M1 – A Rák-köd

M1-LRGB-20131201-TTK

M1 – Rák-köd (A 2013-ban készült felvételek 2015-ös feldolgozása.)

2013-10-29, 2013-12-01 – Göd – 70 x 55 sec L és 61 x 55 sec R, G, B

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera, Astronomik RGBL fotografikus szűrőszett

(A bejegyzés a Magyar Csillagászati Egyesület havi folyóiratában, a Meteorban (2017/01. 8-19.) megjelent cikk bővebb, helyenként átdolgozott elektronikus változata.)

Sok-sok ezer évvel ezelőtt egy csillag, melynek tömege sokkalta nagyobb Napunkénál, lassan kifogy üzemanyagkészletéből. Még küzd a gyilkos gravitációval, és a különböző, egyre rövidebb ideig tartó fúziós folyamatok során egymás után hozza létre a nehezebb elemeket. A folyamat azonban a vasnál elakad: ennél nehezebb elemek már nem jöhetnek létre fúzió révén. Energia-utánpótlás hiányában a csillagot utoléri a végzete, elindul a megállíthatatlan kollapszus. Anyaga a mag felé kezd zuhanni, nincs már sugárnyomás, amely ezt megakadályozhatná. A külső rétegek hatalmas nyomása „belepréseli” az elektronokat az atommagokba, így a csillag magjában neutronok keletkeznek. Miközben összeroskad a csillag forgása egyre gyorsul. A neutronokban feldúsuló magban a nyomás hirtelen megnő, és a bezuhanó anyag mintegy visszapattan az összepréselhetetlen neutronmagról. Pusztító lökéshullám indul el kifelé, amely gyorsan energiát veszít, és épp ezért ez még önmagában nem lenne elég a kataklizmához. Ugyanakkor, a nagyságrendileg 100 milliárd K felforrósodó magban neutrínók keletkeznek, és megindul kifelé egy 1046 J energiájú neutrínózápor. Máig nem teljesen tisztázott módon a neutrínók által elszállított energia 1%-kát elnyeli a kifelé tartó lökéshullám, s így bekövetkezik a gigászi szupernóva-robbanás. Az ilyen típusú robbanásokat az összeomló csillagmag miatt kollapszus-szupernóváknak (core collapse supernova) is nevezik.

A csillag anyagának jelentős része szétszóródik, miközben a korábbi energiatermelő folyamataiban született elemeket juttat a környezetébe. Olyanokat, melyek nélkül nem létezhetne élet, de eme kis kékes színű kőzetbolygó, a Föld sem. Maga a szupernóva-robbanás olyan extrém magas hőmérséklettel és nyomással járó körülményeket hozott létre, hogy az úgynevezett neutronbefogásos folyamatokban a vasnál nehezebb elemek is létrejöttek, s melyek egy része szintén szétterült az űrben. Régebbi elképzelések szerint az ilyen kataklizmák voltak azok, melyek beszennyezték a kozmoszt a vasnál nehezebb elemekkel. Azonban manapság már más a csillagászok álláspontja.  Az újabb elméleti megfontolások a neutroncsillagokat tekintik ezek egyik fő forrásnak. Ami még ennél is fontosabb, a megfigyelések is ezt támasztják alá. (A neutroncsillagokról később még szó lesz.)

A robbanás helyén, az égbolton a Messier 1 ködössége látható, melyet szokás Rák-ködként is emlegetni. A kidobott anyag még ma is hatalmas, 1500 km/s sebességgel tágul. Az expanziót akár a saját szemünkkel is láthatjuk, ha bő évtizedes különbséggel készült felvételeket hasonlítunk össze.

A Rák-köd 1999 és 2012 közötti tágulásának mértéke.

 A fentebb vázolt események a Földtől kb. 6500 fényévre történtek. Amikor a fotonok útnak indultak, lassan véget ért az emberiség történetének legelső, és egyben leghosszabb szakasza: az őskor. A Földet már benépesítettük, és gazdálkodni kezdtünk. Lassanként általánosan elterjedt a fémek használata, azoké amelyeket egy másik, több milliárd évvel ezelőtti szupernóva-robbanás szórt szét a világűrben.

1054-ben kínai csillagászok az egyik nyári estén az eget tanulmányozva, éjfél után felfigyeltek egy vendégcsillagra (ko-hszing), mely az általuk Tien-kuan-nak nevezett csillag közelében tűnt fel. Fényességével túlragyogta a Jupitert és a Vénuszt. Sokáig látható maradt még a nappali égen is. A szupernóva feltűnésének írásos emléke a császári főcsillagásznak, Jang Vej-tö-nek hála maradt reánk, aki a vendégcsillag megjelenését arra használta fel, hogy a Szung-dinasztiára és császárra nézve igen hízelgő jóslatot adjon, méltatva az uralkodó bölcsességét és nagyságát.

Jang Vej-tö leírását azonban nem szabad készpénznek venni. Ambiciózus talpnyaló hírében állt, amit jól tükröz maga a jóslat, illetve annak egy kiragadott részlete: „… azt jelenti, hogy él egy nagyon bölcs, és erényes személy ebben az országban.” Az új csillagot fényes sárgának írta le, ami valós is lehet, de nem szabad elmennünk amellett a tény mellett sem, hogy a Szung-dinasztia fő színe a sárga volt. Csak abban lehetünk biztosak, hogy 1054. július 4-én tűnt fel a Tien-kuan-hoz közel, és 1056. április 17-én vesztették szem elől.

A dinasztiával kapcsolatos feljegyzések elemzése nem volt könnyű feladat. A kínaiak nem az általunk ismert nyugati csillagképeket használták. Továbbá meg kellett fejteni az égi koordináta-rendszerüket, és a távolságok leírására használt mértékegységeket. Végül sikerült kibogozni a szálakat, és meghatározni, hol is volt látható a jelenség.

A sinológusok nagy bizonyossággal megállapították, hogy a Tien-kuan a ma ζ Tauri-nak (dzéta Tauri-nak) nevezett csillag. Tehát a vendégcsillag a Bika csillagkép szarvának közelében tűnt fel, méghozzá a Szung-dinasztia krónikái alapján attól délkeletre. A közelséget több leírás is említi, azonban egy 1345-ös változat a Szung-évkönyvben konkrétan pár hüvelyk távolságot állapít meg. Más korabeli kínai csillagászati megfigyelések alapján egy hüvelyk alatt körülbelül 0,1 fokot értettek. Amennyiben a néhányat 3-nak, 4-nek, esetleg 5-nek tekintjük, akkor durván fél fok választotta el a ζ Taurit és a feltűnt égitestet.

De mit is láttak valójában? Mivel a csillag kifejezést igen változatosan használták, így alaposan körbe kellett járni azt a kérdést, hogy valójában nem üstökösről volt-e szó. Semmilyen üstökösökkel kapcsolatos jellemzőt nem sikerült azonban felfedezni a leírásokban. Nem említenek sehol sem csóvát. Márpedig a fényes szabadszemes üstökösök egyik legfőbb ékessége a látványos csóva. Illetve, a csillag nem változtatta a helyzetét az égen, ahogyan azt az üstökösök teszik.

Miután a helyet az égen már azonosították, és kizárták a fényes üstökös lehetőségét már csak azt kellett eldönteni, hogy nóva, vagy szupernóva tűnt-e fel 1054-ben. Az tudható volt, hogy 23 napon át nappal is látszott. A fényessége -4 és -5 magnitúdó lehetett. Ahhoz, hogy nóva lehessen azok tipikus fénygörbéi (a legfényesebbekre a meredek felfutás, majd gyors lefutás jellemző) alapján 60 fényéven belül kellett volna lennie, máskülönben nem ragyoghatott volna három hétig ezen a fényességen. Statisztikai vizsgálatok azt mutatják, hogy átlagosan 30000 évenként következik be nóva robbanás hozzánk ilyen közel. Tehát az esélyek inkább a nóva ellen szóltak. Ráadásul ebből a távolságból a Hold fényével kellet volna ragyognia, amit biztosan szintén megemlítettek volna. Továbbá, ha nóva lett volna a feltűnt csillag, akkor valahol lennie kellene egy vörös óriás és egy fehér törpe párosnak is, mely előfeltétele egy ilyen nóva-robbanás bekövetkezésének. Alkalmas jelöltet azonban nem találtak.

Maradt tehát az a magyarázat, hogy 1054-ben szupernóva-robbanást figyeltek meg a kínai császár csillagászai. A szupernóvák fénygörbéjének karakterisztikája más, mint a nóváké. Abszolút fényességük is nagyobb. Így a néhányszor 1000 fényév távolságban felrobbanó szupernóva látszó fényességének görbéje sokkal jobban illeszthető a leírásokra. Nem beszélve arról, hogy nagyobb valószínűséggel következik be ilyen távolságban szupernóva-robbanás, minthogy 60 fényéves körzetben feltűnjön egy nóva. A nagytömegű csillag halálakor bekövetkező „tűzijáték” során hatalmas mennyiségű gáz lökődik ki, melynek sugárzása hosszú évezredekig megfigyelhető marad. Ha tehát ez a magyarázat helytálló a vendégcsillag mibenlétét illetőleg, akkor lennie kell megfigyelhető maradványnak is!

Messier 1, avagy a Rák-köd

John Bevis orvos és műkedvelő csillagász 1731-ben ködös objektumra bukkant a Bika csillagképben, melyet Uranographia Britannica égbolttérképén is feltüntetett. Tőle teljesen függetlenül, Charles Messier újra felfedezte, majd később katalógusában az 1. sorszámot adta neki. Innen az Messier 1 (M1) elnevezés.

uranographia-britannica-bull

John Bevis az Uranographia Britannica égbolttérképén is feltüntette az szupernóva-maradványt. Forrás: https://listoffigures.wordpress.com/

Messier a mai értelemben vett megfigyelő csillagász volt. Nem sokat foglalkozott matematikával, ugyanakkor megbízott mások elméleti munkáiban. Korábban Edmund Halley kiszámította, hogy az 1531-ben, 1607-ben és az 1682-ben feltűnt üstökös egy és ugyanaz. Ahhoz, hogy elméletét ellenőrizze felkérte a csillagászokat, hogy 1758 vége felé legyenek résen, mert az üstökös újra megjelenik. Igaza is lett. Messier és munkaadója Joseph-Nicolas Delisle szerette volna learatni az újrafelfedezés babérjait. Messier azonban nem Halley, hanem Delisle számításait követve kereste az üstököst. Valószínűleg nagyon megörülhetett, amikor az 1758-as De La Nux üstököst követve rálelt a ζ Tauri közelében a kis ködösségre 1758. augusztus 28-án. Csalódottan kellett azonban tapasztalnia, hogy az nem mozdult el az égen, így nem lehetett üstökös. Végül nem Messier, hanem egy német földműves, Johann Georg Palitzsch vette észre először a Halley üstököst 1758 karácsonyán. Messier csak 1759-ben lelt rá. Ráadásul Delisle nem is hagyta rögtön bejelenteni, mert az ő számításai szerint nem ott kellett volna lennie a Halley-nek. Akárhogy is esett, Messier hamarosan korának kiemelkedő üstökös vadászává vált, és az M1 fontos szerepet játszott abban, hogy összeállítsa katalógusát.

Az idők folyamán több híres csillagász is észlelte a ködöt. Külön meg kell azonban említeni William Parsonst, ismertebb nevén Lord Rosse-t (Rosse harmadik grófját), akitől a Rák-köd elnevezés származik.

william-parsons-crab-nebula

Lord Rosse rajza a Rák-ködről 36 hüvelykes távcsővel készült 1844 körül. Forrás: https://listoffigures.wordpress.com/

Többé nem készült olyan rajz, amin a köd rákszerű lenne, de az elnevezés megmaradt. Lord Rosse 1845-ben megépítette 72 hüvelykes (1.83 m) tükrös távcsövét. A „Leviatánnál” egészen a XX. század elejéig nem is készítettek nagyobb átmérőjűt. A Rák-ködöt ezzel is megfigyelte, és ekkor már egészen más megjelenésűnek találta. Az óriási távcsőben kibontakozó látványt R.J. Mitchell rajzolta le. Ezen, olyan részletek is felfedezhetőek, amelyek a mai fotókon is látszanak. Ilyen például az én felvételemen is látszó kis fekete öböl.

william-parsons-crab-nebula-2

R.J. Mitchell rajza a Rák-ködről, melyet Lord Rosse 72 hüvelykes távcsövével készített 1855-ben. Jól látható a kis fekete „öböl”. Forrás: https://listoffigures.wordpress.com/

Lord Rosse leírása arról is árulkodik, miként vélekedtek akkoriban a ködökről: „…különlegesen elrendezett, jól kivehető fonalakat látunk… Nagyobb felbontás valószínűleg további fonalakat is kihozna, s akkor a köd közönséges halmazformát öltene.” Abban az időben úgy gondolták, hogy minden köd csillagokból áll, és csak elegendően nagy távcsőre van szükség ahhoz, hogy valamennyit felbontsák. Még sok évtizednek kellett eltelnie ahhoz, hogy a csillagászok felismerjék valódi természetét.

A Rák-köd és a modern asztrofizika

C. O. Lampland fejéből pattant ki az ötlet 1921-ben, hogy összehasonlítsa a Lowell Obszervatóriumban a korábbi 8 évben készült felvételeket a Rák-ködről. Így felfedezte, hogy az évek alatt az M1 egyes részei elmozdultak. John C. Duncan volt az, aki végül felismerte, hogy a köd tágul. Hogy mióta? Erre a kérdésre Edwin Hubble is kereste a választ. Feltételezte, hogy az objektum egy pontból indult ki, és az expanzió egyenletes. Számításai szerint a tágulás 900 évvel ezelőtt vette kezdetét.

Ezt a tudományos felismerést, és a korábbi kínai feljegyzéseket összevetve elmondható, hogy anno 1054-ben nagy valószínűséggel azt a szupernóvát látták feltűnni az égen, melynek maradványa az M1. Mire fel mégis az előző mondatban megbújó piciny bizonytalanság? A Rák-köd dzéta Tauritól mért távolsága és iránya nem illeszkedik pontosan a korabeli beszámolókban olvashatókéra. Több helyen is biztosan említik a kínaiak, hogy fél fokra, délkeletre volt a feltűnt csillag a Bika szarvától. Valójában azonban 1.1 fokra és északnyugatra van a Rák-köd ettől a csillagtól. Mivel oldható fel ez az ellentmondás? Elképzelhető, hogy egyszerűen a Szung-dinasztia évkönyveiben a Történeti Hivatal elírt valamit, illetve felcserélhették a két csillag pozícióját. Máig vannak azonban olyan szkeptikus kutatók, akik szerint vitatható az M1 és 1054-ben megjelent vendégcsillag kapcsolata. Tovább lehet azonban érvelni a kapcsolat mellett. Először is, nincs más erős rádióforrás a közelben. Továbbá, ha az M1 nem az 1054-es szupernóva-maradványa, akkor Duncan és Hubble eredményei szerint 100 éven belül két szupernóvának is fel kellet volna lángolnia az ég látszólag közel azonos területén. Mekkora ennek a valószínűsége? Roppant kicsiny. Ha mégis így történt, miért nincsenek feljegyzések a 100 éven belüli másik fényes vendégcsillagról? Ez hát az oka, hogy némi bizonytalanságot belecsempésztem e bekezdés első mondatában.

A spektroszkópia elterjedésével új fejezet kezdődött a csillagászatban. Korábban vajmi keveset tudtunk a távoli égitestek összetéte­léről, az ott uralkodó fizikai viszonyokról. A Messier 1-ről készült első színképek meghökkentőek  voltak. Az addig vizsgált ködökre pusztán az azokat alkotó elemek gerjesztett atomjainak ujjlenyomatai, az emissziós vonalak voltak a jellemzőek – szinte nem is állt a spektrumuk másból. Azt viszonylag korán felismerték a csillagászok, hogy ezt a gerjesztést egy-egy forró csillag intenzív ultraibolya sugárzása okozza. A Rák-köd esetében azonban az emissziós vonalak egy határozott folytonos háttéren, kontinuumon voltak megfigyelhetőek. Mintha két színkép rakódna egymásra. Hamar kiderült, hogy a köd szerkezetét tekintve két eltérő részből áll: az amorf eloszlású gázból, mely ovális alakot kölcsönöz a Rák-ködnek, és a filamentek szövevényes hálózatából. A filamentek, a köd rostokra emlékeztető, 11000 – 18000 K hőmérsékletű, ionizált gázokat tartalmazó struktúrái, melyektől a színkép emissziós vonalai származnak, a ködöt kitöltő amorf gáz pedig a kontinuum forrása. Azonban azt, hogy pontosan miként jön létre a folytonos háttér, vagyis honnan származik a köd fénye, sokáig homály fedte.

A fizikából az ismeretek, mint összerakásra váró puzzle darabjai hevertek az asztalon. Végül 1953-ban Joszif Szamuilovics Sklovszkij volt az, aki az egyes elemeket egységes képpé állította össze.

Még 1948-ban, a rádiócsillagászat hőskorában egy ausztrál kutatócsoport négy fényes rádióforrást fedezett fel az égen, melyből az egyik a Taurus A nevet kapta. Később szintén ez a csapat egy kezdetleges interferométerrel 7 ívperc pontossággal behatárolta a sugárzás irányát, mely az M1-hez igen közel esett. A Taurus A lett az első, Naprendszeren túli diszkrét rádióforrás, melyet optikai tartományban is azonosítottak. A csillagászokat meglepte, hogy az optikai tartományban nem is olyan fényes Rák-köd a Nap után az egyik legerősebb rádióforrás az égen. Az ausztráliai kutatók 1952-ben a rádióforrás méretét is megmérték, és rá egy évre az első rádiótérképet is elkészítették. Ezen a durva térképen a rádióforrás főbb alakzatai meglepően hasonlítottak az optikai tartományban látott képhez. Arra az összefüggésre is rájöttek a kutatók, hogy a Rák-köd (és több más rádióforrás) rádiósugárzásának intenzitása a frekvencia függvényében logaritmikus skálán egy egyenes vonalat ad. Joszif Sklovszkij szovjet csillagász pedig megmutatta, hogy a köd rádiósugárzásáért az úgynevezett szinkrotronsugárzás a felelős.

Egy ideje már ismert volt a fizikus előtt, hogy a közel fénysebességgel mozgó (relativisztikus) töltött részecskék sebességvektoruk megváltoztatása közben szinkrotronsugárzást bocsájtanak ki. Úgy is megfogalmazhatjuk, hogy amikor a töltött részecskét a mágneses tér gyorsítja, a gyorsulás következményeként az sugározni kezd. A mágneses térben végzett körmozgás folytonos gyorsulásnak számít. A ködben lévő mágneses tér erővonalai körül spirálozó elektronokkal pedig pontosan ez történik.

Szinkroton-rot1-cut1-s1

A közel fénysebességgel, a mágneses erővonalak körül spirális pályán mozgó elektronok keskeny nyalábban szinkrotron sugárzást bocsájtanak ki. Ez a sugárzás polarizált, vagyis a látóirány mentén kitüntetett a rezgés síkja. Forrás: Simon Mitton – A Rák-köd (Az ábra jogvédelem alatt áll, az a szerző külön írásos engedélyével került felhasználásra.)

Sklovszkij a mechanizmust kiterjesztette az optikai tartományra is, és azt mondta, hogy nem atomi átmenetekből származik a Rák-köd színképének folytonos része, hanem azt is szinkrotron sugárzás okozza. Vagyis, a mágneses térben őrült sebességgel körtáncot lejtő, nagy energiájú mozgó elektronoktól származik a köd fénye (pontosabban a kontinuum része), míg a „gyengébb” elektronoktól a köd rádiósugárzása.

