NGC4302 és NGC4298 galaxis páros a Bereniké Haja csillagképben

NGC4302-NGC4298-20220130-T11-600s-TTK

Az NGC4302 spirál galaxis (jobbra) és az NGC4298 spirál galaxis (balra) párosa

iTelescope.net T11 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI ProLine PL11002M CCD camera

A felvételek 2022-01-30 és 2022-03-26 között készültek – Új-Mexikó (Mayhill közelében) – 27 x 600 sec L (bin2), 10 x 600 sec R,G,B (bin2)

(Kép orientációja: észak alul, nyugat balra)

A felvételemen látható jobb oldali galaxis az NGC4302, baloldali társa pedig az NGC4298. Észlelési szempontból némileg elhanyagolt galaxisai ezek a Bereniké Haja csillagképnek. Az égbolt eme környék hemzseg a galaxisoktól, melyek könnyen ellopják a showt. Ami kár, mert véleményem szerint, igen izgalmas célpont ez a páros.

Az NGC4298 spirál galaxis tengelye 70 fokot zár be a látóirányunkkal. Szerkezete leginkább egy „égi szélkerékekre” emlékeztet. A pelyhes galaxisok (flocculent galaxy) csoportjába tartozik. A spirál galaxisokat a karok megjelenési formája szerint a csillagászok három fő csoportba sorolják. Az első csoportba a szabályos spirál galaxisok (grand design galaxy) tartoznak. Fő jellemzőjük a két szimmetrikus, egybefüggő és határozott spirálkar. Igen, a legtöbbünkben ez a kép él a tipikus spirál galaxisról, annak ellenére, hogy mindössze csak a 10%-uk ilyen. A második csoportot az úgynevezett pelyhes galaxisok (flocculent galaxy) alkotják. Ezeknél a karok nehezen kivehetőek, szakadozottak, kissé „szedett-vedett”, kaotikus a korong. Az NGC4298 is ide sorolható, akárcsak a spirál galaxisok 30%-a. Végül a harmadik csoportot a sok-karú (multiple arm) galaxisok képviselik, melyekre az erősebb belső karok és a kaotikus külső a jellemző. Ezek képviselik 60%-kal a spirál galaxisok túlnyomó többséget. Megjegyzem, hogy a kutatók egy része egy csoportként tekint a pelyhes és a sok-karú galaxisokra.

A folyamatban lévő csillagkeletkezés indikátorai a forró, és ezért kékes színű masszív csillagok tömeges jelenléte ebben a csillagrendszerben. Ezen behemótok élettartama csillagászati értelemben rövid, néhány millió, néhány 10 millió év mindössze. Utánpótlás hiányában, hamar a kozmikus enyészeté lesznek. Anyaguk jelentős részét, az életútjukat lezáró szupernóva-robbanásban terítik szét az űrben.

A spirál galaxisok csillagpopulációját 70%-ban az úgynevezett M típusú, Napunknál is kisebb tömegű, halvány vörös törpe csillagok alkotják. Ez az arány 90% az elliptikus galaxisoknál, és hasonló ezek arány a lentikuláris galaxisok esetében is. Hiába nagyobb a kis tömegű sárgás-vöröses halvány csillagok aránya, intenzívebb csillagkeletkezés esetén oly iramban keletkeznek csillagok a karokban, hogy viszonylag magas lesz a nagy tömegű csillagok száma is. Ezek pedig fényükkel könnyűszerrel túlragyogják a kisebb testvéreiket. Ennek köszönhető a galaxis kékes árnyalata. Meg annak, hogy mivel srégen látunk rá, így kevésbé érvényesül a korongban koncentrálódó por vörösítő és fényelnyelő hatása. Összefoglalva: kijelenthető, hogy jól láthatóan még 53-55 millió évvel ezelőtt igen aktívan keletkeztek benne csillagok, mikor is útjára indult felénk a fény. Hogy manapság mi a helyzet? Arra még egyszer ennyit időt kellene várnunk. Ez a csillagászat bája, minél messzebb tekintünk a térben, annál távolabb látunk a múltba. A fény terjedési sebessége véges, kb. 300 ezer km/s. Bár nincs, ami gyorsabb lenne nála az Univerzumban, a hatalmas távolságok megtételéhez a fénynek is rengeteg időre van szüksége.

Míg az NGC4298 jól mutatja, hogy miként néznek ki a spirál galaxisok, pontosabban a pelyhes spirál galaxisok, ha szinte tökéletes rálátásunk van a korongjukra, addig az NGC4302 remek példája, hogy milyenek a spirál galaxisok oldalnézetből.

Az NGC4302 korongjában lévő csillagok összeolvadó fényes sávját, a galaktikus egyenlítője mentén koncentrálódó por sötét sávja hasítja ketté. Igaz, hogy ott koncentrálódik, azonban mindenütt jelen van az egész korongban. Így, ahol nem oltja ki a csillagok fényét, ott is érvényesül vörösítő hatása. Ezért dominálnak az NGC4302 színében a sárgás-vöröses árnyalatok.

Az NGC4302-re tehát az éléről látunk rá. Ilyen szögből a korong alakú galaxisok (disc galaxies) központi dudorja (bulge) gyakorta szögletes (boxy), vagy éppen földimogyoróra hasonlít (peanut-shaped), de nem ritka, hogy „X” alakú derengés figyelhető meg bennük. Az NGC4302 központi dudorja is szögletes, amiből az következik, hogy küllős spirál galaxis (Dettmar és Ferrara – 1996). Miért? Hogy a a legalapvetőbb tudományos, és a kisgyermekek által is sokszor feltett kérdésre választ kapjunk, mélyedjünk el picit a küllős spirál galaxisokkal kapcsolatos csillagászati ismeretekben.

NGC4302_HubbleLegacy_May3-2000_8-23-2020

Figyeljük meg, hogy az NGC4302 központi dudorjának szögletes megjelenését a Hubble felvételén!

A kép maga a Hubble Legacy Archives adataiból származik. 3 egyedi, különböző hullámhosszon (az F450W, F555W és F814W szűrőkkel) készített expozícióból készült az RGB kép. Forrás: Hubble Legacy Archives

NGC4302-NGC4298-20220130-T11-600s-TTK-cut-BW_invert-s

Az NGC4302 szögletes központi dudorja, a kinagyított felvételem fekete-fehér negatív részletén is tetten érhető. (A képet a fenti Hubble felvételéhez hasonlóan beforgattam.)

A Hubble Űrtávcső 2000 galaxist magában foglaló felmérése, a Cosmic Evolution Survey (COSMOS) eredményei szerint a múltban kisebb volt a küllős galaxisok aránya a spirális galaxisok között. A mai univerzumban a spirál galaxisok körülbelül 65% rendelkezik küllős szerkezettel, míg a múltban ez az arány, mindössze 20% volt. 7 milliárd év alatt megháromszorozódott a számuk. A küllős felépítés, nem kizárólag a spirális csillagrendszerek kiváltsága, küllőt lentikuláris galaxisokban is szép számmal megfigyelhetünk.

NGC6769-70-71-LRGB-20170725-T30-300s-TTK

Korábbi felvételem kölcsönható galaxisokról a Páva csillagképben. NGC6769 (jobbra felül), NGC6770 (balra felül), NGC6771 (alul). Ezen a fotón jól látható, hogy miként néz ki egy küllős galaxis, ha ferdén látunk rá a korongra (NGC6770 – küllős spirál galaxis). Ezek esetében, nem a galaxis magjából, hanem a küllőből indulnak a spirálkarok. De ezen a fotón is megfigyelhető, hogy milyennek látszik a küllős szerkezet oldalról (NGC6771 – küllős lentikuláris galaxis).

A szakemberek többsége ma úgy véli, hogy a korong alakú galaxisokban, vagyis a spirálisokban és a lentikulárisokban idővel törvényszerű a küllő kialakulása. A küllős szerkezet megjelenése e galaxisok dinamikus fejlődésének egyik természetes állomása. Az elméleti megfontolások mellet, a numerikus szimulációk is megerősíteni látszanak azt az elképzelést, hogy a csillagok mozgásának a galaxis síkjára merőleges oszcillációja (a csillagok pályája felülről, majd alulról keresztezik a galaxis síkját, mintha pillangó úszók lennének egy kozmikus medencében) és a küllő forgása között rezonancia lép fel. A szakirodalomban ezt vertikális rezonanciának nevezik. Ez analóg a Lindblad rezonanciával. A kutatók úgy vélik, hogy egészen pontosan 2:1 vertikális rezonanciáról van szó, vagyis két oszcilláció történik rotációs periódusonként. Ahol a rezonancia fellép, ott a csillagok a küllő pozíciójához képest ugyanott kezdik keresztezni a galaxis síkját, pályájuk igazodik a küllőhöz.

Nearly Periodic Orbits - comp4-cut1

Az ábra a küllő forgásával 2:1 vertikális rezonanciában lévő csillagok pályáját szemlélteti különböző galaktikus vetületekben. Figyeljük meg a baloldali diagramon (zöld görbe), hogy a korong síkjára merőleges vetülete a nagyjából periodikus csillagpályának (xz sík) banánhoz hasonló formát rajzol ki. Az ábrán a „banán alakú” pályák két lehetséges konfigurációját (két fekete görbe) is külön feltüntettem (az xz síkban). Az egyik „banán” „két vége” a galaxis korongjának síkja alatt, míg a másiké a fölött van. Az ilyen pályáknak a küllő nagytengelye mentén (az x a küllő nagytengelye, az y a kistengelye) a legnagyobb a dőlés szöge. A jobboldali ábrán látható a vertikális rezonancia következtében módosult csillagpálya (resonant heating), mely többé már közel sem tekinthető periodikusnak. Az ehhez hasonlatos pályákon mozgó csillagok együttes fénye rajzolja ki az éléről látszó galaxisban a központi dudor szögletes vagy éppen a földimogyoró alakját. A földimogyoró forma speciális esete, amikor derengő X-et látunk a galaxis központi régiójában. Az eredeti ábra szerzője: Yu-Jing Qin

A hatás önmagát erősíti. A csillagok egyre magasabbra jutnak a korongból a galaxis síkja fölé (a pályájuk inklinációja megnő) ezeken a részeken. Ahogy az idők folyamán a küllő forgása lassul, vagy éppen a galaxis korongja vastagszik, a rezonancia területe fokozatosan kijjebb húzódik a küllőben. Azok a csillagok, amiken már túlhaladt a rezonancia, továbbra is nagy inklinációjú pályán maradnak, de elvegyülnek a központi dudor csillagai között. Ne feledjük, hogy ezek eredetileg a korongból származnak). Adott időpillanatban ennek hatására azt látjuk a korong síkjával párhuzamos nézetből, hogy a küllő a centrumtól távolodva egyre jobban megvastagodik. Amennyiben, a küllős galaxis korongja az élével fordul felénk, és a küllőre a hosszanti tengelye mentén látunk rá, akkor szögletes alakúnak, amennyiben a hosszanti tengelye merőleges a látóirányunkra (a küllő keresztben áll), akkor földimogyoró alakúnak látjuk a galaktikus dudort.

Fontos megemlíteni egy másik hatást (elképzelést) is. Ennek lényege, hogy a küllőben idővel fellépő instabilitás (bar buckling instability/firehose instability) az, ami a korong csillagait a galaxis síkja fölé emeli, vagy az alá kényszeríti, létrehozva a banán alakú csillagpályákat. A csillagpályák kezdetben kicsiny kitérései a galaxis síkjából idővel felerősödnek. A folyamat hasonló a Kelvin-Helmholtz instabilitáshoz. Azzal analóg módon működik. A numerikus szimulációk viszont azt mutatják, hogy ez inkább a korong megvastagodásában játszik szerepet. A rezonancia sokkal meghatározóbb tényező a szögletes vagy földimogyoró alak kialakításában. Vannak csillagászok, akik azonban ezt vitatják. A jövőbeni megfigyelései majd talán segítenek eldönteni a kérdést.

Remélem, hogy mindenféle hosszabb fejtegetés és matematikai formula nélkül is érthetően sikerült felvázolnom a kedves olvasó számára magát a folyamatot. (A jelenség ennél azért bonyolultabb. A cikk után felsorolt szakirodalomban megtalálhatók a pontos részletek. Nem éreztem szükségét azonban annak, hogy precíz módon minden apró részletre pontosan kitérjek.) Most pedig pörgessük fel az idő kerekét, és néhány percben nézzük meg a sok 100 millió éves időskálán lezajló eseményeket. A következő szimulációk durván 2-3 milliárd évet átfogva mutatják be a küllő kialakulását, fejlődését. Működés közben láthatjuk a korong galaxisokban munkálkodó fentebb ismertetett mechanizmusokat.

A videó a küllő kialakulásának és fejlődésének folyamatát mutatja be. Várjunk türelmesen! 1 perc 20 másodperc környékén láthatóvá válik mindaz, amiről írtam. Szerzők: Fabian Lüghausen, Benoit Famaey, Pavel Kroupa

Hasonló szimuláció (diszk és sötét anyag haló). Figyeljük meg, ahogy a küllő forgása lassul, egyre kijjebb halad a rezonancia, a földimogyoró alak egyre markánsabb  lesz. Szerző: Rubens Machado

A fenti szimuláció kissé döntött nézetben. Figyeljük meg, hogy a küllő miként vastagszik meg, és miként emelkednek ki a csillagok a két átellenes végén, hogyan születik meg az „X”. Szerző: Rubens Machado

Az előbb tehát csak tömören és mindössze vázlatosan ismertetett elképzelés mögött sok-sok elméleti munka, szimuláció és nem utolsó sorban megfigyelés áll. Gondoljunk csak bele, hogy a központi dudor megfigyelésének az kedvez, ha nagyjából éléről vizsgálhatjuk a galaxist, míg a küllő tanulmányozását inkább a hozzávetőleg merőleges rálátás segíti. Ritka kivételek akadnak. Például a korábban általam fotózott NGC7582  galaxis ilyen, ahol a közeli infravörös tartományban (K Band) előbukkan a központi dudor is. Ebben az esetben a küllő és a földimogyoró alakú dudor egyszerre tanulmányozható.

