Abell 33 (PN A66 33 – PK 238+34.1 – PN G238.0+34.8)

Abell33-OIIIRGB-20190203-T30-600s-TTK

Abell 33 (PN A66 33 – PK 238+34.1 – PN G238.0+34.8) planetáris köd az Északi Vízikígyó (Hydra) csillagképen

iTelescope.net T30 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI-PL6303E CCD kamera

A felvételek 2019-02-03 és 2019-02-15 között készültek – Siding Spring Observatory – 29 x 600 sec (bin2) OIII, 10 x 120 sec (bin2)  R,G,B

(Kép orientációja: észak balra, kelet alul)

Abell katalógusa a planetáris ködökről

A felvételen látható kékeszöld gázbuborék Abell katalógusában a 33-as sorszámot viseli. George Ogden Abell (1927-1983) megfigyelő csillagászként kezdte pályafutását a Palomar Égboltfelmérő Programban (Palomar Sky Survey). A Palomar Obszervatórium 48 hüvelykes Schmidt típusú távcsövével készített felvételeket fotólemezekre a projekt keretében. Egyik korai munkája az alacsony felületi fényességű planetáris ködök tanulmányozása volt, melyhez éppen az előbb említett lemezeket használta fel. A 48 hüvelykes Schmidt távcső ideális volt a nagy kiterjedésű, de halvány felületi fényességű objektumok megörökítéséhez. 1966-ban kiadott publikációja (Properties of Some Old Planetary Nebulae) 86 planetáris ködöt tartalmazott. Ezek nem mind az ő saját felfedezései. Nagyjából a felük Albert George Wilson, míg a maradék ő hozzá, illetve Robert George Harrington és Rudolph Minkowski nevéhez köthető. Bár 4 planetáris köd jobban ismert más katalógusokból, és szintén 4-ről később kiderült, hogy valójában más objektum, de Abell-nek Peter Goldreicher-rel karöltve fontos szerepe volt abban, hogy a csillagászok kapcsolatot teremtsenek a vörös óriás csillagok életének végső fázisa és a planetáris ködök között.

George Abell preparing to take plate with 48-inch Schmidt telescope

A fiatal George Ogden Abell a Palomar Obszervatórium Samuel Oschin 48 hüvelykes (1.2 méteres) Schmidt távcsövével. Abell ezzel a távcsővel készítette a Palomar Égboltfelmérő Programhoz a felvételeket. A távcső napjainkban már teljesen automatizált, praktikusan működésközben senki sincs fizikailag a kupolában. A fotólemezeket pedig CCD technológia váltotta fel. Teljesen hasonlóan készült a saját felvételem is az Abell 33-ról. Az iTelescope távcsöve teljesen önállómódon, az általam megadott program alapján készítette el a kívánt felvételeket. – A kép forrása: Caltech

Öregedő csillagok és a planetáris ködök

Ma már tudjuk, hogy a planetáris ködök létezése, az életük végéhez közelítő (kezdetben) 0.8 és 8 naptömegű csillagokhoz köthető.

A csillagok energiatermelését életük leghosszabb szakaszában a hidrogén fúziója biztosítja, melyben hélium keletkezik. E folyamatban keletkező energiának köszönhetően képes dacolni a gravitációval. Azonban ez sem tart örökké. A hidrogén készletek idővel megcsappannak, és a magból a hidrogén fúzió egy külső héjba tevődik át. A csillag vörös óriássá fújódik fel. Idővel a hélium fúzió is beindul a magban, melyben szén keletkezik, de a külső héjban továbbra sem szűnik meg a hidrogén fúziója. A csillag összehúzódik, némileg forróbb lesz, luminozitása is csökken.  Miután a hélium is elfogy az addigra szénben és oxigénben gazdag magban, a fúzió az azt körülvevő külső héjba tevődik át. Az energia nagy része viszont nem itt keletkezik, hanem a külsőbb hidrogén héjban. A csillag külső rétegei ismét felfúvódnak és lehűlnek. Éppen ezért a csillag fényessége ismét megnő, túlszárnyalva a korábbi vörös óriás fázist, színe pedig ismét a vörös felé tolódik.

Ebben az úgynevezett AGB fázisban (Asymptotic Giant Branch – Aszimptotikus óriás ág) a csillagok jelentős mennyiségű tömeget veszítenek az időszakonként eltérő sűrűségű és intenzitású csillagszél révén. Hihetetlen tűnik, de kezdeti tömegüknek akár több mint a felét is elveszíthetik ebben a késői fejlődési szakaszban. Leegyszerűsítve azt mondhatjuk,  hogy ezek a Napnál akár ezerszer is fényesebb vöröses árnyalatú óriás csillagok mintegy ledobják külső rétegjeiket.

A kezdetben nagyságrendileg 10-15 km/s sebességű csillagszél porban gazadag és sűrű (évente mintegy 10-7 naptömeg áramlik ki).  Ezt egy rövid ideig tartó, hirtelen felgyorsuló, intenzív anyagkiáramlás, az úgynevezett szuperszél követi. Lassan feltárul a csillag forró magja, a tömegvesztés mértéke ugyan lassul (10-8 naptömeg évente), de a kiáramlás sebessége megnő. A lassú és sűrű csillagszelet 200-2000 km/s-os gyors, de kis sűrűségű csillagszél váltja fel tehát, mely beleütközik a korábban ledobott, főleg a szuperszél időszakából származó csillagkörüli anyagba. A gyors csillagszél mintegy maga előtt tolva azt, képes sűrű héjat formálni belőle.

A planetáris ködöd csillagászati időskálán mérve roppant gyorsan jönnek létre. Az AGB fázis végén ehhez elég mindössze néhány évszázad. Létezésük pedig alig pár tízezer év. A planetáris ködök szülőcsillagjai nem elég nagytömegűek, hogy magjukban beinduljon a szén és az oxigén fúziója. Idővel a nukleáris fúzió a külső rétegekben is leáll. A csillagszél megszűnik, és lassan a fehér törpe állapotba jut a csillag. Mire ez a folyamat teljesen befejeződik, a planetáris köd elenyészik az űr sötétjében, láthatatlanná válik.

De mitől látható „egyáltalán” a kidobódott anyag? Az anyagkiáramlás első fázisában, a csillagot körbevevő anyagfelhőt protoplanetáris ködnek nevezik, ugyanis még csak visszaveri szülőcsillagának fényét (nincs még gerjesztés, mint a későbbi planetáris köd fázisban). Azonban, a magkörüli vékony hidrogénburokban  még mindig zajlik a hidrogén héliummá történő fúziója. A csillag így egyre forróbb, és forróbb lesz. Mikor a csillag felszíni hőmérséklete átlépi a 30000 K-t, intenzív UV sugárzásával gerjeszteni kezdi a körülötte lévő gázt. A köd többé már nem a csillag fényét veri vissza, hanem „világítani” kezd. Színképét ettől fogva a hidrogén rekombinációs vonalai, és az úgynevezett ütközéssel gerjesztett tiltott vonalak uralják. Eme utóbbiak csak roppant ritka csillagközi gázban jöhetnek létre, ezért hívják tiltott vonalaknak. Ilyen például az OIII (a kétszeresen ionizált oxigén) színképvonala is. Ettől a ponttól beszélünk planetáris ködről.

Az olvasó figyelmébe ajánlom a planetáris ködökről korábban írt összefoglaló cikkemet , amiben a fentebb vázolt folyamatokat részletesebben is ismertetem. Továbbá, átfogóbban foglalkozom a planetáris ködök felépítésének, morfológiájának kialakulásával is.

A fotó és a mögöttes fizika

Azt már tudtam korábbról, hogy az Abell katalógusában szereplő objektumok jellemzően az idősebb, fejlődésben előrehaladottabb állapotát képviselik a planetáris ködöknek. Ennek egyik következménye, hogy felületi fényességük alacsony, és ez az Abell 33 esetében sincs ez másképpen. Elég csak egy pillantást vetni a lenti fotókra, hogy meggyőződjünk arról, mennyire halvány az Abell 33 a Messier 27-hez képest.

Abell-33-vs-M27-SDSS

Balra az Abell 33, jobbra az M27 planetáris köd. Mind a két felvétel az SDSS (STScI Digitized Sky Survey) archívumából származik. Azonos műszerrel, azonos expozíciós idővel készültek. A látómező mérete 30 x 30 ívperc. Az alacsony felületi fényessége miatt az Abell 33 csak halvány derengés a fotón, míg az amatőrcsillagászok által közkedvelt M27 szinte vakít mellette. Forrás: STScI

Éppen ezért, amennyiben lehetőségünk van rá, akkor érdemes keskenysávú szűrőket használni, és hosszú expozíciós idejű elvételeket készíteni. A keskenysávú szűrők, speciális hullámhosszokon, egy igen szűk tartományban engedik csak át a fényt. Pontosabban, az adott hullámhossz és annak néhány nanométeres környezete éri csak el a kamera detektorát. Jól megválasztva tehát a szűrőt (szűrőket), az csak azt a hullámhosszúságú fényt engedi át, amin az objektum maga is sugároz. Mit nyerünk ezzel? A köd nagyobb kontrasztban jelenik meg a szűrt, és ennek következtében sötétebb égi háttér előtt. Jellemzően Hα, Hβ, OIII, SII, NII és egyéb keskenysávú szűrőkkel szoktak dolgozni a csillagászok (a látható fény tartományában). Az amatőrcsillagászok követve ezt a gyakorlatot, nem különben.

Általánosságban elmondható, hogy a különböző keskenysávú szűrős felvételeket összedolgozva, kontrasztos és színes látványát kaphatunk eredményül. Érdemes tudni, hogy ezek mind-mind hamis színes felvételek. Az emberi szem ilyennek sosem látná az objektumokat. Valójában az egyes hullámhosszhoz a képfeldolgozás során rendelünk színeket úgy, hogy annak tartalmát különböző arányokban keverjük bele az egyes színcsatornákba. Vagyis, egy „paletta” szerint „megfestjük” a képeket, vagy éppen „játszunk” az intenzitások arányával (több szűrő esetén). Minden színnek azonban jelentése van. Elárulja, hogy az adott területen milyen az objektum kémiai összetétele.

A Hubble űrteleszkóp felvételeinek jelentős részét szintén keskenysávú szűrőkkel rögzítették (elsődleges a tudományos szempont!), de külön művészeti csoportot kértek fel arra, hogy megalkossák az úgynevezett Hubble palettát. Vagyis, olyan színeket rendeljenek az egyes hullámhosszokhoz, amin köszönhetően a végeredmény a befogadó közönséget lenyűgözi. A Hubble képein a gázködök látvány valós, míg a szín sok esetben emberkéz által alkotott, de mégis csillagászati jelentést hordoz!

Amatőrcsillagász körökben keskenysávú felvételek készítéséhez leginkább  Hα, OIII, SII szűrők az elterjedtebbek. A Hα szűrő a gerjesztett hidrogén fényére van „kihegyezve”. Egészen pontosan, a Balmer-sorozat 656.28 nm-es hullámhosszára. Ilyen hullámhosszúságú foton akkor keletkezik, amikor a hidrogén elektronja a harmadik legalacsonyabb energia szintjéről a másodikra „lép vissza”.  Az OIII szűrő a kétszeresen ionizált oxigén tiltott vonalainak hullámhosszán enged át. Ezebből kettő esik a látható tartományba: 501 nm és 496 nm. Jellemzően az elsőn (és szűk környezetében) engednek át a megvásárolható OIII szűrők. Teljesen hasonló elvek alapján működik az SII, ahol a rekombinálódó ionizált kén „világít”.

De mégis milyen szűrő, illetve szűrők kombinációja a legcélravezetőbb az Abell 33 esetében? Hogy a választ megleljem, a digitális észlelés előtt utána olvastam különböző tudományos cikkekben, hogy mit is érdemes tudni magáról a célpontról. Persze, ha ez embernek van ideje és kedve, akkor próbálkozhat is csak úgy. De engem a leggyorsabban elérhető kontrasztos végeredmény érdekelt. Biztosra akartam menni.

Átböngészve a lentebb felsorolt irodalmakat kiderült, hogy az Abell 33 nemcsak, hogy fejlődésben előrehaladott, öreg és halvány planetáris köd, de szinte kizárólag az OIII tiltott vonalain sugároz. A többi hullámhossz intenzitása igen gyenge ehhez képest (például Hα), vagy éppen nem is sugároz az adott hullámhosszon már. Így jutottam arra az elhatározásra, hogy kizárólag OIII-as keskenysávú szűrőt fogok használni. Azon minden meg fog mutatkozni, amit a használt műszerből én magam ki tudok hozni.

A keskenysávú módszernek van két „mellékhatása”. Az egyik, hogy a széles tartományban sugárzó csillagok fényének tekintélyes részét is levágja. A csillagok így a felvételen kisebbek és halványabbak lesznek. A végeredményben úgy tűnhet, hogy a köd nagyon fényes a csillagokhoz képest. Pedig elég csak a fenti SDSS képre nézni, hogy lássuk ez nem így van. Mondhatjuk, hogy ez a kontrasztnövelés ára. Tekintve, hogy engem a köd szerkezete érdekelt, a csillagok pedig kevésbé, így ennek nem tulajdonítottam különösebb jelentőséget.

A másik „mellékhatás”, hogy az OIII szűrős felvételeket luminance rétegként használva a csillagoknak nem lesz színe. Tulajdonképpen monokróm lenne az egész kép. Ezzel vagy törődik az ember, vagy nem. Az RCW58 Hα képemnél ezzel például nem foglalkoztam. Most viszont felvettem R, G, B szűrős felvételeket, hogy a csillagoknak megjelenje a valós színe. Megjegyzem, hogy ötször rövidebb expozíciók is elegendők voltak a vörös, zöld, kék szűrőkkel, hogy a csillagok fénye a megfelelő intenzitást elérje. Jól mutatja, hogy az OIII szűrő mennyi fényt vág le a csillagok esetén.

A végeredmény végül egy OIII-R-G-B kép lett, ahol az OIII réteg lett a fényréteg (luminance réteg). Továbbá az OIII felvételeket megfelelő arányban beolvasztottam a kés és a zöld színcsatornába a köd esetében. Így nyerte el azt a kékes-türkizkékes színt, ami nagyjából megfelel az 501 nm-es fény színének. A csillagok színe viszont a színszűrős (nem keskenysávú) felvételekből származó kalibrált szín. Ahogy fentebb is utaltam rá, ez bizony hamis színes kép a cél érdekében, ahol a köd színe a lehető legjobban „imitálja a valóságot”. (De bármilyen más színe is lehetne akár.) A morfológia viszont valós. Ezek a struktúrák az Abell 33-ban azok, melyek a kétszeresen ionizált oxigén tiltott színképvonalának hullámhosszán derengenek az űr sötétjében.

Abell 33

Az Abell 33 az Északi Vízikígyó (Hydra) csillagkép területén található. Megfigyelésére a késői téli és a tavaszi hónapok a legmegfelelőbbek. A horizont feletti legnagyobb magassága hazánkban 39.5-41 fok körül alakul. (A déli országrész lakói vannak némileg kedvezőbb helyzetben.) Mivel nem emelkedik túlságosan magasra, így érdemes delelés környékén elcsípnünk, ha okuláron keresztül szeretnénk megpillantani.

Abell-33-map4

Az Abell 33 az Északi Vízikígyó (Hydra) csillagkép területén található.

