták, hogy kapcsolatban állnak a gömbhalmazokkal. Régen ismert tény, hogy a gömbhalmazok méretskálája független a tömegüktől. Az rh ~ 3 pc, vagyis az a sugár, ahonnan fényességük 50%-ka származik, többé-kevésbé 3 pc körüli. Az elliptikus galaxisok esetében ez a sugár azonban összefügg a tömegükkel: rh ~ M0.6. Minden jel szerint, a 107 naptömeget meghaladó masszív csillaghalmazok kialakulása, környezettől függetlenül, mindinkább egyre nagyobb méretskálán zajlik. Így az UCD-k eltérő módon is kialakulhattak, s nem feltétlenül egyetlen evolúciós utat jártak be. Igen valószínű, hogy folyamatos az átmenet a gömbhalmazok, az NGC3311 UCD jelöltjei, a más halmazokban talált nagytömegű UCD-k, és a törpe elliptikus galaxisok között a strukturális paraméterek tekintetében. Az NGC3311 UCD jelöltjei mindenesetre egy szekvenciát alkotnak annak gömbhalmazaival. Bárhogyan is keletkeztek tehát az ultrakompakt törpe galaxisok, hidat képeznek a gömbhalmazok és az elliptikus törpe galaxisok között. Úgy látszik, hogy mégis csak van valamiféle kapocs e két, mindig is teljesen különállónak gondolt objektum típus között. Logikusnak tűnik a kutatások folytatása, hogy teljesen bizonyosak legyenek a csillagászok abban, hogy feltételezésük helyes, és meglássák, hogy vajon a híd elér-e egészen a közepes tömegű ősi csillagrendszerekig.

Az NGC3311 egyértelműen az egyik, ha nem „a központi figurája” az Abell1060-nak, de mellette az NGC3309 elliptikus és NGC3312 spirál galaxisok is meghatározóak. Majdnem 150 ezer fényéves átmérőjükkel e két galaxisnak sincs szégyenkeznivalója. Ugyan kisebbek, mint az NGC3311, de Tejútrendszerünket így is lekőrözik.

Az NGC3309 E3 morfológiai besorolású elliptikus galaxis. A klasszikus Hubble-féle osztályozásban az E után álló érték a galaxis „nyúltságára” utal. Definíció szerint ez 10 x ( 1 – (b/a) ), ahol „a” a csillagrendszer kontúrjának nagytengelye, és „b” a kistengelye. A képletből kapott eredményt pedig a közelebbi egész számhoz kerekítik.  A legtöbb esetben ez 3 körül van. Az NGC3311 így ebben az értelemben tipikus. Abban az értelemben viszont egyáltalán nem, hogy az ekkora méretű elliptikus galaxisokhoz képest, meglepően kevés a gömbhalmazainak a száma, alig néhány százat tudhat a magáénak. Megjegyzem, hogy ez nagy könnyebbséget jelentett az NGC3311 gömbhalmazainak vizsgálata esetében. A Gemini South távcsővel készült felvételen látható halmazoknak ugyanis mindössze pár százaléka tartozik az NGC3309-hez, így azok, az NGC3311 halmazaira vonatkozó statisztikai vizsgálatokat nem befolyásolták számottevően. De miért relatíve ily szegény gömbhalmazokban ez az óriás elliptikus? Az NGC3309 az NGC3311 centrumától az égen látszólag csak 100 ívmásodpercre van. S mint azt korábban is említettem, ez utóbbi, a halmaz központjában pöffeszkedő óriás igyekszik a környezetében lévő dolgokat magába gyűjteni. Ez azt sugallja, hogy a kérdésre a válasz az, hogy a közte és az NGC3309 között lévő kölcsönhatásban az NGC3311 egyszerűen „elhalászta” annak halmazait. Logikusnak tűnik. A látszó közelség azonban még nem perdöntő bizonyíték. Amennyiben a két óriás között tényleg heves kölcsönhatás zajlik, vagy zajlott a múltban, annak az NGC3309 morfológiájában is meg kell mutatkoznia. A csillagászoknak nagyon jól jön, ha több hasonló objektumot, illetve jelenséget is meg tudnak figyelni. Egy-egy jelenség értelmezésében sokat segít, ha minél több minta áll a rendelkezésükre. A Fornax halmaz NGC1399 és NGC1404 párosa sok tekintetben hasonlít az Abell1060 kettőséhez. Az NGC1404 ott is gömbhalmazokban szegény. Azonban, míg a Chandra röntgen űrtávcső felvételen az NGC1404 kontúrja jól láthatóan torzult az NGC1399 hatására, az NGC3309 esetében semmilyen deformáció nem figyelhető meg. Így, az NGC3311-gyel való kölcsönhatásnak, ha egyáltalán van vagy volt ilyen köztük, nem találták nyomát. Valószínűsíthető, hogy a két galaxis közelség mindössze csak látszólagos, és az NGC3309 igazából hozzánk közelebb, az előtérben helyezkedik el. Mindenesetre, ezt támasztja alá az a 2005-ös, a Hidra halmaz tagjainak távolságát (is) taglaló publikáció, mely szerint az NGC3309 5 Mpc-kel (16.3 millió fényévvel) közelebb van hozzánk, mint az NGC3311. Összességében tehát, a mai napig nem teljesen tisztázott, hogy mi is az igazi oka annak, hogy egy ilyen népes galaxis halmaz, óriás elliptikusa miért is van viszonylag szűkében a gömbhalmazoknak. Továbbra is megoldatlan az NGC3309 e különös rejtélye.

Abell1060-LRGB-20160527-T32-300s-bin2--NGC3312-TTK-cut1-lAzt már láttuk, hogy a népes halmazokban, mint amilyen az Abell1060 is, a centrumban kolosszális galaxisok képesek kialakulni az idők folyamán. Arra is láttunk példát, hogy uralkodásuk árnyékában a másodhegedűsöknek, még ha maguk is óriások, már nem annyira „fényes” a pályafutásuk. Had mutassam be a halmaz harmadik prominens galaxisát is, az NGC3312-t. S e spirál galaxis révén folytassuk ismerkedésünket a galaxis halmazok világával.

Ehhez ugorjunk vissza az időben két-három évtizedet. Akkoriban a csillagászok a spirál galaxisok statisztikai vizsgálata során érdekes összefüggésekre akadtak. Történt ugyanis, hogy összehasonlították a spirál galaxisok korongjának optikai tartományban és rádiótartományban megfigyelhető méretét. Arra a kérdésre keresték a választ, hogy mennyi atomos hidrogént tartalmaz az adott csillagrendszer. A rádió tartományban jól megfigyelhetőek a galaxisok HI régiói, vagyis az olyan intersztelláris felhők melyeket javarészt atomos hidrogén alkot (a területek ionizációs foka jellemzően igen alacsony: 1:10000) némi héliummal, és a héliumnál nehezebb elemekkel szennyezve. Az optikai tartományban pedig főleg a csillagok fénye a domináns. Így, az optikai és rádió korongok méretének arányából már le lehet vonni a megfelelő következtetéseket. Ha a rádió korong bizonyult nagyobbnak, akkor atomos hidrogénben gazdagnak, ha az optikai, akkor atomos hidrogénben szegénynek tekintették a spirál galaxist. Kiderült, hogy a halmazok spirál galaxisai atomos hidrogénben jóval szegényebbek magányos társaikhoz képest. Továbbá, az atomos hidrogénben legszegényebb spirál galaxisok az adott halmazon belül a centrum közelében helyezkednek el. Arra is fényderült, hogy az atomos hidrogénben szegény spirál galaxisok aránya egy adott halmazon belül korrelációt mutat annak röntgen luminozitásával. De mi ennek az oka?