Alapvetően tehát nem voltak könnyű helyzetben a megfigyelő csillagászok. Azonban, mára nem igazán fér kétség ahhoz, hogy kapcsolat van a küllők és a szögletes, illetve a földimogyoró alakú központi dudor között. Legfeljebb a pontos hatásmechanizmusok terén akadnak még kérdések.

Mind a két galaxis nagyjából 55 millió fényévre van tőlünk. Igaz, hogy a látómezőben nagyon közel látszanak egymáshoz. De vajon tényleg párost alkotnak? Kölcsönös gravitációs árapály-hatásuk révén befolyásolják egymás evolúcióját? Mosenkov és szerzőtársai szerint, az NGC4302 külső részeinek alakja ovális és aszimmetrikus, ami akár az NGC4298-cal való kölcsönhatással is magyarázható. Ugyanakkor, ez a kutató csapat az árapály egyéb jeleit nem észlelte.

NGC4302-outer-Mosenkov

Simított kép az NGC4302-ről Gauss-szűrőt használva (σ = 1). A zöld skála 1 ívperc. A sárga szaggatott kontúr a 24 magnitúdó/ívmásodperc2 izofóta (az izofóta egy megvilágított felületen egy görbe, amely az egyenlő fényes pontokat köti össze) – Forrás: Mosenkov és mások

A csillagkorong aszimmetriája az NGC4298-nél sokkal egyértelműbben megmutatkozik délkeleti irányba (Chung és mások – 2007), aminek egyik lehetséges magyarázata a másik galaxissal történő kölcsönhatás. Akárcsak a fokozott ütemű csillagkeletkezés, ami valószínűleg szintén az árapály kölcsönhatás számlájára írható (Malin, D. – 1994).

A spirál galaxisok nemcsak csillagokból állnak, hanem porból és gazból is, ahogy erre korábban már utaltam. Zschaechner és kollégái az NGC3044 (e cikk keretébe ezzel nem foglalkozom) és az NGC4302 galaxisokban a HI régiók kinematikáját és morfológiáját vették górcső alá 2015-ös tanulmányukban. A HI régiók olyan intersztelláris felhők, melyeket javarészt atomos hidrogén alkot (a területek ionizációs foka jellemzően igen alacsony: 1:10000) némi héliummal, és a héliumnál nehezebb elemekkel szennyezve. A semleges hidrogéngáz vizsgálatára a rádiótávcsövek nyújtanak kitűnő lehetőséget, így Zschaechner és szerzőtársai a VLA (Very Large Array) rádiótávcső rendszerével történt korábbi megfigyeléseket használták fel. A galaxisokban lévő hideg és sűrű hidrogén gázfelhők jelenléte elengedhetetlen a csillagok keletkezéséhez. Ezek kinematikájának és morfológiájának feltérképezése a kulcs a galaxis múltjának, jelenének és várható jövőjének megismeréséhez. A kutatók találtak arra utaló jeleket, hogy az NGC4302 és az NGC4298 úgynevezett árapály kölcsönhatásban állhat egymással, ugyanis a kettőt a rádiótartományban észlelhető anyaghíd köti össze.

NGC4302-NGC4298-VLA-apj505518f17_hr

A két galaxist összekötő anyaghíd rádióképe. Ennek létezését a szerzők a két galaxis árapály kölcsönhatásával magyarázzák. Forrás: Zschaechner és mások

Bár a távolságadatok sok millió fényéves szórást mutatnak e két galaxisnál, de így is kijelenthető, hogy a Virgo galaxishalmazhoz tartoznak. Ez a legközelebbi masszív galaxishalmaz, melynek távolsága 16.5±0.5 Mpc (Mei és mások – 2007), vagyis 54 millió fényév. Becslések szerint 1500-2000 tagot számlál, melyek az égbolt közel 8 fokos területén oszlanak el. A halmaz átmérője 4.4 Mpc, ami 14.3 millió fényévnek felel meg (Fouqué és mások – 2001). Ez alig valamivel nagyobb, mint a Tejútrendszerünkkel együtt nagyjából 50 galaxist magában foglaló Lokális Csoport mérete, ami körülbelül 3 Mpc (10 millió fényév). Azonban, míg eme utóbbi tömege 2.3±0.7×1012 M (Peñarrubia és mások – 2014), addig a Virgo halmazé 1.2×1015 M (Fouqué és mások – 2001). Nagyságrendnyi különbségről van tehát szó. Nagyjából 2 billiónyi naptömeg az 1 billiárdnyi naptömeggel szemben. A Virgo halmaznak három, egyértelműen azonosítható alcsoportja is van. Ezek középpontjában az M87, az M86 és az M49 galaxis helyezkedik el. Valószínű, hogy a halmazt még mindig a formálódása közben figyelhetjük meg.

Galaxy-Clusters-around-the-Local-Group

Galaxis csoportok és galaxishalmazok a Lokális Csoport közelében.
Szerző: Andrew Z. Colvin

Nemcsak az égen elfoglalt helyük és távolságuk a bizonyság arra, hogy a Virgo halamaz tagjai. Először Chung és munkatársai 2007-es tanulmányukban publikálták a VLA-vel végzett rádió megfigyeléseik alapján, hogy az NGC4302-nak HI (atomos hidrogéngáz) nyúlványa van a galaxis északi részén, mely túlnyúlik a galaxis optikai tartományban látható korongján. Érdekes módon ez pontosan az M87, a Virgo halmaz központi galaxisával ellentétes irányba mutat. Ilyet, más Virgo halmaz béli galaxis esetében is sikerült ilyet megfigyelniük.

NGC4302-NGC4298-HI-map-Chung

Az NGC4302 és NGC4298 galaxisok optikai képére montírozott rádióképen látható az északi irányba mutató atomos hidrogéngázból álló nyúlvány. Forrás: Chung és mások

A galaxisok közötti tér sem teljesen üres. Több halmaz esetében igen forró (10-100 millió K) gáz tölti azt ki (IGM – Inter Galactic Medium). Ennek azonban 10-4-10-2 elektron/cm3, vagyis extrém alacsony a sűrűsége. Sok-sok nagyságrenddel kisebb, mint a galaxisok atomos hidrogénjének sűrűsége, ami 0.2-100 atom/cm3. Elsőre azt gondolhatnánk, hogy a halmazban mozgó galaxisokra nincs hatással a roppant ritka gáz. Több galaxishalmaz megfigyelése azonban azt mutatta, hogy miközben a galaxisok ebben a gázban mozognak, torlónyomás lép fel, ez pedig képes letépni a csillagrendszer korongjának külső területeiről a csillagközi anyagot (Ram Pressure Stripping). Hasonlóan ahhoz, ahogy a menetszél kerékpározás közben lefújja az ember fejéről a sapkát. Ehhez nem kell más, csak az, hogy a galaxis relatív nagy sebességgel mozogjon a halmazon belül, és elég sűrű legyen a halmazon belüli gáz.

Ugyan, ahogy fentebb írtam is, az optikai tartományban nem tűnik úgy, hogy az NGC4302 szerkezetében torzulások, zavarok lennének megfigyelhetők az NGC4298 hatására. Mindazonáltal, egy kevéske árapály kölcsönhatás is elég ahhoz, hogy a gázt kimozdítsa a galaxis pereméről, így sokkal jobban kitéve azt a torlónyomás hatásának.

Az NGC4302 esetében pontosan ez történik. Chung és kollégái arra a következtetésre jutottak, hogy az NGC4302 csak a közelmúltban érkezett a halmazba, és erősen radiális pályán mozog a Virgo halmaz centruma felé, miközben máris elkezdte elveszíteni gázkészletét. Akárcsak az NGC4298, melynél szintén megfigyelhető a rádiótartományban, hogy északnyugati irányban kiterjedtebb a HI régiója.

Csak remélni merem, hogy a kedves olvasó e sorok olvasása közben kedvet kapott hozzá, hogy a tavaszi égen maga is megfigyelje, észlelje ezt a párost. Akár vizuális, akár fotografikus módszerrel.

Felhasznált irodalom:

Malin, D.: Interacting Galaxies in the Virgo Cluster

Dettmar, R. -J. ; Ferrara, A.: NIR Imaging of the Box/Peanut Bulge in NGC 4302

Pascal Fouque, Jose M. Solanes, Teresa Sanchis, Chantal Balkowski: Structure, mass and distance of the Virgo cluster from a Tolman-Bondi model

Mei, Simona; Blakeslee, John P.; Côté, Patrick; Tonry, John L.; West, Michael J.; Ferrarese, Laura; Jordán, Andrés; Peng, Eric W.; Anthony, André; Merritt, Davi (2007). „The ACS Virgo Cluster Survey. XIII. SBF Distance Catalog and the Three-dimensional Structure of the Virgo Cluster”. The Astrophysical Journal655 (1): 144–162.

Aeree Chung, J. H. van Gorkom, Jeffrey D. P. Kenney, Hugh Crowl, Bernd Vollmer: VLA Imaging of Virgo Spirals in Atomic Gas (VIVA). – I. The Atlas and the HI Properties

Kartik Sheth, Debra Meloy Elmegreen, Bruce G. Elmegreen, Peter Capak, Roberto G. Abraham, E. Athanassoula, Richard S. Ellis, Bahram Mobasher, Mara Salvato, Eva Schinnerer, Nicholas Z. Scoville, Lori Spalsbury, Linda Strubbe, Marcella Carollo, Michael Rich, Andrew A. West: Evolution of the Bar Fraction in COSMOS: Quantifying the Assembly of the Hubble Sequence

Francoise COMBES, Patrick Boissé, Alain Mazure, Alain Blanchard: Galaxies and Cosmology (ISBN 978-3540419273)

Alice C. Quillen, Ivan Minchev, Sanjib Sharma, Yu-Jing Qin, Paola Di Matteo: A Vertical Resonance Heating Model for X- or Peanut-Shaped Galactic Bulges

Fabian Lüghausen, Benoit Famaey, Pavel Kroupa: Phantom of RAMSES (POR): A new Milgromian dynamics N-body code

Oscar A. Gonzalez, Victor P. Debattista, Melissa Ness, Peter Erwin, Dimitri A. Gadotti: Peanut-shaped metallicity distributions in bulges of edge-on galaxies: the case of NGC 4710

Jorge Peñarrubia, Yin-Zhe Ma, Matthew G. Walker, Alan McConnachie: A dynamical model of the local cosmic expansion

Laura K. Zschaechner, Richard J. Rand, and Rene Walterbos: Investigating Disk-halo Flows and Accretion: A Kinematic and Morphological Analysis of Extraplanar H I in NGC 3044 and NGC 4302.

Aleksandr Mosenkov, R. Michael Rich, Andreas Koch, Noah Brosch, David Thilker, Javier Román, Oliver Müller, Anton Smirnov, Pavel Usachev: Evolution of the Bar Fraction in COSMOS: Quantifying the Assembly of the Hubble Sequence

Az NGC5363 és NGC5364 galaxis páros – Az NGC5363 galaxis csoport

NGC5364-NGC5363-LRGB-20200513-T11-600s-TTK

Az NGC5364 spirál galaxis (balra) és az NGC5363 lentikuláris galaxis (jobbra) párosa

(Az NGC5363 galaxis csoportról készített fotóm kivágott részlete)

iTelescope.net T11 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI ProLine PL11002M CCD camera

A felvételek 2020-05-14 és 2020-05-20 között készültek – Új-Mexikó (Mayhill közelében) – 24 x 600 sec L (bin2), 10 x 600 sec R,G,B (bin2)

A Polaris Csillagvizsgálóban pár éve vettem át a „kisszakkör” vezetését, melyet a Magyar Csillagászati egyesület a 8-12 éves korosztály számára tart. A szakköri foglalkozásokra a tanévben szerdánként került sor. A COVID-19 helyzet miatt 2020 tavaszán a csillagvizsgálót is be kellett zárnunk. A sorozatnak így végé szakadt.

A tematikában éppen a galaxisok kerültek volna terítékre. Optimistán, bízva az újranyitásban, elkezdtem frissíteni a prezentációimat. Ezt egyébként is rendszerese megteszem, mikor felkészülök a következő foglalkozásra. A csillagászatban mindig vannak új eredmények és aktualitások. Mivel a szakkörök elmaradtak, így azokat az órákat arra használtam fel, hogy több anyagomat is átírtam, átszerkesztettem.

A gyűjteményemből nagyon hiányzott egy olyan illusztráció, ami szemléletesen megmutatja a spirál galaxisok és a lentikuláris/elliptikus galaxisok közötti különbségeket. Mindezt egyetlen fotón, hogy ne kelljen a diák között oda-visszaváltani. Ekkor merült fel bennem, hogy miért ne választhatnék olyan célpontokat a következő digitális észleléshez, ami egyben megfelel ennek az elvárásnak. Miért ne készíthetnék magam is ilyen asztrofotót?

Már csak a megfelelő jelöltet kellett kiválasztanom. Ebben nagy segítségemre voltak saját jegyzeteim, melyeket a korábbi megfigyelésekhez írt cikkekhez készítettem. Nem mindig használom fel ezeket az anyagokat, de gyakran merítek belőle újabb ötleteket. Most is így történt.

Merre találhatók ezek a galaxisok? Mit érdemes tudni róluk? Ismerkedjünk meg először röviden a Kozmosz legnagyobb struktúráival, hogy el tudjuk helyezni a látottakat!

Galaxishalmazok és kozmikus ritkulások

A világegyetem nagy léptékű szerkezete leginkább kusza pókhálóra hasonlít. A galaxisok, galaxis csoportosulásokba, galaxishalmazokba, szuperhalmazokba tömörülnek e gigantikus szálak mentén.