Hogy milyen látványban is lehet részünk? Miként és milyen műszerrel is érdemes megfigyelnünk? Álljon itt egyik amatőrcsillagász társam vizuális megfigyelése a Magyar Csillagászati Egyesület és a Meteor folyóirat észlelési archívumából:

Sánta Gábor 2009 március 26-án (23 óra UT) ezeket írta a planetáris ködről:

„8 cm-es lencsés távcső, 40x nagyítás, OIII szűrő: A pontos hely ismeretében ”mintha” felderengene.

25 cm-es Newton-távcső, OIII szűrő: Könnyedén látszó, hatalmas méretű (5′) fénykorong, peremén egy 8-9m-s csillag ül, mely nehezíti észlelését. Néha a planetáris csillag felöli 1/3-a a peremen fényesebbnek tűnik.”

Abell33-SantaG-cut

Sánta Gábor rajza az Abell 33-ról (2009. április 25.)

Alapvetően, legalább 10-15 cm-es távcső és OIII szűrő szükséges a köd vizuális megfigyeléséhez. 30 cm fölötti átmérő esetén (természetesen kellően sötét égen) szűrő nélkül is jó az esélyünk a megpillantására. Érdemes felkeresni, mert viszonylag ritkán észlelt, és különleges égi csemege.

De folytassuk tovább az Abell 33-mal való ismerkedést. A köd peremén látható HD 83535 kékes árnyalatú fényes csillag különös megjelenést kölcsönöz az objektumnak. Éppen ezért gyakran emlegetik Eljegyzési Gyűrű ködként, vagy Gyémánt Gyűrű ködként is. (Megjegyzem, hogy Gyémánt Gyűrű ködként az Abell 70 planetáris ködre is szoktak hivatkozni.) Bármilyen romantikusak is, de természetesen ezek nem hivatalos nevek. A fényes csillagnak semmi köze a planetáris ködhöz, és mindössze az előtérben helyezkedik el. Csak a véletlen játéka ez az egész.

A köd közepén látható csillag az, aminek sokkal nagyobb figyelmet érdemes szentelni. Ez ugyanis maga a szülőcsillag. Vagyis, annak a maradványa. Színképe, de kimondottan annak abszorpciós vonalai nagyon hasonlítanak a fehér törpe csillagoknál megfigyelhetőkre. Még egy bizonyíték, hogy az Abell 33 az idősebb planetáris ködök közé tartozik. Központi csillaga igen előrehaladott állapotban van azon a fejlődési úton, hogy elérje a fehér törpe stádiumát. Az O(H) színképtípusú csillag nem magányos azonban. Az ismert vizuális kettőscsillagok közé sorolják. (Bár e tekintetben minden kétséget nem zártak még ki teljesen.) A központi csillagot, a K2 (K3V) színképtípusú hűvösebb társától 1.82 ívmásodperc választja el. A valóságban ez nagyságrendileg 2000 CsE távolságot jelent. (1 Csillagászati Egység  eredeti definíciója szerint a Nap és a Föld átlagos távolsága, de az IAU új definíciója szerint 149 597 870 700 méter) Összehasonlításképpen a Neptunusz, vagyis a nyolcadik legtávolabbi bolygó a Naprendszerben nagyjából 30 CsE-re kering a Naptól.

Az Abell 33-ra nem véletlenül esett a választásom. Már a látható fény tartományában is meglepő hasonlóságot mutat az M97-tel (NGC 3587-tel), vagy ismertebb becenevén a Bagoly-köddel.

Abell-33-M97

Balra a kis 10 cm-es lencsés távcsővemmel 2014/2015 telén készített fotó az M97-ről, avagy a Bagoly-ködről (UMA-GPU APO Triplet 102/635 – SXVR-H18 CCD kamera)

Jobbra az 51 cm-es tükröstávcsővel, 2019 elején készített fotóm az Abell 33-ról (CDK Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI-PL6303E CCD kamera)

Bár a fotók között van különbség az akkori és a mostani képfeldolgozási gyakorlatom, továbbá a két műszer teljesítőképességének köszönhetően, mégis jól látszik bizonyos hasonlóság az M97 és az Abell 33 között.

García-Díaz és munkatársainak figyelmét sem kerülte el ez a meglepő hasonlóság miközben alaposan vizsgálatnak vetették alá az M97-et. Felfigyeltek arra, hogy nemcsak az Abell 33, de a K 1-22 (ESO 378-1) és az Abell 50 mintha egyetlen család tagjai lennének. Belekapaszkodva a Bagoly-köd elnevezésbe, a planetáris ködök új osztályát vezették be. Megalkották a bagolyalakú ködök (strigiform nebulae) osztályát. Az elnevezést az állatrendszertanból kölcsönözték, ahol a bagolyalakúak (Strigiformes) vagy közismert nevükön a baglyok a madarak osztályának egyik rendje. A csillagászok is emberek, és látszólag szeretnek játszani a szavakkal. A jövő majd eldönti, hogy mennyire terjed el ez az elnevezés a csillagászok körében. Én mindenesetre használni fogom a továbbiakban.

De lássuk, hogy mi a jellemzője ennek az osztálynak, ami García-Díaz és kutatótársai szerint egyelőre négy tagot számlál (a cikk írásakor). Először is a spektroszkópiai vonalaiknak az alakja és morfológiájuk meglepően hasonló.

A központi csillagjaik luminozitása nagyjából százszorosa a Napénak, míg effektív felszíni hőmérsékletük 100 ezer K körüli. A globális tágulási sebessége ezeknek a planetáris ködöknek a 30-40 km/s tartományba esik. Nem az első eset, hogy csillagászok egy csoportba rakták őket. Korábban már Pereyra és szerzőtársai (2013) mind a négyet a HE (Highly Evolved) planetáris ködök, vagyis fejlődésben nagyon előrehaladott állapotúak közé sorolta. Mit jelent ez? Azt, hogy ebben a késői állapotban a csillagszél már nagyon gyenge, vagy már le is állt. A centrális csillag luminozitása gyorsan hanyatlik, miután a hidrogén égető héjban leállt a fúzió. A köd gerjesztése megszűnőben. Talán már meg is történt a rekombináció. Mivel a köd tágulásának időskáláját meghaladja a csillag kihűlésének időskálája, a csökkenő sűrűség miatt a főbb héjai a ködnek újra a reionizáció állapotába lépnek. Azonban, a külső halókban még most is zajlik a rekombináció.

Az Abell 33 és a K1-22 esetében tudható, hogy kettőscsillagok és a tagok között nagy a szeparáció. Az Abell 50 esetében egyáltalán nem sikerült második csillag jelenlétét kimutatni. Az M97 esetében vannak ráutaló nyomok a közeli infravörös tartományban, de teljesen bizonyosat a mai napig nem tudunk. Ha van is társa eme utóbbi kettőnek, akkor is az Abell 33-hoz és a K1-22-höz hasonlóan nagy lehet a keringési távolság. S éppen ezért, a társcsillag vajmi kevéssé befolyásolhatja ezen típusú planetáris ködök formavilágát. Legfeljebb a belső turbulens vidékeken.

Az Abell 33, akárcsak a többi bagolyalkatú dupla héjas szerkezetű. Ám ellentétben a fiatal planetáris ködökkel, ahol a belső héj a keskenyebb, és a külső a kiterjedtebb. Itt pont fordítva van. A belső héj a vastagabb és a diffúzabb, míg a keskeny külső héj sokkal strukturáltabb.

A ködökben látható sötét foltok egyaránt egybeesnek az optikai tartományban és a közép infravörös tartományban. Ez azt jelenti, hogy ezek valódi üregek, és nemcsak a ködben lévő por miatt látszik sötétebbnek ezeken a területeken a négy objektum. A legvalószínűbb magyarázat létezésükre, hogy a korábbi gyors csillagszél vájta a ködbe ezeket az üregeket, ami mára már megszűnt. Ezek az üregek tehát relikviák abból az időből, amikor még sokkal nagyobb volt a luminozitása a központi csillagnak, és a csillagszél is sokkal erősebb volt.

Ugyan ez a legvalószínűbb magyarázat, de a bagolyalkatú ködök kialakulásának pontos mikéntje koránt sem tisztázott még. A legnagyobb problémát éppen az üregek jelentik bennük. A modellek amik a legtöbb esetben működnek itt csődöt mondanak. Az üregek peremén nem figyelhető meg felfénylés, ami viszont egyértelmű jele lenne egy táguló lökéshullámnak, ami elszívja erről a területről a gázt. Pedig pontosan ezt várnánk, ha aktív csillagszél vagy kollimált kiáramlás okozta volna a kialakulásukat. Ráadásul multipolárisak az üregek, ami újabb problémát vet fel. Talán a mágneses térrel ez magyarázható lenne, de maradjunk abban, hogy erősen sántítanak az erre épülő elképzelések. Túlságosan komplikált mágneses tért kell ugyanis feltételezni hozzá.

NGC2392-eskimo_hst_big

Az NGC2392 (Eszkimó-köd). Figyeljük meg a táguló buborékokat a Hubble űrtávcső felvételén. Talán éppen az ehhez hasonló képződmények válnak később az Abell 33-ban és társaiban megfigyelhető üregekké. Kép forrása: NASA/STScI

Alternatív magyarázat lehet, hogy a csillag korábbi fejlődési állapotának emlékét őrzik. Vagyis, már eleve a csillagszél által tágított héjak is aszimmetrikusak voltak. Több olyan planetáris ködöt is ismerünk (NGC2392, NGC6543, NGC7009), ahol igen elnyúlt, a csillagszél hatására gyorsan táguló peremű héjak figyelhetők meg a lassabban táguló külső héjak belsejében. Elképzelhető, hogy a gyors csillagszél megszűnése utáni fejlődése ezeknek a struktúráknak választ adhat az üregek kérdésére. De még mindig ott vannak az M97 belsejében megfigyelhető, a fák ágaihoz hasonlóan elágazást mutató üregek. Miként jöttek létre az elágazások?

M97-Ha-3D

Az M97 Hα képe balra felül. Tőle jobbra felül szintetikus Hα képek láthatók, melyek az alsó sor multipoláris, tripoláris, és bipoláris modelljeiből származnak. Vagyis, az alsó sor 3D-s üregmodellje alapján, ilyennek kellene látnunk az M97-et. Hasonló modellek alkothatók a többi bagolyalkatú ködre, így az Abell 33-ra is. Forrás: García-Díaz és mások.

Bár némileg különböznek a bagolyalkatú ködöktől, de vannak más jelöltek is, melyek talán éppen ezeknek a planetáris ködöknek a megelőző állapotában vannak. Ilyen például az NGC1360. Abban hasonlít az említett csoporthoz, hogy az ionizált gázban kevéssé kontrasztos elágazó üregrendszer figyelhető meg, ami nagymértékben aszimmetrikus. Ugyanakkor, a központi csillag sokkal nagyobb limunozitású (ez négyezerszerese a Napénak), és maga a köd sokkal elnyúltabb. Az NGC1360 hosszanti tengelye mentén gyorsan mozgó anyagcsomók figyelhetők meg a fő ködön kívül, míg kevéssé ionizált csomók az egyenlítője körül. Ez talán annak a jele, hogy a központi csillagnak van társa, s valamikor közös gázburok vette kettőjüket körül.

NGC1360-Capella

NGC1360 – Elképzelhető, hogy ez a köd képviseli a bagolyalkatú planetáris ködök megelőző fázisát. Kép szerzői: Dietmar Böcker, Ernst von Voigt, Stefan Binnewies, Josef Pöpsel

Ha kettős rendszereben az egyik csillag fejlődése során felfúvódik, és kitölti saját Roche-térfogatát, vagy csak intenzív csillagszele révén az AGB fázisban sok anyagot veszít, és ez tölti ki az említett térfogatot, akkor megindul az anyag átáramlása a társra.

Roche-lobes-corrected

Kettőscsillagok esetén megvan az a térrész, amit az adott égitest gravitációja ural. Ezt Roche-térfogatnak nevezik. Ami azon kívül kerül az akár el is hagyhatja a rendszert, vagy a páros körüli pályára állhat. A belső (L1) Langrange-ponton keresztül azonban anyag áramolhat át az egyik Roche-térfogatból a másikba. Az eredeti ábra forrása: Wikipedia.org (az eredeti ábra hibás volt, így módosítottam)

Bizonyos esetben azonban nem jut el az AGB társ összes anyaga a kísérőjére, hanem gázfelhő formájában veszi körül a párost. Közös gázburokkal körülvett kettőscsillagoknak (common envelope binary systems) nevezik az ilyen rendszereket. (Megjegyzés: A gázburok más ütemben rotál, mint a benne található kettőscsillagok. Ez különbözteti meg ezeket a kettősöket az érintkező kettős rendszerektől.)

Mik ezek a bizonyos estek? Közös gázburok olyankor alakul ki kettőscsillagok körül, ha az egyik komponens valamilyen okból nagyon gyorsan fújódik fel, vagy a két csillag közötti szeparáció nagyon gyorsan ütemben csökken.

De hogyan történik mindez? Ezeknél a párosoknál is, amikor a felfúvódó donor kitölti a Roche-térfogatot, megindul az anyagátadás. Közben tömege csökken, a Roche-térfogata zsugorodik. Így még jobban kitölti a térfogatot. Gyorsul az anyagátadás üteme, gyorsul a Roche-térfogat kitöltése (az folyamatosan megy össze), és így tovább. Egy megszaladó dinamikusan instabil anyagátadás valósul meg a kettős rendszerben. Adott esetben a „fogadó” oldali csillag már nem is tudja begyűjteni az összes gázt, és ezért közös gázburok alakul ki a páros körül. A gázburok fékező hatást fejt ki a kettős rendszerre. A csillagok energiát veszítenek, és közelebb kerülnek egymáshoz, ami szintén maga után vonja a Roche-térfogat zsugorodását, s így az anyagátadás fokozódását. A keringésből származó „lopott” energia felfűti és kitágítja a közös burkot. Idővel a donor felfúvódása abbamarad, a közös burok pedig tágulva elhagyja a rendszert. (Az is előfordulhat, hogy a kettős tagjai végül összeolvadnak, de e helyütt ezzel most nem foglalkozom.)

Akár közös burok veszi körül a párost, akár sem, amikor a Roche-térfogat kitöltésekor az anyagátadás megvalósul, akkor a gáz nem közvetlenül zuhan a második csillagra, hanem úgynevezett akkréciós korongot formál körülötte, s így befelé spirálozva éri el a csillag felszínét. Az ilyen akkréciós korongok gyakori sajátossága a forgástengellyel párhuzamos kifújások (jet) a csillagnál. Amennyiben a korong még precessziós mozgást is végez (imbolyog), az epizodikus kifújások dugóhúzó, vagy akár multipoláris mintázatot rajzolnak a térben.

Prescessing-jets

Az imbolygó, epizodikus kifújások (jet-ek) dugóhúzó, vagy akár multipoláris mintázatú üregeket is fújhatnak a korábban kidobódott, táguló gázba. Forrás: ESO/L. Calçada

Talán a bagolyalkatúak üregei is hasonlóan jöttek létre, már amennyiben azok központi csillagjának ténylegesen van egy kellően szoros közelségben lévő társa. Ha így is van, a folyamat részletei továbbra sem ismertek pontosa. Nem beszélve arról, hogy csomóknak egyelőre nyomát sem találták a megvizsgált bagolyalkatúak körül.