Fentebb már említést tettem a halmazokat kitöltő, galaxisok közötti igen forró (10-100 millió K) gázról, illetve arról, hogy az erősen sugároz a röntgentartományban.  A galaxisok közötti gáz bár forró, de extrém alacsony a sűrűsége, mindössze 10-4-10-2 elektron/cm3. Sok-sok nagyságrenddel kisebb, mint a galaxisok atomos hidrogénjének sűrűsége, ami 0.2-100 atom/cm3.  Elsőre azt hihetné az olvasó, hogy a halmazban mozgó galaxisokra nincs hatással a roppant ritka gáz. S mégis! Több galaxis halmaz megfigyelése, például a Virgo halmazé is, azt mutatta, hogy torlónyomás lép fel, mely a csillagrendszer korongjának külső területeiről képes letépni a csillagközi anyagot (Ram Pressure Stripping). Hasonlóan ahhoz, ahogy a menetszél kerékpározás közben lefújja az ember fejéről a sapkát. Ehhez nem kell más, csak az, hogy a galaxis relatív nagy sebességgel mozogjon a halmazon belül, illetve elég sűrű legyen a halmazon belüli gáz. Ez utóbbi két feltétel pedig teljesül a halmaz centrumának közelében.

A kilencvenes évek legelejére tehát már ismert volt a fenti jelenség, és a kutatók igyekeztek egyre több halmazra kiterjeszteni ez irányú vizsgálataikat. Éppen ezért, csillagászok csoportja a Hidra I halmazt is górcső alá vette. Még egy szándék vezérelte őket, miszerint akkoriban még nem volt pontosan ismert a halmaz galaxisainak távolsága. Talán e utóbbin csodálkozik az olvasó, de ne feledje, hogy ebben az időben még sem a Keck távcsövek, sem a VLT távcsövek, sem a Subaru, de még csak a Gemini-k sem készültek el! És ezzel, még csak néhány ma használatos óriástávcsövet említettem. Még mindig a Palomar Obszervatórium Hale távcsöve volt, a maga 5 méteres tükrével a hadra fogható műszerek között a legnagyobb. A Hubble űrtávcső ugyan már keringett a Föld körül, de az 1993-as első szervizig, optikai hibája miatt, képtelen volt nyújtani az elvárt teljesítményt. A műszeres forradalom újabb hulláma csak pár év múlva vette kezdetét. De nézzük, mire jutottak a kutatók!

Az NGC3312 az égen látszólag nincs messze a Hidra I halmaz centrumától. Ráadásul alakja szabálytalan, a galaxis kissé „féloldalas”. Az egyik felén szálas, úgynevezett filamentáris szerkezetet mutat, míg a csillagkeletkezés jelentős része éppen az ezzel ellentétes oldalára koncentrálódik. Ha ez nem lett volna elég, akkor a radiális sebessége is messze elmaradt a halmazban megfigyelhető középértéktől. Elképzelhető, hogy szuperszonikus sebességgel vágtat keresztül a Hidra I-en? Minden oka megvolt hát a csillagászoknak, hogy gyanakodjanak. A vizsgálat során bár az aszimmetriát a rádió megfigyelések is igazolták, azonban az NGC3312 atomos hidrogénben csak kevésbé bizonyult szegényebbnek, mint a hozzá hasonló típusú spirál galaxisok. Végül az a konklúzió született, hogy a halmaz galaxisai közti anyag igen valószínűtlen, hogy számottevő hatást gyakorolna az NGC3312-re. S ebből következően, ez a csillagrendszer bizonyosan nem a Hidra I halmaz középpontjában helyezkedik el. Sokkal inkább hozzánk valamivel közelebb, azzal a pár környező galaxissal együtt, melyek szintén nem bizonyultak atomos hidrogénben igazán szegénynek.

Ma már tudjuk, hogy távolsága körülbelül 46 Mpc  (150 millió fényév). Vagyis, valóban igaza volt pár évtizede a csillagászoknak. Miért is vettem elő pont egy ilyen régi kutatást? Mert meg akartam mutatni az NGC3312 példáján keresztül, hogy miként vonnak le indirekt módon következtetéseket a csillagászok, és nem utolsó sorban egy, a galaxis halmazokon belül munkálkodó jelenséget is megmutathattam általa.

A megfigyeléseknek azonban gyakran van valamiféle „mellékterméke”. Az NGC3312 alapos vizsgálata is rámutatott valami másra. Mégpedig arra, hogy szabálytalan alakját az NGC3314a-val nagyjából 1 milliárd éve történt kölcsönhatásnak köszönheti. Folytassuk is a sort ezzel a galaxissal! Vagy még inkább, galaxisokkal.

Abell1060-LRGB-20160527-T32-300s-bin2--NGC3314AB-TTK-cut1-HST2

A Hubble űrtávcső mozaikokból összerakott felvétele az NGC3314A és NGC3314B galaxisokról. A jobb felső sarokban a saját felvételem a galaxisokról. Az eredeti kép forrása: NASA, ESA, – „The Hubble Heritage” program (STScI/AURA) – W. Keel

Az NGC3314A és NGC3314B galaxisok kitűnő bizonyítékai annak, hogy a természet igazi illuzionista, és könnyen képes megtéveszteni érzékeinket. Bár az első benyomása az embernek az, hogy kölcsönható spirál galaxisokat lát a képen, de erről szó sincs. Az egész látvány csak a kozmikus perspektíva játéka. Az NGC3314B-t valójában az NGC3314A-n keresztül, annak takarásában látjuk. Most, hogy elárultam a trükköt, azt is megmutatom, hogy miként fejtették meg a csillagászok.

Már korábban is említettem, hogy mindig vannak árulkodó jelek két galaxis gravitációs kölcsönhatásakor. A köztük munkálkodó hatalmas erők eltorzítják a csillagrendszerek alakját. De ezen túl, ha a galaxis gázban kellően gazdag, márpedig ezek a spirál galaxisok ilyenek, akkor a kölcsönhatás csillagok új generációinak születését indítja be. Ennek folyományaként az ilyen galaxisokban több helyen is nagytömegű forró, és ezért fényes csillagok kékes ragyogása és vöröses fényű gázködök figyelhetőek meg. Az NGC3314A, vagyis az előtérben lévő galaxisban némi deformáció valóban megfigyelhető. A két galaxis rotációs mintájának tanulmányozása során azonban a kutatók megállapították, hogy az NGC3314A és NGC3314B nincs gravitációs hatással egymásra. Az NGC3314A enyhe torzultságáért sokkal inkább egy másik galaxis, valószínűleg az NGC3312 tehető felelőssé.

A másik érv a fizikai kapcsolatuk valószínűtlensége mellett, hogy a ma elfogadott távolságadatok szerint a két galaxis ahhoz túlságosan messze van egymástól. Az NGC3314A 36 Mpc (117 millió fényév), míg az NGC3314B 43 Mpc (140 millió fényév) távolságra van tőlünk.

A szerencsés együttállás szó szerint teljesen más megvilágításba helyezi ezeket a galaxisokat. A legtöbb spirál galaxis porsávjai csak nehezen láthatóak. Ezek a porfelhők jellemzően csak az infravörös tartományban figyelhetőek meg egyszerűen. Azonban, az NGC3314A porsávjainak éles sziluettje, az NGC3314B hátsó megvilágításban kitűnően tanulmányozható. Megjegyzem, hogy az NGC3314B porsávjai pedig azért érzékelhetőek kevésbé, mert azt, az előtérben lévő NGC3314A fényes csillagfüggönyén keresztül látjuk.