Ezek a definíciók a halmaztagok között lévő gravitációs kapcsolaton alapulnak, melyek különböző skálán működnek. A galaxis egy gravitációsan kötött rendszer. Gáz, por és csillagok milliói vagy milliárdjai alkotják. Ezt hierarchiában a galaxiscsoportok követik, melyek általában néhány tucat tagot számlálnak. A több száz vagy ezer galaxist tartalmazó galaxishalmaz egy ennél is nagyobb gravitációsan kötött objektum, ahol a kölcsönös vonzóerő elég erős ahhoz, hogy még a kozmikus tágulás sem fogja majd eltávolítani egymástól a galaxisokat.

A legközelebbi masszív galaxishalmaz a Virgo galaxishalmaz. Távolsága 16.5±0.5 Mpc (Mei és mások – 2007), vagyis 54 millió fényév. Becslések szerint 1500-2000 tagot számlál, melyek az égbolt közel 8 fokos területén oszlanak el. A halmaz átmérője 4.4 Mpc, ami 14.3 millió fényévnek felel meg (Fouqué és mások – 2001). Ez alig valamivel nagyobb, mint a Tejútrendszerünkkel együtt nagyjából 50 galaxist magában foglaló Lokális Csoport mérete, ami körülbelül 3 Mpc (10 millió fényév). Azonban, míg eme utóbbi tömege 2.3±0.7×1012 M (Peñarrubia és mások – 2014), addig a Virgo halmazé 1.2×1015 M (Fouqué és mások – 2001). Nagyságrendnyi különbségről van tehát szó. Nagyjából 2 billiónyi naptömeg az 1 billiárdnyi naptömeggel szemben. A Virgo halmaznak három, egyértelműen azonosítható alcsoportja is van. Ezek középpontjában az M87, az M86 és az M49 galaxis helyezkedik el. Valószínű, hogy a halmazt még mindig a formálódása közben figyelhetjük meg.

Galaxy-Clusters-around-the-Local-Group

Galaxis csoportok és galaxishalmazok a Lokális Csoport közelében.

Szerző: Andrew Z. Colvin

Az egymáshoz közeli csoportok és halmazok – melyek mindegyike gravitációs kötésben van –, egy még nagyobb struktúra gravitációs vonzásának hatása alatt állnak. Csakhogy, ott a gravitáció vonzó hatása már eltér a gravitációsan kötött rendszer csillagászati definíciójától. Ezeket hívják a csillagászok szuperhalmazoknak, melyek a világegyetem legnagyobb, galaxisokat tömörítő struktúrái.

Valójában nem is olyan egyszerű behatárolni ezeket. Évekkel ezelőtt még úgy gondolták a csillagászok, hogy a Lokális Csoport, és közel 100 másik halmaz és csoport is, a 100 millió fényév kiterjedésű Virgo Szuperhalmaz része. (Az elnevezést a legnagyobb tömegű tagja, a Virgo halmaz után kapta.) Kiderült azonban, hogy ez csak a jéghegy csúcsa. Ezek a halmazok együtt, még egy ennél is jóval nagyobb, és jól behatárolható struktúra részesei.

2014. szeptember 4-én jelent meg az a cikk a Nature-ben, melyben Brent Tully (University of Hawaii) és kutatócsapatának 8000 galaxis mozgásának megfigyelésén alapuló kutatási eredményét közölte. Az Ősrobbanás óta táguló világegyetem globális hatását figyelembe véve korrigálták a mért eredményeket, és ebből megkapták, hogy miként hatnak pusztás a galaxisok gravitációsan egymásra. Egy háromdimenziós térképet alkottak, mely teljesen újradefiniálta a szuperhalmazok fogalmát. A földrajzban is ismert vízválasztó vonalakhoz hasonló analógiával élve, a galaxisok csoportjai különböző gravitációs vonzócentrumok irányába igyekeznek, akárcsak a víz egy vízválasztó vonal két oldalán. Jól elhatárolható felületek vannak a világegyetemben, melyek egyik oldalán az egyik, míg a másik oldalán egy másik ilyen vonzócentrum felé mozognak a galaxisok, illetve azok csoportosulásai.

Mintegy 100 ezer társával egyetemben Tejútrendszerünk, a közel 160 Mpc (520 millió fényév) kiterjedésű Laniakea vagy más néven a Lokális szuperhalmazhoz tartozik. E szuperhalmaz összes galaxisa, legyen az magányos, vagy valamilyen kisebb csoport, esetleg népes halmaznak a tagja, mind a „Nagy Vonzó” („Great Attractor”) felé mozog. Tehát, a Lokális Csoport éppúgy részt vesz ebben a kozmikus áramlásban, mint a masszív Virgo halmaz.

A Laniakea szuperhalmaz. Azokat a filamenteket (szálakat), melyek mentén a galaxisokat összegyűjtötték a szerzők, és amely mentén a galaxisok együtt mozognak, halványkék színnel lettek jelölve. A vörös és fekete galaxisok különböző áramlásokhoz tartoznak. A videóban a Tejútrendszerünk van az origóban (zöld pötty), mely a feketével jelölt áramlásban vesz részt. Mint az látható, mi az ekképpen definiált Laniake szuperhalmaz külső peremén lakunk. A Lokális szuperhalmazban pedig különböző színekkel jelölték azokat a területeket, ahol a galaxisok sűrűbb, historikus csoportosulásai találhatók. Évtizedeken keresztül a csillagászok úgy vélekedtek, hogy mi a zöld régióval jelölt szuperhalmaznak vagyunk a részei. De kiderült, hogy ez is csak „kis szelete” valami sokkal nagyobbnak. A Laniakea hawaii nyelven mérhetetlen mennyet, mérhetetlen eget jelent. Ezzel az elnevezéssel próbálták a kutatók érzékeltetni, hogy milyen hatalmas struktúráról is van szó a világegyetemben. A 2014-ben Tully és kutatótársai által bevezetett új szuperhalmaz fogalom sokkal egyértelműbbé tette, hogy hol találhatóak eme grandiózus kozmikus képződmények határvonalai.

Forrás: R. Brent Tully, Helene Courtois, Yehuda Hoffman és Daniel Pomarède (Nature, vol 513, number 7516, p71 – 4 September 2014)

Laniakea-supercluster-TULLY

A Laniakea szuperhalmaz, és az új definíción (a galaxisok konvergáló mozgásán) alapuló, a Laniakea-t körülvevő szuperhalmazok. A kék pötty a Tejútrendszer pozícióját jelöli a szuperhalmazban.

Forrás: R. Brent Tully, Helene Courtois, Yehuda Hoffman és Daniel Pomarède (Nature, vol 513, number 7516, p71 – 4 September 2014)

A galaxisok, galaxishalmazok, szuperhalmazok kusza rostos hálózata mellett, legalább annyira érdekesek az ezeket elválasztó hatalmas ürességek. Azt is mondhatjuk, hogy a Univerzum buborékos szerkezetű, melynek „falain” helyezkednek el a galaxisok, illetve a korábban említett halmazok, szuperhalmazok. Pontosabb azonban, ha ezeket az ürességeket, inkább ritkulásoknak (Cosmic Void) nevezzük. A Világegyetem ezen területei ugyanis nem teljesen üresek. Bennük is találkozhatunk galaxisokkal, galaxishalmazokkal, de szignifikánsabban kevesebbel. A legközelebbi ilyen hatalmas „üreg”, a Lokális Ritkulás (Local Void) határa éppen extragalaktikus szomszédságunkban húzódik.

A Lokális Ritkulás létezését 30 évvel (1987) ezelőtt ismerte fel Brent Tully és Rick Fisher.  Tully és munkatársainak vizsgálata alapján a Lokális Csoportnál kezdőd ritkulás nagyjából 45-60 Mpc (150-200 millió fényév) kiterjedésű. Továbbá, centrumának távolsága legalább 23 Mpc-re (75 millió fényévnyire) van tőlünk. Meg kell jegyeznem azonban, hogy pontos kiterjedését a mai napig viszonylag nagy bizonytalanság övezi.

Laniakea-Local_Void1

Kozmikus áramlások és sűrűsödések a Laniakea szuperhalmazban. Ebben a metszetben jól látszik, hogy a Lokális Sűrűsödés elnyúlik egészen a Virgo galaxishalmaz mögé. A galaxisok kiáramlása a ritkulásból teljesen evidens ebben a nézetben.  Forrás: Hélène M. Courtois, Daniel Pomarède, R. Brent Tully, Yehuda Hoffman, Denis Courtois

A vizsgálatok tanúsága szerint a Lokális Ritkulás tágul. A Lokális Csoport és a környező galaxisok alkotta fal (Local Sheet) távolodik a ritkulás centrumától. Úgy tűnhet, mintha az „üresség” taszítana minket. A helyzet azonban nem ez. Arról van szó, ahogy azt már fentebb említettem, hogy a galaxisok mozgásából levonva a világegyetem tágulásának hatását, azok összeáramlása, koncentrációja figyelhető meg a Világegyetemben. Mindez meghatározott vonzócentrumok irányába történik, és a jelenség a gravitációnak köszönhető. De nemcsak e masszív képződmények játszanak fontos szerepet az egészben, hanem ellenpárjaik, a ritkulások is. A korábban említett vízválasztós példánál maradva, az is fontos tényező a víz áramlása szempontjából, hogy van-e magas hegy a közelben. A ritkulások pedig magas, meredek falú hegyeknek tekinthetők, ahol gyorsabban igyekszik a víz a völgybe. Vagyis, ezek közelében a helyi csoportok gyorsabban mozognak az „alacsonyabban fekvő”, vagyis a sűrűbb régiók felé, mint azt egyébként tennék. A nettó hatást pedig úgy érzékeljük, mintha a ritkulás „eltaszítaná” magától, a vonzócentrum pedig „húzná” maga felé a galaxisokat, és ennek a kettőnek a hatás pedig a tőlük való távolság függvényében összeadódik. A Lokális Ritkulást ugyan szinte teljesen galaxisok veszik körül, de ezek eloszlás nem egyenletes. Van olyan része, ahol szinte „semmi sincs”, erről a környékről így még több anyag képes távozni. Az analógiát tovább használva, a hegyek idővel egyre nagyobbá, kiterjedtebbé nőnek, miközben a róluk lezúduló víz a völgyekben összegyűlik. Az összeáramlással a ritkulások egyre nagyobb méreteket öltenek, és pontosan ez az, ami a Lokális Ritkulással is történik.

Egy 2017-es publikáció szerint létezik egy sokkal „meghatározóbb” ritkulás is, ami mintegy „eltaszít” minket magától. Így megoldás kínálkozik a Lokális Csoportnak a kozmikus mikrohullámú háttérsugárzáshoz viszonyított túlságosan nagy sebességére. Azonban, ezzel a mostani cikk keretein belül nem foglalkozom, mert nem egy átfogó kozmológiai cikk megírása volt a célom. Kizárólag a Lokális Ritkulásra koncentrálnék. Akit mégis érdekel a téma, annak Yehuda Hoffman, Daniel Pomarede, R. Brent Tully, Helene Courtois: The Dipole Repeller című cikkét ajánlom a figyelmébe, ami az arxiv.org-on szabadon elolvasható. A Nature-ben megjelent változat fizetős. Illetve, aki csak pár percet szánna rá, annak itt egy rövid kis videó.

Okkal emeltem ki külön a fentiekben a Virgo galaxishalmazt és a Lokális Ritkulást. Ezek nemcsak remek példái a Világegyetem galaxisokkal zsúfolt, illetve üresebb térségeinek, de a további mondandóm szempontjából is fontos szerepük lesz.

Galaxisok fonala a Lokális Ritkulás peremén és a Virgo galaxishalmaz között

Az elmúlt évtizedek teljes égboltra kiterjedő távcsöves felméréseinek hála, manapság már rengeteg galaxis radiális (látóirányú) sebességét és távolságát megmérték a csillagászok. Ezek a tömeges adatok, ahogy ezt fentebb is említettem, lehetőséget adnak arra, hogy a szakemberek megállapíthassák, a galaxisok látszólagos radiális mozgása (a valóságban ezt lehet csak mérni) mennyiben származik a tér tágulásából, és mennyiben egy halmazon vagy csoporton belüli lokális gravitációs hatás okozta mozgásából. A távolságok és a galaxisok pekuliáris mozgásának ismerete remek eszköz a csillagászok kezében, hogy feltérképezzék a masszív vonzócentrumokat és a ritkulásokat a Világegyetemben. (A galaxis pekuliáris sebessége alatt, az univerzum izotropikus tágulása miatti mozgáshoz viszonyított sebessége értendő, amit a Hubble áramlás ír le. Hubble áramlás pedig a tér tágulásából származó elmozdulása az anyagnak.)

Igor D. Karachentsev, Valentina E. Karachentseva és Olga G. Nasonova 2014-ben publikálták azt a cikket (Galaxy motions in the Bootes strip), melyben alaposan szemügyre vetették az általuk Bootes Sávknak (Bootes Strip) nevezett égterületet. A szerzők a Lokális Ritkulás és a Virgo halamaz között elhelyezkedő, szétszórt galaxisok alkotta Bootes Szálat (Bootes Filament) vizsgálták a galaxisok kinematikáján és elhelyezkedésükön keresztül. Tették mindezt azért, hogy következtetéseket vonhassanak le a Virgo halmaznak és a Lokális Ritkulásnak a környezetükre gyakorolt hatásáról.

Bootes-Strip-Stellarium-01-mark2

Az égboltnak azon szelete, melyet Karachentsev és munkatárai átvizsgáltak. A Bootes Sáv (Bootes Strip) galaxisai, a halvány vörössel megjelölt égterületen helyezkednek el.