Mi tehát a konklúzió az Abell 33 és társainak esetében röviden összefoglalva? García-Díaz és munkatársai szerint annyi bizonyos, hogy az üregek igenis valósok. Peremükön nem figyelhető meg felfénylés. A központi csillagról az anyagkiáramlás (csillagszél) már nagyon gyenge, vagy mára meg is szűnt. Ezekből következik, hogy az üregeket nagy valószínűséggel a korábbi erős csillagszelek vájták ki, még a központi csillag megelőző nagy luminozitású fázisában. Ám az üregek erősen aszimmetrikus mivolta, feladják a leckét a ma elfogadott planetáris ködök kialakulásával és fejlődésével kapcsolatos modelleknek. Hogy fény derüljön a konkrét mechanizmusokra, mindéképpen további alaposabb vizsgálatokra lesz szükség ezen osztály tagjainak és azon jelölteknek az esetében, melyek jó eséllyel az ezt megelőző planetáris köd állapotot képviselik. A tudomány már csak így működik.

Felhasznált irodalom:

Abell, G. O: Properties of Some Old Planetary Nebulae

Orsola De Marco: The Origin and Shaping of Planetary Nebulae: Putting the Binary Hypothesis to the Test

J. P. Phillips: Planetary nebula distances re-examined: an improved statistical scale

Weidmann Walter A., Roberto Gamen: Central Stars of Planetary Nebulae: New spectral classifications and catalogue

R. Jacob, D. Schoenberner, M. Steffen: The evolution of planetary nebulae. VIII. True expansion rates and visibility times

Haywood Smith, Jr: On the distances of planetary nebulae

Dimitri Douchin, Orsola De Marco, D. J. Frew, G. H. Jacoby, G. Jasniewicz, M. Fitzgerald, Jean-Claude Passy, D. Harmer, Todd Hillwig, Maxwell Moe: The binary fraction of planetary nebula central stars – II. A larger sample and improved technique for the infrared excess search

W. Weidmann, R. Gamen, D. Mast, C. Fariña, G. Gimeno, E. O. Schmidt, R. P. Ashley, L. Peralta de Arriba, P. Sowicka, I. Ordonez-Etxeberria: Towards an improvement in the spectral description of central stars of planetary nebulae
Ma. T. García-Díaz, W. Steffen, W. J. Henney, J. A. López, F. García-López, D. González-Buitrago, A. Aviles: The Owl and other strigiform nebulae: multipolar cavities within a filled shell

Planetáris ködök

NGC1514-LRGB-20161104-0039-sx-bin2-360s-TTK

NGC1514 – planetáris köd a Bikában

2016-11-04, 2016-11-22 – Göd

24 x 360 sec L (Bin2), 10 x 360 sec R (Bin2), 10 x 360 sec G (Bin2), 10 x 360 sec B (Bin2)

300/1200 Newton távcső – Paracorr Type2 kóma korrektor – eredő fókusz 1380 mm

SkyWatcher EQ-6 Pro GoTo mechanika

SXVR-H18 CCD kamera, Hutech IDAS P2 LPS filter és Baader RGBL fotografikus szűrőszett

Ezekkel a szavakkal jellemezte anno William Herschel, a ζ Persei-től nem egészen 3.5 fokra található NGC1514 planetáris ködöt (fenti kép), ami valójában már a Bika csillagkép területén található:

„Egyedülálló jelenség! Egy nagyjából 8 magnitúdós csillag halványan fénylő légkörrel, melynek körkörös az alakja és 3 ívperc az átmérője. A csillag pontosan középen van és a ködösség körülötte nagyon halvány és olyannyira egyenletes, hogy úgy vélem nem is csillagok alkotják. Nem lehet kétséges a kapcsolat a csillag és a légkör között.”

Akkoriban általánosan elfogadott vélekedés volt, hogy minden köd csillagokra bontható, és ez csak távcső kérdése. Azonban Herschel-t pár planetáris köd megjelenése ebben elbizonytalanította, és közéjük tartozott az NGC1514 is. Szintén Herschel volt az a személy, aki először használta a planetáris köd kifejezést a Macskaszem-köd, hivatalos nevén az NGC6543 esetében, melynek megjelenése szerinte az Uránuszra hajazott. Az elnevezést aztán a többi csillagász is átvette. Annyira megragadt a szaknyelvben, hogy még akkor sem változtatták meg, amikor már biztosan tudható volt, hogy a planetáris ködök és a bolygók között semmiféle kapcsolat sincsen. A planetáris ködök létezése, az életük végéhez közelítő közepes tömegű csillagoknak köszönhető. Közepes tömeg alatt a 0.8 és 8 naptömeg közötti tartomány értendő. A továbbiakban csakis ezekkel foglalkozom majd, és nem térek ki sem a kisebb, sem a nagyobb tömegűekre.

Evolutionary_track_1m-5m

Közepes tömegű csillagok fejlődési útvonala a Hertzsprung-Russel diagramon. Main Sequence – Fősorozat, Subgiant Branch – Szubóriás ág, Giant Branch – Óriás ág, Horizontal Branch – Horizontális ág, Asymptotic Giant Branch – Aszimptotikus óriás ág, Instabilty Strip – Instabilitási sáv

Ábrák forrása: Wikipedia.org

A csillagok életük jelentős részét a Hertzsprung-Russel diagram úgynevezett fősorozatán töltik, miközben magjukban a hidrogén héliummá fúziónál. E folyamatban keletkező energiának köszönhetően képes dacolni a gravitációval. Leegyszerűsítve, a kifelé ható sugárnyomás akadályozza meg, hogy saját gravitációja összeroppantsa a csillagot. Ez a harc születésüktől fogva zajlik, s egészen halálukig, az energiatermelő termonukleáris folyamatok megszűnéséig tart. A hidrogénkészletek azonban nem tartanak örökké. Szerencséjükre a magban zajló hidrogén fúziója nem túlélésük egyetlen kulcsa. Sorsuk azonban így is beteljesül.

A Nap tömegének nagyságrendjébe eső, a fősorozatot elhagyó csillag esetén a hidrogén fúzió már régen nem a magban zajlik. Ekkora, a hidrogén héliummá történő átalakítása már a magot körülvevő külső héjba tevődik át, melynek következtében a csillag felfúvódik, és külső része lehűl, így jut el a vörös óriás fázisba. Majd miután a magban a hőmérséklet eléri a 100 millió fokos nagyságrendet, beindul a hélium fúziója. Ez a folyamat a kék szín irányába tolja a csillag fényét. Hogy mennyire, ez nagy részben a fémtartalomtól függ. (A csillagászok minden elemet a hidrogénen és a héliumon túl a periódusos rendszerben fémnek neveznek. Egy csillag fémtartalmát általában a Naphoz szokták hasonlítani a kutatók. A világegyetem története folyamán, a csillagoknak hála folyamatosan dúsult fémekkel. Az újabb és újabb csillaggenerációk egyre több fémet tartalmaztak, így minél alacsonyabb fémtartalmú egy csillag a Naphoz képest, annál ősibb objektum.) A horizontális ág tagjai a magjukban már héliumból szenet hoznak létre. Ennek az ágnak a csillagai kis fémtartalmú ősi, kisebb tömegű csillagok. A Naphoz hasonló fémtartalmú, 1-2 naptömegű csillagok nem „foglalják el” a horizontális ágat, csak némileg válnak forróbbá, miközben luminozitásuk csökken. Ezek alkotják az úgynevezett vörös kupac (Red Clump a fenti ábrán) csillagait a Hertzsprung-Russel diagramon. A 2-8 naptömegűek viszont kissé nagyobb kitérőt tesznek a kék szín irányába, felszíni hőmérsékletük is jobban megemelkedik. Ezek a kék hurok (Blue Loop a fenti ábrán) csillagai. Azonban, e csillagok életében ez mindössze egy rövidke epizód.

Miután a hélium is elfogy az addigra szénben és oxigénben gazdag magban, a fúzió az azt körülvevő külső héjba tevődik át. Az energia nagy része azonban nem itt keletkezik, hanem a külsőbb hidrogén héjban. A csillag külső rétegei ismét felfúvódnak és lehűlnek. Ennek köszönhetően a csillag fényessége ismét megnő, túlszárnyalva a korábbi vörös óriás fázist, színe pedig ismét a vörös felé tolódik. A csillag elfoglalja helyét az aszimptotikus óriás ágon (AGB fázis). Ugyan a valamivel nagyobb tömegű (2-8 naptömeg közötti) csillagok némiképp más utat járnak be, de nagy vonalakban hasonló folyamatok zajlanak le azoknál is.

Az AGB fázisban a csillagok jelentős mennyiségű tömeget veszítenek a magból a felszínre emelkedett szén, oxigén és egyéb nehéz elemeknek köszönhetően porban gazdag, 10-15 km/s sebességű, sűrű csillagszél révén. Ez évente mintegy 10-7 naptömeget jelent. Ezt egy rövid ideig tartó, hirtelen felgyorsuló, intenzív anyagkiáramlás, az úgynevezett szuperszél követi. Ennek a folyamatnak a végére már szinte csak a lecsupaszított, szénben és oxigénben feldúsult forró mag marad hátra. A csillagot körbevevő anyagfelhőt ebben az állapotban protoplanetáris ködnek nevezik, ugyanis még csak visszaveri szülőcsillagának fényét (nincs még gerjesztés, mint a későbbi planetáris köd fázisban).

A magot vékony hidrogénburok veszi körül, amiben még mindig zajlik a hidrogén fúziója héliummá. A csillag így egyre forróbb, és forróbb lesz. (Balra mozogva a Hertzsprung-Russel diagramon.) A tömegvesztés lelassul évi 10-8 naptömegre. A lassú és sűrű csillagszelet 200-2000 km/s-os gyors, de kis sűrűségű csillagszél váltja fel, mely beleütközik a korábban ledobott, főleg a szuperszél időszakából származó csillagkörüli anyagba. A gyors csillagszél mintegy maga előtt tolva azt, képes sűrű héjat formálni belőle.

Mikor a csillag felszíni hőmérséklete átlépi a 30000 K-t intenzív UV sugárzásával gerjeszteni kezdi a körülötte lévő gázt. A köd többé már nem a csillag fényét veri vissza, hanem „világítani” kezd. Színképét ettől fogva a hidrogén rekombinációs vonalai, és az úgynevezett ütközéssel gerjesztett tiltott vonalak uralják. (Eme utóbbiak csak roppant ritka csillagközi gázban jöhetnek létre, ezért hívják tiltott vonalaknak. Ilyen például az OIII színképvonala is.) Ettől a ponttól beszélünk planetáris ködről.

Alapvetően, az előbb említett különböző típusú anyagkiáramlások bonyolult kölcsönhatása az, mely meghatározza a planetáris köd felépítését, szerkezetét. Hihetetlen tűnik, de kezdeti tömegüknek akár több mint a felét is elveszíthetik a csillagok késői fejlődési fázisukban. Illetve, az esetenként akár 100000 K-nál is nagyobb felszíni hőmérsékletű központi csillag intenzív UV sugárzása teszi a ködöt „láthatóvá”.

Azt mindenképpen ki szeretném emelni, hogy az AGB fázisban történő anyag kibocsájtás, tömegvesztés pontos megértése még várat magára. Sok minden nem teljesen világos még a csillagászok előtt.

A planetáris ködök csillagászati időskálán mérve roppant gyorsan jönnek létre. Az AGB fázis végén ehhez elég mindössze néhány évszázad. Létezésük pedig alig pár tízezer év. A planetáris ködök szülőcsillagai nem elég nagytömegűek, hogy magjukban beinduljon a szén és az oxigén fúziója. Idővel a nukleáris fúzió a külső rétegekben is leáll. A csillagszél megszűnik, és lassan a fehér törpe állapotba jut a csillag. Mire ez a folyamat teljesen befejeződik, a planetáris köd elenyészik az űr sötétjében, láthatatlanná válik.

A fehér törpék esetében az úgynevezett elfajult elektrongáz nyomása dacol gravitációval. Ez a kvantummechanikai eredetű nyomás csakis a sűrűségtől függ, a hőmérséklettől egyáltalán nem – ellentétben az ideális gázokkal -, s egészen 1.44 naptömegig (Chandrasekhar-határ) képes egyensúlyban tartani a csillagot.

A fentebb ismertetett, úgynevezett kölcsönható csillagszél modellel tehát nagyszerűen megmagyarázható, hogy miként keletkeznek a sűrűbb héjak a lassan haldokló csillag körül. Azonban a legtöbb planetáris köd egyáltalán nem gömbszimmetrikus. Tekintélyes hányadukra például sokkal inkább jellemző valamiféle tengelyes szimmetria (bipolárisak, esetleg multipolárisak). Csak hogy két példát említsek azok közül, melyeket korábban már megörökítettem, sem az NGC6302, de még csak M57 sem gömbszimmetrikus.

ngc6302-lrgb-20140414-ttk-1

NGC6302 planetáris ködről már elsőre látszik, hogy sokkal inkább valamiféle tengelyes szimmetria jellemző rá, még ha az nem is oly tökéletes. Bíbor csápjait messzire nyújtja az űrben. A központi részen két fénykaréj fordít egymásnak hátat, így téve még hangsúlyosabbá a homokóraformáját az objektumnak. A bipoláris planetáris ködök gyönyörű példánya. (A szerző saját felvétele.)

M57-LRGB-20140505-TTK

Az M57 felépítése is valami mást takar. (A szerző saját felvétele.)

Hogyan értelmezhető e planetáris ködök szerkezete? Egyes elképzelések szerint, már az AGB fázisban, a forgó csillagról kiáramló lassú csillagszél sem gömbszimmetrikus, az a csillag egyenlítőjénél sűrűbb, míg a pólusok irányában ritkább. A csillag körül, annak egyenlítőjének a síkjában, tórusz alakú sűrűsödés alakul ki. A későbbi fejlődési állapotban meginduló gyors csillagszél, így könnyebben el tud szökni a pólusok irányába, és ott messzebbre jutva, létrehozza a bipoláris planetáris ködökre jellemző homokóraformát (pillangóformát). Az, hogy milyennek látjuk ezeket a ködöket, az nagyban függ attól, hogy milyen irányból tekintünk rájuk, ahogy ez a lenti ábra is szemlélteti.

planetaris-kodok-persp

Az, hogy a bipoláris planetáris köd megjelenése gyűrűre, vagy inkább homokórára emlékeztet, az attól függ, hogy milyen irányból tekintünk rá. Forrás: http://astro.u-szeged.hu/oktatas/galaktikus/34planetaris_nezet.html

Csakhogy, az elméleti megfontolások arra engednek következtetni, hogy az AGB fázisban a csillag forgása ahhoz nem elég gyors, és a mágneses mezeje sem elég erős, hogy működhessen a modell.  Ráadásul a planetáris ködök formavilága roppant változatos. Van, ami bár közel gömb alakú, de belsejében furcsa struktúrák figyelhetőek meg. Van ahol több héjból áll a köd. Egyeseknél jet-ek (kilövellések) láthatóak. Olyan planetáris ködök is vannak, ahol csak úgy értelmezhető a megfigyelhető látvány, hogy a csillag „imbolygott” (precesszió) az anyagkibocsájtás közben.

A világegyetemben a csillagok nagyjából fele nem magányos. Körülbelül 50 ± 10 % egyedüli, 38 ± 10 % kettős, 8 ± 3 % hármas, 3 ± 1 % többes rendszer tagja. A csillagászok joggal feltételezték, hogy a planetáris ködök szülőcsillagainál sincs ez másképpen.