Az igazán jó elmélet nemcsak megmagyaráz dolgokat, hanem jóslatokat is ad. Sklovszkij megjósolta, hogy a köd fényének részlegesen polarizáltnak kell lennie. A szinkrotron sugárzás sajátossága, hogy polarizált. Pár évvel később megfigyelésekkel igazolták Sklovszkij teóriáját, és annak jóslatait. Először Viktor Alekszejevics Dombrovszkij, majd tőle függetlenül Mikheil Alexandresz dze Vashakidze mutatta ki a Rák-köd fényének polarizáltságát. Majd 1955-ben a Palomar-hegyen, az ötméteres teleszkóppal Walter Baade készített ragyogó felvételsorozatot. A polarizációs szűrőt forgatva változtak az alakzatok, s volt olyan fényes terület is, ami szinte el is tűnt!

Polarizacio-rot1-cut1-s1

A polarizált fény és a polarizációs szűrű szemléltetése. A polarizációs szűrőn teljes áteresztés akkor történik, ha az áthaladó fény polarizációjának síkja a szűrőével egybeesik. Amennyiben a két sík egymásra merőleges, akkor a szűrő nem ereszti át a polarizált fényt. Forrás: Simon Mitton – A Rák-köd (Az ábra jogvédelem alatt áll, az a szerző külön írásos engedélyével került felhasználásra.)

A polarizációs vizsgálatok révén tökéletesen feltérképezhetővé vált a ködben a mágneses tér szerkezete, ugyanis a polarizáció síkja merőleges a mágnese térre. Kiderült, hogy a Messier 1 megjelenése erős kapcsolatban áll a mágneses térrel. Az erővonalak a különböző öblök szélén, szálak mentén futnak, és a filamentek körül tekerednek.

Később kimutatták, amit a szinkrotronsugárzási elméletek is megjósolták, hogy a Rák-köd egyben erős röntgenforrás is az égen. Nem volt egyszerű a pontos irányt és a röntgensugárzás szerkezetét meghatározni. Az első áttöréseket 1964-ben érték el, amikor az M1 röntgen jeleinek változását figyelték a kutatók, miközben a Hold elfedte azt.

Bár most csak az optikai, a rádió és a röntgen tartományokról beszéltem, mert történeti síkon igyekszem mozogni, de elmondható, hogy a szinkrotronsugárzás a felelős a köd teljes spektrumban kibocsájtott sugárzásának igen jelentős részéért. A relativisztikus elektronok idővel energiát veszítenek, egyre „fáradnak”. Kezdetben a gamma, a röntgen, majd az optikai, az infravörös, míg végül a rádiótartomány „megszólaltatásáért” felelősek. Pontosan kiszámítható, hogy mennyi idő alatt „fáradnak” el ezek az elektronok. Például a röntgen szinkrotronsugárzás nagyjából egy év alatt kihunyna, ha nem lenne valamiféle energiautánpótlása. Ennyi idővel a robbanás után a köd ilyen formájában már régen nem is létezhetne. Kell hogy legyen valami hajtómotor a ködben! Sokáig ez volt a Rák-köddel kapcsolatos egyik legnagyobb talán. Tudták már, hogyan világít, de mi táplálja energiával? Honnan származik a mágneses tér?

Crab_Nebula_in_Multiple_Wavelengths

Az M1 látványa különböző hullámhosszakon. Balról jobbra a tartományok: rádió, infravörös, optikai (látható), ultraibolya, röntgen, és gamma.

Pulzár a Rák-ködben

Az első pulzárokat 1967-ben fedezték fel egy szinte teljesen véletlen eseménynek köszönhetően. A Napból kiáramló csillagszélnek köszönhetően egy távoli rádióforrás sugárzása gyorsan fluktuál, amikor az a Naphoz közel látszik az égen. A jelenséget interplanetáris szcintillációnak nevezik. Ez nagyjából hasonló jelenség, mint ahogyan a csillagok fénye a Föld légkörének köszönhetően pislog, vagyis a szcintillál. Ez a jelenség pedig kitűnően felhasználható kompakt rádióforrások keresésére, ugyanis minél kisebb az objektum, annál erősebb a véletlen fluktuáció jelensége. 1967. augusztus egyik éjszakáján úgy éjfél körül arra lett figyelmes Jocelyn Bell Burnell, hogy valami megmozgatta a voltmérőt. Ekkor a Nap jóval a látóhatár alatt tartózkodott, így nem tűnt valószínűnek, hogy ezt interplanetáris szcintilláció okozta volna. Kezdetben valami földi eredetű zavarra gyanakodtak, de 1967. november 28-án igazolást nyert, hogy valóban az űrből származó szabályos pulzusok sorozatát észlelték. Ezt a dátumot tekinthetjük az első pulzár (CP1919 / PSR J1921+2153) felfedezésének.

First_Pulsar

Az első pulzár felfedezése. A felső képen a pulzár jele csak éppen megkülönböztethető a szcintillációktól. Az alsó nagyobb sebességű grafikonon viszont világossá vált, hogy az észlelt zörej valójában periodikus pulzációk sorozata volt (P≈1.3 másodperc). Forrás: Jocelyn Bell Burnell és Antony Hewish.

Jocelyn Bell Burnell posztgraduális hallgató volt, akinek Antony Hewish volt a témavezetője. A felfedezést bejelentő cikken 5 szerző neve olvasható. Elsőként Hewish, másodikként Bell, és így tovább.  Antony Hewish 1974-ben megosztott Nobel-díjat kapott Martin Ryle-lal a rádió apertúra szintézis kidolgozásáért, és a pulzárok felfedezésében játszott szerepükért. Ez volt az első olyan fizikai Nobel-díj, melyet csillagászati kutatásért osztottak ki. Személy szerint én kifogásolhatónak tartom a döntést, hisz végső soron Jocelyn Bell Burnell volt, aki ráakadt a pulzárra, és aki annak alapos elemzésében szintén kulcsszerepet játszott.

Az első pulzárt, nagyon hamarosan újabbak felfedezése követte a rádiótartományban. Ezek közül a következő mérföldkövet a Vela csillagképben található hatalmas szupernóva-maradványban talált pulzár (PSR J0835-4510) jelentette. Ez volt az első kapocs az ilyen maradványok és a pulzárok között. Ekkortól szisztematikusan keresni kezdték a szupernóva-maradványokban a pulzárokat. Alig egy évvel később 1968. november 9-én sikeresen azonosították a Rák-köd pulzárját is, mint 33 milliszekundumos pulzárt. A milliszekundumos pulzárok felfedezése eldöntött egy fontos asztrofizikai kérdést is. Ugyan voltak már elméleti elképzelések a neutroncsillagokról, de kezdetben fehér törpék rezgésével próbálták magyarázni a pulzusokat. A milliszekundumos pulzárok esetében az elmélet azonban csődöt mondott, mert ilyen gyors rezgés már nem volt leírható a rezgési modellekkel. Maradtak a neutroncsillagok, mint lehetséges magyarázat. A mai definíció értelmében, a milliszekundumos pulzárok 1-10 milliszekundumonként bocsájtanak ki egy pulzust. Azonban, a Kis Róka (Vulpecula) csillagképben található PSR 1937+21 katalógusjelű pulzár felfedezéséig (1982) a Rák-köd pulzárja volt az ismert leggyorsabb.

A pulzárok rádiótartományban észlelhető lüktetését próbálták detektálni optikailag is, ami nem volt egyszerű feladat. Végül 1969-ben siker koronázta az erőfeszítéseket, és kimutatták a pulzusokat több független módszerrel is optikai tartományban. Igazolást nyert tehát, hogy a fotómon is kivehető, a köd szívében elhelyezkedő kettős délkeleti csillaga pislog, méghozzá ugyanabban az ütemben, mint a rádiótartományban.

M1-LRGB-20131029-cutlab

A pulzár a saját felvételemen.

M1-pulzar

A pulzár „lüktetése” az optikai tartományban.

Ugyancsak 1969-ben az MIT egy rakétát lőtt fel, mely repülése alatt egy órán keresztül vizsgálta a Rák-ködöt a röntgen tartományban, és ott is sikeresen kimutatták a pulzusokat.

A csillagászokat kezdetben nagyon meglepte a pulzusok pontossága. Elsőre úgy tűnt, hogy egy hihetetlen pontos órára leltek az égen. Azonban további megfigyelések felfedték, hogy a pulzár lassul, naponta 38 nanomásodperccel nő a periódusa. Mintha valami folyamatosan csapolná az égi óra energiáját. Ráadásul a periódusváltozás ütemében is találtak változást. Sőt nemcsak lassul az űrbe küldött pulzusok üteme, hanem néha egy időre fel is gyorsul. Ezt a jelenséget glitch-nek nevezték el. A pulzár idővel visszanyeri az eredeti ütemét, és folytatódik lassulás. Az elsőre atomórákkal vetekedő pulzárokról kiderült, hogy bizony az óra késik, és néha még rakoncátlankodik is.

Neutroncsillag a ködben

Ugorjunk egy kicsit vissza az időben. 1932-ben felfedezik a neutront. Az elméleti fizikusok azonnal rá is vetették magukat. Nem sokkal később (1934) Baade és Zwicky már neutroncsillagokról beszél. 1939-ben Zwicky azt állítja, hogy a neutroncsillagok szupernóva-robbanások eredményei. Szerinte a Rák-ködben is lennie kell egynek. Még fel sem fedezték az első igazán gyors pulzárokat, amikor Gold arról ír 1968-ban, hogy gyorsan forgó neutroncsillagok sugárzó nyalábjai küldik a jeleket az űrbe, hasonlatosan egy világítótoronyhoz. (Ugye még emlékszik arra az olvasó, hogy a nagy riválist, a rezgő fehér törpék elméletét éppen a nagyon gyorsan pulzáló pulzárok ütötték ki a nyeregből?) Ő már ekkor megjósolja, hogy a pulzusoknak folyamatosan lassulnia kell, ahogy a neutroncsillag energiát veszít, és a forgása lassul. Nem telt el sok év, és a szupernóva-maradványok, a pulzárok és az azt magyarázó lassulva forgó neutroncsillagok elmélete találkozott. De ez csak újabb hosszú út kezdetét jelentette csupán.

Mindmáig rengeteg a bizonytalanság a neutroncsillagok elméletét illetően, de néhány dolog azért elég biztosnak látszik. Mivel halott csillagról van szó, így a gravitációnak nem a sugárnyomás, hanem a degenerált „neutrongáz” nyomása áll ellen. Ez a kvantummechanikai eredetű nyomás nem függ a hőmérséklettől, mint az ideális gáz esetén, hanem csakis a sűrűségtől. Nagyjából 2.16 naptömegig tudja megakadályozni az égitest összeroppanását, amennyiben nem forgó neutroncsillagról van szó. Mivel forognak, ezért ennél kb. 20%-kal nagyobb lehet tömegük felső határa. A tömeg alsó határára pedig a Chandrasekhar határ, mely a fehér törpék elméletileg megengedett legnagyobb tömege, vagyis 1.4 naptömeg. A Messier 1 neutroncsillaga például 1.4 naptömegű. Külön érdekesség, hogy eddig még nem találtak 2 naptömegnél nagyobb tömegű neutroncsillagot, illetve 5 naptömegnél kisebb tömegű fekete lyukat. Ez utóbbiak akkor keletkeznek, amikor már semmilyen „kvantummechanikai nyomás” nem képes legyőzni a gravitációt. Miért nem találtak eddig 2 és az 5 nap tömeg közötti csillagmaradványokat? Pontosan ma sem tudja senki. A kutatók azonban lázasan dolgoznak azon, hogy fogást találjanak a problémán, és ezt az űrt mindenféle elképzelt egzotikus objektummal töltötték ki. Ilyen például a kvark csillagok gondolata. Teóriáik megerősítése azonban egyelőre még várat magára.

A neutroncsillagok átmérője mindössze 20 km körüli. A sűrűségük az előző adatok tükrében óriási. Az átlagsűrűségük 4 x 1017 kg/m3 és 6 x 1017 kg/m3 közé esik. Felszíni hőmérsékletük igen tág határok között változik. A Rák-köd fiatal neutroncsillaga 1.6 millió K felszíni hőmérsékletű, s éppen ezért intenzíven sugároz a röntgen tartományban. A centrumában azonban, még ennél is pokolibb a forróság, ott a számítások szerint 300 millió K uralkodik. A neutroncsillagok hőmérséklete idővel csökken. A középkorú, néhányszor 100 ezer éves példányok felszíni hőmérséklete már csak a fele a fiatalokénak. Nagyjából millió évvel a szupernóva-robbanás után a termális sugárzásukat már nem lehet detektálni a röntgen tartományban. Ekkora nagyjából már csak 100 ezer K uralkodik a felszínükön, mely aztán újabb néhány millió év elteltével néhányszor 10 ezer K-ra csökken.

De hogyan keletkeznek a pulzusok? Hogyan működteti a ködöt a Rák-köd belsejében lévő neutroncsillag? Az impulzus megmaradás törvényének értelmében a csillag forgása felgyorsul az összeroppanáskor. Innen származik az eszeveszett pörgés. Megmarad azonban a mágneses fluxus is. A mágneses tér így a csillag sugarának négyzetének inverzével arányosan fog erősödni. Így lehetséges az, hogy a 20 km-es kiterjedésű neutroncsillagoknak akár 108 Tesla erősségű mágneses terük is könnyedén lehet. Összehasonlításképpen ez az érték a Föld esetén 10-5 Tesla, míg a Nap esetén kb. 10-2 Tesla. Gondoljunk csak bele, hogy egy másodpercenként 30-szor körbeforduló roppan erős mágneses tér micsoda elektromos teret tud létrehozni. A Földön található részecskegyorsítókat üzemeltető kutatók biztosan irigykednek erre a kozmikus laboratóriumra. A neutroncsillag relativisztikus sebességre gyorsítja a töltött részecskéket, melyek energiájukkal táplálják a ködöt és biztosítják a fényét, létrehozva a szinkrotron sugárzást.

Moving heart of the Crab Nebula

A Rák-köd központi része a Hubble űrtávcső felvételén. A jobb oldali csillag az üregben a neutroncsillag, melyet a táguló gáz vöröses filamentjei, mint rostos cafatok vesznek körbe. A kékes derengés pedig az erős mágnese térben közel fénysebességgel spirálozó elektronok gerjesztette szinkrotron sugárzástól származik. Forrás: NASA és ESA

Changes_in_the_Crab_Nebula

A neutroncsillag a Rák-köd szíve. A Hubble űrtávcső felvételsorozatán jól látszik, ahogy az alakzatok nagyjából 4 hónap alatt megváltoznak a ködben. Forrás: a képen feltüntetve.

Egy másik, de szintén a mágneses térrel összefüggő mechanizmusnak köszönhetően – tudniillik a forgástengely és a mágnesen pólusok nem esnek egybe – a pólusoknál létrejövő sugárzási nyaláb minden egyes fordulatkor végigsöpör az űrön, és elérheti Földünket is. Ezért foghatjuk az elektromágneses sugárzás több tartományában is a pulzusokat. Alapvetően ez teszi a Rák-köd neutroncsillagát pulzárrá. Az, hogy a pólusoknál pontosan miként keletkeznek a sugárzó területek, illetve hogy a felszíntől milyen távolságra, az még mindig vita tárgyát képezi. Az egyik legelfogadottabb nézet szerint a pólusok környékén a mágneses mező roppant erős elektromos teret hoz létre, mely a neutroncsillag felszínéről is képes elszakítani elektronokat vagy éppen elektron és pozitron párokat képezni. Megindul az elektromos töltések áramlása, és az erővonalak mentén óriási kisülések keletkeznek. Tulajdonképpen a folyamatos villámlásszerű jelenség statikus elektromágneses zaja ér el minket a neutroncsillag minden egyes fordulatakor.

pulsar

A pulzár modellje: a mágnesen pólusok nem esnek egybe, a pólusoknál létrejövő sugárzási nyaláb minden egyes fordulatkor végigsöpör az űrön, és eléri Földünket. Forrás: NRAO

A neutroncsillagok belső felépítéséről inkább csak sejtéseink vannak. A különféle elképzelések részletezésére ehelyütt nincs lehetőség, ezért most csak vázlatos ismertetésre szorítkozom. Az erős gravitáció, a roppant sűrűségük és az erős mágneses tér bizarr szerkezetet eredményez. Ezen égitestek légköre az átmérőjéhez képest roppant vékony, esetleg néhány tucat centiméter, de legfeljebb pár méter lehet mindössze. Ugyan még „normális” anyagú gázok alkotják, de az egyes példányoknál más, és más összetételt sikerült detektálni. A nagyjából három évszázados, így viszonylag fiatal Cassiopeia A szupernóva-maradvány belsejében lévő neutroncsillag légköre például szénben gazdag, Míg más esetekben a neutroncsillag spektrumában inkább a hidrogén és a hélium a domináns. Ez talán a korbeli, hőmérsékletbeli, és kialakulásuk körülményeiből fakadó különbségekből is adódik. Ha létezne olyan cím, hogy a legsimább felületű égitest, akkor a neutroncsillagok jó eséllyel pályázhatnának rá. Az erős gravitáció a legkisebb egyenetlenségeket is kisimítja. A külső 1 km-en fémes tulajdonságú szilárd szerkezetre emlékeztető kérgük lehet. A kéreg felső részében, még egyáltalán nem a neutronok a dominánsak. „Hétköznapi” atommagok, talán éppen vas atommagok alkotnak rácsszerkezetet, melyet elektronok tengere jár át. A neutroncsillag belseje felé haladva, ahogy a sűrűség növekszik, egyre több és több neutron, melyek normál körülmények között amúgy elbomlanának (példának okáért a szabad neutron felezési ideje mindössze 611.0±1.0 másodperc). Először az atommagok dúsulnak fel neutronokban. Majd a nagy mennyiségben keletkező neutronok miatt a nukleáris kölcsönhatás már nem képes összetartani az atommagokat, és megkezdődik a neutroncsepegésnek nevezett folyamat. Ennek eredményeként már szabad neutronokkal is találkozhatunk. De a felszín alatti mélység növekedésével maguk az atommagok is eltorzulnak, pálcikaszerűvé válnak. A kéreg alatt, szupravezető és szuperfolyékony (nincs ellenállása a mozgással szemben) többségében neutronokból álló zóna található. Ez a „nukleáris kotyvalék” a szabad neutronok mellett, még mindig hozzávetőlegesen 5-10%-ban szabad elektronokból, protonokból és atommagokból is áll.  Még mélyebben, a belső magban, ahol már az atommagok sűrűségét is meghaladja a sűrűség, még ennél is furcsább körülmények uralkodhatnak. Itt talán már kvarkos állapotban van az anyag.

neutron_star_struct1

„Tipikus neutroncsillag” elméleti modellje. Jobb oldalon a sugár km-ben, bal oldalon pedig a sűrűség került feltüntetésre.

Mint minden modell, ez is megfigyelések alapján konstruált és megfigyelésekkel ellenőrizhető. A csillagmaradvány forgásának lassulása, a pulzusokban jelentkező apró szabálytalanságok, a neutroncsillagok lehűlésének üteme mind-mind árulkodik annak belső felépítéséről.

Persze ezek értelmezése nem egyszerű feladat. Hadd ragadjam ki a korábban említett glitch-eket példaként. A pulzációs periódus megugrása nagyon rövid idő alatt zajlik le, de nagyjából egy hónap is szükséges, míg visszaáll az eredeti ütem, és a lassulás folytatódik. Ez is arra enged következtetni, hogy a neutroncsillagnak szuperfolyékony a belseje. Érdekes, hogy öreg pulzároknál nem fordul elő glitch. Így talán azok belső felépítése már eltér a fiatalokétól, vagy csak már más állapotban vannak.