Olyan galaxisokat választottak ki, melyek radiális (látóirányú) sebessége 2000 km/s-nál kisebb volt. A kutatásban összesen 361 galaxist használtak fel mintaként. Megállapították, hogy ezek 56%-a nem magányos csillagrendszer, hanem csoportokat és párokat alkotnak. Egészen pontosan, 13 galaxis csoportról és 11 párról van szó. A 700 km/s és 1300 km/s radiális (látóirányú) sebességű galaxisok legtöbbje a sáv nyugati oldalán helyezkedik el, a Virgo halmaz szomszédságában. E nyugati galaxisok legtöbbje a Virgo halmaz erős gravitációs hatása alatt áll, vagyis annak középpontja felé mozog.

Bootes-Strip-1

Az ábra a galaxisok radiális (látóirányú) sebességét mutatja a Bootes Sávban. 14h környékén látható körív rész (zero velocity surface) választja el a Virgo halmaz centruma felé mozgó galaxisokat azoktól, melyek részt vesznek a kozmosz tágulásban. Ennek a körnek a sugara 7.2 Mpc (23.5 millió fényév) vagy 25 fok az égbolton (Karachentsev és mások – 2014). Ábra forrása: Karachentsev és mások – 2014

A Bootes Sávban a galaxisok eloszlásának egyik legmeghatározóbb sűrűsödése az NGC5846 kompakt csoport. Korábbi becslések szerint körülbelül 250 darab -12 magnitúdónál (MR) is nagyobb abszolút fényességű tagja lehet (Mahdavi és mások – 2005) ennek a halmaznak. Az NGC5846 csoport két alcsoportból áll össze a röntgen tartományban végzett megfigyelések tanúsága szerint. A tagok jellemzően két meghatározó galaxis körül, vagyis az NGC5846 és az NGC5813 elliptikus galaxis körül gyülekeznek. Mindazonáltal, a kinematikai jellemzők megkülönböztetnek egy másik alcsoportot is az NGC 5846 mellett. 9 galaxist az NGC5838 lentikuláris galaxis gravitációja ural.

Bootes-Strip-6

Az NGC5846 és az NGC5746 galaxis csoportok közeli nézete a Bootes Sáv régióban. A csoportok tagjait vonalak kötik össze a domináns galaxissal. Ábra forrása: Karachentsev és mások – 2014

A Bootes Sáv 361 galaxisából álló mintából csak 161 galaxis (45%) esetében volt ismert a távolságérték. Ezekre építve állapították meg, hogy ezek a csillagrendszerek 17 és 27 Mpc (55.4 és 88 millió fényév) között helyezkednek el. Hozzávetőleg 2/3-uk távolsága a 25 ± 5 Mpc (82 ± 16 millió fényév) tartományba esik. Fontos megjegyezni, hogy a legtöbbjüknek a távolsága a Tully-Fisher reláción alapuló érték, melynek pontossága körülbelül 20%. Ennek vonzata, hogy a látóirányú vastagsága a Bootes Szálnak összemérhető a tipikus távolságmérési hibával. Mégis, az adatokból ki tudták következtetni, hogy a Bootes Szál galaxisainak nagy része távolabb van tőlünk, mint a Virgo halmaz. Továbbá, hogy enyhén ívelt, és a csillagrendszerek távolsága folyamatosan csökken a Virgo halmaz felé. Sikerült pontosítaniuk a Virgo halmaz attribútumait is, és egyértelműen kimutatták, hogy ennek a hatalmas halmaznak a gravitációja miként vonzza maga felé a környező galaxisokat. Ugyanakkor, a Lokális Ritkulás pontos kiterjedése és centrumának pozíciója még további vizsgálatokra szorul.

Bootes-Strip-4

A Bootes Szálnak a Virgo halmazhoz és a Lokális Ritkuláshoz képesti pozícióját mutatja az ábra. A megfigyelő a diagram bal alsó sarkában helyezkedik el (LG, Lokális Csoport). A nyilak a Virgo halmaz gravitációs vonzásának, és a Lokális Ritkulás (korábban említett) taszító hatását reprezentáló vektorok. Látható, hogy ezek eredője a Bootes Szál különböző részén más és más. A Virgo halmaz körüli körív (zero velocity surface) választja el a Virgo halmaz centruma felé mozgó galaxisokat azoktól, melyek részt vesznek a kozmosz tágulásban. Ennek a körnek a sugara 7.2 Mpc (23.5 millió fényév) vagy 25 fok az égbolton (Karachentsev és mások – 2014). Ábra forrása: Karachentsev és mások – 2014

Az NGC5363 csoport galaxisai

NGC5363GG-LRGB-20200513-T11-600s-TTK

Az NGC5363 csoport galaxisai

iTelescope.net T11 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI ProLine PL11002M CCD camera

A felvételek 2020-05-14 és 2020-05-20 között készültek – Új-Mexikó (Mayhill közelében) – 24 x 600 sec L (bin2), 10 x 600 sec R,G,B (bin2)

Karachentsev és szerzőtársai a Bootes Sáv galaxisainak morfológiai besorolását külön is elvégezték, és nem csupán az égbolt felmérő programok keretében született katalógusok adataiból dolgoztak. Az egyes csillagrendszereket három nagy populációba osztották be: korai, köztes, és késői típus.

Bootes-Strip-2

A Bootes Sáv galaxisainak morfológiai besorolása: korai (Early types), köztes (Intermediate types), és késői (Late types) típus. Ez az ábra volt nagy segítségemre a fotó témájául szolgáló csoport kiválasztásában. Ábra forrása: Karachentsev és mások – 2014

A korai típusú galaxisok vörös árnyalatúak, erősen koncentráltak és kerek/elliptikus alakúak. A késői típusú galaxisok ellenben kékes árnyalatúak, alacsony koncentrációjúak, és domináns a galaktikus korongjuk. A köztes típusú galaxisok, ahogy a nevük is mutatja, az átmenetet képviselik. Vöröses színűek, közepes koncentrációjúak és van galaktikus korongjuk.

Hubble_-_de_Vaucouleurs_Galaxy_Morphology_Diagram-mini

Ma már tudjuk, hogy a Hubble-de Vaucouleurs galaxis morfológiai diagrammon a galaxisok fejlődése nem a balról jobbra irányt követi (elliptikus, lentikuláris, spirál galaxisok). Azonban, a korai elképzelések miatt, ma is használják a korai, köztes, késői típus kifejezéseket a csillagászok.

Felhasználva Karachentsev csapatának ábráját, átnéztem az Interneten elérhető STScI Digitized Sky Survey felvételeit az egyes csoportokról. Kimondottan olyat kerestem közöttük, ahol az égbolt viszonylag szűk területén a fent említett galaxis populációk vegyesen fordulnak elő. Alaposabban megnézve az említett ábrát, láthatóan csak kevés számú csoport vagy galaxis páros felelt meg ennek a kritériumnak. Ezek közül számomra az NGC5363 galaxis csoport volt az „első látásra szerelem”. Pontosan valami ilyesmit kerestem: prominens lentikulásris és spirál galaxis párosa egyetlen látómezőben, ahol az utóbbi korongjára ferde szögben látunk rá.

Az rögtön kiderült számomra, hogy az össze tagot nem tudom majd egyetlen képen megörökíteni. Például az NGC5363 centrális lentikuláris és a valamivel kisebb látszólagos méretű NGC5300 spirál galaxis távolsága az égen kb. 2.3 fok. A bérelni kívánt távcső látómezője pedig ennél jóval kisebb volt. Arra törekedtem, hogy a legtöbb nagyobb méretű halmaztagot „rápréselhessem” a felvételre. Ennek megfelelően kalkuláltam ki a távcsőnek megadott égi koordinátákat.

NGC5363GG-LRGB-20200513-T11-600s-TTK-annotated

A látómező azon galaxisai, melyek az NGC5363 galaxis csoporthoz tartoznak

Objektum RA (2000.0) DEC Magnitúdó (NED – Bt) Távolság (Mpc)** Morfológiai besorolás*** Szerepel a felvételen?
NGC5300 J134816.0+035703 13.6 21.6 tf Sc Nem
PGC1283560 J135143.0+052647 16.2   dE Nem
UGC08799 J135319.8+054618 16.32 12.1 sbf dE Nem
NGC5348 J135411.2+051338 14.18 19.8 tf Sc Igen
NGC5356 J135458.4+052001 13.63 19.5 tf Sb Igen
PGC1277985 J135502.7+050525 17.1   dEn Igen
PGC1279452* J135504.5+051122 17.18 14.8 TF BCD Igen
NGC5360 J135538.7+045906 14.8 21.5 TF Sm Igen
NGC5363 J135607.3+051517 11.1 16.6 TF S0 Igen
AGC232142 J135609.4+053234 17.38 15.1 TF Ir Nem
NGC5364 J135612.0+050052 11.19 19.5 tf Sbc Igen
SDSSJ13562 J135621.3+051944 17.37   dE Igen
UGC08857 J135626.6+042348 15.26   Sab Nem
PGC049602 J135655.6+050907 15.82   dEn Igen
PGC1266441 J135714.1+041826 17.1   Sm Nem
PGC1285591 J135723.6+053427 16.3   Sph Nem
UGC08986 J140415.9+040644 15.03   dEn Nem

Az NGC5363 galaxis csoport tagjai (Karachentsev és mások – 2014). Megadtam a koordinátákat, amennyiben az olvasó is meg szeretné figyelni őket. Feltüntettem továbbá az integrált (B szűrővel mért) fényességüket, nem a vörös eltolódáson alapuló távolság adatukat (amennyiben szerepelt ilyen), a morfológiai besorolásukat. Továbbá megjelöltem, hogy szerepelnek-e a felvételemen.

* Karachentsev és munkatársainál AGC232141, én a PGC-ben (Principal Galaxies Catalogue) szereplő azonosítóját tüntettem fel itt.

** Különböző távolságmeghatározási módszerekkel kapott értékek: sbf (surface brightness fluctuations) – a galaxis felületi fényesség fluktuációján alapuló módszer; tf/TF: A Tully-Fisher reláción alapuló módszer (TF: Karachentsev és szerzőtársai által elvégzett távolságmérés)

*** Karachentsev és munkatársai szerint

Az NGC5363 galaxis csoport a Bootes Szál Virgo halmazhoz közeli részén helyezkedik el. Annak gravitációs hatása alatt áll, így tulajdonképpen inkább a Virgo halmaz egyik nyúlványának tekinthető. Megnézve a fenti táblázatot szembetűnő, hogy a nagyobb halmaztagok szinte mind spirál galaxisok: NGC5364, NGC5356, NGC5348, NG5300 (nem szerepel a felvételemen). Kivételt képez az NGC5363 központi galaxis, mely a lentikuláris galaxisok egyik szép példánya. A kisebb méretűek inkább a törpe elliptikus galaxisok, vagy ahogy újabban nevezik őket törpe szferoidális galaxisok (Kormendy és Bedner felvetése alapján), illetve az irreguláris galaxisok közé sorolhatók be.

Mielőtt rátérnék a spirál galaxisok és a lentikuláris galaxisok közötti különbségek ismertetésére, vagyis amiért maga a kép illusztráció gyanánt készült, hadd emeljek ki külön két galaxist. Ez a kettő számomra két külön izgalmas csemege. Bár mind a kettő megjelenésében már elsőre is van valami különös, de talán mégsem ezeken akad meg elsőre az ember szeme a felvételen. Izgalmas mellékszereplői a csoportról készült fotónak. Az egyik ezek közül az NGC5360, melynek megjelenése ugyan irregularitást mutat, azonban Karachentsev-ék szerint ez egy spirál galaxis, melynél teljesen hiányzik az úgynevezett központi dudor (bulge). A másik személyes apró kedvencem a felvételen a PGC1279452, ami egy kék kompakt törpe galaxis (BCD – Blue Compact Dwarf). Ezeknek a szabálytalan alakú törpéknek a tömege a Tejútrendszer tömegének nagyjából a tizedét teszi ki. Masszív és forró csillagok hatalmas halmazaival teletűzdeltek, s mivel ezek magas felszíni hőmérsékletük miatt kékes árnyalatúak, így az egész galaxis kékben tündököl. Ez a helyzet a PGC1279452 esetében is. A masszív csillagok tömegüktől függően mindössze néhány millió, vagy néhány tízmillió évig léteznek. (A kisebb tömegű csillagok hosszabb ideig élnek.) Az, hogy olyan óriási számban fordulnak elő, annak a bizonyítéka, hogy csillagászati értelemben nem is olyan régen még viharos ütemű csillagkeletkezés zajlott ebben a kompakt törpében, s talán zajlik még most is. Most alatt természetesen azt a pillanatot értem, mikor is a fényük elindult felénk. Ezek a csillagrendszerek nem tartalmaznak túl sok port, sem nem túl sok fémet. A csillagászok minden elemet a hidrogénen és a héliumon túl a periódusos rendszerben fémnek neveznek. Egy csillag fémtartalmát általában a Naphoz szokták hasonlítani a kutatók. A világegyetem története folyamán, a csillagoknak hála egyre dúsabb lett fémekben. Az újabb és újabb csillaggenerációk már egyre több fémet tartalmaztak. A fémszegény BCD galaxisok megfigyelése tehát közelebb viheti a csillagászokat ahhoz, hogy megértsék milyen folyamatokban alakultak ki a Világegyetemben a legelső csillaggenerációk.

NGC5364-NGC5363-LRGB-20200513-T11-600s-TTK

A 16.6 Mpc-re, azaz 54 millió fényévre (Karachentsev és mások – 2014) lévő NGC5363 (a képen jobbra) lentikuláris galaxis. Ezt a típust gyakran átmenetnek szokták tekinteni a spirál és az elliptikus galaxisok között. A lentikuláris galaxisok alapvetően diszk alakúak akárcsak a spirál galaxisok. Nincsenek azonban spirálkarjaik, a korongban nem figyelhetők meg határozott struktúrák. Jellemző rájuk, hogy a központi dudor a galaxis korongjához képest viszonylag nagyméretű, és meghatározó a galaxis felépítése szempontjából. A Spitzer infravörös űrtávcsővel végzett megfigyelések szerint, az NGC5363 is pontosan ezt a felépítést követi: nagy méretű központi dudor és galaktikus korong.

