M97

M97-M108-20141224-0046-TTK

M97 és M108

2014-12-24 – Göd – 30 x 300 sec L

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

SXVR-H18 CCD kamera

M97-M108-LRGB-20150212-2124-TTK

M97 és M108

2014-12-24 – Göd – 30 x 300 sec L

2015-02-12 – Göd – 10 x 300 sec R, 10 x 300 sec G, 10 x 300 sec B

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

SXVR-H18 CCD kamera

Charles Messier katalógusa összesen négy planetáris ködöt tartalmaz, melyből az M97 az egyik. Csak szupernóva maradványból van kevesebb, melyet a Rák-köd (M1) egyedül képvisel. Az M97 felfedezője azonban nem maga Messier, hanem barátja, és egyben asszisztense: Pierre Méchain.

William Parsons, ismertebb nevén Lord Rosse az 1840-es években készített megfigyelést erről a planetáris ködről. Az általa készített rajzon az objektum egy bagoly fejére emlékeztetett. Bár egy soha többé nem észlelt, mások által meg nem erősített csillag is szerepel a rajzon (az egyik szem), az M97-en rajta ragadt a Bagoly-köd elnevezés. Olyannyira, hogy szakcsillagászok tudományos publikációkban még manapság is használják azt néha.

M97_Lord_Rosse

Lord Rosse rajza az M97-ről.

Az M97 a Nagy Medve (Ursa Major) csillagkép Marek (β UMa) nevű csillagától alig több mint 2° távolságra van. A távcsőbe pillantva több fényesebb csillag kalauzol minket egészen a 9.9 magnitúdós és 3ˊ átmérőjű planetáris ködig. Az odavezető úton szembetalálkozunk a majdnem az élével felénk forduló M108-as küllős spirál galaxissal, amely keleti-nyugati irányba megnyúlt 8.6ˊ hosszúságú „fényszivarként” dereng a távcsőben.

M97-map3

A Nagy Medve csillagkép 7 fényes csillaga alkotja a Göncölszekeret. A szekér „alatt” akadhatunk rá az M97-re.

M97-map4

A Marek-től (β UMa) alig több mint 2° távolságra található az M97, közelében pedig ott az M108.

A két Messier objektum gyönyörű párost alkot egy látómezőben. Miközben szemléljük a látványt, érdemes azon eltöprengeni, hogy valójában milyen hatalmas távolság választja el egymástól a planetáris ködöt, és a galaxist. Míg az M97 körülbelül 2600 fényévre van tőlünk (távolsága igen pontatlanul ismert), addig az M108 45 millió fényévre. A felvételen vannak ennél is nagyobb messzeségben lévő egzotikus objektumok. Amennyiben az olvasó még távolabbra szeretne utazni a térben is időben, akkor javaslom, olvassa el az M108-ról írt korábbi bejegyzésem „Kvazárok és távoli aktív galaxis magok” alcímet viselő részét.

De hogyan is jönnek létre a planetáris ködök? Miután a 0.8 és 8 naptömeg közötti csillagok magjukban felhasználták hidrogén készleteiket, felfúvódnak, és vörös óriás csillagokká válnak. Beindul a hélium fúziója, miközben a külső héjakba tevődik át a hidrogén fúzió. A csillag tehát eljut az AGB fázisba (asymptotic giant branch – aszimptotikus óriás ág a Hertzsprung–Russell diagramon). Ebben a fázisban a csillagok instabilak, és jellemző rájuk a helium flash nevű jelenség. Mire ez bekövetkezik, addigra a csillag magja javarészt már szénből és oxigénből áll. A héliumnál nehezebb elemek fúziója azonban már nem tud beindulni, mert ehhez nem elég nagy a tömegük, így a magjukban nem alakulnak ki az ehhez szükséges feltételek (nyomás, hőmérséklet). A belső, a termonukleáris fúzió szempontjából inaktív magot, egy hélium, azt pedig egy hidrogén héj veszik körbe. A fúzió javarészt a hidrogén héjban történik, miközben hélium jön létre, mely lefelé „szivárog” a hélium héj felé. Így ebben az alsó héjban a nyomás egyre nő. A hélium fúzió roppantmód nyomás és hőmérséklet érzékeny folyamat. Egyszer csak megteremtődnek a feltételek, és robbanásszerűen beindul a hélium fúziója. A kifelé irányuló erő kitágítja a hidrogén héjat, az kevésbé lesz sűrű, és leáll benne a hidrogén fúzió. Egy darabig még folyik a hélium héjban a fúzió, majd az is leáll. A hidrogén héj összehúzódik, elég sűrűvé válik, és kezdődik az egész ciklus elölről.