Régebbi elképzelések szerint, az apró felgyorsulások a neutroncsillagok kérgében keletkező repedések következményei. Mivel az apró égitest gyorsan forog így alakja nem gömbszimmetrikus. A szilárd kéregbe pedig „belefagy” a csillag alakja, vagyis a kidudorodás az egyenlítőjénél. Ahogy a forgás üteme lassul, úgy a csillag egyre kevésbé lesz lapult. A deformáció megrepeszti a kemény kérget, a dudor laposodni kezd. A kéreg sugara csökken, így az impulzus-megmaradás törvénye értelmében a kéreg forgása felgyorsul. A forgás üteme pedig azért áll lassan vissza, mert a neutroncsillag belseje szuperfolyékony, így a külső szilárd kéreg hosszú idő alatt tudja csak azonos sebességre hozni a belső részeket, hogy aztán a forgás lassulása folytatódjon. A megfigyelésből tehát modell alkotható a neutroncsillag felépítésére, illetve annak működésére. A baj csak az, hogy időközben kiderült (más neutroncsillagokkal kapcsolatos megfigyelések alapján is), hogy ez az elképzelés hibás. A gyorsulások alaposabb vizsgálata megmutatta, hogy ez a mechanizmus nem tud elég energiát átadni, és nem is írható le vele pontosan a jelenség karakterisztikája. (Ettől függetlenül manapság is még szembejön velem sok helyen ez az elképzelés ismeretterjesztő könyvekben, és internetes oldalakon.) Az újabb kifinomultabb modellek már abból indulnak ki, hogy a neutroncsillagok mágneses mezeje nem képes behatolni a szuperfolyékony anyagba. A mágneses mező viszont áthalad a neutroncsillagon, ami pedig csak úgy lehetséges, ha normál anyagú örvények haladnak keresztül a szuperfolyékony belsőn. Ezen örvények tengelye közelítőleg párhuzamos a forgástengellyel. Az örvények raktározzák az impulzusmomentumot, mintegy őrizve annak az időszaknak a forgási energiáját, amikor a neutroncsillag még gyorsabban forgott. Ezek a belső képződmények a külső rétegek anyagával is kapcsolatban állnak, mintegy hozzájuk kapcsolódnak. A külső rétegekről időnként örvények válnak le, és halnak el miközben a csillag az alacsonyabb impulzusú (lassabb forgású) állapotra „hangolódik”. Az örvények átrendeződése közben energia szabadul fel, ami, csak ha egy ideig is, de felpörgeti a külső részeket. Ez maga a glitch jelensége. Amint létrejön az új forgási egyensúly, az örvények ismét hozzákapcsolódnak a külső réteghez.

A példával csak azt szerettem volna megmutatni, hogy adott jelenség miként magyarázható, és abból milyen következtetéseket lehet levonni a neutroncsillag belső szerkezetére vonatkozóan. Arra is rá szerettem volna világítani, hogy nem minden modell állja ki az újabb megfigyelések (esetleg újabb elméleti megfontolások) próbáját. Az újabb, több paramétert figyelembevevő teória pedig már kissé más képet fest erről az objektum típusról és annak működéséről. Összességében elmondható, hogy még mindig nincs sziklaszilárd elképzelése a csillagászoknak arról, hogy egészen pontosan milyen is a Rák-köd neutroncsillaga, és hogyan is működik. Az viszont bizonyos, hogy forgó dinamóként hozza létre azt a csodát, melyet megfigyelhetünk, miközben energiát veszít, és amiért lassul a forgása.

Kétségtelenül akad még megválaszolatlan kérdés, de a Rák-köd és a benne található neutroncsillag tanulmányozásával rengeteg ismerethez jutottak a kutatók a szupernóva-maradványokkal kapcsolatban. A kínai császári udvar főcsillagásza biztosan nem sejtette 1054-ben, hogy az akkor megpillantott vendégcsillag sok évszázaddal később milyen fontos szerepet fog majd betölteni a világmindenség megismerésében. Jóslatai erről nem szóltak.

A polarizáció megfigyelése amatőrcsillagászati módszerekkel

A cikk írása közben ötlött fel bennem a gondolat, hogy milyen remek dolog lenne megismételni Walter Baade megfigyeléseit. Nem voltak nagyratörő terveim, csupán szerettem volna én is kimutatni a Rák-ködben a fény polarizációját, és így közvetve a szinkrotronsugárzást. Milyen nagyszerű is lenne, ha a polarizáció síkjának változása révén láthatnám a szupernóva-maradványban tekergőző mágneses teret! Vajon lehetséges ez? Baade mégis csak 5 méteres teleszkópot használt a vizsgálatok során.

A képrögzítési technológia nagyon sokat fejlődött az elmúlt évtizedekben. A mai DSLR gépek és CCD-k „érzékenysége” messze felülmúlják a régi fotólemezekét. Ebben bízva másnap este felhívtam Szeri László barátomat, és felvetettem neki az ötletet. Egyáltalán nem kellett győzködnöm, rögtön felcsigázta az észlelési terv. Annak tudatában raktuk le a telefont, hogy másnapig még több technikai problémát meg kell oldanunk, illetve megegyeztünk abban, hogy elfogadjuk, ha semmi használható eredménnyel nem jár a megfigyelés. Akkor is tegyünk próbát!

Mivel biztosra akartam menni, ezért hivatásos csillagász véleményét is szerettem volna kikérni. Azonnal felhívtam Kiss Lászlót, aki arra biztatott, hogy hajtsuk végre a tervet, és pár hasznos tanáccsal is ellátott.

Másnap munka után azonnal Kiskunfélegyháza felé vettem autóval az irányt. A csomagtartóban pihent más hasznos aprósággal a hétköznapi fotózásban használt Hoya gyártmányú polarizációs szűrőm. Volt bennem némi szkepticizmus a szűrővel kapcsolatban. Sok sikeres, és nekem tetsző felvételt köszönhettem ennek a szűrőnek, de eddig csak nappali fénynél kellett helytállnia. Egyre az járt a fejemben, hogy vajon csillagászati célokra is megfelel-e majd a minősége. Két előnye viszont volt Szeri László csillagászati célokra szánt szűrőjével szemben: a mérete, és az a képessége, hogy játszi könnyedséggel lehetett elforgatni, miután megfelelően rögzítettük.

A megbeszélt péntek 18 órai időpontban már ott toporogtam Laci barátom kapuja előtt. A csillagok szépen ragyogtak az égen, de a nyugodtság szemmel láthatóan nem volt a legjobb. Kísérletre jó lesz! Kicsit melegedtünk még a konyhában, míg elkészült a kávé, és amíg a gyerekek elmajszolták a kis csokoládét, amit „TTK bácsi” Mikulása idén kicsit korábban küldött. Majd irány a műhely.

Először meg kellett oldani a polarizációs szűrő elhelyezését a fényútban. Az idők folyamán gondosan felépítettet és precízen beállított optikai elrendezésén Laci nem igazán szerette volna változtatni. Szerencsére a „Nagy Newton” kihuzatában lévő „CCD-szűrőváltó-szűrőváltó-korrektor” felépítmény végén éppen volt megfelelő menet. Ide az a menetes sötét kupak szokott kerülni, mely a dark képek készítésekor megakadályozza a fény bejutását a CCD-be. Laci a kupakot kivágta, majd ebbe ragasztotta bele ügyesen a szűrőt. Ügyelnie kellett, hogy az a megfelelő síkban álljon, és a külső gyűrűjével továbbra is forgatható maradjon.

A szűrő kiindulási pozíciójának a Rák-köd hosszanti tengelyét választottuk, majd 45 fokonként kívántuk elforgatnia szűrőt. Igen ám, de a szűrő három méternél is magasabban lesz, a távcsőtubus belsejében. Még ha el is érjük, akkor is vakon kell majd forgatni. Laci ezt a problémát is megoldotta. Ragasztóból gumók kerültek 45 fokonként a forgatógyűrűre, a 0 fokot (a gyártó jelölése alapján) kis fémgyurmával „jelölte meg”. Majd behunyt szemmel következett a megoldás tesztelése. A „vakteszt” után kinyitottuk a kis csillagvizsgálót, amiben Laci főműszere türelmesen várakozott. A szokásos rutinok után, Laci beállította a Rák-ködöt. A szűrőt addig nem is szereltük be. Ez annak volt betudható, hogy előzőleg ugrattam Lacit. Vajon milyen hangja lehet a főtükrön koppanó szűrőnek? Ha már beesett, akkor hogyan szedjük ki majd belőle? Melyik fekete festék a legalkalmasabb a kipattant tükördarab javítására? Biztosra mentünk! Már ha lehet azt biztosnak nevezni, hogy a szűk helyen egy hosszú kitolható létrán állva a magasban, egyáltalán nem kapaszkodva sehová, benyúlva a tubusba, megpróbálja az ember vakon becsavarni a szűrőt. Laci pont ezt a bravúrt hajtotta végre. A nem éppen veszélytelen műveletet a polarizációs szűrő minden egyes elforgatáskor meg kellett ismételni.

Izgatottam vártuk az első nyers kép megszületését. Ezt a képet aztán elosztottuk a korábbi polarizációs szűrő nélkül készült nyerssel, és azonnal látszott a két kép közötti különbség. Nagy volt az öröm! Azért minden kétségünk még nem szállt el. Elindítottuk az első szekvenciát, és magára hagytuk a távcsövet a feladatával. Az időt főleg a műhelyben melegedve múlattuk, néha pedig ránéztünk a kertben felállított, Laci által csak „quadokli”-nak becézett 150 mm-es objektívekkel felszerelt 4 fényképezőgépre, mely szorgalmasan készítette a felvételeket az égbolt kiszemelt területéről.

Elkészült az első széria. Laci újra a magasba mászott a létrán, és 45 fokban elforgatta a szűrőt. Megint csak lélegzetvisszafojtva vártuk az első képet. A 45 fokos nyers képet elosztottuk a korábbi 0 fokos képpel, és azonnal láttuk, hogy érdemes folytatni a munkát. Első ránézésre látszott a polarizációs szűrő elforgatása után, hogy a köd bizonyos területeinek intenzitása megváltozott. Látva, hogy eredményes lesz a kis projektünk, folytattuk a munkát, rögzítettük a 45 fokban, a 90 fokban, és a 135 fokban elforgatott szűrővel is felvételeket.

Majdnem hajnali három óra volt, mire roppant fáradtan hazaértem Kiskunfélegyházáról, de másnap megegyeztünk abban Lacival, hogy nagyon is jó móka volt az észlelés. Kellene még több ehhez hasonló! Már csak a felvételek feldolgozása volt hátra, melynek eredménye lent látható.

M1-P_P

Először a Rák-köd hosszanti tengelyével párhuzamosan beállított polarizációs szűrővel felvett, úgynevezett 0 fokos összegzett képpel osztottuk el az ahhoz képest 45, 90, 135 fokban elforgatott szűrővel készített összegzett képet. A felső sorban a kétféle nyersanyagokból összegzett képek hányadosai, alattuk wavelet transzformációk segítségével kibontott belső részletek láthatóak. Ennek a módszernek köszönhetően, jól látszanak a szűrő elforgatásából származó különbségek. Mindez pedig annak a következménye, hogy a köd fénye polarizált, ráadásul az egyes területein eltérő szögű a polarizáció síkja.

A felvételek 458/1900 Newton-távcsővel, Atik 11000 CCD-vel készültek. Szekvenciánként: 10 x 3 perc (bin2).

M1-P_L

Ezen a verzión a Rák-köd polarizációs szűrő nélküli felvételeiből összegzett képpel osztottuk el a különböző irányokban elforgatott polarizációs szűrővel felvett nyersanyagból összegzett képeket. A felső sorban a kétféle nyersanyagokból összegzett képek hányadosai, alattuk wavelet transzformációk segítségével kibontott belső részletek láthatóak. Itt is jól látszanak a különbségek. Ez alapján is elmondható, hogy a köd fénye polarizált, ráadásul az egyes területein eltérő szögű a polarizáció síkja.

A felvételek 458/1900 Newton-távcsővel, Atik 11000 CCD-vel készültek. Szekvenciánként: 10 x 3 perc (bin2).

Összességében, amatőrcsillagászati módszerekkel mi is megállapítottuk, hogy a köd fénye tényleg polarizált! Saját szemünkkel láttuk a szinkrotron sugárzást akcióban, „megragadtuk” a mágneses erővonalakat! Olyan élmény volt ez nekem, mint mikor először szórtam vasport a mágnes köré fizika órán. Érdekes, és lenyűgöző volt megpillantani az amúgy szemünk számára láthatatlant, személyesen működésben látni a természetet.

 

Felhasznált irodalom:

Simon Mitton: A Rák-köd (ISBN 963 281 332 4)

Werner Becker: Neutron Stars and Pulsars (ISBN 978-3-540-76965-1)

J. Craig Wheeler: Kozmikus katasztrófák (ISBN 9633686822)

Wynn C.G. Ho, Craig O. Heinke: A Neutron Star with a Carbon Atmosphere in the Cassiopeia A Supernova Remnant

W. Becker, B. Aschenbach: ROSAT HRI Observations of the Crab Pulsar: An Improved Temperature upper limit for PSR 0531+21

C. M. Espinoza,A. G. Lyne, B. W. Stappers, M. Kramer: A study of 315 glitches in the rotation of 102 pulsars

Az SN2016gkg szupernóva az NGC613 spirál galaxisban

NGC613-LRGB-20161020-T32-300s-TTK-label

1. ábra. Az SN2016gkg szupernóva az NGC613 spirál galaxisban.

2016-10-20, 2016-10-23, 2016-11-01, 2016-11-21 – Siding Spring Observatory

20 x 300 sec L, 8 x 300 sec R, 8 x 300 sec G, 8 x 300 sec B

iTelescope.net T32 – Corrected Dall-Kirkham Astrograph Planewave 17″ – 43 cm, f/6.8  – FLI Proline 16803 CCD kamera

A képre kattintva, az nagyobb felbontásban is elérhető.

Azok a csillagok, melyek kiindulási tömege (MZAMS) meghaladja a 8-9 naptömeget, életük végén, mikor az energia-utánpótlásuk kimerül, szupernóvaként robbannak fel. Fényük saját galaxisukat is túlragyogja, miközben anyaguk jelentős része szétszóródik az űrben beszennyezve azt a csillagban korábban létrejött és a robbanáskor keletkezett elemekkel. Minden egyes ilyen úgynevezett kollapszus-szupernóva (core collapse supernova) megfigyelésével a csillagászok közelebb jutnak a robbanást kiváltó, és a közben lejátszódó folyamatok mechanizmusának megértéséhez. Fontos ez, mert e masszív ragyogó csillagok nemcsak életükkel, de halálukkal is jelentős hatást gyakorolnak környezetükre. A szupernóva-robbanás teremt és pusztít. A táguló maradvány a közeli por és gáz ködökben lökéshullámot keltve, beindíthatja az újabb csillagok keletkezését. Más esetekben pedig tisztára söpörve a környezetét akár véget is vethet ennek az egésznek. Fontos szerepet játszanak a galaxisok fizikai és kémiai evolúciójában. Valószínűnek látszik, hogy Naprendszerünk keletkezését is egy ilyen robbanás indította be, és hogy létezésünkben benne van a kezük. Kutatásukkal eredetünk kérdésének megválaszolásához is közelebb juthatunk.

Az SN2016gkg jelölést kapott szupernóvát Victor Buso és Sebastian Otero fedezte fel 2016. szeptember 20-án az NGC613 spirál galaxisban. Az akkor még csak 17.6 (CV) magnitúdós szupernóváról nem sokkal később kiderült, hogy különleges a maga nemében. Ez inspirált arra, hogy felvételeket készítsek róla, majd azokat kimérjem. Csábított a lehetőség, hogy annyi év után újra a TTK névkóddal ellátott észlelésekkel gyarapítsam az MCSE és az AAVSO változócsillag adatbázisát. Miért? Röviden: változócsillagokat észlelni jó! Azon kevés elfoglaltságok egyike, melynek során személyesen is meggyőződhetünk róla, hogy a Naprendszeren túl elterülő világ nem is annyira örök és statikus, mint ahogyan azt sok-sok, a világegyetem életében csak röpke szempillantásnak tűnő emberöltőn keresztül elődeink gondolták. Nem is beszélve arról, hogy ebben az esetben nem hogy a Naprendszeren túl, de egy másik galaxisban volt a megfigyelésem célpontja. Ha pedig a szorgosan gyűjtött fényességértékek még tudományos célra is használhatóak, az csak külön öröm. Egyedül azonban mindez nem sikerült volna. Tordai Tamás nagyon nagy segítségemre volt a felvételek kiértékelésében. Tamás amatőrcsillagászként magas szinten űzi a fotometriát (lásd Tordai Tamás: Hogyan észlelek változókat? – Meteor 2016/2. 46-51.). Külön kiemelném a V404 Cygni jelű fekete lyuk kettős fényváltozásával kapcsolatos megfigyeléseit, mely révén egy a Nature-ben is megjelent cikk társzerzője.

Talán meglepi az olvasót, de a digitális változócsillag észleléséhez nem is kellenek feltétlenül bitang drága műszerek. A siker kulcsát nem egyedül a költséges távcső, mechanika, és képrögzítő eszköz jelenti. Ha pedig valaki a vizuális észlelésbe szeretne belekóstolni, annak elég mindössze csak binokulárt, és az összehasonlító csillagok fényességét tartalmazó csillagtérképet ragadni. A többi már csak kitartás és az időközben szerzett rutin kérdése. Érdemes kipróbálni!

Amatőrcsillagászati szempontból szerencsés korban élünk, mert noha az NGC613 a déli Szobrász (Sculptor) csillagképben található, ki se kell mozdulnom ahhoz, hogy belevágjak frissen kitalált programomba. Több helyen is bérelhetünk távcsőidőt az interneten keresztül. Az elhatározásom után alig 20 perccel már el is készült az első nyers felvétel, és nem jelentett különösebb problémát az ezt követő időszakban se a nyomon követése. A programok automatikusan lefutottak (ha éppen derült volt az ég), miközben én éltem mindennapi életemet.

Legfőbb célom tehát a szupernóva fényességváltozásának követése volt, melyhez alkalmanként akár egyetlen darab jól sikerül nyers felvétel is elegendő, de azért nem árt, ha van pár kontroll fotó is a tarsolyunkban. A cikk elején látható LRGB kép kidolgozása másodlagos szempontként szerepelt a terveimben. Előttem már eléggé sűrűn betáblázták a távoli távcsövet, így a saját programomat már csak a megmaradt lyukakba tudtam elhelyezni. A megfigyelési ablakok kiválasztásakor még egyáltalán nem tudhattam, hogy derült lesz-e az éjszaka, és milyen lesz az ég minősége. Nem tagadhatom, hogy végül örültem annak, hogy összegyűlt kellő számú, megfelelő minőségű kontroll felvétel. Ezekből és a második napon felvett RGB szűrős képekből végül elkészíthettem a saját illusztrációs képemet, ugyanis már csak maga a galaxis is elég érdekes ahhoz, hogy szenteljünk neki némi időt.