Ugyanakkor, bizonyos lentikuláris galaxisokban, a küllős spirál galaxisokhoz hasonlóan szerkezet (az angol nyelvű irodalomban: bar) figyelhető meg. Bennük a csillagok dinamikája is nagyon hasonlatos a spirál galaxisokéhoz, ugyanis eltolva az ezek esetében érvényes Tully-Fisher reláció diagramját megkapjuk a lentikuláris galaxisokra jellemzőt.

Nem mondhatók elliptikus galaxisoknak sem, bár kétségtelenül vannak nagyon hasonlatos jegyeik. Éppen ezért, az elliptikus galaxisokat és a lentikuláris galaxisokat gyakran nem is olyan könnyű megkülönböztetni egymástól. Például, a színképük az öreg csillag populációjuknak hála alig tér el. A prominens központi dudor szintén jellemző mind a kettőre. Ezekben a csillagok mozgása véletlen eloszlást mutat. Nincs sem kitüntetett iránya, sem kitüntetett síkja a csillagok keringésének a centrum körül. Ellenben, a lentikuláris galaxisok korongjában van kitüntetett keringési irány, és a pályák is síkba rendezettek. Ez pedig, határozottan megjelenik az egész galaxis dinamikájában. Tekintve, hogy az elliptikusoknak nincs korongja, így megfigyelve a galaxison belüli mozgások jellegét, különbséget tudunk tenni a lentikuláris és az elliptikus csillagrendszerek között.

A lentikuláris galaxisokban csekély mennyiségű molekuláris gáz található, ezért alacsony bennük a csillagkeletkezési ráta. 21 cm-es rádióemissziójuk is jelentéktelen, mivel alig van bennük atomos hidrogént tartalmazó intersztelláris anyag. Az ionizált hidrogént tartalmazó HII régiók hiányában Hα sugárzásuk sem számottevő. Eme utóbbi tulajdonságok amúgy az elliptikus galaxisokra is jellemzők, azonban a lentikuláris típusúak porban viszonylag gazdagok. Röviden és általánosságban ezek mondhatók el erről a típusról. Ám nincs olyan, hogy átlagos lentikuláris galaxis, ez a példány pedig némileg ki is lóg a sorból.

Az NGC5363 csillagainak túlnyomó többsége 8.5-9 milliárd éves (az illesztett modelltől függő érték). Főként öreg sárgás és vöröses fényű fősorozati, vagy a fősorozatról mer elfejlődött csillagok alkotják. Nem véletlen, hogy ezek árnyalatok dominálnak a galaxisban. Ennek a populációnak a kérész életű masszív csillagai már réges-régen kihunytak, s velük tovatűnt a hajdani kékes ragyogásuk. A galaxis vörös és halott (az angol nyelvű szakirodalomban használatos „red and dead” után). De valóban leállt volna teljesen a csillagkeletkezés? Az UV tartományban végzett megfigyelésekkel mégiscsak sikerült fiatal csillagok sugárzását detektálni az NGC5363-ban. Bár az UV sugárzásra más magyarázat is lehetne (például post-AGB csillagok, planetáris ködök), de a galaxisban sikerült még Hα sugárzást is detektálni. Így együtt ez már elég érv amellett, hogy fiatal csillagok populációja is megtalálható ebben a galaxisban, még ha a galaxis tömegének csak néhány százalékát (kb. 2%) teszi is ki. A legvalószínűbb, hogy egy másik galaxissal történt összeolvadás, annak bekebelezése válthatta ki ezt a csillagkeletkezési aktivitást. Ekkor tehetett szert az NGC5363 arra a gázra, melyből e csillagok keletkeztek. Majd a forró fiatal csillagok sugárzása ionizálta ezt a gázt, így létrehozva a megfigyelt Hα sugárzást. E lehetséges forgatókönyv a galaxis más egyéb tulajdonságait is megmagyarázza.

Az NGC5363 megjelenését nagyban meghatározza a benne található por. Nézzük csak meg azokat a porsávokat! Bár az optikai tartományban is nyilvánvaló, de igazán az infravörös tartományban tanulmányozható alaposabban. És amit a csillagászok így találtak, az még őket is nagyon meglepte: abnormálisan sok a por az NGC5363-ban. A galaxisokban az intersztelláris port az öregedő csillagok termelik az úgynevezett AGB fázisban (Asymptotic Giant Branch – Aszimptotikus óriás ág). A csillagok életük eme késői szakaszában jelentős mennyiségű tömeget veszítenek, az időszakonként eltérő sűrűségű és intenzitású csillagszél révén. Hihetetlen tűnik, de ebben a folyamatban könnyen kezdeti tömegüknek több mint a felétől is megszabadulhatnak. Ezek a Napnál akár ezerszer is fényesebb, vöröses árnyalatú óriás csillagok szó szerint ledobják külső rétegjeiket, és ennek egy részéből kondenzálódnak ki a porszemcsék. Azonban, a megfigyelések tanúsága szerint, százszor annyi por van a galaxisban, mint amit ezek az idősödő csillagok képesek lettek volna valaha is előállítani. Honnan ez a sok por? A legvalószínűbb, hogy ez is külső eredetű, akárcsak a fiatal csillagok kialakulásoshoz szükséges gáz. De az NG5363 héjakból álló felépítése (ami jobb monitoron a fotómon is felfedezhető), illetve a csillagok mozgása a galaxisban is egy korábbi kozmikus karambolra utal.

NGC5363-HII-Figure-Finkelman

Az NGC5363 belső vidékének R-band kontur térképe, a kontimuumból kivont Hα+[NII] képe és a B−R színindex térképe. Forrás: Finkelman és mások (2010).

Gondosan megvizsgálva az NGC5363 belső vidékének kontinuum képéből kivont Hα+[NII] képét, a HII régiók térbeli eloszlása küllős spirál szerkezetre emlékeztet. A B−R színindex térkép alapján pedig elmondható, hogy az erős takarásban lévő belső küllő egy összetettebb porszerkezet része, amely követi a spirálszerkezetet és a galaxis főtengelye mentén nyúlik tovább. Az NGC5363 azon lentikuláris galaxisok közé tartozik, melyeknek szorosan feltekeredett spirálkarja van, és ezekben csillagok keletkeznek. Nem sok ilyet ismerünk! Nagyon is kilóg a lentikuláris galaxisok sorából.

Az NGC5363 továbbá a LINER (Low Ionization Nuclear Emission Region) galaxisok csoportjába tartozik. A LINER-ek a nevüket magjuknak színképe alapján kapták, amiben tipikusan gyengén ionizált atomok (egyszeresen ionizált oxigén, nitrogén, kén, stb.) keskeny vonalai figyelhetők meg, míg az erősen ionizált atomok (például kétszeresen ionizált oxigén) vonalai viszonylag gyengék. A LINER galaxisok közel sem olyan ritkák, mint az elsőre gondolnánk. A megfigyelések azt mutatják, hogy a környezetünkben (486 elemű, legalább 12.5 magnitúdós (BT) galaxismintát tekintve) minden ötödik-harmadik galaxis ilyen. Érdekes, hogy túlnyomórészt inkább elliptikus és lentikuláris galaxisok esetén figyelhető meg ez a jelenség, bár számottevő a spirál galaxisok mennyisége is. Az irreguláris galaxisok között viszont csak elvétve akad ilyen.

Máig vitatott, hogy pontosan miért látjuk ezeket az emissziós vonalakat a LINER galaxisok színképében. Már abban sincs egyetértés a csillagászok között, hogy egyáltalán miként jön létre maga a gerjesztés. Egyesek szerint az intersztelláris gázban terjedő lökéshullámok (shock waves), míg mások szerint a fotoionizáció (intenzív UV sugárzás) okozza azt. Nemcsak az ionizációs mechanizmus kérdésében oszlik meg a kutatók véleménye, de annak forrását illetőleg is. A csillagászok egyik jelentős tábora szerint, e galaxisok esetében a centrumban tanyázó szupermasszív fekete lyukak okolhatók a gáz gyenge ionizációjáért. Az NGC5363 magjában is tanyázik egy ilyen szörnyeteg, melynek tömege 3.75418 x 108 naptömeg (Saikia és mások – 2015). Míg más csillagászok véleménye az, hogy a LINER galaxisok megfigyelhető tulajdonságai nem a központi fekete lyuk „munkálkodásának” eredménye.  Szerintük, a csillagkeletkezési régiók fiatal, masszív és egyben forró csillagai gerjesztik a gázt. Vannak olyan csillagászok, akik nem az aktív galaxismagban, vagy éppen az intenzív csillagkeletkezésben látják a megoldás kulcsát. Sőt, éppen ezek hiányával magyarázzák az egészet. Az 1 milliárd évnél öregebb, előrehaladott fejlődési állapotban lévő csillagok, az aszimptotikus óriás ág elhagyása után (post AGB phase) rövid ideig elég forrók ahhoz, hogy képesek legyenek gyengén ionizálni a környező csillagközi gázokat. Az emisszió megfigyelésére pedig azért nyílik egyáltalán lehetőségünk, mert sem az aktív mag, sem a fiatal forró csillagok keltette sugárzás nem ragyogja túl azt.

Az NGC5364 távolságadatai viszonylag nagy szórást mutatnak. Ne feledjük, hogy a Tully-Fisher reláción alapuló mérések pontossága nem éppen a legjobb! A NED (NASA/IPAC Extragalactic Database) oldalán felsorolt publikációkban található távolságok két szélsőértéke között közel 10 Mpc az eltérés. Csak az utolsó nagyjából két évtized méréseinek mediánja alapján, a galaxis távolsága 18.1 Mpc (59 millió fényév). Ehhez egészen jól illeszkedik Karachentsev és szerzőtársai által közölt 19.5 Mpc (63.6 millió fényév) távolság.

A galaxis korongjára srégen látunk rá (inklinációja 47 fok). Ebben a galaxisban szemmel láthatóan ma is aktív csillagkeletkezés zajlik. Tökéletes ellentéte az NGC5363-nak. Nem vörös és halott galaxis. Sőt! Figyeljük csak meg a karok kékes árnyalatát, és a HII régiók vöröses-rózsaszínes pöttyeit, melyek a csillagkeletkezés csalhatatlan jelei.

NGC5364-B-Band-and-Ha-Band

Az NGC5364 B szűrővel (balra) és Hα szűrővel készült felvétele. Az elsőn a csillagkeletkezési gyűrű és a spirál karok, míg az utóbbin a HII régiók eloszlása rajzolódik ki tökéletesen. Forrás: Grouchy és mások (2010)

Az NGC5364 egyik szembetűnő tulajdonsága a két szimmetrikus, egybefüggő és határozott spirálkar (grand design galaxy). A galaxis SA (r) bc morfológiai besorolású (Grouchy és mások – 2010). SA, mert nincs küllője. A karok a centrumból indulnak, én nem a küllő két végéről. A bc jelzés arra utal, hogy a karok nem szorosan ölelik körbe a centrumot. Az (r) jelzés pedig azt jelenti, hogy belső csillagkeletkezési gyűrűje is van.

A csillagkeletkezési gyűrűk jelenléte a nem küllős galaxisokban máig nagy talány. A numerikus szimulációk azt mutatják, hogy a gyűrűk létrejöttében a küllőnek (bar) esszenciális szerepe van. Annak gravitációs hatására a csillagközi gáz jól meghatározott régiókban képes felhalmozódni. Léteznek olyan elképzelések, hogy valaha ezeknek a galaxisoknak is volt küllője, de az mára feloszlott, vagy csak elhalványulva beleolvadt a galaktikus korongba. Vagy éppen ott van a küllő, csak éppen megfelelő hullámhosszon kell vizsgálni a galaxist. A XX. századba készült galaxis osztályozások (de Vaucouleurs és mások – 1991, Sandage és Tammann – 1981) egyedül a B (kék) szűrős felvételek alapján készültek. A kék színtartományban jól láthatóak a gyűrűk és a spirál karok a fiatal csillagok révén. A küllő viszont sokszor észrevehetetlen ezeken a fotókon, mivel az ezeket alkotó idősebb csillagpopulációk kevésbé sugároznak a kék tartományban. Ezek megfigyelésére sokkal alkalmasabb a közeli infravörös tartomány. Nem egy galaxisban sikerült utólag kimutatni a küllő jelenlétét az infravörös felméréseknek hála.

Az NGC5364 esetében azonban máig nincs tudomása a csillagászoknak arról, hogy lenne küllője. Pár kutató azonban meg van győződve arról, hogy kellően erős spirális sűrűséghullámok hatására is létrejöhetnek ezek a gyűrűk olyan galaxisokban, melyeknek korongjában korábban sosem alakult ki küllő (Rautiainen és Salo – 2010). A gyűrűk megfelelő körülmények között, a spirális hullámminta sebességének belső Lindblad-rezonanciájánál formálódnak az NGC5364-hez hasonló galaxisokban. Így, a sűrűséghullámok nemcsak a karok létezésért, de a csillagkeletkezési gyűrű létezéséjért is felelősek lehetnek ennél a galaxisnál.

Figyeljük meg, hogy ez a gyűrű mennyire látványosan kiugrik a galaxis belső korongjából a fotómon, és hogy a galaxisnak és a gyűrűnek a középpontja nem esik tökéletesen egybe! Ugyanígy hangsúlyos e fiatal behemót kék csillagok fénygyűrűje a fenti képen, a B (kék) szűrővel készült baloldali mozaikon is. A galaxis spirális struktúrája szintén igen markánsan megmutatja magát a kék tartományban. De a karokat határozottan követik az ionizált gáz HII régiói is. Kitűnik a Hα keskenysávban készült fotóról az is, hogy maga a gyűrű az északi oldalon sokkal intenzívebben sugároz ezen a hullámhosszon a déli oldalához képest. Ez a tendencia igaz az egész spirális szerkezetre is. Összességében, az ionizált gáz jelenléte a galaxis északnyugati oldalán sokkal dominánsabb. Hogy mi lehet mindennek az oka? Elképzelhető, hogy a tőle északra látható NGC5363 gravitációs hatása hagyott nyomot az NGC5364 morfológiáján (Grouchy és mások – 2010). És talán ennek köszönhető a galaxis nyugati és délnyugati oldalán lévő árapály képződmény is.