NGC1376-NGC3370-HST-m

Milyen lenne a két galaxis külön-külön? Hasonló, mint az Eridanus csillagkép területén látható NGC1376 (balra), illetve az Oroszlán csillagképben az NGC3370 (jobbra). Eredeti képek forrás: NASA, ESA, – „The Hubble Heritage” program (STScI/AURA)

A fotón több olyan galaxis is van, ami még megérne pár sort. De talán majd máskor. Ebben a cikkben inkább csak a nagyobbakkal, és én legalábbis úgy vélem, az érdekesebbekkel kívántam foglalkozni. Illetve, kissé átfogóbban magával az Abell1060-nal. Persze, akadnak még érdekesek, csak éppen azok fotón már a láthatóság határán vannak, vagy éppen ebben a felbontásban alig kivehető izgalmas felépítésük. A látómező tanulmányozásakor igen gyakran belebotlottam olyan objektumba is, melyekről szinte semmi biztos nem tudható. Talán magánál az Abell1060-nál is távolabb helyezkednek el. Ki tudja? De nincs ezen semmi csodálkoznivaló, ha az ember ily messzire tekint otthonától. Igaz, „a messzire” is csak relatív. Maradjunk annyiban, hogy műkedvelők számára hozzáférhető technikával, illetve nekem, az eddig direkt megcélzott galaxis halmazok tekintetében számít ez csak nagy távolságnak. Igazából, az Abell1060 galaxisai közt tett sétával még mindig csak a Laniakea (Lokális) szuperhalmaz viszonylag közeli szegletébe ruccantatunk ki. S bár sok minden egyre világosabb a csillagászok előtt, remélem azt is sikerült megmutatnom, hogy akadnak még elvarratlan szálak bőven. De ez utóbbi cseppet sem zavar, hisz ez biztosíték arra, hogy a jövőben is olvashatok majd még meghökkentő publikációkat, új felfedezéseket ebben a témában.

Felhasznált irodalom:

Abell, George O.: The Distribution of Rich Clusters of Galaxies.

Abell, George O.; Corwin, Harold G., Jr.; Olowin, Ronald P.: A catalog of rich clusters of galaxies

Mark H. Jones, Robert J. Lambourne, David John: An Introduction to Galaxies and Cosmology

Abell, George O.: Properties of Some Old Planetary Nebulae

R. Brent Tully, Helene Courtois, Yehuda Hoffman, Daniel Pomarède: The Laniakea supercluster of galaxies

Carlos Eduardo Barbosa, Magda Arnaboldi, Lodovico Coccato, Michael Hilker, Cláudia Mendes de Oliveira, Tom Richtler: The Hydra I cluster core. I. Stellar populations in the cD galaxy NGC 3311

Elizabeth Wehner, Bill Harris, Brad Whitmore, Barry Rothberg, Kristin Woodley: The Globular Cluster Systems around NGC 3311 and NGC 3309

I. Misgeld, S. Mieske, M. Hilker: The early-type dwarf galaxy population of the Hydra I cluster

Thomas, Daniel; Maraston, Claudia; Bender, Ralf; Mendes de Oliveira, Claudia: The Epochs of Early-Type Galaxy Formation as a Function of Environment

Elizabeth Wehner, William Harris: UCD Candidates in the Hydra Cluster

Elizabeth Wehner, Bill Harris, Brad Whitmore, Barry Rothberg, Kristin Woodley: The Globular Cluster Systems around NGC 3311 and NGC 3309

T. Richtler, R. Salinas, I. Misgeld, M. Hilker, G.K. T. Hau: The dark halo of he Hydra I galaxy cluster: core, cusp, cosmological? Dynamics of NGC 3311 and its globular cluster system

S. Mieske, M. Hilker, L. Infante: The distance to Hydra and Centaurus from surface brightness fluctuations: Consequences for the Great Attractor model

P. M. McMahon, J. H. van Gorkom, O.-G. Richter, H. C. Ferguson: H I imaging of NGC 3312 and NGC 3314a – A foreground group to the Hydra cluster?

A trick of perspective — chance alignment mimics a cosmic collision

NGC6015 – Első bevetésen a 300/1200-as Newton távcső

NGC6015-LRGB-20160429-2259-sx-bin2-360s-TTK

Az NGC6015 spirál galaxis a Sárkány csillagképben

2016-04-29, 2016-05-30, 2016-05-31 – Göd

24 x 360 sec L (Bin2), 10 x 360 sec R (Bin2), 10 x 360 sec G (Bin2), 10 x 360 sec B (Bin2)

300/1200 Newton távcső – Paracorr Type2 kóma korrektor – eredő fókusz 1380 mm

SkyWatcher EQ-6 Pro GoTo mechanika

SXVR-H18 CCD kamera, Hutech IDAS P2 LPS filter és Astronomik RGBL fotografikus szűrőszett

Ez a cikk most kicsit más lesz, mint amiket az elmúlt években egy-egy fotóm kapcsán publikáltam. A tőlem talán már megszokott, nagyobb lélegzetvételű ismertető helyett, ezúttal csak rövidebb személyleírást adnék magáról az objektumról, és sokkal inkább az elmúlt hónapok azon történéseire és élményeire koncentrálnék, melyek aztán egészen az NGC6015 spirál galaxisról készült fotóig vezettek.

Az NGC6015-ről dióhéjban

Az NGC6015 a Sárkány csillagkép területén található, véleményem szerint igen szép csillagkörnyezetben. Fényessége 11.14 (V) magnitúdó, látszólagos mérete az égen 5.4ˊ x 2.1ˊ. A fényes, a spirálkarokat is tartalmazó ovális rész legnagyobb kiterjedése azonban mindössze nagyjából 3.5ˊ.

NGC6015-map2

Az NGC6015 pozícióját a Sárkány (Draco) csillagképben a kis négyzet jelöli.

Távolsága csak igen pontatlanul ismert. Viszonylag közel van ahhoz, hogy a színképvonalainak vörös eltolódását megmérve, és a Hubble-törvényt felhasználva, megbízható távolságértéket kapjunk. A csillagászok inkább a Tully-Fisher relációt használták fel ahhoz, hogy valahogy képet alkossanak arról, hogy milyen távolságban is van valójában. A mérést az elmúlt évtizedekben többen is elvégezték, és igen csak különböző eredményeket kaptak. Az értékek 10.4 Mpc (bár ez kiugróan alacsony a többihez képest) és 20.2 Mpc között szóródnak. Ezek középértékét véve a galaxis távolsága 17.1 Mpc (55.7 millió fényév), míg átlagot tekintve 16.2 Mpc (52.8 millió fényév).

A Tully-Fisher reláció (elliptikus galaxisok esetén nem használható, csak spirális és lentikuláris galaxisoknál) egy tapasztalati összefüggés a galaxisok tömege vagy luminozitása és emissziós vonalainak szélessége, vagyis a galaxison belüli szögsebességek között. A részletekbe nem nagyon elmerülve, arról van szó, hogy a galaxison belüli sebességekből meghatározható a galaxis luminozitása, és ebből pedig távolsága. Ugyanis, a galaxis csillagainak dinamikáját a galaxis tömege határozza meg, mely pedig összefüggésben áll annak luminozitásával. Az így kapott luminozitást felhasználva a látszólagos fényesség ismeretében a távolság már meghatározható.

A távolságadatokból és az égen látszó méretéből az következik, hogy a galaxis valós mérete durván csak a fele a Tejútrendszerünknek, legalábbis ha csak az optikai tartományban készült csillagászati felvételeket vesszük alapul. A 21 cm-es rádió hullámhosszon végzett megfigyelések ugyanis azt mutatják, hogy az NGC6015 kétszer kiterjedtebb. A 21 cm-es sugárzást az úgynevezett HI régiók bocsájtják ki. A HI régiók olyan intersztelláris felhők, melyeket javarészt atomos hidrogén alkot (a területek ionizációs foka jellemzően igen alacsony: 1:10000) némi héliummal, és a héliumnál nehezebb elemekkel szennyezve. A galaxist tehát atomos hidrogént tartalmazó felhők ritka leple veszi körül. Ráadásul a HI területek eloszlása, illetve a galaxison belüli sebességek vizsgálata is arra utal, hogy a galaxis korongja 170ʺ sugáron túl deformált.