NGC613

A galaxist William Herschel fedezte fel 18.7 hüvelykes (47.5 cm-es) f/13-as műszerével a Szobrász (Sculptor) csillagképben. Ő még nem ismerte fel valódi természetét. Erre egészen 1912-ig kellet várni, mikor is elkészült róla az első fotó. Ezen jól kirajzolódtak az „örvények, és bennük a csillag kondenzációk”, így az NGC613 a spirál köd besorolást kapta. Direkt az akkori szóhasználattal éltem. Akkoriban még vita folyat arról, hogy ezek az örvénylő ködök vajon Tejútrendszerünkhöz tartoznak, vagy éppen ellenkezőleg, maguk is távoli csillagszigetek. A kérdést végérvényesen Edwin Hubble döntötte el, aki a Lokális Csoport több galaxisát is sikeresen csillagokra bontotta. Az Androméda galaxisban azonosított Cepheida típusú változócsillagok periódus-fényesség relációját felhasználva kiszámította azok távolságát. Az így kapott távolságadatokkal bizonyította 1926-ban, hogy az a Tejútrendszeren kívül helyezkedik el. Nem volt kérdéses többé, hogy a spirál ködök távoli galaxisok. Bár az elmúlt két évtizedben többször is meghatározták, azonban az NGC613 távolsága továbbra is csak elég bizonytalanul ismert. A legutóbbi, nem a vöröseltolódáson alapuló vizsgálat szerint galaxisunktól 26.4±5.3 Mpc (Nasonova és mások – 2011), vagy másképpen 86 millió ± 17 millió fényév választja el.

A galaxis különböző régióinak fényessége nagyon nagy intenzitásbeli különbségeket mutat. (Olyannyira, hogy a képek feldolgozás során erre külön figyelmet kellett fordítanom.) A kisméretű, de roppant fényes centrális régióból indulnak ki a vastag küllők. Ezek mentén porsávok kígyóznak, míg az egyik küllőt (a felvételemen a felsőt) a mi látóirányunkból nézve szinte teljes egészében vastag porfelhők takarják. A lencseszerű központi területet is porsávok szabdalják, melyek nem túl határozottan, de spirális mintázatot rajzolnak ki. Amíg a legtöbb küllős spirál galaxis esetében mindössze egy-egy kar indul ki a küllők végéből (összesen tehát csak két karjuk van), addig az NGC613 esetében több határozott kar is megkülönböztethető. A küllők végénél, illetve az ovális részt gyűrűként körbefonó karokban, de még a külső karokban is megfigyelhető kékes csomók fiatal csillagok halmazai. Ezt a színt a legnagyobb tömegű, legfényesebb tagjaik kölcsönzik nekik. Ezek könnyűszerrel túlragyogják kisebb tömegű, hűvösebb és éppen ezért inkább sárgás és vöröses árnyalatú társaikat. A vöröses árnyalatú pamacsok pedig az ionizált hidrogént tartalmazó (HII) régiók. Az itt lévő gázfelhőket az előbb említett forró csillagok intenzív sugárzása gerjeszti. E behemót csillagok élettartama tömegüktől függően mindössze néhány millió, illetve néhányszor 10 millió év. A kékes és vöröses pöttyök sora tehát mind a folyamatosan zajló csillagkeletkezésnek az egyértelmű jelei, melyek szemmel láthatóan a küllők vége környékén a legintenzívebb. Távolodva a csillagoknak életet adó területektől, a karok fényessége ugrásszerűen csökken, és lassan belevész az űr sötétjébe.

Megnézve a felvételemet, azon is szembetűnő az NGC613 kompakt, az egész galaxishoz képest fényes magja. Ez az attribútum általában az aktív galaxis magok (AGN – Active Galactic Nucleus) jellemzője. Elsőre, a mag aktivitása azonban közel sem volt teljesen nyilvánvaló. Az optikai spektruma alapján három évtizeddel ezelőtt (1997) a kompozit objektum besorolást kapta. A centrum színképe egyfelől ugyan halványan az aktív galaxis mag jellegzetességeit mutatta – az az úgynevezett Seyfert típusú galaxisokéra hajazott -, de legfőképpen ionizált gázfelhők (HII régiók) jelenlétére utalt. Éppen ezért a legtöbb katalógusban a Seyfert/HII jelölés szerepel a csillagrendszer neve mellett. 2009-ig kellet várni, míg a Spitzer infravörös műholddal felvett színkép alapján bizonyosságot nyert az AGN létezése, később ezt a röntgen tartományban működő XMM-Newton távcsővel végzett megfigyelések is megerősítették. Vagyis, az NGC613 kompakt fényes centrumában egy szupermasszív központi fekete lyuk (SMBH: supermassive black hole) bújik meg a kíváncsi tekintet elől, fontos szerepet játszva a mag aktivitásában.

VLA_Finley3_med

2. ábra. A VLA (Very Large Array) tányérantennái Új Mexikóban (Socorro). Az első nagy felbontású rádióészlelések az NGC613-ról ezzel a rádiótávcső rendszerrel rögzítették a csillagászok. Az eredményeket 1987-ben, illetve 1992-ben publikálták. A 27 darab 25 méter átmérőjű antennával fogott jeleket kombinálva egy 36 km átmérőjű rádióantenna felbontása, és egy 130 méter átmérőjű rádióantenna érzékenysége érhető el. Kép forrása: NRAO

Valójában erre már az első nagyobb felbontású rádiófelvételek is utaltak (1987, 1992). Ezeken a rádió kontinuum képeken a galaxis centrumában egy intenzíven sugárzó, elnyúlt terület volt látható. Azt ezt követő vizsgálatok megmutatták, hogy ez a nagyságrendileg 300 pc (1000 fényév) kiterjedésű képződmény három diszkrét komponensből áll.

NGC613-SINFONI-Flux-velocitydisp-VLA

3. ábra. Az NGC613 centrumának Fe II fluxus és sebesség diszperzió térképe (VLT/SINFONI). A térképre a VLA rádió kontúrok is rákerültek, melyen jól elkülönül az egy egyenes mentén elhelyezkedő három diszkrét rádióforrás. Figyeljük meg az egybeeséseket! Forrás: J. Falcón-Barroso és mások

A rádiótávcsövekkel kapott eredményeket az optikai tartomány eredményeivel kombinálva a kutatók megállapították, hogy az elnyúlt alakzatban a középső rádiófolt, és az optikai centrum szinte tökéletes (0.1ʺ-es) egybeesése nem lehet véletlen. A galaxis magja ez a rádióforrás. Az NGC613 centrumának optikai és a közeli infravörös tartományban elvégzett spektroszkópiai elemzésből nyert galaxison belüli sebességeloszlások, illetve a rádió kontinuum morfológiája pedig arra világított rá, hogy a másik két folt a magból kiinduló energikus rádió kiáramlás következménye. E rádió jet orientációja elég közel esik az égbolt síkjához, így a galaxis síkjától sem lehet túlságosan messze, melynek inklinációja 35°.

The VLT telescopes are ready for observation at sunset

4. ábra. A VLT (Very Large Telescope) 4 darab 8.2 méteres tükörátmérőjű távcsöveinek felkészítése folyik a közelgő éjszakai megfigyeléshez (Cerro Paranal, Chile). A csillagászok a Hubble űrtávcső mellett, a VLT-t használták a közeli infravörös és a látható tartományban végzett megfigyelésekhez (VLT/SINFONI). Kép szerzője: Gerhard Huedepohl

De hogyan jönnek létre ezek a jet-ek? A galaxis középpontjában található fekete lyuk gravitációjukkal csapdába ejtve, mohón próbálják elnyelni a környezetükben található anyagot. Az étekként szolgáló intersztelláris gáz és por, mely a környező felhőkből, vagy éppen szétszaggatott csillagokból származik, akkréciós korongot formál. A korongot kívülről sűrűbb, lassabban keringő gázfelhők veszik körül. Az akkréciós korong anyaga miközben befelé örvénylik, egyre gyorsabban mozog és felhevül. A folyamatban a mozgási energiájának egy jelentős része elektromágneses sugárzássá alakul. Az akkréciós korong mindkét oldalán, arra merőlegesen, a forgástengely mentén plazmából álló jet-ek jönnek létre, melyek a fekete lyuk közeli erős mágneses terében közel fénysebességre gyorsított, töltött szubatomikus részecskékből állnak. Ezek a töltött részecskék a mágneses térben kifelé spirálozva úgynevezett szinkrotronsugárzást hoznak létre. A jet-ek létrejöttének pontos mechanizmusa még a mai napig vita tárgyát képezi a kutatók körében. Valószínűsíthető, hogy az akkréciós korongban felcsavarodó mágneses térnek kitüntetett szerepe van abban, hogy a forgástengely mentén keskeny nyalábba terelődik a kiáramlás. Más galaxisok esetében megfigyelték már, hogy az aktív magból kiinduló rádió jet-ek képesek felgyorsítani, illetve felfűteni a környezetükben lévő molekuláris gázokat, melyek gyakran a kiáramlások tömegének jelentős részét adják. Az, hogy a két rádió tartományban megfigyelhető szélső folt ténylegesen a központi fekete lyukból kiinduló egy vonalban elhelyezkedő különálló entitások, vagy pedig a beeső sugárzás által felmelegített intersztelláris gáz buborékjai, még tisztázásra szorul.

agn_tipusok

5. ábra. Aktív galaxis mag sematikus vázlata.

A VLA rádiótávcső rendszerrel készült rádióképen a mag körül egy gyűrű alakú képződmény (nuclear ring) is felfedezhető. Ez a nagy felbontású optikai felvételeken is sejthető, de a galaxis centrumában lévő nagy mennyiségű por jórészt elfedi, és éppen ezért sokkal inkább a közeli infravörös tartományban tanulmányozható. Az infravörös megfigyelések tanulsága szerint, a gyűrű 7 különálló fényes területre bomlik. De mi ez a gyűrű, és mik ezek a csomók benne?  A galaxisban lévő intersztelláris anyag a küllők tengelye mentén áramlik be erre a területre. Olyan, mintha egy körtáncba folyamatosan emberek érkeznének két egymással szemben lévő irányból. A gáz összesűrűsödik ezeken a pontokon (ODR – Over Density Region) és beindul a csillagok rövid ideig tartó robbanásszerű keletkezése. A megszületett csillagok halmaza pedig folytatja megkezdett „körkörös táncát” a gyűrűben. De a csillagok születése csak addig zajlik, míg az első szupernóvák ki nem söprik a gázt a környezetükből. Ahogy keringése során távolodik a halmaz ezektől a sűrűsödésektől folyamatosan öregszik. Idővel újabb sűrűsödések jönnek létre a „belépési pontok” környékén, és így ott új halmaz születik. A csillagok keletkezése tehát epizodikus jellegű, a „legyártott” halmazok pedig tovahaladnak a körkörös „galaktikus futószalagon”. Így alakul ki a gyöngyökből álló nyaklánchoz hasonló formáció (pearls on a string scenario).

POS-3

6. ábra. A gyűrűn belüli folyamat sematikus ábrája. A két átellenes ponton (vastag nyilak) gáz áramlik a gyűrűbe, ahol sűrűsödések jönnek létre (ODR). A robbanásszerű, rövid ideig tartó csillagkeletkezésben kialakult halmazok pedig folytatják keringésüket a gyűrűben, miközben öregszenek. Forrás: Forrás: J. Falcón-Barroso és mások

NGC613-ring-l

7. ábra. Az NGC613 magját körbevevő gyűrű alakú képződmény (nuclear ring) a HST felvételén (F450W, F606W, F814W szűrőkkel készült kompozit kép).

NGC613-multiple-flux

8. ábra. A VLT-vel a közeli infravörös tartományban készített felvételeken még szembetűnőbbek az NGC613 „forró foltjai”, vagyis a fiatal halmazok és csillagkeletkezési régiók. A képeken speciálisan megválasztott, különböző hullámhosszakon megfigyelt emissziós fluxus látható. A fluxus térképek balról jobbra a következők: Brγ (Bracket Gamma: 2.16 μm), [Fe II] (1.64 μm), H2 (2.12 μm), kompozit színes fluxus kép. A kompozit kép színei három különböző emissziótól származnak: He I – kék, Brγ – zöld, [Fe II] – vörös,. A képek körülbelül 700 pc (kb. 2300 fényév) szélesek. Észak felül, kelet pedig balra van.

A 8. ábra fluxus térképei közül a kompozit kép illusztrálja az egész folyamatot a legjobban. Kitűnően látszik rajta a csillagkeletkezés evolúciója. A halmazban a legnagyobb tömegű csillagok a legforróbbak, de egyben a legrövidebb életűek is. Miközben a halmaz a gyűrű mentén keringve tovahalad, távolodik a sűrűsödési ponttól, ezek a csillagok pusztulnak ki a legelőször. Életük végén ezek szupernóvaként lángolnak fel. Vagyis, ha az elképzelés helyes, akkor minél távolabb van egy halmaz a sűrűsödési ponttól, annál öregebb, és így annál kevesebb benne a nagytömegű forró csillag.

A He I és Brγ emissziós vonalak létrejötte annak köszönhető, hogy a forró O és B típusú csillagok intenzív UV sugárzása fotoionizálja a környezetét. A rekombinációkor kibocsájtott foton pedig létrehozza az emissziót. Az elektron azonban közel sem biztos, hogy az alap energiaállapotra tér vissza. Gyakran gerjesztett marad, és idővel innen lép alacsonyabb energiaszintre. Ez az oka, hogy különböző színképvonal sorozatok tartoznak egy adott elemhez. A Brγ például a Brackett sorozat egyik vonala.

A He I emisszió létrejöttéhez nagyobb ionizációs energia kell, mint a Brγ-hoz, vagyis forróbb, és így nagyobb tömegű csillagra van ehhez szükség. A He I fluxus gyorsan leesik nem sokkal a robbanásszerű csillagkeletkezés után. Gyorsabban, mint a Brγ fluxus. A masszív csillagoknál ugyanis csak a még masszívabbak élik le sokkal gyorsabban az életüket. A két emisszió arányából így 0-10 millió éves időskálán meg lehet becsülni a halmaz korát. Az [Fe II] emisszió pedig a szupernóva-robbanások által felfűtött (fast shock, shock-heating) intersztelláris anyag nyomon követésére alkalmas. Az [Fe II] fluxus a tapasztalatok szerint 3-35 millió éves időskálán közel állandó marad, majd élesen letörik. E három emisszió fluxusának arányából megbecsülhető a halmazok kora 0-35 millió éves intervallumban. Mivel a gáz és a csillagok a gyűrűben körülbelül ennyi idő alatt tesznek meg egy teljes keringést, így ezzel a módszerrel ellenőrizhető, hogy a fentebb vázolt elképzelés a gyűrűvel kapcsolatban tényleg helyes-e.

Ahelyett, hogy a konkrét módszert ismertetném, győződjünk meg inkább a dologról a szemünk által. A kompozit képen látható, hogy a legnagyobb tömegű csillagok a halmazokban, a beáramlásnál kialakuló sűrűsödések közelében a leggyakoribbak. Itt a legdominánsabb a He I emisszió (kék szín) a csomókban. Kissé tovább, az óramutató járásával ellentétes irányban, a He I emisszió fluxusa jelentősen lecsökken. A kék zöldbe megy át. Majd az [Fe II] vöröse uralkodik el. A felvázolt modellt tehát ez a megfigyelés alátámasztja. Legalábbis ez a helyzet a gyűrű déli szakaszán.

De miért mutat más képet a gyűrű a „felső”, északi régióban? Ahogy a 2. ábrán is látható, a rádiótartományban intenzíven sugárzó terület hossztengelye merőleges a perspektíva miatt ellipszisnek látszó gyűrű nagytengelyére. Elfogadva, hogy a gyűrű valós alakja ténylegesen a körhöz közeli, annak inklinációja körülbelül 55°. Mint azt fentebb is említettem, a rádió jet orientációja a galaxis síkjához közeli, melynek inklinációja pedig 35°. A gyűrű e szakaszán tehát azért nem tapasztalható számottevő Brγ, [Fe II], H2, He I emisszió, mert a kúp alakú kiáramlás kisöpörte onnan a port és a gázt. Az aktív galaxis magok jelentős hatást képesek gyakorolni a galaxison belül a gázra, s mivel a jövendő csillaggenerációk számára ez jelentheti az alapanyagot, így magára a csillagkeletkezésre is.

Érdekes továbbá, hogy a gyűrűn belül a magvidéken tetemes gázkészlet található az NGC613-ban. Ehhez elég csak egy pillantást vetni a 8. ábra harmadik fluxus térképére. Nagyságrendekkel több, mint a gyűrű csillagkeletkezési csomóiban. Mégis, szinte nyoma sincs a csillagkeletkezésnek. A 8. ábra Brγ fluxus térképe a magnál szinte teljesen fekete. Elképzelhető, hogy itt is hullámokban születnek a csillagok. A legutolsó hullám körülbelül 10 millió éve történhetett, és a modellek szerint fél millió évnél hamarabb nem is várható a következő ilyen esemény. Ha egyáltalán be fog következni. Az igazat megvallva még mindig nem teljesen világos, hogy a rádió jet pontosan hogyan befolyásolja a csillagkeletkezést a magvidéken. Lehet, hogy megakadályozza? Vagy éppen segíti azt? Nem tudjuk. Az aktív galaxis magok és a csillagkeletkezés kapcsolata még mindig kevéssé ismert a csillagászok előtt.

SN2016gkg

Az SN2016gkg a felfedezését követő egy napon belül több magnitúdónyit fényesedett. Ennek, és a következő napok fényesedésének üteme, a későbbi vizsgálatok szerint tökéletesen egybevágott az ilyen típusú szupernóvákkal kapcsolatos elméleti jóslatokkal. Ezek szerint pontosan ilyen fénygörbe várható a kollapszus-szupernóvák esetében az úgynevezett hűlési fázisban, azt követően, hogy a kifelé tartó pusztító lökéshullám áttörte a csillagfelszínét (shock break-out).

SN1016gkg-AAVSO-Calendar_Date-crd

9. ábra. A szupernóva közel 2 hónapot átfedő fénygörbéje. A megfigyelések amatőrcsillagászoktól származnak, melyet akár csak én, elküldtek az AAVSO-nak. A zöld négyzetek V szűrővel, a kék csillagok B szűrővel, a sötétzöld négyzetek csillaggal a belsejükben pedig L szűrővel, vagy szűrő nélkül meghatározott fényességet jelölik. Érdemes megfigyelni, hogy a szupernóva fényessége mennyivel gyorsabban hanyatlott a maximum után B szűrővel vizsgálva, mint V szűrővel. Vagyis, a B-V színindexe (a két fényesség különbsége) miként nőtt. Látható, hogy a kezdetben inkább kékesebb árnyalata idővel hogyan vált egyre vörösebbé.

Már az első kisfelbontású spektroszkópiai vizsgálatok is arra utaltak, hogy II típusú szupernóva lángolt fel az NGC613-ban, vagyis egy nagytömegű csillag halálát nézhettük végig. A nagyfelbontású spektroszkópiával sikerült az altípust is meghatározni. Az SN2016gkg színképe, és annak időbeli változása a IIb altípus jellegzetességeit mutatta. Ezek viszonylag ritkábbak, ugyanis a II típusú szupernóvák mindössze egytizede tartozik a IIb altípusba.