Végszó

Az NGC5363 galaxis csoportról készült felvételem révén hozzájutottam az általam áhított illusztrációhoz. Nem mondanám, hogy nem kötött le és nem volt szórakoztató az az 5-6 órányi pepecselés, amíg a képet feldolgoztam a Pixinsight nevű programmal. De mire elolvastam a galaxisokhoz tartozó tudományos publikációkat, már sokkal többet jelentett nekem egyetlen fotónál. Bepillanthattam a kép mögött rejlő titkokba. És azzal, hogy mindezt „papírra vetettem” megszületett a digitális észlelést lezáró szintézis is. Számomra így lett teljes az élmény. Ezzel természetesen még nem volt vége. Következő lépésként, a digitális észlelést feltöltöttem a Magyar Csillagászati Egyesület észlelési archívumába. Ott van igazán jó helyen, és nem a fiókomban, nem a saját oldalamon, nem egy közösségi médium oldalán.

Felhasznált irodalom:

Pascal Fouque, Jose M. Solanes, Teresa Sanchis, Chantal Balkowski: Structure, mass and distance of the Virgo cluster from a Tolman-Bondi model

M. A. Pahre, M. L. N. Ashby, G. G. Fazio, S. P. Willner: Spatial Distribution of Warm Dust in Early-Type Galaxies

Ido Finkelman, Noah Brosch, José G. Funes S.J., Alexei Y. Kniazev, Petri Väisänen: Ionized gas in E/S0 galaxies with dust lanes

A.E. Sansom, E. O’Sullivan, Duncan A. Forbes, R.N. Proctor, D.S.Davis: X-ray observations of three young, early-type galaxies

M.K.Patil, S.K.Pandey, D.K.Sahu, A.K.Kembhavi: Properties of dust in early-type galaxies

R. Brent Tully, Edward J. Shaya, Igor D. Karachentsev, Helene M. Courtois, Dale D. Kocevski, Luca Rizzi, Alan Peel: Our Peculiar Motion Away from the Local Void

Brent Tully: Our CMB Motion: The Local Void influence

Ido Finkelman, Noah Brosch, José G. Funes, S.J., Alexei Y. Kniazev, Petri Väisänen: Ionized gas in E/S0 galaxies with dust lanes

R. D. Grouchy, R. J. Buta, H. Salo, E. Laurikainen: Ring Star Formation Rates in Barred and Nonbarred Galaxies

Igor D. Karachentsev, Valentina E. Karachentseva, Olga G. Nasonova: Galaxy motions in the Bootes strip

Hélène M. Courtois, Daniel Pomarède, R. Brent Tully, Yehuda Hoffman, Denis Courtois: Cosmography of The Local Universe

R. Brent Tully, Helene Courtois, Yehuda Hoffman, Daniel Pomarède: The Laniakea supercluster of galaxies

CLUES (Constrained Local UniversE Simulations) projekt

Payaswini Saikia, Elmar Körding, Heino Falcke: The Fundamental Plane of Black Hole Activity in the Optical Band

Gustavo Morales, David Martínez-Delgado, Eva K. Grebel, Andrew P. Cooper, Behnam Javanmardi, Arpad Miskolczi: Systematic search for tidal features around nearby galaxies: I. Enhanced SDSS imaging of the Local Volume

NGC185 elliptikus törpegalaxis és gömbhalmazai

NGC185-LRGB-20170730-0142-sx-bin2-360s-TTK

NGC185

2017-07-30, 2017-08-21, 2017-08-25 – Göd

21 x 360 sec L (Bin2), 10 x 360 sec R (Bin2), 10 x 360 sec G (Bin2), 10 x 360 sec B (Bin2)

300/1200 Newton távcső – Paracorr Type2 kóma korrektor – eredő fókusz 1380 mm

SkyWatcher EQ-6 Pro GoTo mechanika

SXVR-H18 CCD kamera, Hutech IDAS P2 LPS filter és Baader RGBL fotografikus szűrőszett

Nagyon is jól emlékszem az estére, amikor az első felvételeket rögzítettem ehhez a fotóhoz. Az amúgy sem hosszú nyári éjszaka nagy részét azzal töltöttem, hogy ismerkedtem a nemrég beszerzett Stralight Xpress Lodestar X2 Autoguider vezető kamerámmal és a PHD2 programmal. A Lacerta MGEN standalone autoguider-t, mely évekig szolgált, ezzel a felállással váltottam ki. Már vészesen közeledett a hajnali 2 (NYISZ), mikor úgy éreztem, most már tényleg minden rendben, és nem kívánok már többet foglalkozni a hosszabb expozíciók készítéséhez elengedhetetlen vezetéssel. Elégedett voltam a beállításokkal, a PHD2-ről pedig éppen eleget tudtam már. Volt még idő pirkadatig, és mivel eleget szereltem, kábeleztem, teszteltem a rendszert ezen az estén, úgy éreztem, jár nekem némi jutalom. Különben is jobban szeretem, ha én dolgoztatom a műszereket, és nem ők engem. Igaz, meghálálják a törődést.

Az elmúlt években az érdeklődésem egyre jobban a galaxisok és a gömbhalmazok felé fordult. Ó, nem mintha a többi, a Naprendszer határain túli úgynevezett mély-ég objektum nem lenne érdekes és csodálatos! Nagyon is az! Egyszerűen csak engem eme két objektum típus megismerése, megfigyelése, esetleges megörökítése lelkesít a legjobban. Nyilván mások preferenciái eltérők, de így van ez rendjén. És akkor még a Naprendszer béli égitesteket nem is említettem. Mostanában egyre gyakrabban kapom magam azon, hogy holdas éjszakákon kint vagyok az udvaron, és távcsővel fürkészem kísérőnket, mint kezdetekben. Néha még képet is készítek egy-egy alakzatról a felszínén.

Visszatérve a galaxisokra és a gömbhalmazokra, akkor hajnal felé az a gondolatom támadt, hogy miért ne lehetne ötvözni a kettőt. Legyen a célpont valamelyik „szomszédos” csillagrendszer és annak gömbhalmazai! Az Androméda, a Cassiopeia csillagképek és ezek környezet már elég magasan járt az égbolton ahhoz, hogy a megfelelő jelölt fényképezésébe belevágjak. Hamar leszűkítettem a kört, mert a városi égbolt, a távcsövem látómezője, és az átlátszóság behatárolta a lehetőségeimet. Érdekes, hogy a légköri nyugodtság a szokásoshoz képest egészen jó volt. Választhattam volna a 2.5 millió fényévre lévő Androméda-galaxist (M31) és a gömbhalmazait is akár, de ennek 3.167° × 1° kiterjedése miatt mozaik felvételeket kellett volna készítenem. Elhessegettem ezt a gondolatot. Az elmúlt években egyébként is sok szép észlelés és fotó készült róla. Az Andromédának több tucatnyi szatellit galaxisa van azonban, melyek közül akadnak olyanok, amik amatőr műszerekkel is megfigyelhetők. Nem egynek pedig régóta ismert több gömbhalmaza.

Az NGC147 és az NGC185 elliptikus törpegalaxisok között vívódtam. Ezt a kettő, az M31-et kísérő csillagrendszert 58′ választja el egymástól az égen, de a valóságban is csak nagyjából 300 ezer fényév (kb. 93 kpc) a köztük lévő távolság. A látszólagos közelségük miatt gyakorta egyetlen fényképen szokták megörökíteni ezeket a rövidebb fókuszú amatőr távcsövekkel. Az én műszeremmel viszont nem lehet ekkor égterületet átfogni. Választanom kellett. Az NGC185 távolsága 2.02 millió, míg az NGC147 távolsága 2.3 millió fényév. Az NGC185 valamivel közelebb van tehát. Mondhatnánk, hogy némileg több az esély a részletek megörökítése tekintetében. Valójában azonban nem ez volt az egyetlen szempont, hogy az NGC185 mellett tettem le a voksomat. A két törpegalaxis egészen más megjelenésű és felépítésű. Régebbi vizuális megfigyeléseim alapján még jól emlékeztem rá, hogy az NGC185 felületi fényessége számottevően nagyobb, mint az NGC147 galaxisé, így a fényszennyezett égen az előbbi lefényképezése jóval több sikerrel kecsegtetett.

NGC185-map4

Az NGC185 a Cassiopeia csillagképhez tartozó égboltterületen látható, nagyjából „félúton” helyezkedik el az Androméda csillagkép és a Cassiopeia jellegzetes „W” alakot formáló csillagai között. Vagy, ha úgy tetszik, akkor „félúton” az Androméda-galaxis és a Cassiopia Shedar nevű csillaga között. Az Androméda-galaxishoz nemcsak látszólag, de valójában is közel van. A két galaxis távolsága 600 ezer fényév (181 kpc).

Továbbá, ahogy Walter Baade is írta a múlt század negyvenes éveiben: „Az NGC185 egyike azon elliptikus ködöknek, ahol a fényelnyelő anyag jelenléte teljesen nyilvánvaló. Két ilyen sötét köd is van az NGC185 centrumának közelében.”. Ezek az én felvételemen is jól láthatók, egy markáns és egy jóval kevésbé sötét ív formájában. A semleges hidrogén megfigyelésével kapcsolatos vizsgálatok alapján ma már tudjuk, hogy az NGC185 gázkészlete közel 300 ezer naptömeg. Az infravörös tartományban készült felvételek tanúsága szerint pedig nagyjából 5000 naptömegnyi por van jelen ebben a galaxisban. Ezzel szöges ellentétben, az NGC147-ben nincs számottevő, azaz észlelhető mennyiségű por és gáz. Ez volt az a másik különbség a két galaxis között, ami még vonzóbbá tette számomra az NGC185-öt.

Meg kell mondjam, hogy ezek a látszólagosan kicsiny porívek számomra különösen izgalmassá teszik ezt a galaxist. Jogosan merül fel a kérdés, hogy miként lehetséges a csillagközi por és a gáz jelenléte az NGC185-ben, míg a tőle nem is oly távoli NGC147 szegényes intersztelláris médium tekintetében. A legvalószínűbb magyarázat, hogy más evolúciós utat jártak be, mivel eltérő az M31 körüli pályájuk konfigurációja. Az NGC147-et a múltban sokkal gyakrabban és nagyobb mértékben érintette az M31 gravitációs hatása. Pályáján közel kerülve az Androméda-galaxishoz, az óriás spirális csillagrendszer kiszakította belőle a port és a gázt. Míg az NGC185 keringési periódusa elég nagy ahhoz, hogy az Androméda-galaxissal csak kevesebb számú „gravitációs csatát vívott”. Továbbá, pályájának pericentruma távolabb esik az Androméda-galaxistól, mint az NGC147-é, így ezek a „csaták” kevésbé voltak intenzívek. Összességében, mivel az az NGC185 csak ritkábban, és kevésbé közelítette meg az M31-et, így megőrizhette por és gáz készleteinek bizonyos részét.

Az NGC185 „felülete” nem véletlenül kelt a fotómon szemcsés zajos benyomást. Ez nem a felvételek rögzítésének, illetve a feldolgozásuknak a hibái. 300 mm átmérő és 1380 mm (a korrektor miatt) fókusztávolság esetén a galaxis fotografikusan már mutatja a csillagokra való bontás legelső jeleit. Ezt igyekeztem finoman még szembetűnőbbé tenni a kép kidolgozásakor. (Az általam használt PixInsight csillagászati képfeldolgozó program ehhez remek eszközökkel van felvértezve.) Már a megtisztított és összeadott képet először látva olyan benyomásom támadt, mintha az okuláron keresztül egy már a csillagokra bontás határán lévő halvány, „grízes” gömbhalmazt néznék. Bár a felvételemen már látszik „valami”, de többnyire ez összeolvadó csillagok fénye. Ahhoz, hogy ez a galaxis valóban teljesen csillagjaira essen szét, ennél azért tekintélyesebb átmérőre és jóval hosszabb fókuszra van szükség. Mondjuk a Hooker távcsőre, amivel több mint hét évtizeddel a saját felvételem előtt ez először sikerült. Néhány gondolat erejéig tekerjük most vissza az idő kerekét!

Walter Baade a II. világháborús elsötétítések miatt kiváló körülmények között dolgozhatott a világ akkor legjobb távcsövével. A Mount Wilson-on álló 100 hüvelykes távcsőre ma is legendaként tekintenek a csillagászok. Baade minden korábbinál nagyobb határfényességű képeket készített az Androméda-galaxisról, és igen meghatározó felismerést tett: a galaxis különböző területeire más-más típusú csillagok a jellemzők. Míg a karokban a kékes fényű csillagok domináltak a felvételein, addig a magvidéken a vörösebb, és halványabb csillagok. Bevezette a csillagpopulációk fogalmát. A fémekben gazdag csillagokat az I. populációba, míg a fémekben szegényeket II. populációba sorolta. A csillagászok minden elemet a hidrogénen és a héliumon túl a periódusos rendszerben fémnek neveznek. Az 1940-es évek igen termékenyek voltak a csillagászat terén. Nemcsak a megfigyelő csillagászat élte a forradalmát, de a kutatók addigra megértették a csillagok energiatermelési folyamatait. A csillagok belső felépítésével és fejlődésükkel kapcsolatos első számítások is ehhez az évtizedhez köthetők. Még ha csak a kezdetekről is beszélünk. Idővel világossá vált a csillagászok számára mi is okozza a kémiai összetétel különbségét a populációk között. Egy csillag fémtartalmát általában a Naphoz szokták hasonlítani a kutatók. A világegyetem története folyamán, a csillagoknak hála egyre dúsabb lett fémekben. Az újabb és újabb csillaggenerációk egyre több fémet tartalmaztak, így minél alacsonyabb fémtartalmú egy csillag a Naphoz képest, vélhetőleg annál ősibb objektum. A Baade féle populációk tehát csillaggenerációk, ahol az I. populáció a fiatalabb, a II. populáció pedig az idősebb csillagok tartoznak. Igaz, hogy napjainkra ezt a csoportosítást már tovább finomították, és nem csak két populációról szoktak beszélni, de a felismerés jelentőségéből ez mit sem von le. Sőt, Baade munkássága nemcsak a galaxisok csillagösszetételéről alkotott elképzeléseket változtatta meg, de a Világegyetem méreteivel kapcsolatosakat is.