NGC6015-radio-HI

Baloldalon a galaxis rádiókontúrja látható, míg jobboldalon a B szűrővel felvett képe. A HI régiók jóval kiterjedtebbek, mint a galaxis optikai tartományban megfigyelhető képe. Az is megfigyelhető, hogy az atomos hidrogén felhők eloszlása aszimmetrikus a koronghoz képest – Forrás: L. Verdes-Montenegroa és mások

Az NGC6015-öt halvány álgyűrű (pseudo-ring) veszi körül, mely kissé kékes árnyalatú, kék színtöbblettel rendelkezik. Ennek egyik lehetséges magyarázata, hogy az ott összegyűlt hideg gáz remek környezetet nyújt a csillagok kialakulásához. A fiatal nagytömegű, és ezért kék csillagok pedig jelentősen túlragyogják kisebb testvéreiket, melyek halványabbak és sárgás, illetve vöröses színűek. Innen a gyűrű kékes árnyalata. Mindenesetre annyi bizonyos, hogy a csillagbölcsőkhöz szükséges anyag bőségesen rendelkezésre áll, a vizsgálatok szerint a galaxis teljes atomos hidrogénkészletének 43%-át ez a régió tartalmazza, mintegy 1.5 x 109 naptömegnyit.

Az NGC6015 úgynevezett pelyhes galaxis (flocculent galaxy). Ezeknél a karok nehezen kivehetőek, szakadozottak, kissé „szedett-vedett”, kaotikus a korong. A két kar a centrum környékékéről indul. 1ˊ-re a centrumtól kezdődően a galaxis struktúrája pelyhessé válik, majd 1.5ˊ-nél indulnak az úgynevezett álkarok (pseudoarms), melyek külső részei egészen az álgyűrűig érnek. A karokat kékes és vöröses pöttyök tarkítják mindenfelé, melyek valójában hatalmas kékes fényű csillaghalmazok, illetve vöröses színben pompázó ionizált gázfelhők. Ezek mind a folyamatosan zajló csillagkeletkezésnek az egyértelmű jelei, melyet a spirális szerkezet kialakulásáért felelős, a galaxison belül jelenlévő sűrűséghullámok indítottak be. A fiatal nagytömegű csillagok intenzív sugárzása és az ionizált gázfelhők, vagyis az úgynevezett HII régiók életre keltik a spirálkarokat, vagyis e struktúrák főként ezeknek köszönhetik „kivilágításukat”.

Mivel a galaxisra eléggé ferdeszögből látunk rá (inklinációja 63°), így nem könnyű állást foglalni az ügyben, hogy van-e egyáltalán központi dudora (bulge). A megfigyelések szerint, ha van is neki, az egyáltalán nem számottevő. Az a galaxis egészéhez képest csak kis kiterjedésű, és igen kis tömegű.

Egy másik kérdés, ami már évtizedek óta foglalkoztatja a kutatókat, hogy vajon van-e ennek a galaxisnak küllője (bar). Az NGC6015-ről a közeli infravörös tartományban, különböző hullámhosszakon (JHK bands) rögzített, majd e felvételekből készült kompozit képeken, a centrum környékén elnyúlt struktúra fedezhető fel, mely küllőre emlékeztet. Szintén a közeli infravörös tartományban elvégzett (I, JHK bands) fotometriai vizsgálatok viszont csak igen gyenge bizonyítékot szolgáltattak a küllő létezésére. Éppen ezért bizonyos publikációkban a galaxis morfológiai besorolása SA(s)cd, míg másutt az SB(s)cd besorolással lehet találkozni. Az „SA” a nem küllős spirál galaxist, az „SB” a küllős spirál galaxist jelenti. Az „(s)” tag jelentése, hogy a mag környékén nem figyelhető meg gyűrűs struktúra (pure spiral). A cd tag pedig arra utal, hogy a karok csak lazán tekerednek körbe.

Csak a távolságát és felépítését tekintve is igen sok még a bizonytalanság ezen objektum körül. Pedig fontos lenne ezeket pontosabban is ismerni, ugyanis az NGC6015 izolált galaxis. Ez annyit jelent, hogy a galaxis nem áll kölcsönhatásban más galaxissal, illetve halmaztagok sem fejtenek ki rá hatást szinte a világegyetem keletkezése óta, de legalább azóta, hogy tömegének a felét összegyűjtötte. Az ilyen típusú csillagvárosok ideálisak, hogy a csillagászok ellenőrizzék a galaxisok evolúciójával kapcsolatos elméleteiket. Továbbá fontos a szerepük abban, hogy jobban megérthessék a környezeti hatásokat a népes galaxis halmazokon belül, és megválaszolhassák, e hatások miként befolyásolják egy-egy galaxis, illetve a halmaz egészének fejlődését.

Az NGC6015 tehát nemcsak egyszerűen szép és mutatós, de egyben különleges is a maga nemében. Az itt megkezdett gondolatsort még folytatni kívánom a jövőben, egy másik cikk keretében. Most azonban, ígéretemhez híven, had meséljem el e felvétel történetét, mely nem 2016. április 29/30. éjszkáján kezdődött. Az előzmények jóval korábbiak.

Az első felvételig vezető út

Több távcsövem is volt az elmúlt évtizedekben, melyekkel sokat észleltem vizuálisan. Mindegyikhez szép emlékek fűznek, noha a legtöbbet mára már vagy eladtam, vagy elajándékoztam. Valamivel több, mint három éve hűséges társam egy UMA-GPU APO Triplet 102/635 távcső. Rengeteg vizuális és fotografikus élménnyel ajándékozott meg a csillagos égbolt alatt. Optikai minőségben és hordozhatóságban ez a kis lencsés távcső messze túlszárnyalta a korábbi műszereimet.

Azt mondják az első mindig felejthetetlen. Nos, valóban így van ez. Sosem felejtem el azt az élményt, amikor elkészítettem vele az első felvételeimet, majd másnap a notebook előtt ülve kezdett lassan összeállni az első kép. Ezt újabb, és újabb próbálkozások sora követte. Messze nem voltak tökéletesek ezek az asztrofotók, mai szememmel nézve ezer sebből vérzett mind. De hé! Mégiscsak megörökítettem a világűr távoli szegletének darabkáját. Én magam! Ott volt az áhított objektum a képen. Ugyanazt az ujjongást éreztem, mint amikor korábban, és az óta is, valami izgalmasat, valami lenyűgözőt sikerült megpillantani az okuláron keresztül.

Ma úgy gondolom, hogy addig nem hagyok fel az asztrofotózással, míg egy-egy felvételsorozat zajtengeréből kiemelve az engem érdeklő célpontot, sikerül átélnem újra, meg újra ezt az érzést. Az amatőrcsillagászattal pedig addig nem hagyok fel, míg a világegyetem csodáinak befogadás megadja számomra azt a különös euforikus érzést. Legyen akár az érdeklődésem tárgya asztrofizikai értelemben izgalmas, vagy csak egyszerűen a maga nemében gyönyörű. Szétválasztható ez egyáltalán?

Miért is osztom meg a felvételeimet, a cikkeimet, a mondandómat másokkal? Miért is tartok távcsöves csillagászati bemutatókat embereknek? Miért népszerűsítem a csillagászat tudományát a magam módján? A válasz talán az lehet, hogy szeretném a megélt élményeimet átadni másoknak. Sőt, szeretném, ha ők is átélnék azt! Mindig jó látni az emberek csodálkozó arcát, az átszellemülést, amikor távcsőbe pillantanak, mikor felnéznek az égre, vagy megnéznek egy fotót, s ha ez nem is változtatja meg az életüket, de mégis valahol gazdagabbak lesznek egy élménnyel. Valamit hazavisznek, és ha csak apró darabként is, de részükké válik. Ennél talán nem is kell több.