The Frosty Leo Nebula

Az IRAS 09371+1212 planetáris köd (Frosty Leo Nebula) szerkezete arról árulkodik, hogy szülőcsillaga nem magányos. Forrás: ESA/Hubble – NASA

És valóban! Az esetek felében – ahol sikerült megfigyelni a központi csillagot -, azt találták a csillagászok, hogy az nem magányos. Alapvetően tehát szülőcsillaguk UV sugárzása a felelős e ködök fényéért, azonban a szerkezetük kialakításában kulcsszerep jutott a társcsillagnak. Hogyan?

Két mágnesezett és egymás körül keringő csillag egymásra gyakorolt hatását egyelőre nem lehet egzakt módon kiszámítani, mindössze kvalitatív képe van csak a csillagászoknak a dologról. Úgy látszik azonban, hogy a kísérőcsillag segít a mágneses mező fenntartásában. Továbbá, a keringésből származó perdület egy részét a gerjesztő csillagra juttatva felgyorsíthatja annak forgását. Mégis csak lehetséges tehát, amennyiben kettőscsillagról van szó, hogy már eleve az AGB fázisban sérül a gömbszimmetria. A kettősségnek köszönhetően mégiscsak működhet az elképzelés, miszerint a csillag egyenlítőjénél sűrűbb, míg a pólusok irányában ritkább a lassú csillagszél, illetve a szuperszél.

Másfelől, mivel a kettős rendszer tagjai a közös tömegközéppont körül keringenek, így a kiáramló csillagszél „megkavarodik”. A ledobott héjak összenyomódnak a keringés irányában, az anyag a vezető oldalon jobban összesűrűsödik, majd a köd tágulásával a „mintázat” felfúvódik. Ez a jelenség megmagyarázza, hogy miért látunk több planetáris ködben is spirális mintázatot.

R_Sculptoris_ALMA_data_visualisation

Az ALMA (Atacama Large Millimeter Array) milliméteres/szubmilliméteres tartományban működő rádiótávcsövek hálózatából álló rendszer felvétele az R Sculptoris félszabályos változócsillagról, mely egy AGB fázisban lévő vörös óriás csillag. A csillakörüli anyag különös mintázatát valószínűleg a „láthatatlan” kísérőjének köszönhető. Az R Sculptoris pályája különböző pontjain „pöfögte le” magáról külső rétegeket, miközben a kettős rendszer a közös tömegközéppont körül keringett.  Forrás: ALMA (ESO/NAOJ/NRAO)

Kettőscsillag alkotta rendszerekben más egyéb folyamatok is alakíthatják a planetáris köd szerkezetét. Talán a legkülönösebb mintázatokat az egymáshoz viszonylag közel keringő kölcsönható kettősök hozzák létre.

Mindkét tag esetén megvan az a térrész, amit az adott égitest gravitációja ural. Ezt Roche-térfogatnak nevezik. Ami azon kívül kerül az akár el is hagyhatja a rendszert, vagy a páros körüli pályára állhat. A belső (L1) Langrange-ponton keresztül azonban anyag áramolhat át az egyik Roche-térfogatból a másikba. Amennyiben az egyik csillag társa fejlődése során felfúvódik, és kitölti saját Roche-térfogatát, vagy csak intenzív csillagszele révén az AGB fázisban sok anyagot veszít, és ez tölti ki az említett térfogatot, akkor megindul az anyag átáramlása a társra.

Roche-lobes-corrected

Az ábra a Roche-térfogatot szemlélteti. Az L1 a szövegben is említett belső Langrange-pont. Az eredeti ábra forrása: Wikipedia.org (az eredeti ábra hibás volt, így módosítottam)

Bizonyos esetben azonban nem jut el az AGB társ összes anyaga a kísérőjére, hanem gázfelhő formájában veszi körül a párost. Közös gázburokkal körülvett kettőscsillagoknak (common envelope binary systems) nevezik az ilyen rendszereket. (Megjegyzés: A gázburok más ütemben rotál, mint a benne található kettőscsillagok. Ez különbözteti meg ezeket a kettősöket az érintkező kettős rendszerektől.)

Közös gázburok olyankor alakul ki kettőscsillagok körül, ha az egyik komponens valamilyen okból nagyon gyorsan fúvódik fel, vagy a két csillag közötti szeparáció nagyon gyorsan ütemben csökken. Ezeknél a párosoknál is, amikor a felfúvódó donor kitölti a Roche-térfogatot, megindul az anyagátadás. Tömege csökken, a Roche-térfogata zsugorodik. Így még jobban kitölti a térfogatot. Gyorsul az anyagátadás üteme, gyorsul a Roche-térfogat kitöltése (az folyamatosan megy össze), és így tovább. Egy megszaladó dinamikusan instabil anyagátadás valósul meg a kettős rendszerben. Adott esetben a „fogadó” oldali csillag már nem is tudja begyűjteni az összes gázt, és ezért közös gázburok alakul ki a páros körül. A gázburok fékező hatást fejt ki a kettős rendszerre. A csillagok energiát veszítenek, és közelebb kerülnek egymáshoz, ami szintén maga után vonja a Roche-térfogat zsugorodását, s így az anyagátadás fokozódását. A keringésből származó „lopott” energia felfűti és kitágítja a közös burkot. Idővel a donor felfúvódása abbamarad, a közös burok pedig tágulva elhagyja a rendszert. (Az is előfordulhat, hogy a kettős tagjai végül összeolvadnak, de e helyütt ezzel most nem foglalkozom.)

Akár közös burok veszi körül a párost, akár sem, amikor a Roche-térfogat kitöltésekor az anyagátadás megvalósul, akkor a gáz nem közvetlenül zuhan a második csillagra, hanem úgynevezett akkréciós korongot formál körülötte, s így befelé spirálozva éri el a csillag felszínét. Az ilyen akkréciós korongok gyakori sajátossága a forgástengellyel párhuzamos kifújások (jet) a csillagnál. Amennyiben a korong még precessziós mozgást is végez (imbolyog), az epizodikus kifújások dugóhúzó, vagy S mintázatot rajzolnak a térben. Ennek a jelenségnek egy nagyszerű példája a Fleming 1 planetáris köd.

The planetary nebula Fleming 1 seen with ESO’s Very Large Telescope

A Fleming 1 planetáris köd közepén nem is egy, hanem két degenerált (post-AGB fázisú, ifjú fehér törpe) csillag is található. A kiinduláskor a két csillag tömege igen közel lehetett egymáshoz. Az árnyalatnyival nagyobb tömegű komponens, csillagászati értelemben csak alig valamivel hamarabb érte el a planetáris ködöt létrehozó fejlődési állapot. Nem sokkal később a társa is követte. A különös S mintázatot az AGB csillagról a fehér törpére átáramló anyag formálta akkréciós korong jet-jei alakították ki.  Forrás: ESO (VLT)

A Fleming 1 S alakú mintázatának kialakulását szemléltető video.

Egyre elfogadottabb tehát az a nézet, hogy a gömbszimmetriától való eltérés magyarázata, a központi csillag kettőssége.  A planetáris ködök központi csillagainak hatoda ráadásul nem is kettős, de hármas rendszer tagja. Ilyen esetekben még a tengelyes szimmetria sem teljesül. De mi a helyzet azokkal a ködökkel, amelyek középpontjában magányosnak tűnő csillag csücsül, és mégsem gömbszimmetrikusok? Az elméleti megfontolások szerint nincs szükség feltétlenül csillagkísérőre, hogy működjenek a fentebb vázolt mechanizmusok. Már egy barna törpe társ, vagy akár a csillag bolygórendszere is képes „tönkretenni” a szabályos gömbformát. Napjainkban már több ezer exobolygóról van tudomásunk, s azt is tudjuk, hogy a bolygórendszerek igen gyakoriak a csillagok körül. Mondhatni, szinte nincs is valójában magányos csillag, csupán olyan, melynek nincs csillagtársa.

Ezzel röviden áttekintettem a megfigyelések, következtetések, elméleti megfontolások azon láncolatát, melyek Herschel „planetáris köd definíciójától” a mai, modern képig elvezettek. Igaz, e helyütt csak kialakulásukkal, felépítésükkel foglalkoztam. Azzal is csak vázlatosan. Akit a téma részletesebben is érdekel, annak ajánlom figyelmébe a felhasznált irodalmak listájából Szabados László cikkét. Évtizedek óta nem jelent meg magyar nyelven ahhoz hasonló összefoglaló cikk a planetáris ködökről! Ráadásul (teljesen természetes módon), azokban a korábbi magyar nyelvű cikkekben sok információ mára el is avult.

Külön köszönettel tartozom Szabados Lászlónak a cikk írásakor nyújtott konzultációs lehetőségért!

Felhasznált irodalom:

C. Muthu, B. G. Anandarao: A Spatiokinematic Study of the Planetary Nebula NGC 1514

Michael E. Ressler, Martin Cohen, Stefanie Wachter, D. W. Hoard, Amy K. Mainzer, and Edward L. Wright: The Discovery of Infrared Rings in the Planetary Nebula NGC 1514 During the WISE All-Sky Survey

B. Aryal, C. Rajbahak, R. Weinberger: A giant dusty bipolar structure around the planetary nebula NGC 1514

Henri M. J. Boffin, Brent Miszalski, Thomas Rauch, David Jones, Romano L. M. Corradi, Ralf Napiwotzki, Avril C. Day-Jones, Joachim Koeppen: An Interacting Binary System Powers Precessing Outflows of an Evolved Star

A. Aller, B. Montesinos, L. F. Miranda, E. Solano, A. Ulla: Spectral analysis of BD+30°623, the peculiar binary central star of the planetary nebula NGC 1514

R.H. Mendez, R.P. Kudritzki, M.A. Urbaneja: The two central stars of NGC 1514: can they actually be related?

Szabados László: Planetáris ködök (Meteor csillagászati évkönyv 2017)

NGC1514 plantáris köd

NGC1514-LRGB-20161104-0039-sx-bin2-360s-TTK

NGC1514 – planetáris köd a Bikában

2016-11-04, 2016-11-22 – Göd

24 x 360 sec L (Bin2), 10 x 360 sec R (Bin2), 10 x 360 sec G (Bin2), 10 x 360 sec B (Bin2)

300/1200 Newton távcső – Paracorr Type2 kóma korrektor – eredő fókusz 1380 mm

SkyWatcher EQ-6 Pro GoTo mechanika

SXVR-H18 CCD kamera, Hutech IDAS P2 LPS filter és Baader RGBL fotografikus szűrőszett

Az NGC1514 is egy azon objektumok közül, melyet kisebb lencsés távcsővel, ASI 120mm kamerával korábban már lefényképeztem. Anno csak luminance felvételeket készítettem, vagyis monokróm fotó született. A dolog akkoron félbe is maradt, színeket már nem rögzítettem hozzá. Elraktam a dolgot későbbre. Végül sosem fejeztem be. A kis ködösség az égen arra várt, hogy nagyobb átmérőjű, hosszabb fókuszú műszerrel egyszer majd jobban „szétcincáljam”. 2016 őszén néhány vele kapcsolatos cikk került a kezembe, mely újra felé fordította a figyelmem.

A felvételek feldolgozása közben rá kellett döbbennem, hogy van még tartalék a célpontban és a környező látómezőben. Ezt azonban kisvárosi ég alól (LRGB technikával) már nehezen fogom tudni kiaknázni. A nagyon halvány részek a nyers felvételeken már csak alig-alig váltak el az égi háttértől. De sebaj! Az éppen felsejlő, az egész területen ólálkodó csillagközi anyagot, port, majd egy másik alkalommal leplezem le. Most csak ott bujkál, kissé fátyolossá téve a hátteret, a csillagok fényét tompítva, s narancsos árnyalatot kölcsönözve nekik. Mindez a fizika játéka. A por okozta extinkció effektívebb a rövidebb hullámhosszakon. S minthogy a rövidebb hullámhosszú fény intenzitása jobban csökken, a csillagok fénye a vörös felé mozdul (szín-excesszus). El lehetne még azon is mélázni, hogy jó pár nagyon távoli galaxis is megbújik a háttérben, de most még csak nem is róluk lesz szó. Mindössze a látómező nagyjából 3 ívperces központi területére fogok koncentrálni. Több ott a megfejtetlen titok, mintsem elsőre gondolnánk! Az NGC1514 pontos mibenléte fogós feladvány.

„Egyedülálló jelenség! Egy nagyjából 8 magnitúdós csillag halványan fénylő légkörrel, melynek körkörös az alakja és 3 ívperc az átmérője. A csillag pontosan középen van és a ködösség körülötte nagyon halvány és olyannyira egyenletes, hogy úgy vélem nem is csillagok alkotják. Nem lehet kétséges a kapcsolat a csillag és a légkör között.” Ezekkel a szavakkal jellemezte William Herschel, a ζ Persei-től nem egészen 3.5 fokra található planetáris ködöt, ami valójában már a Bika csillagkép területén található.

Akkoriban általánosan elfogadott vélekedés volt, hogy minden köd csillagokra bontható, és ez csak távcső kérdése. Azonban Herschel-t pár planetáris köd megjelenése ebben elbizonytalanította, és közéjük tartozott az NGC1514 is. Szintén Herschel volt az a személy, aki először használta a planetáris köd kifejezést a Macskaszem-köd, hivatalos nevén az NGC6543 esetében, melynek megjelenése szerinte az Uránuszra hajazott. Az elnevezést aztán a többi csillagász is átvette. Annyira megragadt a szaknyelvben, hogy még akkor sem változtatták meg, amikor már biztosan tudható volt, hogy a planetáris ködök és a bolygók között semmiféle kapcsolat sincsen. A planetáris ködök létezése, az életük végéhez közelítő közepes tömegű csillagoknak köszönhető. Közepes tömeg alatt a 0.8 és 8 naptömeg közötti tartomány értendő. A továbbiakban csakis ezekkel foglalkozom majd, és nem térek ki sem a kisebb, sem a nagyobb tömegűekre.

Evolutionary_track_1m-5m

Közepes tömegű csillagok fejlődési útvonala a Hertzsprung-Russel diagramon. Main Sequence – Fősorozat, Subgiant Branch – Szubóriás ág, Giant Branch – Óriás ág, Horizontal Branch – Horizontális ág, Asymptotic Giant Branch – Aszimptotikus óriás ág, Instabilty Strip – Instabilitási sáv

Ábrák forrása: Wikipedia.org

A csillagok életük jelentős részét a Hertzsprung-Russel diagram úgynevezett fősorozatán töltik, miközben magjukban a hidrogén héliummá fúziónál. E folyamatban keletkező energiának köszönhetően képes dacolni a gravitációval. Leegyszerűsítve, a kifelé ható sugárnyomás akadályozza meg, hogy saját gravitációja összeroppantsa a csillagot. Ez a harc születésüktől fogva zajlik, s egészen halálukig, az energiatermelő termonukleáris folyamatok megszűnéséig tart. A hidrogénkészletek azonban nem tartanak örökké. Szerencséjükre a magban zajló hidrogén fúziója nem túlélésük egyetlen kulcsa. Sorsuk azonban így is beteljesül.