Történeti okokból a színképük alapján a szupernóvákat két fő típusba, és azokon belül altípusokba sorolják. II típusúnak nevezik azokat a szupernóvákat, melyek színképében a maximum környékén (pontosabban a fotoszferikus fázisban) erős hidrogén vonalak figyelhetőek meg. E típus képviselői mind kollapszus-szupernóvák. Az egyes altípusok közti különbségek a szülőcsillagok paramétereinek eltéréséből fakad. Az I típus színképéből hiányoznak a hidrogén vonalai. Ráadásul az Ia altípus esetén a kataklizmát nem is a korosodó csillag magjának energia-utánpótlás hiányában összeomló magja okozza. Az egyik vezető elmélet szerint a robbanásra akkor kerül sor, amikor a fehér törpe kísérőjétől elég anyagot gyűjtött ahhoz, hogy tömege átlépje a kritikus Chandrasekhar-határt (1.44 naptömeg). A másik elmélet szerint két fehér törpe kering egy kettős rendszerben, egymáshoz folyamatosan közeledve. Míg végül egymásba spiráloznak, és ekkor történik az Ia típusú szupernóva-robbanás. Az I típus többi altípusa esetén (Ib/Ic), a szupernóva-robbanások minden részlete még nem teljesen tisztázott, de valószínűleg ezek is kollapszus-szupernóvák. Ennél sokkal mélyebben most nem mennék bele a témába, ennyi is elegendő a továbbiak megértéséhez. (Nyomtatásban és az interneten több alapos publikáció is fellelhető a témában. Lásd Vinkó József cikkét a felhasznált irodalmaknál.)

Az SN2016gkg spektrumában, a tipikus IIb szupernóvákra jellemzően, kezdetben P Cygni profilú hidrogénvonalak voltak megfigyelhetőek. Ezek aztán a maximum után gyorsan gyengülni kezdtek, hogy helyüket átadják a domináns hélium abszorpciós vonalaknak. Mindez azzal magyarázható, hogy a kidobódott hidrogénburok csak viszonylag vékony lehetett, és éppen ezért igen gyorsan szét is terjedt. Így rövid idő elteltével láthatóvá vált az alatta lévő héliumban gazdag csillaganyag.

p_cygni_profil

9. ábra. Az úgynevezett P Cygni profil a kidobódott, nagy sebességgel táguló gázburoknak köszönhető. A színképben a széles emissziós komponensre egy rövidebb hullámhosszak felé eltolódott abszorpciós komponens rakódik rá. Baloldalon látható a megfigyelt a spektrum intenzitása a hullámhossz függvényében. Míg a jobboldalon látható, hogy honnan származnak az emisszió egyes részei, és minek köszönhető az abszorpció. A Doppler-effetusnak miatt a felénk legnagyobb sebességgel közeledő gázburok abszorpciója erősen a kék felé tolódik. A tőlünk legnagyobb sebességgel távolodó, a gázburok túl felöli részének emissziója pedig a legnagyobb a vöröseltolódású. A vonalak kiszélesedéséből kiszámolható a tágulás sebessége. Ábra forrása: Vinkó József

De miért ilyen vékony a hidrogénburok? Mitől ennyire speciálisak a IIb szupernóvák? Ma a legvalószínűbbnek az tűnik, hogy ezek szülőcsillagai kettősrendszerek tagjai.

Egy kettős rendszerben mindkét komponens esetén megvan az a térrész, amit az adott égitest gravitációja ural. Ezt Roche-térfogatnak nevetik. Ami azon kívül kerül az akár el is hagyhatja a rendszert, vagy a páros körüli pályára áll. A belső Langrange-ponton keresztül azonban anyag áramolhat át az egyik Roche-térfogatból a másikba. Ez meg is történik akkor, mikor a nagyobb tömegű, és ezért rövidebb életű komponens késői fejlődési fázisában kitölti a saját Roche-térfogatát. A kisebb tömegű társ így elszipkázza a nagyobb külső rétegeinek anyagát. Az anyagátadás ténye megmagyarázza a hidrogénburok vékonyságát, illetve egyes IIb szupernóvák közvetlen környezetének sajátosságait. Vajon az SN2016gkg is alátámasztja ezt az elképzelést?

Roche-lobes-corrected

10. ábra. A Roche-térfogat. Az L1 a szövegben is említett belső Langrange-pont. Az eredeti ábra forrása: Wikipedia.org (az eredeti ábra hibás volt, így módosítottam)

Ahogy a bevezetőben is írtam, minden egyes kollapszus-szupernóva (core collapse supernova) megfigyelésével a csillagászok közelebb jutnak a robbanást kiváltó, és a közben lejátszódó folyamatok mechanizmusának megértéséhez. Kiváltképp szerencsés a helyzet, ha sikerül azonosítani a szupernóva szülőcsillagát (progenitor). Az 1987A, a Nagy Magellán-felhőben 1987. február 23-án feltűnt szupernóva volt az első ilyen eset. Az azonosításkor több minden is a csillagászok kezére játszott. A Nagy Magellán-felhő, a nagyjából 163 ezer fényéves távolságával a Tejútrendszerünk legközelebbi kísérő galaxisai közé tartozik. (A felrobbant csillagot mindössze 168000 fényév választotta el tőlünk a későbbi mérések szerint.) A szülőcsillag pedig elég fényes volt ahhoz, hogy ilyen távolságból is jól látszódjon a korábban készült felvételeken. Ez utóbbira számítottak is a csillagászok. Amit azonban az SN1987A pozíciójában találtak a fotókon, az mégis meglepte a csillagászokat. Az elődobjektum, a Sanduleak -69° 202 ugyanis kék szuperóriás csillag volt. Akkoriban a nagytömegű csillagok fejlődésével kapcsolatos elméletek inkább a vörös szuperóriásokat tartották potenciális szupernóva jelölteknek.

Ma az azonosított szülőcsillagok száma 20 körül van. Nem hatalmas a minta, de ahhoz elég, hogy bizonyos következtetéseket le lehessen vonni. Az egyik ilyen, hogy eltekintve pár esettől, a B-V színindexük, vagyis B szűrővel felvett fényességük és V szűrővel felvett fényességük különbsége nagyobb, mint 0.3. Ebből következően effektív felszíni hőmérsékletük 7300 K alatti. A sikeresen azonosított szülőcsillagok legtöbbje, pedig valóban vörös szuperóriás volt. Különösen érdekesek tehát az olyan szülőcsillagok, melyek színe (színindexe) és fényessége (luminozitása) eltér „a megszokottól”. Ezek próbára teszik a csillagfejlődési elméleteket, illetve a szupernóvák fizikájával kapcsolatos ismereteket.

Charles D. Kilpatrick-nek és munkatársainak sikerült a Hubble űrtávcső WFPC2 (Wide Field Planetary-Camera 2) műszerével készült korábbi felvételein ráakadnia a szülőcsillagra.

SN2016gkg-KECK-HST-F-cut1

11. ábra. A felső fotó a Keck-II 10 méteres távcsővel, a közeli infravörös tartományban (NIRC2 – Near-Infrared Camera 2), adaptív optikai eljárással készült. A megjelölt fényes objektum az SN2016gkg, míg a vörös karikával jelölt 10 darab objektum referencia csillag az asztrometriai mérésekhez. Az alsó fotó a Hubble űrteleszkóppal korábban készült felvétel. A 10 vörös kör, azokat a felső felvételen is szereplő referencia csillagokat jelöli, melyhez képest meghatározták a szülőcsillag pozícióját, s amely elég jól egybeesett a megjelölt kékes színű pontforrással. Forrás: Charles D. Kilpatrick és mások.

A szülőcsillag azonosítását követően külön-külön megmérték annak fényességét a Hubble három különböző színszűrővel készített archív felvételén, majd figyelembe véve az intersztelláris anyag hatását, a kapott magnitúdó értékeket korrigálták. Ez után megkeresték, hogy milyen típusú csillag színképe illeszkedik erre a három fényességértékre a legjobban. Eredményül azt kapták, hogy a szülőcsillag egy 9500 K felszíni hőmérsékletű, A0Ia színképosztályú, vagyis kékes-fehér színű szuperóriás volt. Ismét egy újabb eset, mikor is a várt vörös szuperóriás helyett forróbb, kékes árnyalatú szuperóriás csillagot találtak. Fontos megjegyezni, hogy nem ez az első. Korábban is akadt már példa arra, hogy a IIb szupernóvák elődobjektuma a vörös szuperóriásoknál némileg melegebb sárga szuperóriásnak, illetve kék szuperóriásnak bizonyult.

Kilpatrick és csapata nem állt meg itt. Az aktuális csillagfejlődési modellek leírják, hogy adott kiindulási tömegű (MZAMS), és fémtartalmú csillag milyen utat jár be a születésétől a haláláig a Hertzsprung-Russell diagramon. Ilyen modellszámítások kettős rendszerek esetén is léteznek, ahol a tömegátadás miatt a tagok kölcsönösen befolyásolják egymás életútját. A csillagászoknak csupán olyan kezdő tömegparamétert, kettős csillag esetén pedig kezdő tömegpárosítást kellett választaniuk (a fémtartalom ismert volt), ahol a csillag végül eljut a Hertzsprung-Russell diagram azon pontjába, ahol az SN2016gkg szülőcsillaga is tartózkodott a robbanás előtt. A modellezett csillag életútja végén tehát pont a megfigyelt fényességet (luminozitást), és a kiszámított felszíni hőmérsékletet kellett, hogy felvegye.

Először magányos csillaggal próbálkoztak, de nem találtak olyan fejlődési útvonalat, mely annak közelében ért volna véget, ahol az SN2016gkg szülőcsillaga tartózkodott. Volt azonban másik érv is a magányos csillag elképzelés ellen. Kétségtelen, hogy a nagytömegű csillagok képesek a végstádiumban, még a szupernóva-robbanás előtt ledobni szinte a teljes külső hidrogénburkukat. Pontosan ez figyelhető meg az úgynevezett Wolf-Rayet csillagoknál. Ahhoz azonban, hogy a csillagot a halála előtt kiterjedt, ám csak kicsiny tömegű hidrogénburok vegye körül, nagyon finoman hangolt tömegvesztési folyamat szükséges. Máskülönben nem jön létre a IIb szupernóváknál megfigyelhető fénygörbe, spektrum, illetve a szülőcsillag fizikai paraméterei is mások lesznek.

A kettős rendszerek csillagfejlődési modelljei között azonban több olyan életpályát is találtak, ahol a csillag a szupernóva-robbanás pillanatában az SN2016gkg szülőcsillagához elég közel tartózkodott a Hertzsprung-Russel diagramon. A kettőscsillag modellekkel már sokkal meggyőzőbb eredményre jutottak. A legjobban illeszkedő életpálya esetén a főkomponens kiindulási tömege 15 naptömeg, míg az 1000 napos keringési periódusú kisebb társ kiindulási tömege mindössze 1.5 naptömeg volt. Azonban az anyagátadást is figyelembe vevő modell szerint, közvetlenül a szupernóva-robbanást megelőzően már csak 5.2 naptömeg volt a főkomponens tömege. Ez a modell nemcsak hogy produkálta a végpontban a megfigyelthez nagyon közeli luminozitást, és felszíni hőmérsékletet, de a megmaradt hidrogénburok tömegére kapott 5 x 10-3 naptömeg is jól illett a IIb szupernóvákról alkotott képbe.

Természetesen nagy fegyvertény lenne a modellbeli másodkomponens megtalálása, mely eredendően sokkal halványabb, mint az SN2016gkg szülőcsillaga volt. Mindazonáltal, talán a jövőben lehetséges lesz a detektálása a megfelelően „mély” felvételeken, miután a szupernóva már jelentősen elhalványodott. Elfogadva a galaxis korábban említett távolságát, a Hubble űrtávcső WFPC2 detektorával, és az F300W (300 nm, U-Band) szűrő alkalmazásával egy 25.9 magnitúdós csillagot kellene keresni az adott helyen.

SN2016gkg-eletpalyak

12. ábra. Balra a magányos szülőcsillagok, jobbra a kettős rendszerbeliek életpályája látható a Hertzsprung-Russell diagramon az aktuális csillagfejlődési modellek alapján, különböző kiindulási tömeg, de adott fémtartalom mellett. Az SN2016gkg-t vörössel jelölték (a felszíni hőmérséklet, és a luminozitást csak némi bizonytalansággal sikerült meghatározni). E szupernóva mellett más IIb típusú szupernóvák szülőcsillagai is feltüntetésre kerültek. Részletekért lásd a szöveget. Forrás: Charles D. Kilpatrick és mások.

Beillesztve Kilpatrick és csillagász kollégáinak az SN2016gkg és szülőcsillagával kapcsolatos munkáját a korábbi IIb típusú szupernóvákkal kapcsolatos vizsgálatok sorába úgy tűnik, hogy bár nem elképzelhetetlen, hogy a IIb szupernóvák szülőcsillagainak kis része talán mégis csak magányosan élte le életét, de sokkal valószínűbb, hogy a nagytöbbség kettősrendszer tagjaként jutott el a szupernóva-robbanásig.

A kutatók mindenesetre folytatják a jövőben is és újabb IIb és más típusú szupernóvák szülőcsillagainak azonosítását, vizsgálatát. Ezzel párhuzamosan a csillagfejlődési modelleket is folyvást tökéletesítik. Úgy gondolom, hosszú még az út, hogy pontosan megértsük a kollapszus-szupernóvákat. Ráadásul én ebben a cikkben csak a IIb típusról tettem mindössze említést. Az olvasót e mellett csak arra tudom biztatni, hogy amennyiben módja van rá, kövesse nyomon egy-egy szupernóva fényváltozását. Remek elfoglaltság a természet jelenségeinek megfigyelése. Azt meg sosem lehet tudni, talán a beküldött adatokat egyszer tudományos céllal is felhasználják. Ez utóbbi két kijelentés amúgy szinte bármely változócsillag észlelés esetében megállja a helyét. 

Felhasznált irodalom:

Stephen James O’Meara: Deep-Sky Companions: Southern Gems (ISBN: 1-10701-501-4)

Martin Bureau and E. Athanassoula: Formation and Evolution of Galaxy Bulges (IAU S245) (Proceedings of the International Astronomical Union Symposia and Colloquia)

West, R. M.; Lauberts, A.; Schuster, H.-E.; Jorgensen, H. E.: Astrometry of SN 1987A and Sanduleak-69 202

Veron, P., Goncalves, A. C., & Veron-Cetty, M.-P.: AGNs with composite spectra

Andy D. Goulding, David M. Alexander, Bret D. Lehmer, James R. Mullaney: Towards a Complete Census of AGNs in Nearby Galaxies: The Incidence of Growing Black Holes

Olga G. Nasonova, José A. de Freitas Pacheco, Igor D. Karachentsev: Hubble flow around Fornax cluster of galaxies

Vinkó József: Rejtélyes csillagrobbanások

P. Castangia, F. Panessa, C. Henkel, M. Kadler, A. Tarchi: New Compton-thick AGN in the circumnuclear water maser hosts UGC3 789 and NGC 6264

J. Falcón-Barroso, C. Ramos Almeida, T. Böker, E. Schinnerer, J. H. Knapen, A. Lançon, S. Ryder: The circumnuclear environment of NGC613: a nuclear starburst caught in the act?

Charles D. Kilpatrick, Ryan J. Foley, Louis E. Abramson, Yen-Chen Pan, Cicero-Xinyu Lu, Peter Williams, Tommaso Treu, Matthew R. Siebert, Christopher D. Fassnacht, Claire E. Max: On the Progenitor of the Type IIb Supernova 2016gkg

L. Tartaglia, M. Fraser, D.J. Sand, S. Valenti, S. J. Smartt, C. McCully, J. P. Anderson, I. Arcavi, N. Elias-Rosa, L. Galbany, A. Gal-Yam, J.B. Haislip, G. Hosseinzadeh, D. A. Howell, C. Inserra, S. W. Jha, E. Kankare, P. Lundqvist, K. Maguire, S. Mattila, D. Reichart, K. W. Smith, M. Smith, M. Stritzinger, M. Sullivan, F. Taddia, L. Tomasella: The progenitor and early evolution of the Type IIb SN 2016gkg

 

NGC6910, IC1318 részlet (IC1318a, IC1318b), Sadr

NGC6910-IC1318-LRGB-20150710-2344-sx-600s-TTK

Sadr – NGC6910 – IC1318 részlet (IC1318a, IC1318b)

2015-07-10, 2015-07-17, 2015-07-20, 2015-07-21 – Göd

15 x 600 sec L, 10 x 600 sec R, 10 x 600 sec G, 15 x 600 sec B

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

SXVR-H18 CCD kamera, Hutech IDAS P2 LPS filter és Astronomik RGBL fotografikus szűrőszett

2015. július 9-én 19 óra körül lelkes amatőrcsillagászok kis csoportja gyűlt össze a Polaris Csillagvizsgálóban. Összejövetelük célja nem volt más, mint megmutatni az égbolt sok csodáját az odalátogatóknak. Így megy ez már hosszú évek óta, legyen szó az év bármelyik keddjéről, csütörtökjéről, vagy éppen szombatjáról. Jómagam, csak a közelmúltban csatlakoztam ismét ehhez a kis társasághoz. Nem egyszerű három gyermek mellől elszabadulni, így feleségemnek külön hálás vagyok azért, hogy alkalmanként mégis részt tudok venni egy-egy bemutatáson.

Aki tartott már bemutatót érdeklődőknek, bizonyosan osztja véleményemet, hogy látni, hallani a rácsodálkozás örömét felemelő érzés. Belsőnkből, hobbinkból ilyenkor átadunk egy darabot. Csak remélni merem, főleg az ifjak esetében (!), hogy az elültetett mag kihajt, és szárba szökken. A dolgok beépülnek gondolataikba, és így talán a világkép nevű „nagy kirakós játékhoz” én is hozzáadhattam egy keveset.

Ezen a nyári csütörtökön némi szél keretében hidegfront volt levonulóban. Tépett felhőzetét fürgén vonszolta maga után, így amikor elért „a riadólánc” 10 éves fiamat a hónom alá csaptam, és együtt indultunk Óbudára. Miközben a kupolában a nagytávcsőnél Kárpáti Ádám sürgölődött, én kicipeltem a teraszra a 20 cm-es Dobson távcsövet. A korán, sötétedés előtt érkezők jutalma, a fák lombjainak közelében bóklászó Jupiter és Vénusz volt. Ugyan már nem alkottak szoros párt, mint egy héttel korábban, de látványuk külön-külön is rabul ejtette a szemlélődőket. Sokszor vagyok úgy, hogy amit még nem próbáltam, azt elsőre valahogy varázslatnak, ördöngösségnek tartom. Így vannak ezzel a bemutatásokon résztvevők is. Hagytam hát, az alapvető játékszabályok lefektetése után, hogy a gyerekek maguk birkózzanak a nagy csővel, és beállítsák az alacsonyan járó Szaturnuszt, illetve pár fényesebb kettőscsillagot. Boldogság sugárzott arcukon, midőn megjelent a „személyes égitestük” az okulár látómezejében. Tényleg maguk fedezhették fel őket. Közben belegondoltam, hogy pont azt a szó szoros értelemben vett gyermeki örömöt élték át, amit én is szoktam, amikor a távcsővel egy-egy nehezebb objektumot sikerül végre becserkészni, megpillantani, lefotózni. Sosem növök fel!

Bár a bemutatott csillagászati objektumokat sokszor láttam már, mindig újra magukkal ragadnak. Az általam elmondottakat pedig gyakran továbbgondolom. Működik egyfajta visszacsatolás, engem is érnek inspirációk, melyek kihatnak amatőrcsillagász tevékenységemre. Ezen az estén sem volt ez másként. Amíg a vendégek a kupolában voltak, amatőrcsillagász társam, Török Tünde felvetette, hogy beállítanám-e azt a nyílthalmazt, amit múltkor a Hattyú csillagképben látott. A katalógus számára nem emlékezett, de nem is volt rá szükség. Olyan benyomást tett rá a korábbi látvány, úgy élt még emlékezetében, hogy szavai alapján szinte rögtön beugrott: ez bizony csak az NGC6910 lehet. Ennek az apró, nagyjából 7ˊ-10ˊ kiterjedésű nyílthalmaznak a beállítása egyáltalán nem nehéz, így pár pillanattal később már meg is lehetett csodálni a 20 cm-es Dobson-ban. Ha csak egyetlen mondattal lehetne jellemezni az első benyomást, akkor ezt mondanám: filigrán csillagív, melyet két sárgás színű csillag zárt le.