A fentebb felsorolt dolgokból a kis APO-nak (is) köszönhetően volt részem bőven. Szerencsésnek érzem magam, hogy összehozott minket a sors.

Amennyiben az olvasó ellátogat az oldalamra, és megnézi, hogy mely csillagászati objektumok keltették fel az érdeklődésemet, és melyeket fotóztam le az elmúlt években, akkor maga is rájöhet arra, hogy ezek többnyire látszólagosan kisebb kiterjedésű célpontok voltak. Bár kétségtelen, hogy egy részük kisebb távcsövekkel is fotózható, de az alkalmanként Ausztráliában bérelt távcsövek mutatták meg nekem azt igazán, hogy a nagyobb apertúra és a hosszabb fókusz az, ami igazán feltárja a részleteket ezek esetében. 2015 őszén kezdett munkálni bennem a gondolat, hogy ha nem is 40-50 cm-es, de az APO-nál nagyobb távcsövet be kellene szereznem magamnak.

Innentől hosszú vívódások sora vette ezzel kezdetét. Az UMA GPU egyik legfőbb előnye volt a hordozhatósága, és hogy egyedül is könnyen össze tudtam szerelni. Anno a kiválasztásakor ezek is fontos szempontok voltak. Célom volt tehát, hogy az új műszert egyedül is munkára tudjam bírni az éjszakában.

Régi Netwon távcsöveim viszonylag gyakran szorultak kollimálásra. Igaz, hogy viszonylag sokat mozgattam, szállítottam őket. Így utólag talán nem is voltak kifogástalan konstrukciók. Ehhez képest a kis APO-t csak feldobtam az állványra, és miután felvette a környezet hőmérsékletét, máris bevetésre készen állt. Régi emlékeim alapján, semmi kedvem nem volt a kollimáció ellenőrzésével kezdeni egy-egy éjszakát. Éppen ezért, szinte csak APO távcsöveket nézegettem kezdetben. Két dilemma azonban így is akadt. Az első, hogy a hőn áhított 15 cm-es apertúrával rendelkező APO-k már igencsak borsos áron voltak kaphatóak. Nem vonom kétségbe, főleg a sajátommal szerzett tapasztalatok alapján, hogy bizony ezek a lencsék valóban remekül teljesítenek. Továbbá azzal is tisztában vagyok, hogy a távcsőpiacon (is) mindennek annyi az ára, amiért még van megfelelő kereslet. De e távcsőtípus egyik kétségtelen hátránya a magas ár.

A másik dilemmám az volt, hogy bizony ezek a távcsövek már tekintélyes tömeggel rendelkeztek, túllépve a SkyWatcher HEQ5-Pro mechanikám gyártó szerinti teherbírását. Megjegyzem, hogy mivel a puding próbája az evés, így a meglévő mechanikám csakis akkor szándékoztam volna lecserélni, ha használat közben kiderül, hogy nem bírja el a terhelést. Nem vagyok szívbajos, ha egy kicsit túl kell terhelni a mechanikát. Félreértés ne essék, nem tanácsolom ezt senkinek. Szóval, mindenki csak saját felelősségére tegyen ilyet!

Hosszas pénzügyi mérlegelés, és sok teszt elolvasása után a SkyWatcher 150/1050-es ESPRIT modellje tűnt csábítónak az „olcsóbb” alternatívák közül. Olyannyira, hogy nagy levegőt vettem, igen nagyot, és felvettem a kapcsolatot az egyik távcsőforgalmazóval. Sajnos az utolsó példányokat éppen az orrom elől halászták el. Nem estem nagyon kétségbe. Gondoltam, hogy megvárom a pár hónap múlva érkező következő szállítmányt. Van távcsövem úgyis, és nem kergetett a tatár. Eljött a várva várt időpont, azonban a gyártó újabb két hónapos kését prognosztizált a szállítás ügyében. Kissé csalódott voltam, így újra keresgélni kezdtem.

Szeri László barátommal igen gyakran beszélgetünk, és végül ő vezetett rá arra, amit mindig is valahol sejtettem, csak nem akartam elfogadni. Pedig igencsak adta magát a dolog. Mit szerettem volna fotózni? Kisebb galaxisokat, kisebb planetáris ködöket, és egyéb apróbb témákat. Mi kell ehhez? Jóval nagyobb átmérő, és hosszú fókusz. Mi a megfizethetőbb alternatíva? Egy Newton rendszerű tükrös távcső.

Amiben biztos voltam, hogy saját kezűleg, teljesen egyedül nem fogok összerakni egy ilyen távcsövet. Nem vagyok ügyes kezű barkácsoló, nincsenek megfelelő eszközeim, és túl sok türelmem sincs bíbelődni távcsövek építésével. Több gyártó termékét is átnéztem, majd elolvastam az interneten fellelhető értékeléseket ezekről, továbbá több külföldi fórumot is átböngésztem. Ennek csak az lett az eredménye, hogy teljesen elbizonytalanodtam. Kiderült, hogy a megfizethetőbbek közül bizony utólagosan át kellene építenem a legtöbbet, hogy megfeleljenek az igényeimnek. A minőséginek tűnő, speciálisan asztrofotós célokra tervezett darabokért pedig csillagászati árakat kértek. Eme utóbbiak esetében a gyártók teljesen természetes módon az egekbe dicsérik a portékájukat, azonban az interneten igen kevés gyakorlati információt találtam róluk. Ez valószínűleg összefügg azzal, hogy igen kevesen birtokolnak ilyen műszereket, illetve nem sokaknak adatott meg, hogy kipróbálják őket az ég alatt. Egyre távolibbnak tűnt, hogy találok valami olyat, amit csak megrendelek, beállítom, és már mehet is a fotózás. Hónapok után ott tartottam, hogy inkább nem váltok műszert, hagyom az egészet, és inkább asztrofotózok tovább a meglévő UMA-GPU APO Triplet 102/635 távcsővel.

Ekkor kínálta fel nekem Szeri László, hogy vegyem meg tőle az időközben szétszedésre került „trinokli” (3 darab 300/1200-as távcső párhuzamosan szerelve) egyik darabját. Tetszett az ötlet. Nagyon is! Ez a Newton már bizonyított az ég alatt. Mondhatni, alaposan „be lett járatva”. Azonnal belelkesültem, de mint mindig, most is aludtam rá, és nem is egyet.

Sokat vacilláltam a dolgon. Már tudtam, hogy nem szabad kihagynom ezt a remek lehetőséget, de még mindig kétségeim voltak. Kell-e nekem a nagy távcsővel járó macera? Hogyan fogom például szállítani, ha kitelepülnék? Fontos ez? Hányszor is tettem ilyet az elmúlt három évben? Négyszer. Plusz elvittem három alkalommal az MTT-re, ahol az ég nem sokkal jobb, mint Gödön. Ez bizony nem sok, és a jövőben sem tűnik úgy, hogy jelentősen szaporítanám az ilyen eseményeket. Egy kérdés tehát eldőlt: a távcsövet szinte biztosan csak a kertemből fogom használni. Az élet csupa kompromisszum.