A Nap tömegének nagyságrendjébe eső, a fősorozatot elhagyó csillag esetén a hidrogén fúzió már régen nem a magban zajlik. Ekkora, a hidrogén héliummá történő átalakítása már a magot körülvevő külső héjba tevődik át, melynek következtében a csillag felfúvódik, és külső része lehűl, így jut el a vörös óriás fázisba. Majd miután a magban a hőmérséklet eléri a 100 millió fokos nagyságrendet, beindul a hélium fúziója. Ez a folyamat a kék szín irányába tolja a csillag fényét. Hogy mennyire, ez nagy részben a fémtartalomtól függ. (A csillagászok minden elemet a hidrogénen és a héliumon túl a periódusos rendszerben fémnek neveznek. Egy csillag fémtartalmát általában a Naphoz szokták hasonlítani a kutatók. A világegyetem története folyamán, a csillagoknak hála folyamatosan dúsult fémekkel. Az újabb és újabb csillaggenerációk egyre több fémet tartalmaztak, így minél alacsonyabb fémtartalmú egy csillag a Naphoz képest, annál ősibb objektum.) A horizontális ág tagjai a magjukban már héliumból szenet hoznak létre. Ennek az ágnak a csillagai kis fémtartalmú ősi, kisebb tömegű csillagok. A Naphoz hasonló fémtartalmú, 1-2 naptömegű csillagok nem „foglalják el” a horizontális ágat, csak némileg válnak forróbbá, miközben luminozitásuk csökken. Ezek alkotják az úgynevezett vörös kupac (Red Clump a fenti ábrán) csillagait a Hertzsprung-Russel diagramon. A 2-8 naptömegűek viszont kissé nagyobb kitérőt tesznek a kék szín irányába, felszíni hőmérsékletük is jobban megemelkedik. Ezek a kék hurok (Blue Loop a fenti ábrán) csillagai. Azonban, e csillagok életében ez mindössze egy rövidke epizód.

Miután a hélium is elfogy az addigra szénben és oxigénben gazdag magban, a fúzió az azt körülvevő külső héjba tevődik át. Az energia nagy része azonban nem itt keletkezik, hanem a külsőbb hidrogén héjban. A csillag külső rétegei ismét felfúvódnak és lehűlnek. Ennek köszönhetően a csillag fényessége ismét megnő, túlszárnyalva a korábbi vörös óriás fázist, színe pedig ismét a vörös felé tolódik. A csillag elfoglalja helyét az aszimptotikus óriás ágon (AGB fázis). Ugyan a valamivel nagyobb tömegű (2-8 naptömeg közötti) csillagok némiképp más utat járnak be, de nagy vonalakban hasonló folyamatok zajlanak le azoknál is.

Az AGB fázisban a csillagok jelentős mennyiségű tömeget veszítenek a magból a felszínre emelkedett szén, oxigén és egyéb nehéz elemeknek köszönhetően porban gazdag, 10-15 km/s sebességű, sűrű csillagszél révén. Ez évente mintegy 10-7 naptömeget jelent. Ezt egy rövid ideig tartó, hirtelen felgyorsuló, intenzív anyagkiáramlás, az úgynevezett szuperszél követi. Ennek a folyamatnak a végére már szinte csak a lecsupaszított, szénben és oxigénben feldúsult forró mag marad hátra. A csillagot körbevevő anyagfelhőt ebben az állapotban protoplanetáris ködnek nevezik, ugyanis még csak visszaveri szülőcsillagának fényét (nincs még gerjesztés, mint a későbbi planetáris köd fázisban).

A magot vékony hidrogénburok veszi körül, amiben még mindig zajlik a hidrogén fúziója héliummá. A csillag így egyre forróbb, és forróbb lesz. (Balra mozogva a Hertzsprung-Russel diagramon.) A tömegvesztés lelassul évi 10-8 naptömegre. A lassú és sűrű csillagszelet 200-2000 km/s-os gyors, de kis sűrűségű csillagszél váltja fel, mely beleütközik a korábban ledobott, főleg a szuperszél időszakából származó csillagkörüli anyagba. A gyors csillagszél mintegy maga előtt tolva azt, képes sűrű héjat formálni belőle.

Mikor a csillag felszíni hőmérséklete átlépi a 30000 K-t intenzív UV sugárzásával gerjeszteni kezdi a körülötte lévő gázt. A köd többé már nem a csillag fényét veri vissza, hanem „világítani” kezd. Színképét ettől fogva a hidrogén rekombinációs vonalai, és az úgynevezett ütközéssel gerjesztett tiltott vonalak uralják. (Eme utóbbiak csak roppant ritka csillagközi gázban jöhetnek létre, ezért hívják tiltott vonalaknak. Ilyen például az OIII színképvonala is.) Ettől a ponttól beszélünk planetáris ködről.

Alapvetően, az előbb említett különböző típusú anyagkiáramlások bonyolult kölcsönhatása az, mely meghatározza a planetáris köd felépítését, szerkezetét. Hihetetlen tűnik, de kezdeti tömegüknek akár több mint a felét is elveszíthetik a csillagok késői fejlődési fázisukban. Illetve, az esetenként akár 100000 K-nál is nagyobb felszíni hőmérsékletű központi csillag intenzív UV sugárzása teszi a ködöt „láthatóvá”.

Azt mindenképpen ki szeretném emelni, hogy az AGB fázisban történő anyag kibocsájtás, tömegvesztés pontos megértése még várat magára. Sok minden nem teljesen világos még a csillagászok előtt.

A planetáris ködök csillagászati időskálán mérve roppant gyorsan jönnek létre. Az AGB fázis végén ehhez elég mindössze néhány évszázad. Létezésük pedig alig pár tízezer év. A planetáris ködök szülőcsillagai nem elég nagytömegűek, hogy magjukban beinduljon a szén és az oxigén fúziója. Idővel a nukleáris fúzió a külső rétegekben is leáll. A csillagszél megszűnik, és lassan a fehér törpe állapotba jut a csillag. Mire ez a folyamat teljesen befejeződik, a planetáris köd elenyészik az űr sötétjében, láthatatlanná válik.

A fehér törpék esetében az úgynevezett elfajult elektrongáz nyomása dacol gravitációval. Ez a kvantummechanikai eredetű nyomás csakis a sűrűségtől függ, a hőmérséklettől egyáltalán nem – ellentétben az ideális gázokkal -, s egészen 1.44 naptömegig (Chandrasekhar-határ) képes egyensúlyban tartani a csillagot.

A fentebb ismertetett, úgynevezett kölcsönható csillagszél modellel tehát nagyszerűen megmagyarázható, hogy miként keletkeznek a sűrűbb héjak a lassan haldokló csillag körül. Azonban a legtöbb planetáris köd egyáltalán nem gömbszimmetrikus. Tekintélyes hányadukra például sokkal inkább jellemző valamiféle tengelyes szimmetria (bipolárisak, esetleg multipolárisak). Csak hogy két példát említsek azok közül, melyeket korábban már megörökítettem, sem az NGC6302, de még csak M57 sem gömbszimmetrikus.

ngc6302-lrgb-20140414-ttk-1

NGC6302 planetáris ködről már elsőre látszik, hogy sokkal inkább valamiféle tengelyes szimmetria jellemző rá, még ha az nem is oly tökéletes. Bíbor csápjait messzire nyújtja az űrben. A központi részen két fénykaréj fordít egymásnak hátat, így téve még hangsúlyosabbá a homokóraformáját az objektumnak. A bipoláris planetáris ködök gyönyörű példánya. (A szerző saját felvétele.)

M57-LRGB-20140505-TTK

Az M57 felépítése is valami mást takar. (A szerző saját felvétele.)

Hogyan értelmezhető e planetáris ködök szerkezete? Egyes elképzelések szerint, már az AGB fázisban, a forgó csillagról kiáramló lassú csillagszél sem gömbszimmetrikus, az a csillag egyenlítőjénél sűrűbb, míg a pólusok irányában ritkább. A csillag körül, annak egyenlítőjének a síkjában, tórusz alakú sűrűsödés alakul ki. A későbbi fejlődési állapotban meginduló gyors csillagszél, így könnyebben el tud szökni a pólusok irányába, és ott messzebbre jutva, létrehozza a bipoláris planetáris ködökre jellemző homokóraformát (pillangóformát). Az, hogy milyennek látjuk ezeket a ködöket, az nagyban függ attól, hogy milyen irányból tekintünk rájuk, ahogy ez a lenti ábra is szemlélteti.

planetaris-kodok-persp

Az, hogy a bipoláris planetáris köd megjelenése gyűrűre, vagy inkább homokórára emlékeztet, az attól függ, hogy milyen irányból tekintünk rá. Forrás: http://astro.u-szeged.hu/oktatas/galaktikus/34planetaris_nezet.html

Csakhogy, az elméleti megfontolások arra engednek következtetni, hogy az AGB fázisban a csillag forgása ahhoz nem elég gyors, és a mágneses mezeje sem elég erős, hogy működhessen a modell.  Ráadásul a planetáris ködök formavilága roppant változatos. Van, ami bár közel gömb alakú, de belsejében furcsa struktúrák figyelhetőek meg. Van ahol több héjból áll a köd. Egyeseknél jet-ek (kilövellések) láthatóak. Olyan planetáris ködök is vannak, ahol csak úgy értelmezhető a megfigyelhető látvány, hogy a csillag „imbolygott” (precesszió) az anyagkibocsájtás közben.

A világegyetemben a csillagok nagyjából fele nem magányos. Körülbelül 50 ± 10 % egyedüli, 38 ± 10 % kettős, 8 ± 3 % hármas, 3 ± 1 % többes rendszer tagja. A csillagászok joggal feltételezték, hogy a planetáris ködök szülőcsillagainál sincs ez másképpen.

The Frosty Leo Nebula

Az IRAS 09371+1212 planetáris köd (Frosty Leo Nebula) szerkezete arról árulkodik, hogy szülőcsillaga nem magányos. Forrás: ESA/Hubble – NASA

És valóban! Az esetek felében – ahol sikerült megfigyelni a központi csillagot -, azt találták a csillagászok, hogy az nem magányos. Alapvetően tehát szülőcsillaguk UV sugárzása a felelős e ködök fényéért, azonban a szerkezetük kialakításában kulcsszerep jutott a társcsillagnak. Hogyan?

Két mágnesezett és egymás körül keringő csillag egymásra gyakorolt hatását egyelőre nem lehet egzakt módon kiszámítani, mindössze kvalitatív képe van csak a csillagászoknak a dologról. Úgy látszik azonban, hogy a kísérőcsillag segít a mágneses mező fenntartásában. Továbbá, a keringésből származó perdület egy részét a gerjesztő csillagra juttatva felgyorsíthatja annak forgását. Mégis csak lehetséges tehát, amennyiben kettőscsillagról van szó, hogy már eleve az AGB fázisban sérül a gömbszimmetria. A kettősségnek köszönhetően mégiscsak működhet az elképzelés, miszerint a csillag egyenlítőjénél sűrűbb, míg a pólusok irányában ritkább a lassú csillagszél, illetve a szuperszél.

Másfelől, mivel a kettős rendszer tagjai a közös tömegközéppont körül keringenek, így a kiáramló csillagszél „megkavarodik”. A ledobott héjak összenyomódnak a keringés irányában, az anyag a vezető oldalon jobban összesűrűsödik, majd a köd tágulásával a „mintázat” felfúvódik. Ez a jelenség megmagyarázza, hogy miért látunk több planetáris ködben is spirális mintázatot.

R_Sculptoris_ALMA_data_visualisation

Az ALMA (Atacama Large Millimeter Array) milliméteres/szubmilliméteres tartományban működő rádiótávcsövek hálózatából álló rendszer felvétele az R Sculptoris félszabályos változócsillagról, mely egy AGB fázisban lévő vörös óriás csillag. A csillakörüli anyag különös mintázatát valószínűleg a „láthatatlan” kísérőjének köszönhető. Az R Sculptoris pályája különböző pontjain „pöfögte le” magáról külső rétegeket, miközben a kettős rendszer a közös tömegközéppont körül keringett.  Forrás: ALMA (ESO/NAOJ/NRAO)

Kettőscsillag alkotta rendszerekben más egyéb folyamatok is alakíthatják a planetáris köd szerkezetét. Talán a legkülönösebb mintázatokat az egymáshoz viszonylag közel keringő kölcsönható kettősök hozzák létre.

Mindkét tag esetén megvan az a térrész, amit az adott égitest gravitációja ural. Ezt Roche-térfogatnak nevezik. Ami azon kívül kerül az akár el is hagyhatja a rendszert, vagy a páros körüli pályára állhat. A belső (L1) Langrange-ponton keresztül azonban anyag áramolhat át az egyik Roche-térfogatból a másikba. Amennyiben az egyik csillag társa fejlődése során felfúvódik, és kitölti saját Roche-térfogatát, vagy csak intenzív csillagszele révén az AGB fázisban sok anyagot veszít, és ez tölti ki az említett térfogatot, akkor megindul az anyag átáramlása a társra.

Roche-lobes-corrected

Az ábra a Roche-térfogatot szemlélteti. Az L1 a szövegben is említett belső Langrange-pont. Az eredeti ábra forrása: Wikipedia.org (az eredeti ábra hibás volt, így módosítottam)

Bizonyos esetben azonban nem jut el az AGB társ összes anyaga a kísérőjére, hanem gázfelhő formájában veszi körül a párost. Közös gázburokkal körülvett kettőscsillagoknak (common envelope binary systems) nevezik az ilyen rendszereket. (Megjegyzés: A gázburok más ütemben rotál, mint a benne található kettőscsillagok. Ez különbözteti meg ezeket a kettősöket az érintkező kettős rendszerektől.)

Közös gázburok olyankor alakul ki kettőscsillagok körül, ha az egyik komponens valamilyen okból nagyon gyorsan fúvódik fel, vagy a két csillag közötti szeparáció nagyon gyorsan ütemben csökken. Ezeknél a párosoknál is, amikor a felfúvódó donor kitölti a Roche-térfogatot, megindul az anyagátadás. Tömege csökken, a Roche-térfogata zsugorodik. Így még jobban kitölti a térfogatot. Gyorsul az anyagátadás üteme, gyorsul a Roche-térfogat kitöltése (az folyamatosan megy össze), és így tovább. Egy megszaladó dinamikusan instabil anyagátadás valósul meg a kettős rendszerben. Adott esetben a „fogadó” oldali csillag már nem is tudja begyűjteni az összes gázt, és ezért közös gázburok alakul ki a páros körül. A gázburok fékező hatást fejt ki a kettős rendszerre. A csillagok energiát veszítenek, és közelebb kerülnek egymáshoz, ami szintén maga után vonja a Roche-térfogat zsugorodását, s így az anyagátadás fokozódását. A keringésből származó „lopott” energia felfűti és kitágítja a közös burkot. Idővel a donor felfúvódása abbamarad, a közös burok pedig tágulva elhagyja a rendszert. (Az is előfordulhat, hogy a kettős tagjai végül összeolvadnak, de e helyütt ezzel most nem foglalkozom.)

Akár közös burok veszi körül a párost, akár sem, amikor a Roche-térfogat kitöltésekor az anyagátadás megvalósul, akkor a gáz nem közvetlenül zuhan a második csillagra, hanem úgynevezett akkréciós korongot formál körülötte, s így befelé spirálozva éri el a csillag felszínét. Az ilyen akkréciós korongok gyakori sajátossága a forgástengellyel párhuzamos kifújások (jet) a csillagnál. Amennyiben a korong még precessziós mozgást is végez (imbolyog), az epizodikus kifújások dugóhúzó, vagy S mintázatot rajzolnak a térben. Ennek a jelenségnek egy nagyszerű példája a Fleming 1 planetáris köd.