Ezen az estén határoztam el, hogy megörökítem a halmazt, illetve a környékét otthonról. Már akkor tudtam, hogy a fényképen egészen másként fest majd, hisz műszerem kisebb a Polaris teraszán használt Dobson-nál, egészen más lesz a látómező, a kamera érzékenységével pedig szemem nem veheti fel a versenyt. Eredetileg több időt szerettem volna szánni a felvételre, de a nyár nemcsak az enyém, hanem a családé is. Eddig 7.5 órát töltöttem a régió fotózásával, s mivel idén talán már nem tudom folytatni, így elérkezettnek láttam az időt, hogy feldolgozzam a nyersanyagot, és leüljek mesélni egy kicsit a képen látható régióról.

Amennyiben magunk szeretnénk felkeresni az NGC6910-et tudnunk kell, hogy merre is induljunk. Ígérem, ahogy fentebb is említettem, nem lesz nehéz a dolgunk. Júliusban, sötétedéskor már a Hattyú (Cygnus), a Lant (Lyra) és a Sas (Aquila) triumvirátusa uralja az égboltot a meridiántól keletre. Ezeket a csillagképeket az olvasó is könnyűszerrel azonosíthatja, még némileg fényszennyezett nyári égbolton is, ugyanis viszonylag fényes csillagokból állnak.

NGC6910-map1

A Hattyú (Cygnus), a Lant (Lyra) és a Sas (Aquila) csillagképek égi helyzete Gödről nézve 2015. július 10-én az első felvétel megkezdésének időpontjában (21:44 UT). (E: Kelet, S: Dél)

Amennyiben ráakadtunk a Hattyú jellegzetes keresztjére, a szárak metszéspontjában a γ Cygni nevű csillagot kell megcéloznunk.

NGC6910-map2

A Hattyú jellegzetes keresztje. A szárak metszéspontjában található a γ Cygni (Sadr).

Sikerült beállítani a távcsőben? Helyes! Itt álljunk is meg egy pillanatra.

A γ Cygni, vagy arab nevén a Sadr a felvételem bal alsó sarkában (délkeleti részén) látható fényes csillag. A Sadr távolsága, ugyan a Hipparcos űrszonda is megmérte azt, meglehetősen pontatlanul ismert: 1830±280 fényév.  Már a világűrben tartózkodik a Hipparcos utódja, a Gaia űrszonda, melyet 2013 decemberében bocsájtottak fel. Ennek az eszköznek 1 milliárd csillag pozíciójának a megmérése és elmozdulásának detektálása a feladata. A várt pontossága 0.000001 ívmásodperc. Ezerszer nagyobb, mint a Hipparcos szondáé volt. Remélhetőleg a Sadr távolságát illetően is pontosabb érték birtokában leszünk hamarosan. Annyi azonban már a Hipparcos mérései alapján is bizonyos, hogy a csillag közelebb van hozzánk, mint az NGC6910, illetve a felvételen vörösen derengő IC1318 ködössége. Bár gyakran emlegetik az égbolt eme területét Sadr régióként, a γ Cygni csupán előtércsillag.

Ez a csillag a maga nemében is roppant különös. Színképtípusa F8Iab, vagyis a szuperóriás csillagok egy viszonylag ritka, különleges osztályába tartozik. A legtöbb ismert szuperóriás csillag vagy vöröses árnyalatú, mint a Skorpió csillagkép legfényesebb csillaga az Antares, vagy az Orionban a Betelgeuse, vagy inkább kékes árnyalatú, mint az Orionban a Rigel, vagy a szintén a Hattyúban található Deneb. Felszíni hőmérsékletük így vagy a skála alján, 3000-3500 K körül (vörös árnyalat) található, vagy éppen annak tetején a 10000 K nagyságrend körül (kékes árnyalatúak).  Viszonylag kevés ismert szuperóriás sárgás-fehér színű, a Sadr pedig éppen ilyen, köszönhetően 5790 K felszíni hőmérsékletének. Sárgás-fehér árnyalatát azonban nemcsak egyedül ennek köszönheti. A Sadr fényét intersztelláris porfelhő(k) is vörösítik, illetve közel fél magnitúdóval tompítják látszólagos fényességét.

Ugyan felszíni hőmérséklete hasonló Napunkéhoz, azonban sugara 150±80-szorosa központi égitestünkének. Összehasonlításként: a Föld átlagos távolsága a Naptól csillagunk sugarának nagyjából 215-szöröse, a Vénusz átlagos távolsága a Naptól csillagunk sugarának nagyjából 155-szöröse, a Merkúr átlagos távolsága a Naptól csillagunk sugarának nagyjából 83-szorosa.

Nemcsak hatalmas, de tömege is igen tekintélyes, mely becslések szerint 14.5±1.1 naptömeg. A nagytömegű csillagokra jellemzően két végén égeti a gyertyát. Az ebbe a tömegtartományba eső csillagok gyorsan, 10 millió éves időnagyságrendben felhasználják magjukban a hidrogén készleteiket, és elhagyják a fősorozatot a Hertzsprung-Russell diagramon (HRD-n). A hidrogén fúziója külső héjba tevődik át, ahonnan folyamatosan lefelé, a mag irányába szivárog a hélium, így az ott egyre dúsul. A csillag elindul a HRD vörös oldala felé, felszíni hőmérséklete lecsökken és felfúvódva vörös szuperóriás csillaggá válik. Idővel beindul a magban a hélium fúziója, a hidrogén fúziója pedig a külső rétegben továbbfolytatódik. A hélium fúzióját a szén, az oxigén, és egyre nehezebb elemek váltják a magban egészen a vasig bezárólag. A csillag tömeget veszít az intenzív csillagszél révén, ledobja külső burkát. Ha kellően nagy a tömege, akkor mindeközben a HRD kék tartománya felé kezd mozogni. Adott esetben sárga szuperóriássá válik, sőt megfelelő nagy tömeg esetén elmozog egészen a kék szuperóriás állapotig. Minden egyes újabb fúziós ciklus egyre rövidebb ideig tart. A csillag belső szerkezet lassan egy hagymáéra kezd emlékeztetni. A héjakban befelé haladva a magig egyre nehezebb elemek fúziója zajlik. A vasnál nehezebb elemek azonban már nem jöhetnek létre fúzió révén, így a csillag összeomlik, és szupernóvaként fejezi be az életét szétszórva anyagát a világűrben. A központban pedig 10-20 Km átmérőjű, gyorsan pörgő, roppant sűrűségű neutron csillag marad hátra. (A fekete lyuk létrejöttéhez ennél nagyobb kiindulási tömeg szükséges.) Megoszlanak a vélemények arról, hogy a Sadr pontosan melyik fejlődési állapotot képviseli, pontosan hol is tart a fentebb vázolt folyamatban, milyen utat jár is be majd haláláig a HRD-n. A bizonytalanság ellenére a csillagfejlődési modellek szerint kora nagyjából 12 millió évre tehető. Az életét lezáró szupernóva robbanásig pedig valószínűleg már ennél is kevesebb ideje van hátra.

NGC6910-IC1318-LRGB-20150710-2344-sx-600s-TTK-cut1

A γ Cygni és az NGC6910.

Amennyiben korábban sikeresen beállítottuk a γ Cygni-t távcsövünkbe, és 1-2° körüli a látómezőnk, máris megpillanthatjuk az NGC6910-es nyílthalmazt, melynek távolsága az előbb említett csillagtól mindössze 33ˊ észak-északkeletre. Bár az égen közel látszanak egymáshoz, de ahogy korábban is említettem, az NGC6910 távolabb, durván 1500 pc-re, vagyis majdnem 5000 fényévre (1500 pc 4890 fényévnek felel meg) van tőlünk. Az Orion spirálkarban helyezkedik el, akárcsak Napunk, túl azokon a porban gazdag sötét molekuláris felhőkön, melyek hasadékot rajzolnak a Tejútba a Hattyú csillagkép farkától egészen a Nyilasig.

NGC6910-sadr-01

A Nap (Sun), a Sadr (távolsága nagyjából 1830 fényév) és az NGC6910 (távolsága nagyjából 4890 fényév) elhelyezkedése a Tejútrendszerben.

A halmaz ráadásul mélyen beágyazódott az IC1318-ba, tehát lokálisan is por és molekuláris felhők, valamint emissziós gázködök veszik körül. A felsorolt intersztelláris médiumok a halmaztagok fényét átlagosan 1 magnitúdóval csökkentik, színüket pedig jelentősen a vörös felé tolja. Ha nem lenne ez az effektus, akkor az NGC6910 olyan fényesen ragyogna, mint az Orion-köd híres Trapéziuma, vagy a Rák csillagképben található M44-es nyílthalmaz. A legnagyszerűbb, hogy a vörösödés jelenséget a figyelmes szemlélő saját maga is láthatja! Ugye még emlékszik a kedves olvasó, hogy az elején említettem, hogy pár fényesebb csillagnak feltűnően sárgás a színe a távcsőben? A vörösödés a legjobban a V2118 Cyg változócsillag (HD 194279, NGC 6910 2) esetén érhető tetten, melyet B1.5Ia színképtípusa alapján kékes színűnek kellene látnunk. Ez a szuperóriás mégis határozott sárgás árnyalatot mutat már egy 20-30 cm-es távcsőben is nagyobb nagyításon. Ez nem is csoda, mert B-V színindexe 0.85. Ráadásul az intersztelláris anyag hatása halmaztagról halmaztagra változik, játékot űzve velünk, akadályt gördítve a csillagászok elé megfigyeléseik feldolgozása közben. Természetesen ezek nem leküzdhetetlenek.

NGC6910-stars3-cut1

A cikkben külön megemlített csillagok a felvételemen.

NGC6910-vorosodes

A vörösödés mértékének változása az NGC6910 bizonyos területein. A sötétebb területeken erősebb az effektus. Forrás: Kolaczkowski és mások

Rengeteg a háttér és előtércsillag, így nem egyszerű feladat kiválogatni, hogy melyik égitest tartozik a halmazhoz. A nyílthalmazok csillagai születésük óta együtt mozognak a térben. Színképükben az egyes vonalak eltolódásából, melyet a Doppler-effektus okoz, meghatározható a radiális sebességük.  Hasonlóan megmérhető az IC1318 komplexum, a vizsgált csillag közelében elhelyezkedő részének radiális sebessége. Ezen információ birtokában már eldönthető, hogy ki a csapattag, és ki nem. Egy másik módszer, ami ebben az esetben használható, hogy a csillagok színképére „rárakódik” az intersztelláris anyag fényelnyelő hatása (Diffuse Interstellar Bands), miközben fényük eljut hozzánk. A halmaztagok színképében hasonlóak az abszorpciós vonalak mintázata és azok intenzitása. E két módszer alapján a korábban is említett V2118 Cyg változócsillag (HD 194279, NGC 6910 2) biztosan halmaztag, míg például a V1973 Cyg (HD 229189, NGC 6910 6) biztosan nem az NGC6910 része, csak egy előtércsillag. Van azonban jó pár fényesebb jelölt, aminek a státusza máig nem teljesen tisztázott. A V2245 Cyg (HD 229196, NGC 6910 4) halmaztagsága például nem teljesen bizonyos. Ez az O típusú spektroszkópikus kettőscsillag, melynek színét szinté erősen vörös irányba tolja a por és a gáz, talán csak háttércsillag. Az előzőekből következik, hogy nehéz megmondani pontosan az NGC6910 méretét, ezért is írtam a bevezetőmben, hogy az égen nagyjából 7ˊ-10ˊ a látszólagos mérete. Elfogadva a közel 5000 fényéves távolságot, valóságos kiterjedése durván 15 fényév lehet.

Egy nyílthalmaz kora több módszerrel is meghatározható. A 30 millió évnél idősebbek esetén használatos a gömbhalmazoknál már ismertetett módszer. A halmaz Hertzsprung-Russel diagramja (HRD) árulkodik annak koráról. Az egyszerre született (azonos fémtartalmú) csillagok megfigyelhető fejlődési állapota csak a kiindulási tömegtől függ. A nagyobb tömegű fényesebb és forróbb csillagok hamarabb elhasználják hidrogén készleteiket, és elhagyják a fősorozatot. Az idő előrehaladtával már csak a kisebb tömegű, és kevésbé fényes csillagok maradnak a fősorozaton. Minél idősebb egy halmaz, annál lejjebb tolódik az a pont (Turn Off Point) a fősorozaton, ahol a csillagok „elkanyarodnak” az óriás ág felé. Felrajzolva a HRD-t egy adott halmazra, az előbb említett pontnak a meghatározásával, továbbá felhasználva a csillagfejlődési elméleteket, izokron illesztésével megbecsülhető a halmaz kora. Az izokron a csillagfejlődésben használt kifejezés, mely a HRD-n az azonos korú csillagokat összekötő görbét jelöli.

nyilthalmaz-HRD1

Különböző korú nyílthalmazok Hertzsprung-Russel diagramja. Kép forrása: Australia Telescope Outreach and Education

Az NGC6910 azonban nagyon fiatal nyílthalmaz, így itt egy kissé más módszer a célravezetőbb, bár ez is a halmaz Hertzsprung-Russel diagramján alapszik, és az azonos korú, azonban eltérő tömegű csillagok fejlődési sebességén, mely már „csecsemőkorukban” is megmutatkozik. A hideg molekuláris gázfelhőkben születő csillagoknak időre van szüksége, hogy kellően összesűrűsödve, magjukban beinduljon a hidrogén fúziója. Egy nagytömegű csillag esetén ehhez nagyjából 100 ezer év szükséges, míg a kisebb tömegűeknél akár több 10 millió évig is eltarthat, míg elérik a fősorozatot. A nagyon fiatal halmazokban így úgynevezett fősorozat előtti csillagokat kell keresnünk. Majd felrajzolva a halmaz Hertzsprung-Russel diagramját, a csillagfejlődési elméletekből származó izokron illesztésével meghatározható a halmaz kora.

A fiatal halmazoknál, mivel még tartalmaznak fősorozat előtti csillagokat, meghatározható az is, hogy milyen időintervallumban születtek a csillagok a gázfelhőből. Alapvetően ez a legidősebb és a legfiatalabb csillag korkülönbsége. A módszer lényege leegyszerűsítve az, hogy a halmaz legidősebb csillagának tekintjük azt a csillagot, amelyik éppen elhagyja a fősorozatot (turn-off age), továbbá megkeressük a legfiatalabb fősorozat előtti csillagot (turn-on age). A kettő különbsége pedig jó közelítéssel megadja, hogy mennyi ideig folyt csillagkeletkezés a halmazban.

NGC6910-preMS-isoch

Az NGC6910 Hertzsprung-Russel diagramja, melyre a csillagászok különböző izokronokat illesztettek.

A fenti vizsgálatokat kutatók több csoportja is elvégezte, és bár az értékek kissé eltérnek, mégis jól közelítenek egymáshoz. A halmaz életkora nagyjából 7 millió év, a tagok jelentős része pedig az első 3 millió éves időintervallumban született. Bár a keletkezés üteme később lassult, de még fél millió évvel ezelőtt is keletkeztek csillagok.

De miért érdekli ennyire ez a nem túl népes nyílthalmaz a csillagászokat? Miért vizsgálják fiatal csillagait ekkora alapossággal? Miért érdekes kora, a csillagkeletkezés üteme? Az ok nagyon röviden: megismerni galaxisunk egyik legnagyobb csillaggyárát a durván 650 fényév kiterjedésű Cygnus X komplexumot, vagy más néven a Cygnus csillagkeletkezési régiót, amely mellett még az Orion komplexum (ennek része az Orion-köd) is eltörpül. Míg ez utóbbira viszonylag szabad rálátásunk van, addig a Cygnus X porfelhőkbe burkolódzik. Elég csak a fotóra tekinteni, hogy lássuk, az ehhez a csillagközi felhőhöz tartozó IC1318 (melynek csak egy részét örökítettem meg) is erősen porsávokkal szabdalt. Illetve emlékezzünk vissza a fentebb leírtakra a csillagok fényességével és vörösödésével kapcsolatban.

A misztikusnak tűnő Cygnus X elnevezés, még a múltszázad közepéről származik, amikor megkezdődött az égbolt feltérképezése a rádiótartományban. Ekkor derült ugyanis ki, hogy a Sadr irányába egy kiterjedt, diffúz rádióforrás található. A Cygnus X nem tévesztendő össze a Cygnus X-1-gyel, mely egy csillag és egy fekete-lyuk párosa, és egyben az egyik legintenzívebb röntgenforrás az égbolton.

Az itt található molekula felhő tömege óriási, 2-3 millió naptömeg. Területén legalább öt fiatal és igen népes O és B típusú csillagok alkotta, úgynevezett OB asszociáció található. Az asszociációk tagjai, a nyílthalmazokkal ellentétben, nem kötődnek egymáshoz gravitációsan. Gázfelhők közelében, vagy abba ágyazódva akadhatunk rájuk. Kiterjedésük pedig sokszorosa lehet a nyílthalmazokénak, elérheti akár 200-300 fényévet is. A Cygnus X-ben az egyik jelentősebb asszociáció, az OB9 magját az NGC6910 alkotja, így már talán érthető, miért övezi nagy érdeklődés ezt a nyílthalmazt. Az OB2, még az OB9-nél is masszívabb. Azért, hogy az előtérbe lévő intersztelláris médium extinkcióját redukálják, az asszociációt közeli infravörös tartományban vizsgálták meg a csillagászok. Kiderült, hogy az OB2 körülbelül 2600 O és B típusú fiatal csillagot foglal magában, melyből nagyságrendileg 100 különösen nagytömegű és forró O típusú csillag. Az OB2 teljes tömege becslések szerint 30000 naptömeg, de egyesek szerint akár 100000 naptömeget is elérheti, így egyike galaxisunk legnagyobb ismert csillagtársulásainak. Tömege majdnem felveszi a versenyt pár gömbhalmazéval. Éppen ezért akadt pár csillagász, aki tanulmányában születő félben lévő gömbhalmaznak aposztrofálta, azonban a szakemberek nagytöbbsége, a tagok közötti szoros gravitációs kapcsolat hiányában, továbbra is „csak” nagytömegű asszociációként tekint rá. Csillagainak kialakulása, hasonlóan az NGC6910 csillagaihoz, nagyságrendileg 10 millió évvel ezelőtt vette kezdetét, de a „Cygnus csillaggyár” még napjainkban is aktív. A nagytömegű O csillagok intenzív UV sugárzásukkal gerjesztik, ionizálják a körülöttük lévő intersztelláris anyagot. A közelükben lévő hidrogén felhők ennek köszönhetően „világítani” kezdenek. Az IC1318 is egy O9 típusú nagytömegű csillagnak köszönheti a fényét, melyet az optikai tartományban porfelhők fednek el a szemünk elől. Erős sugárzásuk nemcsak életet lehel ezekbe a felhőkbe, de azonnal erodálni is kezdi azokat. Ezek a forró, kék csillagok hatalmas, látványos üregeket fújnak azokba a ködökbe, melyben korábban megszülettek. A tovaterjedő ionizációs frontok pedig szemet gyönyörködtető formákat hoznak létre, miközben beleütköznek a nagyobb sűrűségű csillagközi anyagba, vagy éppen felgyorsulnak ott, ahol a sűrűség kisebb. A kibocsájtott nagyenergiájú fotonok mellett, a kisebb csillagokhoz képest erős csillagszelük, vagyis a belőlük kiáramló anyag is fontos szerepet játszik a környező világűr alakításában. Mindez azonban a Cygnus csillagkeletkezési régió esetén szinte teljesen rejtve marad előlünk az optikai tartományban. Igazi titkait csak a rádió, infravörös és gamma tartományban fedi fel.

cygnusX-infra

Ezen a 8nm-es hullámhosszon készült infravörös felvételen jól látszanak az O típusú csillagok által a por és gáz komplexumba fújt hatalmas üregek, melyeket forró és ritka gáz tölti ki, a taréjok pedig az üregek falai. A fényes fehér csomók és ívek (a taréjoknál) azok a területek, ahol jelenleg is csillagkeletkezés zajlik. Kép forrása: NASA/IPAC/MSX

A Cygnus X egy tökéletes laboratórium a csillagászoknak, ahol tanulmányozhatják azokat a folyamatokat, melyek a csillagok keletkezését kiváltják, tanúi lehetnek csillagok születésének, ráakadhatnak a különböző fejlődési fázisokra, hogy aztán az egészet egy láncba fűzzék. Megfigyelhetnek végnapjaikat élő gyorsan fejlődő nagytömegű csillagokat, és olyan titkok kulcsát is megtalálhatják itt, melyeket már régóta keresnek.