A helium flash jelenség többször is bekövetkezik, és minden egyes ilyen alkalommal megindul a viszonylag kis sebességű, de a magból a felszínre emelkedett szén és egyéb nehéz elemeknek köszönhetően porban gazdag, sűrű csillagszél. E nehezebb elemek alkotta por magával sodorja a felfúvódott csillag külső rétegeiből a gázt. Elsőre hihetetlennek hangzik, de ez a csillagszél elviheti a csillag tömegének 50-90%-át is. Miközben a csillag tömeget veszít, lassan teljesen leállnak a fúziós folyamatok, és fehér törpévé válik. Gyakorlatilag csak a lecsupaszított, szénben és oxigénben gazdag roppant forró mag marad hátra. Ennek felszíni hőmérséklete a 100000 K-t is meghaladhatja. A fehér törpévé válás folyamán a lassú és sűrű csillagszelet, gyors, de kis sűrűségű csillagszél váltja fel. Alapvetően a két különböző típusú anyagkiáramlás bonyolult kölcsönhatása és a központi csillag intenzív UV sugárzása az, mely meghatározza a planetáris köd felépítését, illetve láthatóvá teszi azt.

A planetáris ködök csillagászati időskálán mérve roppant gyorsan jönnek létre. Az AGB fázis végén ehhez elég mindössze néhány évszázad. Létezésük pedig alig pár tízezer év. Nukleáris fúzió hiányában a csillagszél megszűnik, miközben lassan a fehér törpe állapotba jut a csillag. Mire ez a folyamat teljesen befejeződik, a planetáris köd elenyészik az űr sötétjében, láthatatlanná válik.

Biztosan emlékszik még az olvasó, hogy azzal kezdtem, hogy Messier katalógus 110 objektumából mindössze 4 csak a planetáris köd. Valószínű, hogy ennek egyik oka éppen ezen objektumok rövid élettartama.

Nézzük, hogy a fenti általános ismertető után milyen jellemzőkkel is bír maga az M97. A központi csillag a megfigyelések szerint roppant forró, effektív hőmérséklete 123000 K. Jelenleg 0.7 naptömegű, azonban a külső burok ledobása előtt még 1.5-2 naptömegű lehetett. Érdekes azonban, hogy a köd tömegének meghatározásakor, mindössze csak 0.15 naptömeget kaptak eredményül a kutatók.

Az M97 látszólagos méretének és távolságának ismeretében (mint azt fentebb is írtam, ez utóbbi elég pontatlanul ismert), a planetáris köd átmérője 2-3 fényévnek adódik. Ezen eredményt és tágulási sebességét felhasználva, az úgynevezett dinamikus kora 6000 év körülinek mondható.

M97-M108-LRGB-20150212-2124-M97_cut-TTK

A planetáris ködök roppant változatos morfológiájúak. Foglalkozzunk most konkrétan csak az M97-tel, ahogy ezt több kutató is tette az elmúlt évtizedekben. Egy jó modell a planetáris köd morfológiáját és dinamikáját is leírja. Azonban előtte ezeket fel kell térképezni. Ezt a munkát végezte el Martin A. Guerrero, You-Hua Chu, Arturo Manchado, Karen B. Kwitter. Eredményeikről 2003-as publikációjukban számoltak be. Ismertették mérésük metodológiáját, és modelljüket, mely minden korábbinál jobban adta vissza a műszerekkel megfigyelhető tulajdonságait ennek a planetáris ködnek.

M97-morfologia

Az M97 felépítése – A külső héj (Outer Shell) körszimmetrikus. A köd belseje (Inner Shell) pedig ellipszoid (1:1.1 az elnyúltság) alakú régió. Ebbe a belső részbe két bipoláris üreg (Central Cavity) helyezkedik el. (Forrás: Martin A. Guerrero, You-Hua Chu, Arturo Manchado, Karen B. Kwitter – Physical Structure of Planetary Nebulae. I. The Owl Nebula)

A köd külső héja körszimmetrikus. Ezen belül foglal helyet az ellipszoid alakú belső terület, melyben két nagy bipoláris üreg található. Ezeknek az üregeknek a hossztengelye 30 fokos szöget zár be a látóirányunkkal. Az üreget, az AGB fázis végén, a nagymennyiségű anyag kidobását követő gyors csillagszél vájta ki. Megnézve a felvételemet, azon is látszik, hogy a bagoly egyik szeme sötétebb. Ez az üreg néz ugyanis nagyjából a mi látóirányunkba. A központi csillag gyors szele napjainkra már rég lecsendesedett, és megkezdődött a lassú feltöltődése az üregeknek.