The planetary nebula Fleming 1 seen with ESO’s Very Large Telescope

A Fleming 1 planetáris köd közepén nem is egy, hanem két degenerált (post-AGB fázisú, ifjú fehér törpe) csillag is található. A kiinduláskor a két csillag tömege igen közel lehetett egymáshoz. Az árnyalatnyival nagyobb tömegű komponens, csillagászati értelemben csak alig valamivel hamarabb érte el a planetáris ködöt létrehozó fejlődési állapot. Nem sokkal később a társa is követte. A különös S mintázatot az AGB csillagról a fehér törpére átáramló anyag formálta akkréciós korong jet-jei alakították ki.  Forrás: ESO (VLT)

A Fleming 1 S alakú mintázatának kialakulását szemléltető video.

Egyre elfogadottabb tehát az a nézet, hogy a gömbszimmetriától való eltérés magyarázata, a központi csillag kettőssége.  A planetáris ködök központi csillagainak hatoda ráadásul nem is kettős, de hármas rendszer tagja. Ilyen esetekben még a tengelyes szimmetria sem teljesül. De mi a helyzet azokkal a ködökkel, amelyek középpontjában magányosnak tűnő csillag csücsül, és mégsem gömbszimmetrikusok? Az elméleti megfontolások szerint nincs szükség feltétlenül csillagkísérőre, hogy működjenek a fentebb vázolt mechanizmusok. Már egy barna törpe társ, vagy akár a csillag bolygórendszere is képes „tönkretenni” a szabályos gömbformát. Napjainkban már több ezer exobolygóról van tudomásunk, s azt is tudjuk, hogy a bolygórendszerek igen gyakoriak a csillagok körül. Mondhatni, szinte nincs is valójában magányos csillag, csupán olyan, melynek nincs csillagtársa.

Röviden áttekintettem a megfigyelések, következtetések, elméleti megfontolások azon láncolatát, melyek Herschel „planetáris köd definíciójától” a mai, modern képig elvezettek. Igaz, e helyütt csak kialakulásukkal, felépítésükkel foglalkoztam. Azzal is csak vázlatosan. Akit a téma részletesebben is érdekel, annak ajánlom figyelmébe a felhasznált irodalmak listájából Szabados László cikkét. Évtizedek óta nem jelent meg magyar nyelven ahhoz hasonló összefoglaló cikk a planetáris ködökről! Ráadásul (teljesen természetes módon), azokban sok információ mára elavult.

Lépjünk tovább, és vegyük alaposabban szemügyre az NGC1514-et! A planetáris ködöt William Herschel fedezte fel 1790-ben, és tőle származik az objektum első vizuális jellemzés is. Elmondható, hogy a következő fontos lépést Kohoutek teszi meg 1968-ban az NGC1514 morfológiájának értelmezése felé. Tanulmányában megemlíti, hogy a köd kettős szerkezetet mutat. Az, egy ∼136ʺ méretű belső héjból, és egy ∼206ʺ szferikus, homogén külső héjból áll. A belső héj tengelyes szimmetriájára is felhívja a figyelmet (P. A. 35°), de ő még azt toroid alakú kondenzációként értelmezi. A múlt század katalógusaiban tipikusan kör alakúként, vagy kissé elnyúlt, elliptikus planetárisként írták le. Napjainkban sincs ez jelentősen másként. Az egyik legutóbbi osztályozási rendszerben, amit Quentin Parker és munkatársai publikáltak (2006), és amelyet David Frew egészített ki (2008), az „Es” címkét kapta meg. Az E jelentése: elliptikus. Az s jelentése: kivehető a belső szerkezete (s: structure).

Ugyan a századforduló előtti két évtizedben többen is alaposan elemezték a ködöt, és lassan világossá kezdett válni annak felépítése, azonban az egyik máig legpontosabb vizsgálatnak Muthu és Anandarao vetette alá 2003-ban. Legalábbis az optikai tartományban. Bár korábban már készültek nagy mélységű, részletes fotók az 5007 Å (OIII) hullámhosszon, azonban ők a ködön belüli mozgásokat is alaposan feltérképezték. Az általuk használt Fabry-Pérot spektrométernek, és a kutatók kitartó munkájának köszönhetően, addig soha nem látott részletességű és pontosságú (relatív) sebességtérkép készült az NGC1514-ről. Modelleket illesztve a különböző pontokban kapott sebességprofilokra, konklúzió született a köd felépítését illetően.

NGC1514-felepitese-cut1Az NGC1514 alapvetően 3 fő komponensből épül fel. Egyrészt a halvány külső héjból. Másodrészt a nézőpontunkhoz képest dőlt tengelyű ellipszoid alakú belső héjból. Harmadrészt pedig, a belső héjban elhelyezkedő fényes anyagbuborékokból (blobs). Ezek majdnem teljesen szimmetrikusak, és az általuk kijelölt tengely, nagyjából párhuzamos az égbolt síkjával. De csak nagyjából. A délkeleti buborék enyhe kék, míg az északnyugati enyhe vörös eltolódást mutat. Vagyis, míg az elsőben az anyag közelít, a másodikban távolodik tőlünk. Azonban az NGC1514 mégsem „tipikus” esete a bipolaritást mutató planetáris ködöknek. Ezek a buborékok bár ellentétes irányba mutatnak, de jelentős bennük a sebesség diszperzió (velocity dispersion). Vagyis, a buborékokban az áramlás nem elég kollimált, nem egy jól összefogott nyaláb mentén történik. Ahogy ezt már korábban is említettem, a bipolaritás egyik feltételezett oka a központi csillag kettőssége, illetve a planetáris köd szülőcsillagát körülvevő, annak egyenlítői síkjában elhelyezkedő tórusz, vagy korong alakú sűrű anyagfelhő. Ez az, ami a csillag pólusainak iránya mentén, az AGB fázist követően meginduló gyors csillagszelet nyalábba tereli. Az NGC1514 központi csillaga esetében – Muthu és Anandarao vélekedése szerint -, az említett anyagfelhő vagy túlságosan nagy kiterjedésű, vagy egyáltalán nem is létezik, így nincs ami effektíven kollimálja a kiáramlást. A két csillagász diszkussziója szerint, mely a planetáris köd kinematikája mellett annak kémiai összetételére is erősen épít, a közös gázburokkal körülvett kettőscsillag (common envelope binary systems) modell, és az akkréciós korongoknál keletkező epizodikus kifúvások (jet-ek) adják a legkézenfekvőbb magyarázatot az NGC1514 felépítésre.

Már az optikai tartományban is magával ragadó az NGC1514 szerkezete, de 2010-ben a NASA WISE (Wide-field Infrared Survey Explorer) nevű űrtávcsöve bebizonyította, hogy 220 évvel felfedezése után még mindig meg tud hökkenteni minket az NGC1514. Az infravörös tartományban készült felvételen a köd új arca tárult fel a csillagászok előtt.

ngc1514-infra

Az NGC1514 a WISE infravörös felvételén. Forrás: NASA/JPL-Caltech/UCLA

Az NGC1514-et tengelyesen szimmetrikus, porban gazdag gyűrűk ölelik körül. Más kutatókhoz hasonlóan Ressler és munkatársai is megpróbálták értelmezni a látottakat.  Mivel az infravörös megfigyelésekhez nem álltak rendelkezésükre kinematikai eredmények, így akárcsak e planetáris köd első optikai felméréseinél, a struktúrák elemzésével és hasonló esetek tanulmányozásával próbálták a következtetéseket levonni.

Szerencsére az NGC1514 a gyűrűivel nincs egyedül, más planetáris ködöknél is megfigyelhetőek hasonló struktúrák. Ennek egyik legszebb példája a MyCn18 (Homokóra-köd), melyről a Hubble űrtávcső készített anno egy mára ikonikussá vált felvételt. A többi csillagász korábban már behatóan foglalkozott az NGC1514 „testvéreinek” modellezésével, és azok homokórára emlékeztető alakját, de legfőképpen a gyűrűiket sikerült is megmagyarázniuk a kettőscsillag rendszerekben munkáló kölcsönható csillagszél modellel. Ressler és munkatársai elővéve ezeket a munkákat, rámutattak, hogy részben az NGC1514 gyűrűi is leírhatóak ezekkel, amennyiben azok különösen nagy tömegvesztés keretében születtek. Sőt, kimondottan ennek kellett a legnagyobb anyagkidobódásnak lennie a központi csillag életében, mely még valószínűleg az AGB fázis legelején történhetett. Ezzel a feltételezéssel azért kellett élniük, mert az NGC1514 hasonszőrű társai esetében több gyűrű helyezkedik el egy tengely mentén, míg ennél a planetáris ködnél csak egy-egy gyűrűt sikerült kimutatni. Elképzelhető persze, hogy nagyobb érzékenységgel felvett felvételeken a köd kiterjedtebb lenne, és több, halványabb gyűrűt is sikerülne kimutatni, de ez a jövőbeni infravörös megfigyelésekre vár.

hourglass-1996-07

MyCn18 (Homokóra-köd) a Hubble űrtávcső felvételén.

A többi homokóra alakú köd esetében azonban az optikai tartományban is remekül látszanak a gyűrűk, míg az NGC1514-nél ezeknek semmi nyoma nincs a látható fényben. Ennek egyik oka lehet, hogy anyaga ehhez nem elég meleg. Az infravörös megfigyelések szerint ∼160 K a por hőmérséklete. Az is elképzelhető azonban, hogy fénye egyszerűen csak belevész a halvány külső halóéba.

A WISE felvételei, és a ráépülő kutatásoknak köszönhetően addig ismeretlen struktúrák létezésére derült fény, így a szülőcsillag tömegvesztésének hosszabb időszakáról van ma már lenyomatunk. Ez is megerősítni látszik azt a tényt, hogy az NGC1514 belsejében kettőscsillag lakik.

Közvetve, a planetáris köd szerkezetének tárgyalásakor már többször hivatkoztam az NGC1514 központi kettőscsillagára. Vizsgáljuk meg alaposabban, hogy mit sikerült kideríteni róla a csillagászoknak!

A felvételemen köd középpontjában ragyogó fehéres, kékes-fehér színű különös csillag (BD+30°623) furcsaságai nagyon régóta ismertek voltak a csillagászok előtt. A különös szót nem véletlenül használtam, bár írhattam volna sajátost, ha úgy tetszik. A BD+30°623 csillag a planetáris ködök központi csillagainak speciális csoportját képviseli, melyre az angol szakirodalomban a „peculiar central stars” kifejezést használják. Azokat sorolják ide, melyek nem elég forróak ahhoz, hogy ionizálják az őket körülvevő planetáris ködöket. Több olyan példa is akad, ahol A-K színképosztályú csillag látható a planetáris köd középpontjában. Az NGC1514 is ilyen eset. Még Lutz (1977) vetette fel az ötletet, miszerint ezeknek kell, hogy legyen egy halvány, de forró társuk. Valójában ez a gerjesztő csillag, és nem a hűvösebb, de fényesebb komponens.

Amennyiben ez tényleg így van, bár egyetlen csillagot látunk, de két színkép rakódik egymásra. Így, bár nem kevés munkával, de különválasztható a két csillag, és külön-külön meghatározhatóak a paramétereik. Hogy ez mennyire nem is egyszerű feladat, az bizonyítja, hogy az évtizedek alatt többször is nekifutottak a különböző szakemberek a problémának. Bár Kohoutek (1967) elsőként hívta fel a figyelmet a színképelemzés alapján a BD+30°623 kettősségére, e cikkben most csak a legutolsó, és (talán) a legpontosabb eredményekre hivatkoznék.

Aller és kutatótársai egyfelől az optikai tartományban, földi távcsővel (Calar Alto obszervatórium, 2.2 méteres távcső, Calar Alto Faint Object Spectrograph) felvett színkép elemzésével próbáltak fogást találni a problémán. Másfelől pedig az IUE (International Ultraviolet Explorer) űrtávcső, az ultraibolya tartományban, 1978-1989 között a csillagról rögzített archív spektrumait használták fel. Eme utóbbiak azért voltak roppant fontosak, mivel az NGC1514 He II emissziós vonalai alapján a forró társ hőmérsékletére legalább 60000 K fokot feltételeztek. Az ilyen forró csillagok sugárzásuk jelentős részét már az ultraibolya tartományban bocsájtják ki, így itt a legkönnyebb karakterizálni őket.

A valós színképeket szintetikus színképekkel modellezték. Alapvetően olyan felszíni hőmérsékletű, felszíni gravitációs gyorsulású, fémtartalmú (kémiai összetételű) modellcsillagokat kerestek, melyek szintetikus spektruma a legjobban illeszkedett az igazi spektrumhoz. A lehetséges megoldásokhoz több iterációval jutottak el.

Az elméleti csillagfejlődési modellek szerint, adott fémtartalmú (kémiai összetételű), és adott tömegű csillaghoz, meghatározott fejlődési görbe tartozik a Hertzsprung-Russel diagramon, amennyiben a diagram vízszintes tengelyén az effektív hőmérséklet, függőleges tengelyén pedig a felszíni gravitációs gyorsulás logaritmusát ábrázoljuk. A kutatók a színképelemzésből kapott lehetséges felszíni hőmérséklettel és a lehetséges felszíni gyorsulással a kezükben, az elméleti csillagfejlődési modelleket felhasználva, megkeresték a csillagokra legjobban illeszkedő fejlődési útvonalat, így meghatározva a csillagok tömegét. Mivel a fejlődési modellek azt is megmondják, hogy milyen fejlődési görbe tartozik a választott tömeghez a Hertzsprung-Russel diagramon, amikor annak vízszintes tengelyén az effektív hőmérséklet, függőleges tengelyén pedig a csillag a Naphoz viszonyított luminozitásának logaritmusát ábrázoljuk, így a csillagok további paraméterei is meghatározhatóak. Végső soron levezethető a csillag tömege, sugara, luminozitása, és távolsága. A távolság meghatározásához igyekeztek megbecsülni, és figyelembe venni, az intersztelláris anyag okozta, az NGC1514 irányában igen számottevő extinkciót (fényelnyelést), és szín-excesszust (vörösítő hatást).

Több kritériumnak is meg kellett felelnie azonban az egyes levezetett csillagparamétereknek. Az abszolút és a megfigyelt látszólagos fényességből kiszámított távolságnak elég jól kellett egyeznie a két csillagra, hiszen kettőscsillagról van szó, egymás közelében vannak. A távolságadatoknak ráadásul összhangban kellett lennie az egyéb független módszerekkel kapott mérésekkel. Bár a köd távolsága elég pontatlanul ismert, 200-300 pc távolság tűnik a legelfogadhatóbbnak. A csillagok korának is megfelelő egyezést kellett mutatnia. De nemcsak egymással, hanem a fejlődési modellekkel is.

Ennek fényében döntöttek úgy, hogy a hűvös, fényesebb komponensre illeszkedő két lehetséges megoldás közül csak az egyik lehetőséget tartják meg. Azt az a megoldást elvetették a kettősségi kritérium alapján, hogy a hűvösebb társ egy nagyobb tömegű, a fősorozatról elfejlődő csillag lenne. Ebben az esetben ugyanis jóval fiatalabb lenne a gerjesztő csillagnál. Ráadásul, akkor jóval távolabb is lenne, így semmiképpen sem alkothatna a két csillag egyetlen párt. Az a megoldás illett csak a képbe, hogy a hűvös társ alacsony fémtartalmú és éppen a horizontális ágon tartózkodik.