Az egyik ilyen titok, hogy pontosan honnan is származik a kozmikus sugárzás, mely javarészt (90%-ban) közel fénysebességgel, a galaxisunkon átszáguldó protonokból áll. Nem egyszerű azonban ezek forrását megtalálni, ugyanis a galaktikus mágneses tér eltéríti a töltött részecskéket. Lehetetlen visszakövetni őket forrásukig. Amennyiben azonban a kozmikus sugárzás intersztelláris gázzal ütközik, nagyenergiájú gammasugárzás jön létre. Ezek a fotonok pedig már egyenes úton jutnak el hozzánk, így felfedve a sugárzás születésének a helyét.

Az elméletek szerint a kozmikus sugárzás legjelentősebb forrásai azok a gyorsan táguló ionizált gázhéjak, illetve erős mágneses terek, melyek a szupernóvákhoz kapcsolódnak. A teóriákat azonban megfigyelésekkel is kell bizonytani. A Cygnus X és környezete több okból is megfelelőnek látszott az elmélet ellenőrzése céljából. Ahogy fentebb is írtam, itt viszonylag gyakoriak a különösen nagytömegű csillagok, melyek rövid 5-10 millió éves életük végén szupernóvaként robbannak fel, így a környéknek tartalmaznia kell természetes részecskegyorsítóként működő maradványokat. A rádiócsillagászati megfigyelésekből már eleve ismert volt a γ Cygni irányába, egy becslések szerint 7000 éves szupernóva-maradvány, mely 1000 fényévvel a Cygnus X mögött található.

A csillagászoknak sikerült is megfigyelni a Fermi űrtávcsővel, a masszív csillagok által vájt, forró gázzal telített üregekben a keresett gamma-sugárzást.

Gamma_Cyg_X_Fermi_LAT226

A Fermi űrtávcsővel detektált gamma-sugárzás a Cygnus X-ben. Kép forrása: NASA/DOE/Fermi LAT – I. A. Grenier és L. Tibaldo

Alapos vizsgálatok után a Fermi csapata arra a következtetésre jutott, hogy a megfigyelt gamma-sugárzásért nagy valószínűséggel valóban a szupernóva-maradvány(ok) által kibocsájtott kozmikus sugárzás és a Cygnus X anyagának kölcsönhatása a felelős. Az OB asszociációk nagytömegű szörnyetegeinek sugárzása okozta sokkhatás felkeveri a gázt, a környező mágneses teret pedig összekuszálja, így a frissen keletkezett kozmikus sugarak csapdába esnek, miközben megpróbálnak áthatolni a régión. Nem zárták ki azonban azt a lehetőséget sem, hogy a részecskéket helyi folyamatok, vagyis az intenzív csillagszél okozta lökéshullámok gyorsítják fel. Nagyon úgy néz ki, hogy akik a szupernóvákra fogadtak, mint a kozmikus sugárzás egyik lehetséges fő forrásaira, végre megfigyelési bizonyítékokkal is rendelkeznek.

Remélem, hogy ezzel a rövid cikkel sikerült kedvet csinálnom az olvasónak ahhoz, hogy egy kellemes nyári vagy kora őszi éjszakán maga is felkeresse a Tejút eme izgalmas és szép vidékét. És talán ahhoz is, hogy ezt másnak is megmutassa, és meséljen róla. Páratlan élmény lesz!

Felhasznált irodalom:

Leonid S. Lyubimkov, David L. Lambert, Sergey I. Rostopchin, Tamara M. Rachkovskaya, Dmitry B. Poklad: Accurate Fundamental Parameters or A, F, and G-type Supergiants in the Solar Neighbourhood

Markus M. Hohle, Ralph Neuhaeuser, Bernard F. Schutz: Masses and Luminosities of O and B – type stars and red super giants

L.E. Pasinetti Fracassini, L. Pastori, S. Covino, A. Pozzi: Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) – Third Edition – Comments and Statistics

David F. Gray: Photospheric variations of the supergiant γ Cyg

Bhavya B, Blesson Mathew, Annapurni Subramaniam: Pre-main sequence stars, emission stars and recent star formation in the Cygnus Region

Kolaczkowski, Z.; Pigulski, A.; Kopacki, G.; Michalska, G.: A CCD Search for Variable Stars of Spectral Type B in the Northern Hemisphere Open Clusters. VI. NGC 6910

J. Kubat, D. Korcakova, A. Kawka, A. Pigulski, M. Slechta, P. Skoda: The H-alpha stellar and interstellar emission in the open cluster NGC 6910

Science Journals: A Cocoon of Freshly Accelerated Cosmic Rays Detected by Fermi in the Cygnus Superbubble – (a szerzőket lásd az oldalon)

IC443

IC443-20150220-2001-TTK.JPG

IC443

2015-01-13 – Göd – 14 x 600 sec L

2015-02-20 – Szilváskő – 10 x 600 sec L

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

SXVR-H18 CCD kamera

(A keleti irány felül, az északi jobbra van)

Az η Geminorum (a roppant fényes csillag a képen) az Ikrek csillagkép egyik félszabályos változócsillaga, mely fényességét nagyjából 233 napos periódussal változtatja 3.15 és 3.9 magnitúdó között a katalógusok szerint. A 350 fényéves távolságban lévő M3 spektroszkópiai típusú vörös óriás csillag többszörös rendszer tagja. A fő komponens sugara körülbelül 130-szorosa a Napunkénak, így ha azt központi égitestünk helyébe képzeljük, felszíne elérne egészen a Vénusz pályájáig. Tömege három naptömeg, így a vörös óriás fázis előtt valószínűleg B színképtípusú forró csillag lehetett.  Pillanatnyilag a Hertzsprung-Russel diagramon a korai aszimptotikus óriás ágon helyezkedik el, és talán éppen úton van afelé, hogy Mira típusú pulzáló változócsillaggá váljon. Az η Gem egyszerre vizuális és spektroszkópiai kettőscsillag is. A távolabbi, vizuálisan is megfigyelhető tagtól 1.6˝ távolság választja el az égen. Igazán szép feladat a 6 magnitúdós társ megfigyelése, mely több mint 700 éves keringési periódussal rója útját az η Gem körül. A másik tag létezésére két jel utal. Egyfelől a főkomponens spektrumára rárakódik, a valószínűleg B típusú, második tag színképe. Vagyis valójában nem egy, hanem két csillag spektrumát látjuk. Éppen ezért használják ezekre a kettős rendszerekre a spektroszkópiai kettőscsillag kifejezést. Másfelől az η Gem fénygörbéje az, ami árulkodik. A kisebb távolságra lévő társ pályája ugyanis pont úgy helyezkedik el, hogy 8 évente (kb. 2984 naponta) fedési jelenség következik be, és ilyenkor az η Gem fényessége lecsökken. Vagy azért, mert a másod komponens fedésbe kerül, vagy azért, mert az kitakarja a főkomponens felszínének egy részét. Az η Gem már önmaga is izgalmas célpont, de talán még érdekesebb az a kozmikus csoda, ami (látszólagosan) a közelében rejtőzik: a Medúza-ködként is ismert szupernóva-maradvány, vagy másként az IC443.

IC443-Gemini

Az IC443 szupernóva-maradvány az Ikrek csillagképben, az η Gem szomszédságában található.

Az IC443 távolsága nem ismert pontosan, a különböző módszerekkel kapott eredmények széles tartományban szórnak. A publikációkban 3000 és 30000 fényév közötti értékek lelhetőek fel. A halovány Medúza-köd látszólagos mérete 50°, mely közel kétszerese a Holdénak. A valóságban a világűr 70 fényéves szeletét tölti ki.

Az IC443 létrejötte gigászi tűzijátékkal kezdődött, miután a Napnál jóval nagyobb tömegű csillag elfogyasztotta „az üzemanyagkészletét”. Bár élete folyamán sikeresen dacolt a gravitációval, egészen azóta, hogy egy csillagközi felhőben megszületett, és beindult magjában a hidrogén fúziója, a sors őt is utolérte. A hidrogén készletek felélése után, ahogy ez az ilyen nagytömegű csillagokra jellemző, az egyre nehezebb elemek fúziója következett. A hidrogén fúzióját a hélium követte, és szépen így tovább egészen a vasig. Ennél nehezebb elemek már nem jöhetnek létre magfúzióban. Így a sugárnyomás, ami révén eddig ellenállt a saját gravitációjának, nem védte meg többé az összeomlástól. Az összeroskadás hihetetlen ütembe felgyorsult. Egy pillanattal később vakító ragyogás töltötte be az űrt az elektromágneses spektrum minden tartományában, ahogy a gigászi energiákat felszabadító szupernóva robbanás bekövetkezett. A csillag anyagának jelentős része szétszóródik, miközben a korábbi energiatermelő folyamataiban született elemeket juttat a környezetébe. Olyanokat, melyek nélkül nem létezhetne élet, de eme kis kékes színű kőzetbolygó, a Föld sem. Maga a szupernóva-robbanás olyan extrém magas hőmérséklettel és nyomással járó körülményeket hozott létre, hogy az úgynevezett neutronbefogásos folyamatokban a vasnál nehezebb elemek is létrejöttek, s melyek egy része szintén szétterült az űrben. Régebbi elképzelések szerint az ilyen kataklizmák voltak azok, melyek beszennyezték a kozmoszt a vasnál nehezebb elemekkel. Azonban manapság már más a csillagászok álláspontja.  Az újabb elméleti megfontolások a neutroncsillagokat tekintik ezek egyik fő forrásnak. Ami még ennél is fontosabb, a megfigyelések is ezt támasztják alá. (A neutroncsillagokról később még szó lesz.)

Az ember ösztönösen azt gondolná, hogy a robbanás jellemzően gömbszimmetrikus. A NuSTAR-ral (Nuclear Spectroscopic Telescope Array) folytatott vizsgálatokban a kutatók feltérképezték a radioaktív anyagok eloszlását a Cassiopeia A szupernóva maradványban. Az eredmények azt mutatták, hogy egy szupernóva robbanás egyáltalán nem szimmetrikus módon történik. A csillag a robbanás előtt „lötyögni kezd”.

Egy szupernóva robbanás szimulációja. A csillag „lötyögni kezd” a robbanás előtt. (A számláló felül milliszekundumban számol!)

Akik többet szeretnének tudni a szupernóvákról, azoknak Vinkó József: Rejtélyes csillagrobbanások cikkét ajánlom indulásként. Illetve a szupernóvákról szóló egyik előadását, melyet az MCSE 2013-as változócsillag észlelők találkozóján tartott.

Valószínűsíthető, hogy maga az IC443 szülőcsillaga által elszenvedett explózió sem volt pontosan szimmetrikus. Azt azonban, hogy ma milyennek látjuk, más folyamatok is alakították, de erről majd egy kicsit később.

Az IC443 szülőcsillaga által produkált robbanás után egy neutroncsillag maradt hátra. Bár a mai napig rengeteg a bizonytalanság ezen objektumok elméletét illetően, pár dolog azért elég biztosnak látszik. Mivel halott csillagról van szó, így a gravitációnak nem a sugárnyomás, hanem a degenerált „neutrongáz” nyomása tart ellen. Nagyjából 2.16 naptömegig tudja megakadályozni az égitest összeroppanását, amennyiben nem forgó neutroncsillagról van szó. Mivel forognak, ezért ennél kb. 20%-kal nagyobb lehet tömegük felső határa. E tömeg felett a mag összeomlik, és fekete lyuk jön létre. A tömegük alsó határa az úgynevezett Chandrasekhar határ, mely egyben a fehér törpék lehetséges legnagyobb tömege, vagyis 1.4 naptömeg. Külön érdekesség, hogy eddig még nem találtak 2 naptömegnél nagyobb tömegű neutroncsillagot, illetve 5 naptömegnél kisebb tömegű fekete lyukat. Vajon mi ennek az oka? Pontosan ma sem tudja senki. A kutatók azonban lázasan dolgoznak azon, hogy fogást találjanak a problémán, és ezt az űrt mindenféle elképzelt egzotikus objektummal töltötték ki. Ilyen például a kvark csillagok gondolata. Teóriáik megerősítése azonban egyelőre még várat magára.

A neutroncsillagok mérete 10 Km és 20 Km körüli. Az átlagsűrűségük az előző adatok tükrében óriási, 4 x 1017 Kg/m3 és 6 x 1017 Kg/m3 között van. Szerkezetük réteges és roppant különös. Külső kérgük nagyságrendileg 1 Km vastag, és fémes, szilárd szerkezetre emlékeztető tulajdonságai vannak. Ez alatt szupravezető és szuperfolyékony (nincs ellenállása a mozgással szemben), többségében neutronokból álló anyag található. Az atommagoknál is sűrűbb magban még ennél is furcsább lehet a helyzet. Erre vonatkozóan azonban még az elméleti szakemberek körében is csak találgatások vannak. Bizonyos elképzelések szerint, az anyag itt már kvarkos állapotú.

A IC433 neutroncsillagára három diák (Nik Williams, Chuck Olbert, Chris Clearfield) akadt rá. Feldolgozva a Chandra röntgen műhold által készített felvételeket, egy pontszerű röntgenforrást azonosítottak beágyazódva az IC443-ba. Az objektum a CXOU J061705.3+222127 elnevezést kapta. A pontszerű forrást üstökösre emlékeztető képződmény veszi körül.

High School Students Discover Neutron Star Using Chandra and VLA

Az IC443 neutroncsillaga a Chnadra felvételén – Forrás: NASA/NCSSM/C.Olbert

A diákok a Chandra eredményeit kombinálták a National Science Foundation VLA (Very Large Array) rádiótávcső rendszerével történt megfigyelésekkel. Az eredményeiket pedig 2001-ben publikálták: C.M. Olbert, C.R. Clearfield, N.E. Williams, J.W. Keohane, D.A. Frail – A Bow Shock Nebula Around a Compact X-Ray Source in the Supernova Remnant IC443.

Kiderítették, hogy a fenti képen is látható pontszerű röntgensugárzás forrása termális eredetű, és magához a neutroncsillaghoz köthető. De miként jön létre „a csóva”?

Az impulzus megmaradás törvényének értelmében a csillag forgása felgyorsul az összeroppanáskor. Innen származik a neutroncsillagok eszeveszett pörgése. Megmarad azonban a mágneses fluxus is. A mágneses tér így a csillag sugarának négyzetének inverzével arányosan fog erősödni. Így lehetséges az, hogy a 10-20 Km méretű neutroncsillagok mágneses tere akár 108 Tesla is lehet. Összehasonlításképpen ez a Föld esetén 10-5 Tesla, míg a Nap esetén kb. 10-2 Tesla. Gondoljunk csak bele, hogy a másodpercenként húszszor, harmincszor, vagy akár ezerszer is körbeforduló roppant erős mágneses tér micsoda elektromos teret tud létrehozni. A Földön található részecskegyorsítókat üzemeltető kutatók biztosan irigykednek erre a kozmikus laboratóriumra. A neutroncsillag hatalmas sebességre gyorsítja a töltött részecskéket. Az erővonalak körül mozgó nagysebességű elektronok pedig úgynevezett szinkrotron sugárzást bocsájtanak ki, mely energiával táplálja a ködöt és a fényét biztosítja. Különös alakját pedig annak köszönheti, hogy a neutroncsillag, a diákok tanulmánya szerint, 250±50 km/s sebességgel száguld keresztül az őt körülvevő gázon. A CXOU J061705.3+222127 a ködben érvényes szuperszonikus sebességgel mozog, ezért a szinkrotron sugárzása „megáll” az általa keltett lökéshullámban, míg mögötte csóvaként „lemarad”, megrajzolva a neutroncsillag útvonalát.

Miután a diákok meghatározták azt a sebességet, mellyel a neutroncsillag a robbanás központjától távolodik, az IC443 távolságának ismeretében arra a következtetésre jutottak, hogy a szupernóva fénye, valamikor 30000 évvel ezelőtt érhette el a Földet.

A megjelent tanulmány után mások tovább folytatták a vizsgálatokat az IC443 neutroncsillaga és környezete ügyében. Tovább boncolgatták a már a 2001-es publikációban is felvetett kérdéseket.

The Case of the Neutron Star With a Wayward Wake

IC443 különböző elektromágneses tartományokban felvett kompozit képe. A felvételen jól látható az üstökös csóvájára emlékeztető képződmény. – Röntgen: Chandra (NASA/CXC/B.Gaensler) és ROSAT (NASA/ROSAT/Asaoka és Aschenbach), Rádió: NRC/DRAO (D.Leahy) és NRAO/VLA, Látható fény (vörös): DSS (Digital Sky Survey) – Forrás: Chandra X-Ray Center (2006)

A CXOU J061705.3+222127 majdnem éppen a külső peremén helyezkedik el a táguló gázbuboréknak. Az igen valószínű, hogy a neutroncsillag és az IC443 kapcsolatban állnak, ugyanis a koruk hasonló nagyságrendbe esik. Ezt támasztja alá a neutroncsillag felszíni hőmérsékletének, és magának a ködnek a vizsgálata is. Vannak más ismert neutroncsillagok is, melyek nem a szupernóva-maradványaik középpontjában helyezkednek el, időközben elvándoroltak onnan.

A hosszú csóvaszerű képződményt is még alaposabb vizsgálatnak vetették alá. Kiderült, hogy az majdnem merőlegesen helyezkedik el arra az egyenesre nézve, mely a neutroncsillagot és az IC443 középpontját köti össze.

Mi lehet ezeknek a furcsaságoknak a magyarázata? Elképzelhető, hogy a progenitor eleve nagy sebességgel mozgott már a szupernóvává válás előtt, így a robbanás helye nem esik egybe a megfigyelhető központtal. Szintén lehetséges, hogy a ködben gyorsan mozgó gázok egyszerűen kibillentették a neutroncsillag nyomvonalát az eredeti helyzetéből. Az igazat megvallva ezek nem többek, mint spekulációk. A pontos és megnyugtató válaszokhoz bizonyosan további, többéves megfigyeléseken keresztül vezet majd az út.

Az IC443 felépítése két táguló héjjal modellezhető (two-shells model). Az objektumot főként molekuláris felhők veszik körül, melybe mintegy belerohan a szupernóva táguló maradványa, lökéshullámot keltve. Az így felgyülemlett energia sugárzássá alakul. Ez a sugárzás gerjeszti, ionizálja a köd anyagát, mely így világítani kezd.