2014 december 23/24. éjszaka

Az M97 érdekes planetáris köde a tavaszi égboltnak. Ilyenkor, napnyugta után, a Nagy Medve (Ursa Major) csillagkép már magasan a fejünk fölött tartózkodik, így kitűnő lehetőség nyílik a megfigyelésére. Én mégsem tavasszal láttam neki a felvételem elkészítésének, hanem egy decemberi éjszakán éjfél után.

Megnézve a meteorológiai előrejelzéseket, és a műholdas képeket, 2014. december 23/24. éjszakája végre igazán derültnek ígérkezett. Miután a gyermekek lefeküdtek, kipakoltam a kertbe a távcsövet. Erősen fújt a szél, és a felhőzet is csak lassan indult oszlásnak. Egészen éjfélig reménytelennek látszott a helyzet. Ekkor a felhők eltűntek, a szél azonban megmaradt. Addigra az előre kiválasztott objektum már kedvezőtlen helyzetbe került, így más célpont után kellett néznem. Ekkor eszembe jutott régi vágyam, hogy az M97-et és az M108-at együtt örökítsem meg. Aznap el is készült 30 Luminance szűrős felvétel, melyből végül összeraktam az első monokróm verziót.

A felvételt nem tekintem befejezettnek, folytatni szeretném majd. Talán éppen egy kellemes tavaszi éjszakán.

M108

m108-20140329-ttk

M108

2014-03-29 – Göd – 90 x 86 sec light és 15 x 86 sec dark

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera

Folytatva tavaszi túrámat az égbolton az M108-nál állítottam meg a távcsövemet, hogy felvételeket készítsek a Messier katalógus 40 galaxisának következő tagjáról, és még másról is, de erről majd kicsit később. Ez a galaxis eredetileg nem volt része a katalógusnak. Az első kiadás ugyanis mindössze az M1-től az M45-ig tartalmazta az objektumokat. A legvégső, Messier által kiadott lista, végül 103 objektumot sorolt fel. Későbbi korok csillagászainak köszönhető az, hogy ma 110 objektumot tartalmazó katalógusként ismerjük. Owen Jay Gingerich több csillagászattörténeti könyv szerzője, foglalkozott Charles Messier életével és munkásságával. Messier feljegyzéseiben talált két objektumot, melyeket Messier kollégája, Pierre Méchain fedezett fel. Ezek pedig nem szerepeltek Messier eredeti katalógusában, noha Méchain révén tudott róluk. Ez a két galaxis a NGC3556 és NGC3992 katalógus számon volt ismert az NGC-katalógusban. Gingerich kutatásainak köszönhetően, így az NGC3556 M108-ként, az NGC3992 M109-ként került be utólag a katalógusba.

A Nagy Medve csillagképben, a Marek (Béta UMa) nevű csillagtól alig másfél foknyira található a galaxis. Az említett csillagot nagyon könnyen beállíthatjuk távcsövünkben, hogy innen tovább evezzünk az M108 irányába. Maga a galaxis 10.1 magnitúdós, roppant halvány a Messier objektumok között. Ahhoz, hogy foltos részleteit vizuálisan feltárja az én 10 cm-es műszeremnél mindenképpen nagyobb távcsövet és az aznap esti égnél sokkal tisztább, átlátszóbb, és igazán sötét eget javaslok. Az én műszeremben csak egy halvány, hosszúkás foltként mutatkozott meg ezen az éjjelen. A galaxisnak nem volt éles pereme, és bár a közepe felé folyamatosan fényesedett, nem volt egy egyértelmű csúcspont, nem látszott magszerű képződmény. Kisebb nagyítással, és megfelelő látómezővel nagyszerű párost alkot a Bagoly-köddel (M97), ugyanis távolságuk 48 ívperc. Csak az okuláron keresztül szemlélhettem a látványt, ugyanis kamerámmal a látómező durván 30 ívperc, így nem kerülhettek egy felvételre. (Később, egy másik kamerával sikerült valóra váltani ezt a vágyamat, és elkészítettem az M108 és az M97 közös fotóját.)