Hol tárolom majd? Honnan fogom használni? Azt a lehetőséget gyorsan kizárta a családom, hogy külön kis építményt kapjon, illetve megbontsam a kertben álló kis faház tetejét. Bár ezért a projektért még lobbizom. Maradt tehát az a lehetőség, hogy minden éjszaka összerakom, majd szétszedem a konfigurációt, ahogy ezt az eddigi kis APO esetén is tettem. Csakhogy itt nem egy könnyű távcsőről van szó! Nagyon nem volt kedvem birkózni vele minden alkalommal. Higgye el az olvasó, hogy nem egy leányálom (ha nem is lehetetlen) egy ekkora, cirka 18 kg-os tubust egyedül felegyensúlyozni egy állványra. Az időigényről akkor még nem is beszéltem. Mi lenne, ha valami mobil, „tologatható” megoldást alkalmaznék? Igen, ez lesz az! Nem hezitáltam tovább, és 2016. március 15-én el is küldtem Lászlónak a „Alea iacta est” tárgyú E-mail-emet. Döntöttem. A kocka el van vetve. Végre! A SkyWatcher 150/1050-es ESPRIT megrendelésemet pedig lemondtam. Innen már nem volt visszaút, sem bármiféle kétség bennem.

Lászlóra igazán lehet számítani, így azt is felkínálta, hogy segít nekem összerakni a kívánt kialakítást. De nemcsak tőle kaptam időközben sok segítséget, hanem Nagy Tibor régi kollégámtól és amatőrcsillagásztól is, akivel szintén sokat töprengtünk azon például, hogy milyen lenne az ideális „kiskocsi”, amivel hordozhatnám a távcsövet. Sőt, az otthon elfekvőben lévő anyagokból is felkínált nekem, melyek igen csak jól jött később, amikor össze kellett építeni a „guruló alkotmányt”. Tibor a távcsőhöz való flat box megépítését is szinte teljesen magára vállalta. Nekem csak meg kellett álmodnom, és az anyagokat beszerezni hozzá. De erről majd egy kicsit később!

Közben az is eldőlt, hogy egy „klasszikus” SkyWatcher EQ-6 Pro GoTo mechanika fej fog szolgálatot teljesíteni a tubus alatt, melyet Laci alig párszor használt mindössze. Meg kellett azonban oldani a fej rögzítését a kocsi tartóoszlopához. Ehhez az interneten fellelt NEQ-6 metszetrajz jelentett nagy segítséget, melyet átadtam Bujáki Krisztián barátomnak, aki igen ügyesen esztergál, és a C45-ös fémpogácsába elkészítette a vájatokat, illetve a megfelelő furatokat.

Eljött 2016 márciusának utolsó szombatja, mikor is „a vasakkal”, egyéb alkatrészekkel, és Húsvéthoz közeledvén, csoki nyuszikkal megérkeztem Kiskunfélegyházára. Eme utóbbinak nagyon örült a gyerek sereg. Végre lehetőségem volt megismerni személyen Laci családját. Igazán szívélyes vendéglátásban részesültem. Volt kedvesség, volt finom sonka, remek sütemények, és még sorolhatnám.

Aztán kezdetét vette a munka, ahol Laci mellett szorgalmas segédmunkásként igyekeztem helytállni a kocsi összerakásakor. Persze, hogy a fő tartóoszlopot Gödön hagytam. Isteni szerencse, hogy akadt egy korábban más célokra használt, és éppen megfelelő vascső. 3 órás autókázástól menekültem meg így! Kezdetét vette a méricskélés, a fúrás, a flexelés, a hegesztés, csiszolás. Közben meg-megálltunk egy cigi szünetre. (Figyelem, a dohányzás halált okozhat!) Sok paramétert figyelembe kellett venni. A tubus hosszát, annak az ajtónak a méretét, amin majd keresztül kell tolnom otthon a távcsövet. A terepet, ahol a kocsi majd az igen masszív tömeggel közlekedik. A szintkülönbségek, hepehupák, és a küszöbök miatt például direkt nem tömör kereket választottam, hanem egy szélesebb, „traktoros mintázatú” felfújhatót. De még a saját termetem is fontos szerepet játszott, hiszen fontos volt, hogy megfelelő testtartás mellett tudjam húzni-vonni a műszert. Már javában sötétedett, mire lassan elkészültünk. A felületek csiszoláskor már reflektorfényben szállt a fémpor az udvaron.

Magammal vittem az SXVR-H18-as kamerámat is, mert tudtam róla, hogy annak kollimációja nem teljesen tökéletes. Az APO kihuzata szerencsére lehetővé tette ennek korrigálását, a nagy Newton viszont már nem adta volna meg ezt a játékteret. Mivel ez a kamera szerencsére csavarokkal kollimálható, így egy 2ʺ-os toldatot satuba fogva, abba bedugva a kamerát, egy fehér ernyő és zöld lézer segítségével a rögtönzött optikai padon megtörtént a kamera beállítása is.

Kis lyuk támadt a felhőzeten, így pihenés képen segítettem Laci új 458 mm-es főműszerének vezetőtávcsövét beállítani. Ő odafent a magasban tornászva állított az Off-Axis Guider-en, míg én lent a monitort figyeltem ennek következményét. A jól végzett munka jutalma újabb adag remek sonka volt.

Majd következett a tubussal való „ismerkedés”. A tükrök a német Teleskop Service-től kerültek beszerzésre. A fűtükör 300/1200-as, a segédtükör 88mm-es GSO gyártmány. Elsőre semmi különös, azonban a rendszer optikai minőségére legyen elég az, hogy a korábban párhuzamosan szerelt λ/10-es 300/1200-as Orion Optics főtükrű, és 88mm-es λ/20-as Antares segédtükörrel szerelt távcsővel megegyező minőséget adott mély-ég fotózásra. Mivel anno három távcsövet használt párhuzamosan Laci (a „trinokli” idejében), ezért ez a két távcső folyamatosan együtt dolgozott. Ráadásul ezzel a műszerrel készültek a B színszűrős képek, illetve keskenysáv esetén az SII szűrős képek, így bármiféle optikai hiba azonnal kiugrott volna. Ezek a tartományok igen érzékenyek a minőségi problémákra! A nyers képek, és az abból készült fotók is, abszolút egyezőséget mutattak minőségben a fent említett „pöpec” Orion Optics optikai rendszerrel. Ugye még emlékszik az olvasó, hogy a magukat felső kategóriás gyártóknak hirdető cégek termékeivel kapcsolatban volt némi kétségem. Tényleg valóban annyival jobbak-e a produktumaik, mint amit a feláruk tükröz?

A cső anyaga természetesen karbon kompozit, mivel a minimális hőtágulás, s így fix fókuszpozíció volt a cél. Ennek a célnak a kompozitok a legalkalmasabbak. A karbon kompozit csövet Takács András gyártotta. A fűtükörtartót a régebbi Orion Optics távcsövének mintájára, kis módosítással, László saját magam készítette 20 x 20 mm-es acél zártszelvényekből. A főtükör összesen hat ponton támaszkodik fel, oldal irányban állítható távolságú L-alakú acél elemek tartják középen, az elfordulást három, a főtükörre ragasztott tengely gátolja meg. A főtükör így abszolút feszültségmentes, nincs semmi karom, vagy hátsó feszítés. Észlelési helyzetekben akár 5-10 mm-t is lehet rajta emelni, minden irányból direkt eltúlzottan laza illesztésű, de pontos a tartó. Ami viszont nagyon fix, az a főtükröt tartó 6 db „tüske”, illetve az oldalmozgást gátló L-alakú elemek. A segédtükör tartó középrésze Papp Andrástól származik, egy régebbi rendelésből maradt ki neki egy „klasszikus csavarodás mentes dizájnú” darab. A segédtükör tartó lábait 2mm-es acélból készültek, több mint szükséges merevséget adnak a segédtükör tartónak. A segédtükör, az eltolás kimérés után FBS-el került felragasztásra három ponton, illetve a még precízebb pozíció megtartása végett még három ponton a külső peremen kétkomponensű fémgyantával került rögzítésre. Mivel az FBS egy alapvetően rugalmas anyag, így ezek a gyurmák totális szilárdságot adnak, feszmentesen, hőmérsékleti alakváltozástól mentesen. A kihuzat egy 2ʺ-os Moonlite típus, nagyon finoman kidolgozott gyártmány, az összes illesztés precíz. A Moonlite gyártmányok igen szívós alumínium ötvözetből készülnek. Lacinak volt alkalma egy másikat fűrészelni, ez közel – vagy teljesen – acél minőség. A nyers darabot vastag és kemény felületkezeléssel látták el. A fókuszálást SkyWatcher fókuszmotor könnyíti meg. Az ember nem is gondolná az ára alapján, hogy milyen remek ez a fókuszírózó. Köröket ver pár drágább riválisra is.