A szomszédos óriás spirál galaxis, az M31 csillagait korábban már Edwin Hubble is tanulmányozta a 100 hüvelykes Hooker távcsővel.  Hubble Cepheida típusú változócsillagokat keresett az Androméda-galaxisban, hogy meghatározhassa annak távolságát.

Henrietta Swan Leavitt még 1912-ben felfedezte fel a Cepheida-k fényváltozási periódusa és abszolút fényessége között fennálló kapcsolatot, miután a Nagy Magellán-felhő Cepheida változóiról készült több száznyi fotólemezt áttanulmányozta. E csillagok úgynevezett standard gyertyaként használhatók a csillagászatban távolságmérésre. A Cepheida periódusából adódik, annak abszolút fényessége. Ennek, és a mért látszólagos fényességnek a birtokában a távolság pedig már meghatározható.

Hubble-nek sikerült is azonosítania ilyen típusú változócsillagokat az M31-ben. A periódus-fényesség relációjuk felhasználásával bizonyította 1926-ban, hogy az Androméda-galaxis a Tejútrendszeren kívül elhelyezkedő önálló csillagváros, és ezzel pontot tett egy régóta húzódó vita végére. Azt is fontos megemlíteni, hogy Hubble még pontatlanul, csak 1.5 millió fényévet kapott a galaxis távolságára. Mostani ismereteink szerint ez 2.54 millió fényév. Csak Baade jött rá később, így Hubble még nem tudhatta, hogy bár a Cepheida változóknak mind a két populációban vannak képviselőik, ezeknek azonban némileg eltérő a periódusa és fényessége közötti összefüggés (a két populáció Cepheida változói eltérő fényességűek). Az Univerzum „hirtelen nagyobb lett”, az Androméda-galaxis pedig „távolabb került” tőlünk.

Baade vizsgálatai nemcsak az M31-re, de annak két kísérő galaxisaira is kiterjedt 1943-ban. Az M32, illetve az M110 törpe galaxisok különálló csillagai is szépen látszottak a Hooker távcsővel készült fotólemezeken. Itt is sikerült kimutatnia a két jól megkülönböztethető populáció jelenlétét. Illetve megfigyelései megerősítették, hogy ezek egyértelműen az M31 szatellit galaxisai. Bár ezt addig is sejtették a csillagászok, mert az M31-hez hasonlónak találták a radiális sebességüket, és gömbhalmazaik látszólagos mérete is összemérhető volt az Androméda-galaxis gömbhalmazaiéval. Azonban az a tény, hogy a legfényesebb csillagok látszólagos fényessége nagyon hasonló az M31-ben, az M32-ben és az M110-ben még jobban alátámasztotta ezt.

De nem állt meg ennél a két törpe méretű csillagrendszernél, és az az NGC185-ről és az NGC147-ről is készített felvételeket. A két galaxis csillagait tanulmányozva megállapította, hogy érdekes módon az NGC147 csak II. populációba tartozó csillagok alkotják. Az NGC185 esetében viszont érdekes dolgot sikerült konstatálnia: bár a csillagok itt is túlnyomórészt II. populációjúak, de a centrum környékén talált egy tucatnyi kék színű csillagot, melyek az I populációt reprezentálják ebben a galaxisban. Mondhatjuk, hogy ez meghökkentette, mindenesetre speciálisnak (peculiar) jelölte meg a galaxist. Úgy gondolta, hogy az NGC185 csillagkeletkezési folyamatai sajátságosak lehettek.

M. Geha és munkatársai a Hubble űrtávcsővel 2009/2010 telén vizsgálták a környező törpegalaxisokat, és munkájuknak hála ma már többet tudunk az NGC185 csillagkeletkezési történetéről. De miért foglalkoztatja ennyire például az NGC185 a csillagászokat? (Az említett tanulmánynak része az NGC147 is, ezzel az objektummal e helyütt most nem foglalkozom). Az elliptikus törpegalaxisok jobbára, ha nem szinte kizárólagosan, galaxishalmazokban, galaxis csoportosulásokban fordulnak elő. Éppen ezért a környezeti hatások roppant fontos szerepet játszottak kialakulásukban és fejlődésükben. E galaxisok morfológiája azonban olyan sokszínűséget mutat, hogy manapság sem lehet leírni kialakulásukat egyetlen folyamattal. Ugyan mások már korábban tanulmányozták például a Fornax és Virgo halmaz törpegalaxisait, de ezek oly messze vannak, hogy igazán pontosan nem sikerült megállapítani, hogy mennyi bennük az öreg és középkorú csillagok aránya, és a csillagkeletkezési történetükre sem derült fény. A Lokális Csoportban három olyan elliptikus törpegalaxis is van (M110/NGC205, NGC185, NGC147) melyek alapvetően hasonló tulajdonságokat mutatnak, mint a távolabbi galaxishalmazok törpéi. Ami pedig a legfontosabb, ezek kellően közel vannak ahhoz, hogy a Hubble űrtávcső csillagokra bontsa őket, oly módon, hogy még a fősorozat csillagai is részletesen tanulmányozhatóvá váljanak, és nemcsak az ezeknél jóval fényesebb óriás ágak csillagai. Így ez a három csillagrendszer kitűnő terepet nyújt az elliptikus törpegalaxisokkal kapcsolatos vizsgálatokhoz. Mondhatjuk, hogy a mai műszerezettég mellett ezek jelentik a belépőt a megismerésükhöz.

A kutatók programjuk során fotometriai vizsgálatoknak vetették alá az NGC185 csillagait, és felvették annak szín-fényesség diagramját (Color Magnitude diagram – CMD), mely tulajdonképpen a klasszikus Hertzsprung-Russel diagram (HRD) „gyakorlatias” változata. A vízszintes tengelyen két különböző szűrővel mért fényesség értékek különbsége (jelen esetben HST ACS F606W-F814W) van feltüntetve a színképosztály helyett. A függőleges tengelyen pedig ezek közül az egyik színszűrővel (HST ACS F606W szűrő) felvett fényességérték szerepel.

NGC185-CMD2

Az NGC185 szín-fényesség diagramja. A fekete pöttyök az NGC185 három külön területén megfigyelt csillagokat reprezentálják. A vörös pöttyök azok a csillagok melyek spektrumát a Keck/Deimos programban vették fel. Az ábra jobb felén az egyes fényességekhez tartozó hibahatárok vannak feltüntetve (1 sigma error bars). Forrás: M Geha és mások

A csillagok egy részét spektroszkópiai elemzésnek is alávetették földi óriástávcsövekkel (Keck/DEIMOS study of Local Group dEs), vagyis információt nyertek a csillagok kémiai összetételéről (fémtartalmáról). Ez utóbbi elengedhetetlen volt, mivel fel akarták térképezni, hogy tulajdonképpen hányféle korosztály található a galaxisban. Ne feledjük, ahogy fentebb már említettem, az újabb csillaggenerációk már a korábbiak által legyártott elemekkel beszennyezett gázfelhőkből alakultak ki. Továbbá, az azonos tömegű, de különböző kémiai összetételű csillagok más-más fejlődési utat járnak be a szín-fényesség diagramon. Ez pedig fontos tényező, amikor a csillagfejlődési elméleteket felhasználva megpróbálják a csillagászok adott csillagok halmazának korát meghatározni úgynevezett izokron illesztésével. Az izokron a csillagfejlődésben használt kifejezés, mely a szín-fényesség diagramon az azonos korú csillagokat összekötő görbét jelöli. Tekintve, hogy az egyszerre született, vagyis azonos fémtartalmú, illetve azonos kémiai összetételű csillagok megfigyelhető fejlődési állapota csak a kiindulási tömegtől függ, és mivel a masszívabb csillagok gyorsabban fejlődnek, így adott időpillanatban minden csillag meghatározott helyet foglal el a szín-fényesség diagramon. Más-más kémiai összetételekhez azonban más-más izokron tartozik.

csillaghalmazok_kora

Az egyszerre született (azonos fémtartalmú!) csillagok megfigyelhető fejlődési állapota csak a kiindulási tömegtől függ. A nagyobb tömegű fényesebb és forróbb csillagok hamarabb elhasználják hidrogén készleteiket, és elhagyják a fősorozatot. Az idő előrehaladtával már csak a kisebb tömegű, és kevésbé fényes csillagok maradnak a fősorozaton. Ahogy idősödik az adott csillaggeneráció, annál lejjebb tolódik az a pont (Turn Off Point) a fősorozaton, ahol a csillagok „elkanyarodnak” az óriás ág felé, így az adott generáció kora meghatározható. Az Myr millió évet, a Gyr milliárd éveket jelent. Animáció forrása: http://astro.berkeley.edu/~dperley/univage/univage.html

A kutatók végül arra pontra illesztették az eltérő kémiai összetételhez, és azon belül a különböző korú csillagokhoz tartozó izokronokat a szín-fényesség diagramon, ahol a fősorozaton a csillagok elkanyarodnak az óriás ág felé (Turn off point). A vörös kupacra (Red Clump – RC az ábrán), illetve a horizontális ágra való illesztést végül elvetették, mert ezeket nem tudtak kellően megbízhatóan modellezni. (A vörös óriás ágat elhagyó csillagokkal, vagyis a magjukban már héliumot égető csillagokkal kapcsolatos modellekben még akadnak kérdőjelek.) A legmegfelelőbb izokronokat alkalmazva, illetve a modellezett szín-fényesség diagram alapján pedig levonták a következtetéseiket.

NGC185-CMD-izokron-modell2

Balra a megfigyeléseken alapuló Hess diagramja az NGC185-nek. A Hess diagram a csillagok előfordulásának relatív sűrűségét ábrázolja a Hertzsprung-Russell diagram különböző szín-fényesség pozícióiban. Figyeljük meg a Hess diagramon az illesztett izokronokat (Padova csillagfejlődési modell alapján képzettek). A színek a különböző fémtartalmakhoz tartoznak: [Fe/H] = −2 (zöld), −1 (kék) és 0.0 dex (vörös). Adott kémiai összetételhez, három különféle csillagkorhoz tartozó izokron került illesztésre. Ezek rendre 2, 8 és 12 milliárd év.

Jobbra a modellezett csillagkeletkezési történetek közül a megfigyelésekre legjobban illeszkedő szintetikus csillagpopulációkból képzett szín-fényesség diagramja az NGC185-nek.

A sárga szaggatott vonaltól balra eső, továbbá fölötte lévő területeket a csillagászok nem vették figyelembe az illesztéskor.

Forrás: M Geha és mások

Az NGC185 csillagainak 70%-ka legalább 12.5 milliárd éves. A maradék nagyobb része pedig valamikor 8 és 10 milliárd évvel ezelőtt formálódott. A galaxisban a csillagkeletkezés legalább 3 milliárd éve leállt, de legalábbis csillagainak 90%-át biztosan legyártotta akkora a galaxis. „Baade kék csillagai” pedig egy nem túl szignifikáns csillagkeletkezési hullámban születtek, mely a galaxis centrumának 650 fényéves (200 pc) környezetében zajlott 100 millió éve.

Fontos megjegyezni, hogy míg a Tejútrendszer és az Androméda-galaxis nagyobb luminozitású törpegalaxisait főleg idős és középkorú csillagok keveréke alkotja, addig érdekes módon az NGC185 inkább a Sextans és a Draco törpékre hasonlít, ahol az ősi csillagok jelentősen dominálnak a középkorúakhoz képest. A Sextans törpe esetében bizonyosnak látszik, hogy csillagait körülbelül 600 millió éves időskálán gyártotta le, és az egész folyamat véget ért nagyjából 12.9 milliárd éve, mivel a II. típusú szupernóvák egyszerűen kisöpörték a gázkészleteket ebből a galaxisból. Ez hamarabb megtörtént, minthogy befejeződött volna a Világegyetem reionizációs korszaka, tehát maga a galaxis fosszília ebből a korból. Csakhogy az NGC185-ben a csillagok össztömege (vizsgálati módszertől függően) 100-700 millió naptömeg körül mozog. Ez a Sextans és a Draco törpékénél hozzávetőlegesen 100-szor nagyobb, így valószínűtlen, hogy rá is hasonló csillagkeletkezési forgatókönyv lett volna az érvényes. Nem beszélve arról, hogy még mindig található benne intersztelláris anyag, ellentétben a másik kettővel. Sokkal valószínűbb, hogy az Androméda-galaxissal történt közelebbi találkozások vezényelték a születési hullámokat, illetve a csillagok keletkezésének elcsendesülését. Ennek megerősítéséhez mindenesetre még részletes sajátmozgás vizsgálatokra van szükség a jövőben, hogy a radiális sebességekkel együtt felrajzolhassák a csillagászok az NGC185, és a többi szatellit 3D-s mozgását az M31 körül.