A kamerával természetesen nem versenyezhet az emberi szem. A fotón már szépen megmutatkozik a galaxis síkja mentén végigvonuló, kusza porsávok szerkezete, és a fényes csillagkeletkezési régiók világító felhői. A fények és árnyékok e játéka a galaxisban, foltokként láthatóak egy nagyobb távcsőben jó égen, ha nem is ilyen élesen.

Az M108 tőlünk való távolsága 45 millió fényév. Az Ursa Major Csoportnak egyik legfényesebb és legnagyobb tagja. A Tejútrendszert is tartalmazó Lokális Csoportnál néhányszor nagyobb ez a galaxis csoportosulás, és ahhoz hasonlóan gravitációsan, a nemrég felfedezett Laniakea szuperhalmazhoz kötődik. (A Laniakea szuperhalmazról részletesebben is írtam az NGC891 galaxisról szóló leírásomban.)

Lokalis_Csoport_koruli_halmazok

A szomszédságunkban elhelyezkedő galaxishalmazok, galaxis csoportosulások térbeli helyzete.

Ha már az Ursa Major halmazt a mi Lokális Csoportunkhoz hasonlítottuk, akkor hasonlítsuk össze az M108-at és a Tejútrendszert. Keressünk hasonlóságokat, és különbségeket.

Vajon egy súlycsoportba tartoznak? A rendelkezésünkre álló kutatási eredmények szerint a két galaxis mérete nagyjából azonos. Kettő 100000 fényév átmérőjű spirál galaxisról van szó tehát. De mi a helyzet a tömegükkel? Az M108 tömege csak valahol a Tejút tömegének harmada és fele között lehet.  A mi galaxisunk jóval robusztusabb.

A központi fekete lyukak területén viszont az M108 elviszi a pálmát, ugyanis nemcsak a Tejút büszkélkedhet egy hatalmas tömegű (kb. 4 millió naptömeg) fekete lyukkal a magjában. A Chandra űrtávcső röntgen tartományban történt megfigyelései alapján az M108-nak is van ilyen. Méghozzá durván 6-8-sor nagyobb a tömegű a miénknél. Becslések szerint ez a behemót 24 millió naptömegű. Ezzel a tömeggel a központi fekete lyukak között a középkategóriába tartozik.

Ezzel még nem merítettük ki azonban ennek a majdnem éléről látszó galaxisnak és a Tejútnak a hasonlatosságait. Mind a két galaxis küllős spirál galaxis. Az M108 típusa SB(s)cd. Hogyan nézhet ki egy ilyen küllős spirál galaxis, ha nem az éléről látnák? Ehhez Adam Block az NGC578-ról készült felvételét hoznám fel példának.

ngc578_SB_s_cd_example-Adam_Block

Az NGC578 Adam Block felvételén, mely szintén egy SB(s)cd morfológiai besorolású galaxis.

Valami hasonló képet mutatna az M108 is, ha nagyjából merőlegesen látnánk rá.