A főtükör tartót kültéri, vízálló, bükk. 40 mm vastag rétegelt lemez közdarabbal lett rögzítve a tubushoz. Az anyag előnye, hogy nagy a szilárdsága ilyen keresztmetszetben, könnyű, hőmérsékletváltozásra nagyságrenddel kisebb a méretváltozása, mint például az alumíniumé. Ugyanilyen anyagból készült a cső elején a segédtükör tartó lábakat pozicionáló karika is. A cső belülről öntapadó matt fekete tapétával lett bevonva. László külön ügyelt minden egyes elemre, mely reflexiót okozhat. Az összes csavar, mely a távcsőben van, mind méretre van vágva, nincsenek kinyúló részek. A csavarok végei mind a tükrök, mind a kihuzat körül matt fekete akril festékkel mattítva vannak. Ugyanígy a segédtükör széle is, nem alkoholos filccel lett megfestve (az László szerint nem eléggé matt), hanem a velúr tapéta anyagból került rá egy réteg.

A BK7 anyagú főtükör tapasztalat szerint kissé nagyobb méretváltozással reagál a hőmérsékletváltozásra, mint például a Pyrex. Míg az Orion Optics távcsőben lévő Pyrex anyagú főtükör szinte nem is mutat optikailag semmi eltérést az észlelés előtt, a BK7-nek azonban kell kb. fél óra, ameddig felveszi a közel környezeti hőmérsékletet. Ennek meggyorsítása érdekében kerültek beépítésre a teljes csövet átszellőztető ventilátorok. A távcsőben négy darab, gyors fordulatú axiális ventilátor csinálja a „huzatot”, a tubus alja felé szívva a levegőt. A ventilátorok egy 3 mm-es farost lemezre vannak felfogatva. Ezt a lemezt a távcsőhöz átmenetként puha, rugalmas, de kellően tartós Armalok szigetelőből készült sapka fogja fel. A ventilátorok lemeze így kézzel is billegtethető, a ventilátorokból érkező nagyobb frekvenciás rezgéseket pedig ez az anyag jól elnyeli, s így észlelés közben is használhatóak, bekapcsolás után semmiféle „csillagméret” növekedést nem tapasztaltam.

A távcső véleményem szerinti legnagyobb erénye, a kialakításnak és a felhasznált anyagoknak köszönhetően, hogy mechanikai rezgések, rázkódások után is pontosan megtartja a kollimációt. Ezt oly mértékben sikerült elérni, hogy a cipeléshez használt kocsin, fűben, és küszöbökön döcögtetés során is majd csak akkor kell kollimálni, mikor a tükrök egyébként is már tisztításra szorulnak. Ez lehet akár fél év, vagy egy év is.

Miután a csővel közelebbről is összebarátkoztam, következett a dolgok szétbontása, és a Kombi Opel Astra-ba való bepakolás. Ugye mondtam, hogy sok paramétert figyelembe kellett venni a szerelésekkor? Azt viszont elfelejtettem, hogy az autó befogadóképességét is felmérjem. A csomagteret az alsó lemezig kellett bontani, hogy beemeljük a fémszerkezetet. Még szerencse, hogy volt nálam régi szakadt lepedő bőven, hogy a fém a fémet ne bántsa. Az is fontos tapasztalat, hogy nem szabad emelés közben kínunkban nevetni. Az autó megtelt a távcső tartozékaival. A nehéz tubusnak már csak az anyósülésen jutott hely. Bőkezűen bántunk a gumipókokkal, mert nem szerettem volna, ha egy kanyarban fejbe kólint a cső. Azért volt pár alkalom, amikor a hazavezető úton fenyegetően így is megindult felém, de a rövid póráz megakadályozta abban, hogy belém harapjon.

Hosszú, de élményekkel teli, remek szombati nap volt ez, mely igencsak belenyúlt a vasárnapba is. Ráadásul óraátalítás is volt, így a végső kézfogást követően „látszólag” csak valamivel több, mint egy órával később hagytam magam mögött a Kiskunfélegyháza határát jelző táblát. Azért örültem, hogy nem állított meg hazafelé a rend őre, mert hosszasan kellett volna magyarázkodnom, hogy mit, hogyan és hová is viszek. Otthon egyszerűen csak kivánszorogtam a kocsiból, és arccal előre bevágódtam az ágyba.

Másnap felébredve, a szokásos reggeli rutin, és a gyors reggeli után tele voltam izgalommal. Nekiálltam összeszerelni a dolgokat. Ebben nagy segítségemre volt feleségem: Kati. Nélküle csak igen nehezen tudtam volna mindent megcsinálni. A kocsi hamar összeállt, mert csak alig pár elemet kellett a helyére illeszteni. Következett a mechanika fej, melyet az oszlopon előzőleg az oszlopon vágott kis ablakon benyúlva rögzítettem. A furatok és az egész konstrukció igen pontosra sikerült. Az ellensúlyokat tartó rúd kapott egy hosszabbító, majd felkerültek az ellensúlyok. A távcsövet felemeltem a fejre, majd Kati segítségével rögzítettem. A végső kiegyensúlyozást csak akkor végeztem el, amikor már minden a tubuson volt. Itt is elkelt bőven asszonykám segítsége.

300_1200_1-s1

A távcső összeszerelés az új otthonában. Nemcsak apunak van kiskocsija. 🙂

A kihuzatba Paracorr Type2 kóma korrektor került, aminek egyik számomra áldásos mellékhatása, hogy az eredetileg 1200 mm-es fókuszt, 1380 mm-re nyújtja. Ez jól jön az apró objektumok esetén. A távcső fényereje viszont még így is f/4.5 marad. Apropó hosszú fókusz. Egy ilyen 1 métert már jelentősen meghaladó érték esetén még csak eszembe sem jutott, hogy külső vezetést alkalmazzak a fotózás során. Így, a Teleskop Service keskeny Off-Axis Guider adaptere követte a fényútban a kóma korrektort. Vezetésre a meglévő MGEN-emet használom. Egyelőre legalábbis. Rá kellett, hogy jöjjek az első tesztek során, hogy bár az MGEN szoftveresen egy remek eszköz, a kamerája egy ilyen felállásban már igen csak vaksi! A piacon ennél sokkal érzékenyebb vezető kamerák is kaphatóak ma már. Az Off-Axis Guider-hez kapcsolódik, az évek óta használt Lacerta szűrőváltóm, amit a jövőben majd szintén le fogok cserélni. Egyrészt automatizálni szeretném a szűrőváltást, másrészt az 1.25-ös szűrők már nem ideálisak ehhez a konfigurációhoz. Jelentős, bár még nem durva vignettázást okoznak. A harmadik ok pedig az, hogy vastag. Sajnos a Paracorr Type2 mögött igen csak limitált a fényút hossza a kamera szenzoráig. Most pár milliméterrel túl is lógok ezen. Igaz, ennek esetleges következménye eddig semmi hátrányt nem okozott. Végül az egész „szerelvényt” az SXVR-H18 CCD zárja le.

Pár kiegészítő még mindig hiányzott azonban, amit be kellett szereznem, vagy meg kellett építeni. Most csak az igazán fontosakat említeném meg.