IC443-X-ray-shells-07-s

Az IC443 modellje (Forrás: E. Troja, F. Bocchino, F. Reale: XMM-Newton observations of the supernova remnant ic443: i. soft x-ray emission from shocked interstellar medium)

A délkeleti részen kimondottan sűrű, csomós molekula felhő található. Ez az IC443 ottani szerkezetén is nagyszerűen visszatükröződik. Északkeleten, ahol az optikai tartományban a legfényesebb az objektum, a lökéshullám főként atomos hidrogént tartalmazó területre tör be éppen. Ennek, a molekuláris felhőknél kisebb sűrűségű régiónak és a táguló lökéshullámnak a kölcsönhatása felelős azért, hogy az IC443 gyönyörű szálas szerkezetű ezen a frontvonalon. A nyugati oldalán a köd sokkal simább, és kevesebb részlet figyelhető meg benne. Itt az IC443-at körülvevő anyag is sokkal homogénebb, így kevesebb a markáns struktúra az optikai tartományban.

Csak remélni merem, hogy a fenti rövid ismertetőből megtudhatta az olvasó, hogy a természet milyen eszközökkel festette az égboltra a medúzát, és talán egyetért egyik első kijelentésemmel: a Medúza-köd tényleg egy kozmikus csoda.

Az SN2014J szupernóva az M82 galaxisban

m82-sn2014j-20140204-ttk-mark

Az SN2014J szupernóva az M82 galaxisban
2014-02-04 – Göd – 99 x 35 sec light és 15 x 35 sec dark
UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel
ASI 120MM monokróm kamera

Az M82 galaxis asztrofotós szempontból nekem mindig egy érdekes kérdés volt. Sosem tudtam eldönteni igazán, hogy érdekel-e maga a téma vagy sem. Vagyis, készítsek-e fotót erről a galaxisról, vagy előbb más objektumra szánjak időt? Most biztosan sokan felhördülnek, és védelmébe kelnek ennek az asztrofizikai szempontból valóban érdekes galaxisnak. A kérdést végül a 2014. január 21-én fellángolt Ia típusú szupernóva döntötte el, mely a 2014J jelölést kapta.

A felfedezést követő napon olvastam a hírt az MCSE levelezőlistáján, és azóta vártam a lehetőséget, hogy végre fotót készíthessek erről az M82-ben, tőlünk 11.5 millió fényévi távolságban lejátszódott kozmikus tűzijátékról. 2014. február 4. éjszaka hidegnek és kissé párásnak indult. A Hold sápadt fénnyel csüngött az égen, mikor este 6 órakor kiraktam a távcsövet. Nem lehetett kihagyni, hogy egy órát ne szenteljek neki. A légkör roppant mód nyugtalan volt, de mégis üdítő volt a szemlélődés égi kísérőnk felszínén. A hosszú görnyedéstől és az ekkor már 0 fokos hőmérséklettől kissé elgémberedve szünetet kellett tartanom. A felvételeket egyébként is csak akkor terveztem, amikor a Hold már alábbszáll az égbolton.

Valamikor 19:30 környékén a távcsövemmel megcéloztam az M82-őt. A szupernóva határozottan ott volt. Meg is lepődtem, hogy mennyire más a már jól ismert M81-M82 páros megjelenése ennek a szupernóvának köszönhetően. Vizuálisan az M82-őt ragyogásával hegyes tűként keresztüldöfte a robbanás fénye. Micsoda pokoli energia szabadul fel, mely az összeroppanó fehér törpe csillag halálhírét a kozmoszba kürtöli! Képesek akár anya galaxisukat is túlragyogni. Ezek a gondolatok cikáztak bennem, meg egy friss kutatás eredménye. Eszerint lehet, hogy az Ia típusú szupernóvát mégsem egy korábban társuktól anyagot dézsmáló, és így a kritikus tömeget átlépő összeroppanó fehér törpe halála hozza létre? A Kepler-űrtávcső adatai és számítógépes szimulációk alapján elképzelhető, hogy inkább fehér törpékből álló kettősrendszer tagjainak összeolvadása a felelős a látványos eseményért. Bármelyik versengő elképzelés is a helyes, ez nem változtat magán a tényen, hogy a felszabaduló energia pokoli mértékű. Mi pedig biztonságos távolságból gyönyörködhetünk a fellángolás látványában. Mindezt úgy, hogy a színképek tanulsága szerint a szupernóva jelentős mennyiségű intersztelláris anyag mögött található az M82-ben, vagyis jelen esetben a fényét jelentős mennyiségű por és gáz tompítja, és egyben vörösíti is.

Miközben gyönyörködtem a látványban és a fentieken töprengetem, megint átélhettem azt az örömöt és izgalmat, melytől való függés hozzáláncol az amatőrcsillagászathoz. Percekig csak csendesen ujjongtam a hidegben, majd felszereltem a kamerát és a vezetéshez szükséges felszerelést. Minden készen állt. Felvettem az első próba fotókat különböző kamera beállításokkal, melyeken jól visszatükröződött a kissé párás, nyugtalan légkör. Mire eldöntöttem, hogy mi lesz a megfelelő beállítás, lassan felhősödni kezdett délnyugat felől. 27 felvételt így is készítettem, mielőtt a fellegek teljesen elborították a Nagy Medve csillagkép területét. Várakoztam és bizakodtam. 21 óra táján végre megkegyelmeztek az égiek, a felhők elvonultak. Folytattam a fotózást a -2 fokban, melyből -6 lett a végén mire összejött még 72 képkocka. Azonban nem az akkor már sanyargatónak érzett hideg, hanem a megint megjelenő felhők vetettek véget az exponálásnak. Pakolás közben döbbentem csak rá, hogy mekkora is a csönd, melyet csak néha tört meg egy-egy ijesztő pattanás. Ezt a zajt a lehűlő házak teteje és az ereszcsatornák adták ki. A fagyba burkolódzó település már rég szunnyadt, itt volt az ideje, hogy én is csatlakozzak.

Aznap éjszaka végül 99 darab 35 másodperces felvétel készült. Másnap este, amikor a felvételek feldolgozásával bíbelődtem döbbentem rá, hogy az M82 egy valóban igazán izgalmas galaxis. Gyönyörű ez a 8.4 magnitúdós és 11ˊ 12˝ méretű, éléről látszó aktív, csillagontó galaxis, melyet a szomszédos nagyjából 150000 fényévre lévő M81 gravitációs hatása kegyetlenül meggyötört a legutóbbi közelségük alkalmával. Még pár találkozóra valószínűleg sor kerül, mígnem pár milliárd év múlva a két galaxis összeolvad. De hol van az még! Optimistán tekintve a jövőbe, bízom abban, hogy most még a távcsövet fel sem érő kisebbik gyermekeimnek, és később unokáimnak is megmutathatom ezt az égi csodát. Talán lesz akkor is még sötét ég. Abban is reménykedem, hogy ha csak egy pillanatra is, de ők is átélnek majd akkor valamit az univerzum nagyszerűségéből. Én mindenesetre elmondom akkor is majd a mesémet. Így legyen!

NGC104 – 47 Tuc

ngc104-lrgb-20131217-2-ttk.jpg

2013-12-17 – Siding Spring Observatory – 30 x 15 sec L és 10 x 15 sec R,G,B

és

2014-01-13 – Siding Spring Observatory – 30 x 5 sec L és 10 x 5 sec R,G,B

iTelescope.net T30 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI-PL6303E CCD kamera

Mindenkinek van egy listája arról, hogy miket kellene még látni az életben. Nekem is van ilyen, és csak az égbolt csodáira szorítkozva, a listámon szerepel az NGC104 is. Annyi beszámolót olvastam már azon szerencsésektől, akik látták, hogy egyszer szeretném a saját szememmel is megpillantani.  Addig is, míg ez megvalósul, készítettem az iTelescope.net által visszaadott pontokat felhasználva egy LRGB felvételt a déli égbolt Tukán csillagképében lévő csodálatos gömbhalmazról.

Az objektum az égbolt második legfényesebbnek látszó gömbhalmaza címet is birtokolja a maga 4 (vizuális) magnitúdójával. Előtte, a dobogó legfelsőbb fokán az Omega Centauri található. Azonban nemcsak látszólagos nagy fényességével kelt feltűnést a Tejút valamivel több, mint 150 ismert gömbhalmaza által alkotta társaságban. Az NGC104 galaxisunk egyik legnagyobb tömegű gömbhalmaza, becsült tömege nagyjából egymillió naptömeg. Távolsága, mely nem pontosan ismert, valahol 13500 és 17000 fényév között lehet. Így egy közeli haló objektumnak számít. Átmérőjére 120 fényévet szoktak megadni.

Az objektum ismert még 47 Tucanae néven is. Ebben az esetben az elnevezés nem a Flamsteed katalógusból származik, hanem Bode adta neki ezt a jelölést. Mivel deklinációja -72 fok, így egészen 1751-ig kellet várni, míg Nicholas Louis de Lacaille felfedezte. Ez az első írásos nyom a feljegyzésekben. Ezt azért vetettem közbe, mert a Kis Magellán-felhőhöz igen közeli elhelyezkedése, illetve szabadszemes láthatósága alapján elképzelhetőnek tartom, hogy a déli félteken élő népek ismerték, csupán az írásbeliség hiánya miatt nem maradt ránk feljegyzések. Lacaille francia honfitársához, Messier-hez hasonlóan üstökösök keresésével foglalatoskodott, amikor ráakadt. 1826-ban James Dunlop, majd 1834-ben John Herschel is észlelte és katalogizálta is az objektumot. Herschel katalógusában a 104. sorszámot kapta.

A gömbhalmazok általános jellemzőivel egy cikkben külön is foglalkozom, így itt most ezekre nem térnék ki. Nézzük meg inkább, hogy milyen elsőre furcsának tűnő objektumokat rejt az NGC104 magában.

Az optikai tartományban csillagok sokasága látható, melyek a mag felé egyre sűrűsödnek. A röntgen tartományban azonban egy merőben más kép fogad minket.

ngc-104-47tuc_chandra_f

A Chandra felvétele az NGC104-ről

A Chandra műhold hamisszínes felvételén látható fényes röntgenforrások olyan kettős rendszerek, melynek egyik tagja egy a Napnál kisebb tömegű csillag, míg a másik komponens egy neutron csillag. A roppant sűrű, és alig pár 10 km nagyságú csillagmaradvány társától folyamatosan anyagot szív el, mivel az kitölti a Roche-határt. Az anyag akkréciós korongot formál, majd mikor eléri a neutron csillag felszínét impulzust ad át annak, ezzel felpörgetve. Amennyiben irányunkba esik a felpörgetett forgó neutron csillag mágneses pólusánál kibocsájtott sugárnyaláb, akkor milliszekundumos pulzárként figyelhetjük meg a Földről.  A ma elfogadott elméletek szerint ezen felpörgető mechanizmus révén jönnek létre a milliszekundumos pulzárok. Ráadásul e pulzárok már második életüket élik. Amikor egy szupernóva robbanás után a neutron csillag létrejön, akkor egy hatalmas, az impulzus megmaradás miatt gyorsan pörgő, roppant erős mágneses térrel rendelkező, nagy energiájú részecskegyorsítóként működik. A részecskék még pár ezer éven keresztül világításra készteti a ledobott anyag által alkotott ködöt. Ahogy a neutron csillag lassul, energiája fogy és a köd lassan elhalványul. Az elektromágneses sugárzás nagyenergiájú tartományában, vagyis a gamma és röntgen tartományban, a pulzusok még pár millió évig detektálhatóak. Majd szép lassan, ahogy tovább fogy az energia már csak a rádió tartományban foghatóak a pulzusok. Nagyjából 10 vagy 100 millió év múltán eme utóbbi is megszűnik, és a neutron csillag eltűnik a szemünk elől az űr sötétjébe. Amennyiben azonban van egy társa, aki fejlődése során egyszer csak abba a stádiumba kerül, hogy kitölti a Roche-határt, az anyagátadás révén utánpótláshoz juttatja a némaságba burkolódzott pulzárt. Ismét rendelkezésre áll a folyamatok táplálásához szükséges energia. A neutron csillag felpörög, és kikel a sírjából, hogy ismét hírt adhasson magáról.

mpulzar

A milliszekundumos pulzárokat szemléltető animáció

Itt jönnek a képbe a gömbhalmazok. A csillagok nagy száma miatt, és a nagy csillagsűrűség miatt itt jóval nagyobb a valószínűsége, hogy egy neutron csillag megfelelő partnerrel rendelkezzék. Az első pulzárt 1990-ben találták az NGC104-ben. Mára a számuk már 23.

ngc104-47tuc_pulzar

A felvételen az NGC104  ma ismert pulzárjainak pozíciója látható.

A gömbhalmazokban talált milliszekundumos pulzárok nagy száma, és a megfigyelt tulajdonságaik jó egyezést mutatnak a fentebb vázolt kialakulási elmélettel. Természetesen rengeteg még a megválaszolatlan kérdés a pulzárok eme osztálya körül, de a puzzle pár darabja a kutatók szerint már a helyére került.

t30-itelescope-net

Az iTelescope.net hálózatának távcsöveivel készült képek, sajnos nem mindig tökéletesek. Az üzemeltetők azonban lehetőséget adnak arra, hogy a hibás képek után visszatérítést kapjunk. Én is éltem ezzel a lehetőséggel. A pontjaimat visszakapva azon töprengtem, hogy mihez is kezdjek velük. Arra már nem volt elég, hogy halványabb objektumokról készítsek megfelelő számú felvételt. Ekkor jutott eszembe a fentebb említett listám. Az NGC104 amúgy is kitűnő jelöltnek ígérkezett, mert viszonylag rövid expozíciókkal is el lehet érni egy elfogadható eredményt. Ausztráliában derült volt az ég 2013. december 17-én a mi időnk szerint 11 óra után. Nem is olyan régen volt Telihold, így nem csoda, hogy a távcsövekre nem igazán voltak foglalások. A Hold azonban még alacsonyan járt, és 106 fokra volt a gömbhalmaztól. Kihasználva a Hold jelentette 50% kedvezményt, le is csaptam a T30-as műszerre. Ez a távcső egy Corrected Dall-Kirkham Astrograph 51 cm-es apertúrával, és f/4.5 fényerővel (fókusz reduktorral számolt érték). A képek rögzítését egy FLI-PL6303E CCD kamera biztosítja.

Ezúttal LRGB felvételben gondolkodtam. 30 x 15 másodpercet exponáltam L szűrőn, és 10 x 15 másodperc R, G, B szűrőkön keresztül. Ezúttal az összes felvétel sikeres lett.

Még aznap este elkészítettem az első feldolgozásokat, hogy lássam milyen lehetőségek vannak az anyagban. Ahogyan vártam, hihetetlen mennyiségű csillag került a felvételre már 15 másodperc alatt is, és a fényes sűrű mag beégett kissé. Nem volt egyszerű már a feldolgozás kezdete sem. Másnap Fényes Lórándnak megmutattam a munkaközi anyagot, és ő sok hasznos tanáccsal látott el. Már csak rajtam állt, hogy megfelelő alapossággal kihozzam a részleteket. Meg kellett keményen küzdeni a csillagok nagy számával. Főleg a halmazhoz tartozó roppant halvány csillagok és a zaj elválasztása jelentett feladványt. Miután ezzel is megvoltam, jöttek a csillagok színei. Azt hittem, hogy ez lesz talán a legegyszerűbb, de tévedtem. Összességében elmondhatom, hogy ebben az esetben az elején alábecsültem a feldolgozás feladatát. Egy csak csillagokat tartalmazó felvétel is igen nagy kihívást tud jelenteni. Ugyanakkor hatalmas öröm, amikor végre megszületik az első már tetszetősebb változat.

Az első verzióban a kép egészére koncentráltam, de már akkor sejtettem, hogy abból az anyagból nem fog minden a helyére kerülni. Folyamatosan ott motoszkált bennem a késztetés, hogy be kellene fejezni a képet. Vártam hát a következő szép kövér Hold szezonját, hogy a maradék kevés pontból meglőjem a halmazt 5 másodperccel kockánként. Bár még maradt egy kevés beégés, de a lelkem már nyugodtabb, mert ennyit már el tudok fogadni. Ez a gömbhalmaz mégis csak egy roppant fényes égi objektum egy ilyen eszköz számára.

Végére talán csak annyit, hogy a felvétel elkészítése továbbra sem változtat azon a dolgon, hogy egyszer feltétlenül meg szeretném pillantani saját szememmel is ezt az égi csodát.

SN2013bu – NGC7331 és környezete

ngc7331-sn2013bu-20130713-ttk

2013-07-13 – Göd – 27 x 86 sec light és 15 x 86 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera

ngc7331-sn2013bu-20130713-ttk-label2

Már csak kb. erős 1 óra volt hátra pirkadatig, de gondoltam pár kockát lövök erre a furcsán aszimmetrikus spirális galaxisra. Sajnos kevesebb időm maradt, mint gondoltam. Csak 27 light készült.

A képen látható az SN2013bu II típusú szupernóva is, melyet Koichi Itagaki fedezett fel, még 2013. áprilisában. Külön köszönettel tartozom Tóth Gábornak (gatoth), aki felhívta a figyelmem a szupernóvára.

SN2013ej – M74

Sajnos csak hajnali három előtt jutott eszembe 2013. augusztus 9-én, hogy az M74-ben lévő szupernóvát le kellene fotózni, így csak 44 másodperccel fért bele a kívánatos képmennyiség. Az ég csapnivaló volt, de sikerült megörökítenem az M74 galaxisban felrobbant szupernóvát.

Frissítés (2016. május 5.): Hazai kutatók munkájának is köszönhető, hogy újabb eredmények láttak napvilágot az SN2013ej szupernóvával, a  szupernóva-robbanásokkal, és az M74 galaxissal kapcsolatban.

„…

A Swift-űrtávcső ultraibolya adataira, valamint földfelszíni optikai színképekre és közeli-infravörös adatsorokra is épülő analízis eredményeképp kiderült, hogy az ún. II-P típusú robbanás (a II-es szám a korai színképekben lévő hidrogénvonalak, a “P” a fénygörbében lévő, hónapokig tartó konstans szakasz, az ún. plató jelenlétére utal) szülőobjektuma egy vörös szuperóriás csillag volt, amely a végzetes esemény előtt Napunknál csaknem 200-szor nagyobb sugarúra tágult ki. A magyar kontribúciót az eredményeket összefoglaló amerikai sajtóközlemény is kiemeli; ennek köszönhetően sikerült például pontosítani az M74 galaxis távolságát (29,3±1,2 millió fényév), felhasználva egy korábbi, szintén ebben a galaxisban felrobbant szupernóva, az SN 2002ap adatait is.

…”

További részletek magyar nyelven a csillagaszat.hu oldalon olvashatóak.

m74-sn2013ej-20130809-ttk

2013-08-09 – Göd – 60 x 44 sec light és 15 x 44 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera

m74-sn2013ej-20130809-ttk-label

2013-08-09 – Göd – 60 x 44 sec light és 15 x 44 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera

Három nappal később 2013. augusztus 12-én készítettem még felvételeket RGB szűrőkön keresztül.

m74-sn2013ej-lrgb-20130812-ttk

2013-08-12 – Göd – 60 x 44 sec L, 51 x 44 sec R, G, B és 15 x 44 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera, Astronomik RGBL fotografikus szűrőszett

m74-sn2013ej-lrgb-20130812-ttk-label

2013-08-12 – Göd – 60 x 44 sec L, 51 x 44 sec R, G, B és 15 x 44 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera, Astronomik RGBL fotografikus szűrőszett