Még 1979-ben a Tejútrendszer HI (atomos hidrogén) területeinek a 21 cm-es hullámhosszon történt felmérése közben fedeztek fel a galaxis síkjától távolodó szálas szerkezeteket. A felmérést a Nagy Magellán-felhőben a hatvanas években talált hatalmas HI üregek miatt végezték el. Ahogy folytatták a kutatásokat a Tejútrendszerben, találtak újabb alakzatokat, melyek legtöbbször táguló üregekre, héjakra, hurkokra emlékeztettek. A legtöbbször az angol nyelvű szakirodalomban összefoglalóan csak HI supershell (HI szuperhéjnak) nevezik ezeket. A 80-as évek közepétől világossá vált, hogy bizony más gázban gazdag spirál galaxis is rendelkezik ilyen, akár több 10000 fényév kiterjedésű folyamatosan táguló struktúrával. Ez a méret igen jelentős az egyes galaxisok átmérőjéhez képest. Innentől kezdve folyamatosan keresték az újabb, és újabb jelölteket. Találtak is bőven. Egyetlen probléma volt csak és van a mai napig is, hogy pontosan megmagyarázzák mik is ezek. Az elképzeléseknek se szeri se száma. Egy biztos, hogy szuperhéjak tágulásukhoz hatalmas energia szükséges. Van olyan elképzelés, hogy az intergalaktikus térből beáramló gáz és a galaxis kölcsönhatása a hajtómotor. Vannak, akik heves csillagkeletkezés hatásának tudják be, melyek később nagyszámú szupernóva robbanást generálnak. Szerintük ezek fújják a hatalmas héjakat és alakítják a struktúrákat. Mások szerint az aktív galaxisokra jellemző rádió jet a felelős ezért. Ezen elmélet szerint ez az aktivitás időszakos, periodikus. Így nem kell feltétlenül ilyen aktív jet-et tetten érnünk akkor, amikor ezeket a hatalmas héjakat megfigyeljük. Ezen elmélet kidolgozói úgy vélik, hogy ez a periodikusság a különböző buborékok korában is tetten érhető. Vannak, akik szerint gamma felvillanások (GRB) közben felszabaduló energia indítja el a buborékok tágulását. A kérdés még ma sem tisztázott, de azt sejtik a kutatók, hogy a galaxisok fejlődésében nagy jelentőséggel bírnak ezek a képződmények. Az M108 maga is rendelkezik hatalmas szuperhéjakkal. Maga a galaxis elszigetelt. Ez azt jelenti, hogy nincs olyan galaxis, amivel éppen kölcsön hatna úgy, hogy ez befolyásolja a benne megfigyelhető jelenségeket. A hatalmas héjak létrejöttét, fejlődését egyedül maga a galaxisban lejátszódó események befolyásolhatják csak. Ráadásul majdnem pontosan éléről látunk rá az M108-ra, mely révén sokkal könnyebben nyomon követhető a héjak mozgása a csillagvároson belül. Ennek köszönhetően e héjak kutatói előszeretettel választják ki célpontnak. Így vált az évek során az M108 a HI szuperhéj kutatások egyik fontos „csataterévé”. Átnézve a különböző tanulmányokat azt lehet elmondani, hogy egyik elmélet sem magyarázza meg pontosan, az összes ilyen szuperhéj létezését és viselkedését magában az M108-ban. Van olyan, ami egyértelműen csillagkeletkezési területekhez köthető, de vannak olyan nagyobb, kiterjed HI struktúrák, amelyek nem. Erre pár tanulmány szerzője fel is hívja a figyelmet. További megfigyelésekre van szükség. Így lehet csak majd a teóriákat megerősíteni vagy megcáfolni. Ez az, ahogy a modern tudomány működik. Megfigyelésekre alapoz, felépít egy modellt, majd ellenőrzi azt, hogy összecseng-e más megfigyelésekkel. Illetve megpróbálja tetten érni a modell jóslatait. Egy biztos a hatalmas táguló gázhéjak jelen vannak ezekben a galaxisokban, és a kutatóknak még bőven adnak majd munkát a jövőben.

Ezt a munkát azonban meghagyom a szakembereknek, én csak egyszerűen tovább gyönyörködöm az ég csodáiban, és igyekszem követni az ezekkel kapcsolatos kutatásokat a magam műkedvelő szintjén.

Kvazárok és távoli aktív galaxis magok

Még az M51-ről készült felvételemhez írt cikkben elmélkedtem arról a kérdésről, hogy mi milyen messze van. Csak emlékeztetőül ott a következővel kezdtem az eszmefuttatást:

Kisfiam tett fel egyszer egy érdekes kérdést: Apa, meddig látunk el a távcsöveddel? Érdekes kérdés, és nem lehet rá egyszerűen válaszolni. Őszintén érdeklődő gyermeki kérdés ez, és nem tudtam elintézni egyetlen mondatban. Pedig nagyon igyekeztem, mert a gyermekek másik jellemző vonása, hogy a túlságosan bonyolult messziről induló válaszok esetén hamar elvesztik azt a bizonyos érdeklődésüket.

A kérdés már egy jó ideje ott bolyong a fejemben. Talán azért, mert erre a kérdésre nemcsak ő, hanem én is szeretném tudni a választ, talán már gyermekkorom óta. A kérdés inspirált, és elkezdtem vizsgálni annak a lehetőségét, hogy miként örökíthetnék meg minél távolabbi, és távolabbi objektumokat a saját amatőrcsillagász felszerelésemmel.