NGC1514-bs-evotrack

Fejlődési útvonalak a csillagfejlődési elméletek alapján.

Balra a halvány, forró komponens fejlődési útvonalai. Kékkel jelölve a lehetséges paraméterű területet.

Jobbra a fényes, hűvös komponens fejlődési útvonalai. Szürkével az óriás ági fejlődési útvonalak, melyek elvetésre kerültek az ezekből származtatott kor és távolság miatt. Ezek a „megoldások” túl fiatal kort, és túl nagy távolságot eredményeztek a forró csillaghoz képest. Kékkel jelölve a lehetséges paraméterű pont, vörössel a hozzá tartozó horizontális ági fejlődési útvonal.

Részletek a szövegben. Forrás: A. Aller és mások

Mindezek után, Aller és szerzőtársai megalkották a diszkussziót. (Az összes adat a felhasznált irodalomnál megjelölt cikkben érhető el). A fényesebb, hideg komponens 9850±150 K felszíni hőmérsékletű, a HRD horizontális ágán tartózkodó, A0 színképosztályú óriáscsillag. A Napnál nagyjából kétszer nagyobb sugarú (2.1±0.6 R), és fele akkora tömegű (0.55 ± 0.02 M). A fejlődési modellek szerint, fémtartalomtól függően kezdetben 0.8-0.9 naptömegű lehetett. A forró, halvány gerjesztő csillag nagy valószínűséggel O színképosztályú szubtörpe csillag (sdO), de ezt egészen biztosan csak nagyobb felbontású UV spektrum elkészítése, és elemzése után lehetne kijelenteni. Felszíni hőmérséklete 80000-95000 K közötti. Sugara a Napénak mindössze kéttizede (0.22±0.03 R), és körülbelül hasonló, vagy talán alig valamivel nagyobb tömegű (0.56 ± 0.03 M), mint a társa. Viszont kezdetben Napunkhoz nagyon hasonló lehetett a tömege. A páros tagjai 8-12 milliárd évesek. Távolságukra pedig a hűvösebb csillag paraméterei alapján 294±69 pc, a forró komponens paraméterei alapján pedig 253±88 pc adódott.

A diszkussziójukban a kutatók helyt adtak egy „apró”, de mégiscsak fontos megjegyzésnek. Tény, hogy a megfigyeléseikből kikövetkeztették a páros paramétereit. Továbbá a kettősség mellett szól az NGC1514 komplex, buborékos, tengelyszimmetrikus felépítése, amit magányos szülőcsillaggal nem lehet megmagyarázni. Azonban, a duó nem mutatja a kettőscsillagok egyéb jellegzetességeit. Mindmáig nem sikerült változásokat kimutatni a BD+30°623 radiális (látóiránybeli) sebességében. Egy kettőscsillag tagjainak mutatni kellene némi „előre-hátra” irányuló mozgást, miközben a közös tömegközéppont körül keringenek. Ez pedig a Doppler-effektusnak köszönhetően detektálható, kimérhető lenne a színképből. A megfigyelt színképe ilyen jellegű változásokat azonban hosszú időskálán sem mutatott. A BD+30°623 egyszerűen „nem akar” tipikus spektroszkópiai kettőscsillagként viselkedni. A csillag fényességbeli változásokat sem produkál. Tagjai tehát keringés közben nem fedik el egymást. A BD+30°623 nem fedési kettőscsillag. Miért nem látjuk az említett jelenségeket? A szerzők ezt azzal magyarázzák, hogy valószínűleg nagyon szorosan helyezkedik el a két csillag. Talán közös gázburok öleli őket körül. Vagy éppen a pólusaik felől látunk rá a kettősre. Ez az elképzelés egybevág a vonalak keskenységével a hűvös komponens színképében, amit a csillag forgásának ki kellene szélesítenie amúgy (Doppler-effektus). Az is lehet magyarázat, hogy tág rendszerről van szó. Akkor viszont a csillagpályáknak speciálisaknak kell lenniük, amely egyéb problémákat vet fel. Hosszú periódusú, elnyúlt pályával ugyan megmagyarázható lenne az említett jegyek hiánya, de ez nagyban megnehezíteni a köd komplex struktúrájának értelmezését. Nem kizárható, hogy a hűvös, fényes csillag, csak a véletlennek köszönhetően látszik a köd középpontjában.

Ezt a kérdést feszegette Méndez és Kudritzki is. Vajon a két csillag tényleg összetartozó, ahogy ezt mindig is feltételezték a különös színkép alapján? Radiális sebesség vizsgálatuk, melyet a CHFT-vel (France-Hawaii Telescope – Mauna Kea), és az Espandos nagy felbontású spektrográffal végeztek el, ezt erősen megkérdőjelezi. A két csillag radiális sebességében 13±2 km/s sebesség eltérést találtak, de ami még ennél is fontosabb, ez nem mutatott változást a közel 500 nap alatt.

Továbbá meghatározták a hűvös, fényes csillag fémtartalmát is, amire nagyobb értéket kaptak annál, mint ami a horizontális ág tagjaira jellemző. Az A0 színképosztályú csillag tehát jóval fiatalabb a forróbb gerjesztő csillagnál. A csillagfejlődési modellek szerint inkább 3 naptömegű, és fényesebb is, tehát legalább 400 pc a távolsága. Így a két csillag nem lehet egymás társa (253±88 pc a legalább 400 pc ellenében). Aller-nek és társainak korábbi két alternatívája közül Méndez és Kudritzki megfigyeléseinek eredménye, mégiscsak a fősorozatot elhagyó, nagyobb tömegű csillag elképzelést támasztják alá. Ne feledjük el, hogy Aller-ék ezt csak a kettősségen alapuló előfeltevés miatt dobták el!

De térjünk vissza a radiális sebességekre! A forró csillagnál 57±1 km/s, míg a hűvös csillagnál 44±2 km/s sebességet kaptak átlagosan, mely szignifikánsan nem változott a mérés hosszú időtartama alatt. Ha mégis csak feltesszük, hogy összetartozik a két csillag, akkor a sebességek különbsége kizárja azt, hogy a pólusok felől lássuk a közös tömegközéppont körüli keringésüket. Illetve, a radiális sebességek állandósága, hosszú periódust feltételez a keringésre. Akkor viszont, ahogy erre már korábban is utaltam, a hűvös csillagnak nem sok szerepe lehetett a köd struktúrájának felépítésében.

Harmadik érvként az hozható a fel a kettősség ellen, hogy magának az NGC1514-nek a radiális sebessége csak a forró csillag radiális sebességével kompatibilis. Vagyis csak a forró gerjesztő csillag lehet a köd középpontjában. Természetesen nem zárható ki, hogy a planetáris köd eddigi radiális sebességének meghatározására irányuló mérések egytől-egyig szisztematikus hibát tartalmaznak. Amennyiben ez még sincs így, illetve Méndez és Kudritzki mérései sem hibákkal terheltek, akkor a fényes csillag nem a planetáris ködben található.

Összességében tehát Méndez és Kudritzki tanulmánya elveti azt a feltevést, amiből sok korábbi tanulmány kiindult. Vagyis, hogy fizikailag is összetartozó az a két csillag, amit egynek látunk, ha az NGC1514 középpontjára tekintünk. A csillagok a köd közepén talán csak a szerencsés véletlennek köszönhetően látszanak azonos irányba. Ennek a valószínűsége bár nem kizárható, de mindenképpen kicsi. Kimondottan annak tükrében, hogy a Hubble űrtávcsővel sem sikerült felbontani a BD+30°623-at két csillagra (Ciardullo és mások – 1999). Nem vethető el az a lehetőség sem a tanulmányuk alapján, hogy valamiféle kis amplitúdójú sebességváltozás mégiscsak jelen van a csillagok mozgásában. Mind a két csillagnak lehet bolygórendszere, vagy kicsiny tömegű társa. Ezt viszont már csak a jövőbeli pontosabb mérések dönthetik el.

Pár éve, a több mint 3000 ismert galaktikus planetáris köd központi csillagainak csak durván 13%-ról volt spektroszkópiai információnk. Illetve, körülbelül háromtucatnyi alaposan vizsgált központi csillagot katalogizáltak kettőscsillagként. Ezek a számok a cikk írásáig sem emelkedtek meredeken. Továbbiak megfigyelésekre van szükség! Mindenesetre, ha valami végső konklúziót szeretnék levonni az NGC1514-gyel, és úgy általában a planetáris ködökkel kapcsolatban, akkor talán az az lenne, hogy a gömbtől eltérők, változatos alakjának kulcsa a rendszerek kettősségében rejlik. Legyen a társ másik csillag, vagy kisebb tömegű égitest, mint például egy barna törpe, vagy bolygórendszer.

Ahogy az elején is mondtam: az NGC1514 több titkot rejt, mintsem elsőre azt az olvasó sejtené. Még akkor is, ha néhányra időközben már fényderült.

Külön köszönettel tartozom Szabados Lászlónak az általános rész írásakor nyújtott konzultációs lehetőségért!

Felhasznált irodalom:

C. Muthu, B. G. Anandarao: A Spatiokinematic Study of the Planetary Nebula NGC 1514

Michael E. Ressler, Martin Cohen, Stefanie Wachter, D. W. Hoard, Amy K. Mainzer, and Edward L. Wright: The Discovery of Infrared Rings in the Planetary Nebula NGC 1514 During the WISE All-Sky Survey

B. Aryal, C. Rajbahak, R. Weinberger: A giant dusty bipolar structure around the planetary nebula NGC 1514

Henri M. J. Boffin, Brent Miszalski, Thomas Rauch, David Jones, Romano L. M. Corradi, Ralf Napiwotzki, Avril C. Day-Jones, Joachim Koeppen: An Interacting Binary System Powers Precessing Outflows of an Evolved Star

A. Aller, B. Montesinos, L. F. Miranda, E. Solano, A. Ulla: Spectral analysis of BD+30°623, the peculiar binary central star of the planetary nebula NGC 1514

R.H. Mendez, R.P. Kudritzki, M.A. Urbaneja: The two central stars of NGC 1514: can they actually be related?

Szabados László: Planetáris ködök (Meteor csillagászati évkönyv 2017)

 

NGC4945

NGC4945-LRGB-20150216-T30-300s-TTK

NGC4945

iTelescope.net T30 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI-PL6303E CCD kamera

2015-02-16, 2015-02-17, 2015-04-15, 2015-04-16– Siding Spring Observatory – 25 x 300 sec L, 8 x 300 sec R,G,B

Az NGC1316-ról (Fornax A) készült fotó befejezése után hosszasan töprengtem, hogy melyik déli galaxis legyen a következő célpontom. Az M97 és M108 párosról még készülőben volt a fotó, amikor megszületett az elhatározás: az NGC4945 galaxis lesz a következő távészleléssel megörökítendő csillagváros. Az utóbbi időben párhuzamosan használom kis műszeremet a kertből, és az iTelescope.net Ausztráliában (Siding Spring Observatory) található egy-egy távcsövét. Hogy mi a kapocs a kettő között? Ez esetben az M108 megjelenése nagyban inspirált, hogy nagyobb távcsővel „lencsevégre kapjak” egy kusza porsávokkal tarkított, (majdnem) éléről látszó galaxist. (Előtte még tettem egy kis kitérőt a Wolf-Rayet csillagok körül található különös ködök világába.) Hamarosan látni fogjuk azonban, hogy ennek a galaxisnak az asztrofizikája legalább olyan izgalmas, mint megjelenése.

Az NGC4945 a Centaurus csillagkép déli területén található, így sosem emelkedik lakhelyem horizontja fölé. Bár hazánk égboltján is sok az érdekes csillagváros, mégis irigylem azokat, akik tőlünk délebbre, saját maguk is megfigyelhetik ezt a 20ˊ x 3.8ˊ látszólagos méretű 9.3 magnitúdós galaxist. Valószínűleg a déli féltekén élő amatőrcsillagászok is hasonlóan éreznek pár nagyszerű északi objektum említése esetén. Talán ezekben a percekben valaki éppen elhatározza, hogy északra utazva végre megcsodálja, lefotózza az Örvény-ködöt (M51), vagy távcsőidőt bérel egy északi félteken lévő csillagvizsgálóban.

NGC4945-map1.PNG

Az NGC4945 a Centaurus csillagkép déli területén található. A kép az első expozíciók készítésekor, az ausztráliai (Siding Spring Observatory) égbolt állapotát mutatja. Kelet-északkelet felé (a baloldalon) a hazánkból is megfigyelhető csillagképek láthatóak fejjel lefelé.

De hol helyezkedik el a kozmoszban?  Távolságát csak az elmúlt egy évtizedben többször is meghatározták. Alapvetően két módszert használtak a csillagászok: a Tully-Fisher relációt, és a galaxisban lévő vörös óriásokat.

A Tully-Fisher relációról már korábban is írtam. Azoknak, akik ezeket a cikkeket nem olvasták:

A Tully-Fisher reláció (elliptikus galaxisok esetén nem használható, csak spirális és lentikuláris galaxisoknál) egy tapasztalati összefüggés a galaxisok tömege vagy luminozitása és emissziós vonalainak szélessége, vagyis a galaxison belüli szögsebességek között. A részletekbe nem nagyon elmerülve, arról van szó, hogy a galaxison belüli sebességekből meghatározható a galaxis luminozitása, és ebből pedig távolsága. Ugyanis, a galaxis csillagainak dinamikáját a galaxis tömege határozza meg, mely pedig összefüggésben áll annak luminozitásával. Az így kapott luminozitást felhasználva a látszólagos fényesség ismeretében a távolság már meghatározható.

Ezzel a módszerrel maga Tully és kutatótársai, továbbá Nasonova és csapata is meghatározta az NGC4945 távolságát. Az első esetben 3.55 Mpc, míg a másodikban 4.5 Mpc adódott a galaxis távolságára.

A vörös óriás csillagok földi távcsövek esetén 3 Mpc távolságon belül kitűnően használhatóak a galaxisok távolságának meghatározására. A Hubble űrtávcsővel ez a távolság még a négyszeresére kiterjeszthető, ugyanis ilyen távolságig képesek vele a kutatók csillagokra bontani a galaxisokat. Egészen pontosan a fényesebb csillagok, így a vörös óriások is, ekkora távolságban még detektálhatóak. A módszer megértéséhez nézzük meg a Napunk tömegével rendelkező csillagok fejlődését egy olyan diagramon, ahol a vízszintes tengelyen a csillag effektív hőmérsékletének logaritmusa, míg a függőleges tengelyen a Naphoz viszonyított luminozitásának logaritmusa található. A csillag fejlődése során jellegzetes görbe mentén mozog. Nem célom bemutatni a teljese életpályát, csupán a módszer megértéséhez szüksége fogalmakat szeretném tisztázni.

HRD-TRGB.PNG

A naptömegű csillagok életpályája. A vízszintes tengelyen a csillag effektív hőmérsékletének logaritmusa, míg a függőleges tengelyen a Naphoz viszonyított luminozitásának logaritmusa található.