A fókuszáláshoz a Bahtinov-maszkot az egyik hazai kereskedőnél rendeltem meg, melyet a 36 cm-es tubusátmérő miatt külön kellett legyártani. Igen kevés ingerenciát éreztem arra, hogy ekkora méretben saját magam készítsek egy ilyet.

A flat box saját tervek alapján készült. A doboz anyagának kartonplasztot választottam, mely könnyű, és viszonylag egyszerű vele dolgozni. Egy óbudai kreatív boltban vásároltam meg a 2 m x 1 m-es fehér táblát Csoknyai Attila tanácsára, akitől egyébként a kartonplaszt ötlete is származott. Kivitelezője azonban Nagy Tibor volt, aki a szerelés mellett még rengeteg jó ötlettel egészítette ki az eredeti tervet. Gyakorlatilag csak egyetlen kartonplaszt anyaga került felhasználásra. A merevítésről a levágott, és behajtogatott részek gondoskodtak. A megvilágításról LED-ek gondoskodnak, melyek fényereje villogás nélkül szabályozható. Ennek titka mindössze annyi, hogy PWM (Pulse-width modulation) LED Dimmer-t használok a szabályozására. A fény homogenitásáról két darab 50 cm x 50 cm-es 3 mm-es tejplexi gondoskodik. A LED panel és a két plexi egymástól nagyjából 10-10-10 cm-re helyezkedik el.

Flat_Box_01-s1

A flat box kivágva a kartonplaszt anyagból. Láthatóak a bemetszések is a tejplexik számára. Kezdődhet a hajtogatás!

Flat_Box_02-s1

A flat box összehajtva, és már megragasztva. Alul pedig kivágva, hogy azt a tubusra lehessen húzni.

Flat_Box_03-s1

A flat box oldalnézetben. Látszanak a plexi lapok is. A doboz úgy lett kialakítva, hogy a világítás felőli rész záruljon utoljára. Innen lehet szerelni az elektronikát, ha esetleg valami meghibásodna. A teljes megvilágító modul egy az egyben kicserélhetőre készült. Így az esetleges meghibásodás mellett felkészültem arra is, hogy a tesztek esetleg nem hozzák a kívánt eredményt. Vagyis esetleg nem lesz kellően homogén a megvilágítás.

Flat_Box_04-s1

A világításért felelős modul, mely a tubus számára kivágott nyílás korongjából készült. Nem magára a doboz fedélre lett rögzítve, hanem egy a kivágásból hátra maradt darabra. Teljesen önálló, és az alkalmazott ügyes hajtogatásnak köszönhetően szorul meg teljesen magától és párhuzamosan a plexi lapokkal, vagyis egyáltalán nem is kellett beragasztani.

Minden együtt volt hát, már csak a derült égre kellett várnom. Az első éjszakán még magasan járt, és fényesen világított a Hold, de nem hagyhattam ki, hogy az első teszteket elvégezzem. Minden flottul ment, azonban a kollimáció nem volt tökéletes. Értetlenül álltam a dolog előtt, mert sötétedéskor még mindent jónak láttam. Mivel Szeri Laci is ébren volt még, éppen saját felvételeit készítette, így rácsörögtem. Majd egy órán keresztül próbálkoztam beállítani a tükröket Laci távoli tanácsai alapján, majd tesztfelvételekkel ellenőrizni a kollimációt, de mind hiába!  Nem tudtam elérni a kívánt eredményt. Nem egy olyan nagy varázslat a dolog, de mégsem ment. Miért? Nem találtam semmi műszaki okát. Nagyon felbosszantott a dolog, és visszatoltam a távcsövet a helyére. Később még egy holdas éjszakát elszúrtam, de csak nem akart tökéletes lenni a kép. Végül Laci ellátogatott hozzám az egyik nap, mert ő sem értette, hogy mi lehet a baj. Hagytam, hogy ő végezze el a beállításokat. Majd annál a pontnál, amikor a lézerpöttyöt a főtükör karikájának közepébe kell rakni, kibújt a szög a zsákból! Mutatta, hogy most van középen. Szerintem meg nem volt ott. Feleségem is kijött, hogy megnézze. Szerinte is középen volt. Ekkor belenéztem újra a tubusba, és egy kicsit elmozgattam a fejemet. A pont is elmozdult. Ahogy óvatosan forgattam a fejem a pont körbetáncolt. Ó! Istenem! Pár héttel korábban váltottam multifokális szemüvegre, mert az olvasáshoz már külön szemüvegre lenne szükségem, és nem akartam kettőt is magamnál hordani. A szemüvegemnek nincs egyetlen egzakt fókuszpontja. A dioptria a felületen egy mintázat szerint folyamatosan változik. Ez pedig a lézerpötty vándorlását okozza attól függően, hogy éppen hogy tartottam a fejem. A mindennapi életben ez nem jelent problémát, de a kollimációnál bizony igen! Miután végül a kollimációm már rendben volt, Laci még ragaszkodott hozzá, hogy több kört menjek a kertben a kiskocsival, méghozzá nem csak úgy óvatosan. Hadd dolgozzanak csak a buckák, és a fűcsomók! Újra ellenőriztük a beállításokat. A tükrök nem mozdultak el a kerti rally hatására. Még pár kört tettem. Még mindig rendben volt a dolog, és lekopogom, ez azóta is így van.

A harmadik derült, de teliholdas éjszakán végül megfelelően kollimált távcsővel láttam neki a teszteknek. Beállítottam a vezetést, objektumonként 4-6 felvételt vettem fel, más-más expozíciós idővel, bin1 és bin2 alkalmazásával. A mechanika és a vezetés tesztelése céljából az ég különböző pontjairól választottam célpontot. Az optika, a mechanika, a vezetés tette a dolgát. A végén, a kihuzatból nem is vettem ki a fotózásra használt „szerelvényt”. Elégedetten toltam a helyére a távcsövet, és végre igazán nyugodtan aludtam.

Másnap a véglegesítettem a kábelezést, felkerült a 100 W-os külön tápegység, ami biztosítja a 12 V-os ellátást a mechanikának, a vezetésnek, a ventilátoroknak. Egyedül a CCD-t hajtom meg a saját gyári tápegységéről biztos, ami biztos alapon. Innentől kezdve már csak ki kell tolnom a távcsövet, elindítani a ventilátorokat, és az előbb említett fél óra bőven elég az egyéb előkészületekhez. Vagyis, az asztalka, az észlelő/horgászszék és a notebook kicipelésére. Továbbá, a pólusra álláshoz, és a mechanika betanításához. Ennél már csak a saját csillagvizsgáló kinyitása lenne gyorsabb, de az már a jövő zenéje. Talán. Egyszer.

Az első éles bevetésre végül 2016. április 29-én került végül sor. Ekkor már azzal a tudattal mentem ki az ég alá, hogy működik a rendszer, és NGC6015-öt fogom végre lefotózni. Legalábbis bíztam benne, és így is lett. Sokat vártam erre! Kicsit sem zavart, hogy aznap éjjel az égbolt minősége még átlagosnak sem volt mondható gödi viszonylatban.

Külön köszönöm feleségemnek, hogy képes volt elviselni az elmúlt hónapokban (is)!

300_1200_wip-crv3-s1

Készül a kertben az NGC6015-ről a felvétel.

(A fotót természetesen a felvételek közötti bolygatás pillanataiban lőttem mobiltelefonnal. 😉 )

Felhasznált irodalom:

L. Verdes-Montenegroa, A. Bosma, and E. Athanassoula: The ringed, warped and isolated galaxy NGC 6015

H. M. Hernández-Toledo, J. Zendejas-Domínguez, and V. Avila-Reese: BVRI Surface Photometry of Isolated Spiral Galaxies

John Kormendy: Secular Evolution in Disk Galaxies

Ronald J. Buta: Galaxy Morphology