Több felvételemen is láthatóak háttérben galaxisok a kiszemelt célpont mellett, melyek sok esetben az adott objektumnál, legyen az akár egy galaxis, sokkal messzebb vannak. Például ezen a felvételen maga az M108 45 millió fényévre van, míg akár 500 vagy 800 millió fényévről is látszanak halványan galaxisok. A még távolabbiak fénye azonban, lassan belevész a háttérbe. Ha ennél is távolabbra szerettem volna tekinteni a kertemből, valami nagyon nagy energiakibocsájtással rendelkező égitestet kellett választanom. Szerencsére a világegyetem, rendelkezésemre bocsájtott ilyen távoli roppant fényes világítótornyokat a kvazárok és aktív galaxis magok képében.

A kvazárok története 1962-ben kezdődött Maarten Schmidt munkásságának köszönhetően, aki a 3C 273 rádióforrást csillagszerű objektumokként azonosította. Később újabb, és újabb ilyen azonosítások következtek, amikor a csillagászok elkezdték a rádióforrások optikai tartományban történő keresését. Jó pár rádióforrás helyén egy furcsa kékes színű csillagot találtak. Angol elnevezésüket is ennek köszönhetik: quasi-stellar radio source, magyarul csillagszerű rádióforrások, melyet később már csak a rövidített quasar formában használtak. Nyelvünkben fonetikusan honosodott meg: kvazár. Az igazi meglepetés akkor következett, amikor megállapították, hogy a galaxisunkon túl, hihetetlen távolságban vannak. A színképekben tapasztalt vörös eltolódás mértéke ugyanis igen nagy volt. Ez azzal magyarázható, hogy a világegyetem tágulásának köszönhetően ezek az objektumok hatalmas sebességgel távolodnak tőlünk. A Doppler-effektus pedig a vörös szín irányába tolja a vonalakat.  A távolódás sebességének mértéke pedig a távolsággal arányos (Hubble-törvény), így ezeknek az objektumoknak több milliárd fényéves távolságban kellett lenniük a számítások szerint. Ebből pedig az következett, hogy óriási mennyiségű energiát sugároznak ki, méghozzá csillagászati értelemben roppant kis területről.

A kvazárok az optikai tartományban sajátos spektrumokat mutatnak, így később már rádióforrás nélkül is elkezdtek rájuk vadászni a kutatók. Kiderült, hogy nem is minden kvazár sugároz a rádió tartományban. Valójában csak 10% az, ami igen. A kvazár szót azonban továbbra is megtartották. Pontosabban bevezették a rádió tartományban csendes kvazár, angolul radio-quiet quasar (RQQ) kifejezést is.

Kiderült továbbá, hogy színképük alapján rokonságban állnak a Seyfert galaxisokkal, melyek aktív galaxis maggal (Active Galactic Nucleus – AGN) rendelkeznek, sőt a rádió galaxisok, és a blazárok is ennek a családnak a tagjai. A ma elfogadott modellek szerint a felsorolt objektumok magjában egy szupermasszív központi fekete lyuk található, melynek tömege a pár milliótól több milliárd naptömegig terjedhet. Ezek a fekete lyukak próbálják elfogyasztani a környezetükben található anyagot. Az étekként szolgáló anyag akkréciós korongot formál, melyet kívülről sűrűbb lassabban keringő gázfelhők vesznek körül. Az akkréciós korong anyaga miközben befelé örvénylik, egyre gyorsabban mozog, és felhevül. A mozgási energiájának pedig egy jelentős része elektromágneses sugárzássá alakul. Továbbá a mozgási energia egy része biztosítja a töltött részecskék relativisztikus (közel fénysebességre) történő gyorsítását. Az akkréciós korongra merőleges, a forgástengellyel párhuzamosan plazmából álló jet-ek jönnek létre, melyben az említett részecskék kifelé haladva spiráloznak, miközben szinkrotonsugárzást bocsájtanak ki. A jet-ek mérete hatalmas is lehet, elérhetik akár a több millió fényévet is. Ehhez képest maga a belső szerkezet, vagyis a korong és az azt körülvevő gázfelhők fényéves nagyságrendbe esnek. Emlékeztetőül a Tejútrendszer átmérője 100000 fényév.