A vörös óriás fázis a Naphoz hasonló tömegű csillagok életében akkor következik be, amikor a magban a hidrogén készletek már fogytán vannak. A hidrogén fúzió a magot körülvevő külső héjba tevődik át, miközben a csillag külső részei ennek hatására kitágulnak, míg felszíni hőmérséklete lecsökken. A csillag elhagyja a fősorozatot, és a görbén elvándorol egészen az F pontig. Jól látható, hogy ebben a luminozitás csúcspontban valami drasztikus történik, és jelentős fordulat következik be a naptömeg körüli csillagok életében: robbanásszerűen beindul a hélium fúziója a degenerált héliumból álló magban, és ezután a csillag luminozitása jelentősen lecsökken. Ezt a pontot az első vörösóriás-ág tetejének nevezik. A pont neve az angol nyelvű szakirodalomban: Tip of the Red Giant Branch (TRGB).

A vörös óriások eloszlását felrajzolva egy szín-fényesség diagramon, ahol a szín a vizuális és a közeli infravörös tartományban megfigyelt fényességek különbsége (V-I), míg a fényesség a közeli infravörös tartományban látszó fényesség (I), azok eloszlása egyszerű hatványtörvényt követ. Ezt a csillagfejlődési elméletek és a megfigyelések egyaránt alátámasztják. Megfelelő matematikai apparátus birtokában meghatározható a TRGB látszólagos közeli infravörös fényessége.

NGC4945-TRGB-2.JPG

A vörös óriások eloszlása az NGC4945 galaxis szín (V-I) és közeli infravörös fényesség diagramján. Forrás: M. Mouhcine, H.C. Ferguson, R.M. Rich, T.M. Brown, T.E. Smith

Az idős (több milliárd éves) vörös óriás csillagok esetén, melyek fémtartalma kicsi ([Fe/H] ≤ -0.7), a közeli infravörös tartományban a TRGB pont abszolút fényessége független azok fémtartalmától. Ez már nem teljesen igaz a fiatalabb, így nagyobb fémtartalmú csillagokra. A csillagászok minden olyan elemet, ami nem hidrogén vagy hélium, fémnek neveznek. A csillagok fémtartalma fontos szerepet játszik fejlődésükben, és ennek köszönhetően kissé más utat járnak be. A nagyobb fémtartalmú vörös óriások életpályája a diagramon kissé a kékes tartomány felé tolódik. A módszer egyik lényeges sarokköve tehát, hogy a csillagok fémtartalma, vagyis kora egy tág intervallumban (>2 milliárd év) nem befolyásolja szignifikánsan a távolság meghatározás pontosságát. Ráadásul idősebb csillagpopulációk minden galaxisban akadnak, míg a fiatalabbak, a csillagkeletkezés hiányában szinte teljesen hiányoznak például az elliptikus galaxisokból.

Adott vörös óriások csoportja esetén, megfelelő csillagászati és matematikai ismeretek birtokában a TRGB meghatározható. Ennek a pontnak a közeli infravörös tartományban látszó fényességéből, illetve az abszolút fényessége birtokában már kiszámítható a galaxisok távolsága.

Ez elsőre igen jól hangzik, és ígéretessé teszi ezt a távolság meghatározási eljárást. Természetesen, több nehézség is felmerül a pusztán matematikai „kihívások” mellett. Megfelelő csillagjelölteket kell választani, és a látszólagos fényesség esetén több korrekciós tényezőt is figyelembe kell venni. Egy ilyen például, hogy az NGC4945 viszonylag közel látszik a saját galaxisunk síkjához, így az intersztelláris médium némi vörösödést okoz a megfigyelt objektumok fényében, illetve tompítja azt. Magában a távoli galaxisban található por és gáz szintén hatással lehet a megfigyelt színre és fényességre. Mint az hamarosan látni fogjuk, ez a hatás nagyban csökkenthető, ha megfelelő helyről választjuk a vörös óriásokat.

Végezetül a TRGB abszolút fényességét is be kell kalibrálni. A kalibrációkat olyan gömbhalmazokon és csillagpopulációkon végezték el, ahol más távolság meghatározási módszerek is rendelkezésre álltak.

Mouhcine, H.C. Ferguson, R.M. Rich, T.M. Brown, T.E. Smith az NGC4945 halójából választott célpontokat, ahol az idősebb csillagpopulációk találhatóak, viszonylag könnyen azonosíthatóak, illetve a por által okozott vörösödés kevésbé számottevő. A TRGB meghatározásával kiszámították a galaxis távolságát, mely szerintük 3.36 Mpc.

NGC4945-TRGB-halo.PNG

A bekeretezett területeken fésülték át a kutatók az NGC4945 halóját megfelelő vörös óriások után kutatva.

Jeremy Mould és Shoko Sakai az előbb vázolt módszert is felhasználva 3.8 Mpc-et kapott a csillagváros távolságára. Céljuk azonban egy kissé más volt, mint Mouhcine csapatának, ugyanis különböző távolságmérési módszereket hasonlítottak össze tanulmányukban.

Anélkül, hogy felsoroltam volna az összes távolsággal kapcsolatos kutatást, az értékek láthatóan eltérnek valamelyest. Amennyiben a témával kapcsolatban fellelhető publikációk eredményeinek középértékét fogadjuk el, az NGC4945 távolsága 3.8 Mpc. Ha az átlagot vesszük, akkor pedig 4.1 Mpc jön ki. Valószínűleg nem tévedünk nagyot, ha azt mondjuk: az NGC4945 távolsága 12-13 millió fényév. Ez jól összeegyeztethető a Centaurus galaxis csoport (súlypontjának) távolságával, melynek az NGC4945 az egyik a legfényesebb tagja.

Tudva, hogy milyen messze van, illetve ismerve az égen a látszólagos méretét, az NGC4945 átmérője nem sokkal marad el a Tejútrendszerünké mögött: nagyjából 70000-75000 fényév (12-13 millió fényéves távolság és 20ˊ látszólagos átmérő esetén). Az Androméda galaxis után a második legközelebbi nagyméretű spirál galaxis.

A felvételre pillantva jól látható, hogy a galaxis hemzseg a csillagkeletkezési területektől. Fiatal, forró csillagok halmaza festi helyenként kékre a csillagvárost, míg a vöröses szín e csillagok által gerjesztett, ionizált hatalmas hidrogénfelhőktől származnak. A csillagok keletkezési üteme felülmúlja Tejútrendszerünkét, így az NGC4945-öt a csillagontó galaxisok közé sorolják.

A csillagok ragyogása, a világító hidrogénfelhők, a sötét kanyargó porfelhők igazán impozánssá teszik ezt a majdnem éléről látszó galaxist. Ám ami nekem a szépséget jelenti, az a csillagászoknak a nehézséget. Egy nagyjából 78° inklinációval rendelkező spirál galaxisra „rápillantva” roppant nehéz megmondani a pontos morfológiai felépítését. Hogyan helyezkednek el a karok? Mennyire szorosan csavarodnak a galaxis köré? Küllős-e a spirál galaxis? Van központi dudor? Mi történik a magban?

Természetesen vannak árulkodó nyomok már az optikai tartományban is. A látható spektruma alapján, az NGC4945 Seyfert II típusú galaxis, vagy aktív galaxis maggal rendelkezik (Active Galactic Nucleus – AGN). A mag által kisugárzott nagymennyiségű energia az ott elhelyezkedő szupermasszív fekete lyuk jelenlétével magyarázható. Az egész jelenséget azonban por és molekula felhők takarásából kell szemlélnünk. Találóan kijelenthető, hogy az NGC4945 titkai jórészt ködbe burkolóznak. Hagyjuk hát el a vizuális tartományt, és pillantsunk a dolgok mélyére.

Preserving the Legacy of the X-ray Universe

Az NGC4945 magjának optikai tartományban és röntgen tartományban (kék és rózsaszín) készült kompozit képe.  – Röntgen tartomány: NASA/CXC/Univ degli Studi Roma Tre/A.Marinucci és mások, optikai tartomány: ESO/VLT & NASA/STScI

ngc4945-Xray-cut.JPG

Az NGC4945 1ˊx1ˊ központi régiója a röntgen tartományban (vörös:0.3-2 keV, zöld: 2-10 keV) – Forrás: NASA/CXC/Univ degli Studi Roma Tre/A.Marinucci és mások

Amíg az optikai spektrum csak „sejtetni engedi”, hogy a magban nagyenergiájú folyamatok zajlanak, megfigyelve az NGC4945 által kibocsájtott röntgensugárzást ez teljesen nyilvánvalóvá válik. A 10 keV (kemény) röntgen tartományban direkt emissziót láthatunk, míg a 0.3-2 KeV (lágy) nem kibocsájtó közeg, csupán szóródik rajta a sugárzás. Ez az utóbbi jelenség az úgynevezett Compton-szórás. Nagyon leegyszerűsítve: amikor egy nagyenergiájú röntgen foton atomos anyaggal ütközik, akkor energiájának csak egy részét adja át a „kibillentett” elektronnak, majd kisebb energiájú (lágyul a sugárzás), megváltozott irányú fotonként folytatja az útját („mintegy szóródik az atomon”).

A röntgensugárzás keletkezésének egyik oka a galaxis magjában található szupermasszív, 1-1.5 millió naptömegű fekete lyuk. A fekete lyuk megpróbálja elnyelni a környezetében található anyagot, mely akkréciós korongot formál körülötte. Ezt pedig kívülről sűrűbb, lassabban keringő gázfelhők veszik körül. Az akkréciós korong anyaga miközben befelé örvénylik, egyre gyorsabban mozog és felhevül. Mozgási energiájának egy jelentős része elektromágneses sugárzássá alakul. Míg a felszabaduló energiája másik része biztosítja a töltött részecskék relativisztikus (közel fénysebességre) történő gyorsítását. A fekete lyuknál az akkréciós korongra merőleges, a forgástengellyel párhuzamosan plazmából álló jet-ek jönnek létre, melyben az említett részecskék kifelé haladva spiráloznak a mágneses térben, miközben szinkrotonsugárzást bocsájtanak ki.

De vannak csillagászok, akik vitatják, hogy egyedül a fekete lyuk lenne felelős a megfigyelt sugárzásért, illetve a magot körülvevő intersztelláris anyag felfűtéséért. Az NGC4945 centruma körül más viharos események is zajlanak.

A csillagászok rádiótávcsöveikkel feltérképezték a molekuláris gázfelhők eloszlását és azok dinamikáját az NGC4945-ben. Ehhez az atomos hidrogén és az a CO (karbon-monoxid) által kibocsájtott rádiósugárzást vizsgálták. Az intenzitás térkép mellett felrajzolták a felhők pozíció-sebesség diagramját is. Így a molekuláris felhők eloszlása és sűrűsége mellett, a galaxison belüli sebességükre és mozgásuk irányára is fény derült. A megfigyelések igazolták, hogy az NGC4945 valóban küllős spirál galaxis. A küllő mentén pedig gáz áramlik a galaxis középpontja felé. Igen valószínű, hogy ennek a folyamatnak köszönhető az, hogy a csillagváros centrumát hatalmas, nagyjából 200 pc (652 fényév) átmérőjű gyűrű alakú molekuláris gázfelhőkből álló képződmény veszi körül. Az ennek mélyén elhelyezkedő tórusz alakú régióban pedig robbanásszerű csillagkeletkezés zajlik, melynek nyomai a rádió és infravörös tartományban egyaránt megfigyelhetőek.

NGC4945-Pa_emission-a.JPG

Az NGC4945 Paschen alfa (Pa-α) emissziós térképén jól látszik a tórusz alakú csillagkeletkezési régió a centrum körül. Az 1875 nm-es infravörös Pa-α sugárzás a gerjesztet hidrogén atom n=4-ről n=3 energiaszintre történő átmenete során keletkezik. Kép forrása: Marconi és mások.

Ebben a régióban igen jelentős mennyiségben keletkeznek a Napnál jóval nagyobb tömegű csillagok, melyek intenzív UV sugárzásukkal gerjesztik, ionizálják a körülöttük lévő intersztelláris anyagot. Ezek a forró, kék csillagok hatalmas üregeket fújnak azokba a ködökbe, melyben korábban megszülettek. A tovaterjedő ionizációs frontok felfűtik a csillagközi anyagot. A fényes behemótok tömegtől függően pár millió, vagy pár tízmillió év alatt leélik életüket, és szupernóvaként lángolnak fel. A robbanás keltette lökéshullámok újabb sokkhatást hoznak létre az intersztelláris médiumban, még tovább fűtve azt. A több millió fokosra hevült gáz sugározni kezd a röntgen tartományban. (Ez a gáz roppant ritka, így ha űrhajósként ellátogatnánk ebbe a környezetbe, sokkal jobban kéne aggódnunk a nagyenergiájú fotonok és a csillagszél töltött részecskéi okozta káros hatások miatt, mint hogy „megsülünk” a több millió fokos gázban.) A fiatal csillagok erős csillagszelének és a szupernóva-robbanásoknak köszönhetően, a felhevült gáz nagy sebességgel áramlik kifelé a galaxis magjából. A szakirodalomban ezt a jelenséget nevezik galaktikus szuperszélnek (superwind). Két ellentétes hatás dolgozik tehát ebben a galaxisban. A befelé áramló gáz újabb csillagok keletkezéséhez biztosít nyersanyagot, míg a galaktikus szuperszél kisöpri azt. A megfigyelések szerint egyelőre az első folyamat áll nyerésre, a robbanásszerű csillagkeletkezés még nem érte el a csúcsát az NGC4945-ben.

Miközben rátekintünk az NGC4945 fotójára, vagy miközben a szerencsésebbek az okuláron keresztül szemlélik a látványt, érdemes azon elgondolkodni, hogy kizárólag az optikai megfigyelésekre támaszkodva viszonylag keveset tudnánk erről a galaxisról. Ahhoz, hogy egy csillagászati objektum természetét teljesen megérthessék, a kutatóknak több hullámhosszon is vizsgálniuk kell azt. Ez a tény azonban ne tántorítson el minket az égbolt látnivalóinak élvezetétől. Derült éjszakákon pillantsunk fel az égre, ragadjunk távcsövet. Hagyjuk, hogy lelkünk szárnyaljon! Tapasztalni fogjuk, hogy a racionális és kíváncsi tudományon túl, van az ég dolgainak megfigyelésében valami spirituális. Valami, ami a léleknek szól. Én így hiszem.

Felhasznált irodalom:

M. Salaris, S. Cassisi: The ‘Tip’ of the Red Giant Branch as a distance indicator: results from evolutionary models

Mouhcine, H.C. Ferguson, R.M. Rich, T.M. Brown, T.E. Smith: Halos of Spiral Galaxies. I. The Tip of the Red Giant Branch as a Distance Indicator

Jeremy Mould és Shoko Sakai: The Extragalactic Distance Scale without Cepheids

Ott, J.B. Whiteoak, C. Henkel, R. Wielebinski: Atomic and Molecular Gas in the Starburst Galaxy NGC4945

Richard C. Y. Chou, A. B. Peck, J. Lim, S. Matsushita, S. Muller, S. Sawada-Satoh, Dinh-V-Trung, F. Boone, C. Henkel: The Circumnuclear Molecular Gas in the Seyfert Galaxy NGC4945

A. Marconi, E. Oliva, P.P. van der Werf, R. Maiolino, E.J. Schreier, F. Macchetto, A.F.M. Moorwood: The Elusive Active Nucleus of NGC 4945

A. Marinucci, G. Risaliti, Junfeng Wang, E. Nardini, M. Elvis, G. Fabbiano, S. Bianchi, G. Matt: The X-ray reflector in NGC 4945: a time and space resolved portrait