Az NGC185 több olyan objektum típus is található, amelyet általában amatőrcsillagászként előszeretettel figyelnénk meg ha ezek a közelben lennének, és nem egy másik galaxisban. Mivel az NGC185-ben rengeteg a fejlődésben előrehaladott, a fősorozatot már régen maga mögött hagyó csillag, így bővelkedik hosszú periódusú változócsillagokban (90-800 napos periódus). Az ismert Míra, félszabályos, az szabálytalan (irreguláris) változók száma 513-ra rúgott 2011-ben. De planetáris-köd jelöltekből is akad jónéhány. Sőt a galaxis centruma környékén egy öreg szupernóva-maradvány is található, melyet az OIII (kétszeresen ionizált oxigén) vonalak hiánya miatt talán nem is kollapszus-szupernóva (core collapse supernova) hozott létre, hanem úgynevezett Ia típusú szupernóva. Ugyan ezekről amatőrcsillagász műszeremmel le kell mondanom, de még mindig ott vannak az NGC185 gömbhalmazai. Még akkor is, ha nem többek apró fényfoltocskáknál.

NGC185-LRGB-20170730-0142-sx-bin2-360s-TTK-label4

Az NGC185 gömbhalmazai. Történeti okokból az FJJ VI-ot is feltüntettem, de arról a Hubble űrtávcsővel történt vizsgálatok megállapították, hogy távoli elliptikus galaxis. A PAN-N185 pedig viszonylag friss felfedezés (J. Veljanoski és munkatársai, 2013.)

Valószínűleg nem lepem meg az olvasót azzal, hogy az NGC185 első két gömbhalmazát még Baade fedezte fel 1944-ben. Paul W. Hodge 1974-ben újabb hárommal gyarapította a törpegalaxis körül ismert halmazok számát. Holland C. Ford, George Jacoby és David C. Jenner a NGC185 és az NGC47 planetáris ködjeiről írt munkájuk appendixében a Baade és Hodge által felfedezett halmazok listáját még újabb néggyel egészítette ki, ám Hodge egyik halmazát elhagyták a sorból (Hodge 2), mivel az nem bizonyult gömbhalmaznak. A későbbiekben a csillagászok átvették Fordnak és munkatársainak nomenklatúráját, akik I-VIII-ig számozták a halmazokat, és a későbbi szakirodalmakban már FJJ I-VIII névvel hivatkoztak rájuk. Douglas Geisler és munkatársai 1999-ben számoltak be az IAU az évi szimpóziumára készült publikációjában az NGC185 (és az M110/NGC205) törpegalaxisok gömbhalmazaival kapcsolatos, a Hubble űrteleszkóppal végzett vizsgálatainak első eredményeiről. Az FJJ VIII-at leszámítva az összes többit egyenként megvizsgálta, és az FJJ VI kivételével mindegyikről megerősítette, hogy azok valóban gömbhalmazok. Az FJJ VI-ról azonban kiderült, hogy valójában egy távoli elliptikus galaxis. Geisler csapata, a Hubble WFPC2 kamerájának hála, bámulatos felbontást tudott elérni. Az 1999-es tanulmányban például bemutatták az FJJ V (előzetes, még korrekciókra szoruló) szín-fényesség diagramját, de már a másik két halmazzal kapcsolatban is voltak eredményeik. Már akkor megállapították, hogy ezek a gömbhalmazok a szín-fényesség diagram szerint szinte csak idős csillagokból állnak. Legalábbis a felső aszimptotikus óriás ágon a csillagok hiánya arra utalt, hogy a középkorú csillagok aránya elenyésző lehet. A spektroszkópiai elemzések pedig azt mutatták, hogy fémekben szegények az NGC185 gömbhalmazai. Mára ezek az észrevételek az összes többi esetében is megerősítést nyertek.

Az NGC185 ismert gömbhalmazainak sorát (a cikk írásának pillanatában) a Pan-Andromeda Archaeological Survey (PAndAS) keretében felfedezett PAN-N185 zárja. Bár halványabb, mint a többiek, de a felvételemen mégis látszik. Hogy miért nem akadták rá eddig? Egyszerűen korábban nem kerestek ilyen távolságban gömbhalmazt az NGC185 körül. Igazából pont a PAandAS mutatott rá, hogy például az M31 halója sokkal távolabbra terjed ki, mint az korábban gondolták a csillagászok. Érdemes tehát gömbhalmazokat keresni az adott galaxis centrumától távolabb is.

Vannak még terveim az NGC185-tel kapcsolatban. Igen, még készíthetnénk több felvételt mondjuk jobb átlátszóságú égbolt esetén. Vagy magam mögött hagyva a kisvárost, elmehetnék sötétebb ég alá, hogy ott folytassam. De minek? Az NGC185 főbb vonásai és gömbhalmazok már látszanak a fotón. A terv pedig pontosan ez volt. Sokkal inkább vágyom arra, hogy egy 50-60 cm tükör átmérőjű távcsővel a saját szememmel is lássam a gömbhalmazokat. Tudomásom van arról, hogy vannak olyan szerencsés amatőrcsillagászok akiknek ez már megadatott. Én is szívesen tartoznék közéjük!

Az NGC185 gömbhalmazainak égi koordinátái, fényessége, és a távolságuk alapján kalkulált abszolút fényessége.

ID  RA(J2000)  Dec. (J2000)  V0  MV0  
  (h m s)  (d m s)  (mag)  (mag) 
FJJ I  00 38 42.7  +48 18 40.4  17.70 ± 0.03  −6.26 
FJJ II  00 38 48.1  +48 18 15.9  18.00 ± 0.03  −5.96 
FJJ III  00 39 03.8  +48 19 57.5  15.99 ± 0.173  −7.97 
FJJ IV  00 39 12.2  +48 22 48.2  17.37 ± 0.02  −6.59 
FJJ V  00 39 13.4  +48 23 04.9  16.12 ± 0.02  −7.84 
FJJ VII  00 39 18.4  +48 23 03.6  18.10 ± 0.02  −5.85 
FJJ VIII  00 39 23.7  +48 18 45.1  17.04 ± 0.01  −6.92 
PA-N185  00 38 18.8  +48 22 04.0  18.41 ± 0.01  −5.55 

Felhasznált irodalom:

H. C. Ford, G. Jacoby, D. C. Jenner: Planetary nebulae in local group galaxies. IV – Identifications, positions, and radial velocities of nebulae in NGC 147 and NGC 185

Doug Geisler, Taft Armandroff, Gary Da Costa, Myung Gyoon Lee, Ata Sarajedini: HST Color-Magnitude Diagrams of Globular Clusters in NGC 185 and NGC 205

Jenny C. Richardson, Mike J. Irwin, Alan W. McConnachie, Nicolas F. Martin, Aaron L. Dotter, Annette M. N. Ferguson, Rodrigo A. Ibata, Scott C. Chapman, Geraint F. Lewis, Nial R. Tanvir, and R. Michael Rich: PAndAS’ Progeny: Extending the M31 dwarf galaxy cabal

D. Lorenz, T. Lebzelter, W. Nowotny, J. Telting, F. Kerschbaum, H. Olofsson, H.E. Schwarz: Long-period variables in NGC147 and NGC185

J. Veljanoski, A. M. N. Ferguson, A. P. Huxor, A. D. Mackey, C. K. Fishlock, M. J. Irwin, N. Tanvir, S. C. Chapman, R. A. Ibata, G. F. Lewis, A. McConnachie: Newly-Discovered Globular Clusters in NGC 147 and NGC 185 from PAndAS

D. Crnojević, A. M. N. Ferguson, M. J. Irwin, A. W. McConnachie, E. J. Bernard, M. A. Fardal, R. A. Ibata, G. F. Lewis, N. F. Martin, J. F. Navarro, N. E. D. Noël, S. Pasetto: A PAndAS view of M31 dwarf elliptical satellites: NGC147 and NGC185

M. Geha, D. Weisz, A. Grocholski, A. Dolphin, R. P. van der Marel, P. Guhathakurta: HST/ACS Direct Ages of the Dwarf Elliptical Galaxies NGC 147 and NGC 185

Roya H. Golshan, Atefeh Javadi, Jacco Th. van Loon, Habib Khosroshahi, Elham Saremi: Long period variable stars in NGC 147 and NGC 185. I. Their star formation histories

Jeff Kanipe and Dennis Webb: Annals of the Deep Sky, Volume 4 (ISBN-13: 978-1942675051)

M. Bettinelli, S. L. Hidalgo, S. Cassisi, A. Aparicio, G. Piotto: he star formation history of the Sextans dwarf spheroidal galaxy: a true fossil of the pre-reionization era

M33 belső vidéke extragalaktikus NGC és IC objektumokkal – LRGB

M33-LRGB-20130914-TTK

A képeket 3 éjszakán keresztül Gödön vettem fel (L: 2013. 08. 18/19., R és G: 2013. 09. 05/06., B: 2013. 09. 14/15.). Összesen 70 x 44 sec L,R,G,B és szűrönként 15 x 44 sec dark készült.

UMA-GPU APO Triplet 102/635, SkyWatcher HEQ-5 Pro mechanika SynScan vezérléssel

ASI 120MM monokróm kamera, Astronomik RGBL fotografikus szűrőszett

Az M33 a Triangulum csillagképben megfelelően sötét égen egy binokulárral is könnyen megtalálható égi objektum. Ilyenkor én mindig a Mothallah-tól (a Triangulum két hosszabbik szára által alkotott csúcs) indulok észak felé. Tökéletes sötét égen akár szabad szemmel is látható állítólag, bár nekem ebben az élményben még sosem volt részem. Az égen látszó mérete még a teliholdnál is nagyobb (kb. 71 x 42 ívperc), de felületi fényessége nagyon alacsony, katalógusokban fényességére 5.7 és 6 magnitúdó közötti értékek szerepelnek. A galaxis inklinációja a Földről nézve 54 fok. A felvételen is szépen látszik, hogy a galaxis karjai szinte a magból indulnak, és nem egy a magot körülvevő határozott megjelenésű korongból. Az M33 a Lokális Csoport (ami amúgy a Virgo szuperhalmaz része) harmadik legnagyobb galaxisa az Androméda és saját galaxisunk után. Mérete azonban mindössze a fele a Tejútnak átmérője nagyjából 50000 fényév, és tömegét a Tejút tömegének tizedére becsülik csak, kb. 40 milliárd naptömegről van szó. Ehhez képest a Tejút tömegére 400 milliárdot szoktak megadni, míg az M31 tömege akár 1000 milliárd naptömeg is lehet. Távolsága tőlünk 3 millió fényév. Nagyon aktív csillagkeletkezés zajlik benne, melynek egyik indikátora lehetett a korábban az Androméda galaxissal történt találkozó (2-8 milliárd év). Ennél azonban egy sokkal hevesebb találkozóra is sor fog majd kerülni nagyjából 2.5 milliárd év múlva. Hogy mi lesz a sorsa az M33-nak az még nem teljesen világos. Elképzelések között szerepel, hogy az M31 teljesen szétszaggatja majd, vagy elnyeli, de a Lokális Csoportból való kilökődés is a lehetőségek között szerepel. Időnk azonban még bőven van lesz addig megfigyelni, rajzolni vagy éppen fotózni a galaxist.

Mivel az én felszerelésem számára kissé nagy az M33 mérete, így megpróbáltam más aspektusból megközelíteni a témát. Ennek szellemében, még 2013. 08. 18/19. éjszakáján készítettem egy monokróm felvételt, mely később alapul szolgált az LRGB változathoz.

m33-20130818-ttk

Az M33-on belül külön NGC és IC  katalógusban szereplő objektumok is találhatóak, melyek közül az egyik leghíresebb az NGC604 HII régió, melyet még William Herschel fedezet fel 1748-ban. 4 NGC és 10 IC objektumnak is otthona e gyönyörű spirál galaxis, és mind már ismert volt a XIX. szászadban.

Ez adta az ötlete, hogy a cél akkor legyen a galaxisban található ködök, csillagkeletkezési régiók, csillag társulások megörökítése, melyek az NGC és/vagy IC számmal rendelkeznek, és természetesen elférnek a látómezőmben.  Az igazsághoz hozzátartozik az is, hogy korábban egy vizuális beszámolót is olvastam ezekről még talán egy Sky and Telescope számban, mely szintén inspirált. Az M33-ban később katalogizálásra kerültek olyan csillag társulások, és gömbhalmazok is, melyek korábban sem a New General Catalogue-ban (NGC), sem az Index Catalogue-ban (IC) nem szerepeltek. Ezekből is sikerült párat nyakon csípni.

M33-LRGB-20130914-TTK-label

A legfeltűnőbb, az előbb említett NGC604 éppen ráfért a felvételre. A kép bal alsó sarkában található vöröses HII régió az egyik legnagyobb és legfeltűnőbb objektum, mely önálló katalógusszámmal is rendelkezik. 1500 fényévnek becslik a gázkomplexum méretét, és így a Lokális Csoport egyik legnagyobb ilyen objektuma. Csak összehasonlításképpen az Orion ködnél 1000-szer nagyobb ez a régió. Alakja kissé ovális, és a benne található kb. 200 fényes fiatal csillagnak köszönheti nagy fényességét.

Az A71 egy ködös terület, mely egy nagyobb csillagtársulást vesz körül. Erre példákat bőven találunk az égen saját galaxisunkban is, melyek kedvelt célpontjai a megfigyelőknek és kutatóknak. Szintén egy hatalmas csillag társulás az IC143. Érdemes megfigyelni, hogy milyen szép számban fedezhetőek fel fényes kék csillagok a felvételen, melyek szinte uralják az M33 ezen területét.

Az A66 jelű területnél a spirálkar, akár csak egy könyöknél, nagy szögben hajlik meg. Folytatva az utunkat az óramutató járásával megegyező irányba megérkezünk az NGC595-höz, mely a második ismert legnagyobb HII régió ebben a galaxisban.

Az A48 és A14 területek viszonylag kicsi csomók a felvételen. Az első esetében némi vörös keveredik az objektum színébe, míg a másodiknál a kék szín dominál. Szintén a fényes kék csillagok uralják többségében az IC 135-140 katalógusbeli területeket.