Az, hogy a galaxis magját miként látjuk, milyen objektumként soroljuk be, attól függ csak, hogy a jet milyen irányba mutat. Leegyszerűsítve, ha pontosan felénk mutat az egyik jet, akkor blazárként jelenik meg az objektum. Ha a jet szöge egy kisebb szöget zár be a látóirányunkkal, akkor kvazár vagy Seyfert I típusú galaxis figyelhető meg.  Amennyiben oldalról látjuk a jet-et, akkor rádió galaxisként, vagy Seyfer II típusú galaxisként észleljük.

agn_tipusok

A dolog ennél azért összetettebb, de erre most itt nem térnék ki. A lényeg, hogy azonos motor működteti ezeket az aktív galaxis magokat, melynek során oly hatalmas mennyiségű energia szabadul fel, hogy a kertből egy amatőr felszereléssel milliárd fényévekről esélyem lehet elcsípni a sugárzásukat.

Átnéztem a tél végén, tavasszal észlelhető kvazárok listáját. Sokáig kerestem a megfelelőt. Egy kvazár mégis mindössze csak egyetlen halvány csillagocska felvételen. Persze így is büszke tulajdonosa lehetek egy felvételnek, melynek egyik pontjára akár milliárd éveket is utazott a fény. Ez azért mégiscsak izgalmasan hangzik! De hogyan lehetne az izgalmakat tovább fokozni? Arra gondoltam, hogy átnézem észlelési terveimet, és kiválasztok egy olyan objektumot, amit egyébként is meg szerettem volna valamikor örökíteni, továbbá van legalább egy kvazár, vagy AGN a közelében. Kritérium volt még az is, hogy magasan látszódjon a horizont felett az objektum, hogy a légkör és fényszennyezés hatása kevésbé érvényesüljön. Így tavasszal a Nagy Medve csillagkép és környezete nagyszerűen megfelel ennek a kritériumnak, legalábbis az észlelőhelyemről. Továbbá ebben az irányban szabadon kilátunk a galaxisunkból. Így végül innen választottam jelölteket a listámról. Már csak át kellett néznem egyenként a környezetüket, hogy akad-e ott kvazár vagy AGN. Korábbi felvételeim során szerzett tapasztalataim alapján kizártam azokat, melyek 19 magnitúdósak vagy annál halványabbak voltak. A legnagyobb égterület, amit felszerelésemmel meg tudok örökíteni, 30 ívperc alatt van egy kicsivel. Végül az M108 mellett döntöttem, mert ott annak esélyét is megláttam, hogy a 10 magnitúdós galaxis mellett be tudok cserkészni négy ilyen roppant távoli objektumot is a távcső megfelelő beállításával, és még a galaxis is középre kerül. Sikerült is lefotóznom mind a négyet.

 m108-20140329-ttk-qso-rqq-agn

Objektum magnitúdó z (vöröseltolódás) visszatekintési idő típus
SDSS J111036.95+555144.1 18.2 1.351418 +/- 0.000461 8.7 milliárd év QSO
SBS 1107+557 18.3 0.392637 +/- 0.000353 4 milliárd év AGN1
SBS 1108+560 16.9 0.768267 +/- 0.000359 6.5 milliárd év AGN1
SDSS J111132.12+553240.2 18.6 1.003890 +/- 0.000524 7.5 milliárd év RQQ

A z a mérhető vörös eltolódást jelenti. A visszatekintési idő pedig, amennyi év alatt a fény elért hozzánk. A legközelebbi csillagról a fény 4 év alatt ér ide, azaz mondhatjuk azt, hogy távolsága 4 fényév. Hasonlóan, kiszámíthatjuk, hogy egy z vöröseltolódású galaxisból kibocsátott fény mennyi ideig utazott, ami a fényidőtávolság, vagy visszatekintési időből származó távolság definiálását teszi lehetővé.

Anélkül, hogy az olvasónak bármit is kellene erről tudnia, de persze szabadon utánanézhet, a távolság kiszámításánál a kozmológiai korrekcióban a következő értékek kerültek felhasználásra: H = 73.00 km/sec/Mpc, Ωmatter = 0.27, Ωvacuum =  0.73

(A kozmológiában egy vöröseltolódáshoz többfajta távolság típus tartozik. Erről Dr. Kiss László írt egy remek összefoglalót pár éve az MCSE oldalán.)

Aznap este sikerült lencsevégre kapni a gyönyörű M108-at, de megörökítettem még két aktív galaxist (AGN1), egy rádió tartományban csöndes kvazárt (RQQ), és egy kvazárt (QSO).

Had válaszoljak hát fiam kérdésére most tényleg egy mondatban. Ha az objektum elég fényes, akkor 8.7 milliárd fényévre is ellátok. A fény, amikor útjára indult onnan, a Föld még csak nem is létezett, és én ezt a fényt most rögzíthettem.