NGC2808 – Csillagok generációi a gömbhalmazokban

NGC2808-LRGB-20170220-T32-180s-TTK

Az NGC2808 gömbhalmaz

2017-02-20, 2017-02-21 – Siding Spring Observatory

21 x 180 sec L, 8 x 180 sec R, 8 x 180 sec G, 8 x 180 sec B

iTelescope.net T32 – Corrected Dall-Kirkham Astrograph Planewave 17″ – 43 cm, f/6.8 – FLI Proline 16803 CCD kamera

A képre kattintva, az nagyobb felbontásban is elérhető.

A gömbhalmazokról írt összefoglaló cikkem írásakor merült fel bennem először, hogy felvételt készítsek az NGC2808-ról. A déli Hajógerinc (Carina) csillagképben található, ezért nálunk sosem emelkedik a horizont fölé. A megfigyeléséhez vagy délre kell utazunk, vagy távcsőidőt kell bérelnünk ott. Én eme utóbbi megoldást választottam.

NGC2808-map1

Az NGC2808 a déli Hajógerinc (Carina) csillagképben.

Az NGC2808 a Tejútrendszer ősi csillaghalmazai között is igazi óriásnak számít. Ugyan van nála nagyobb, és masszívabb is akad, de 130 fényéves átmérője és tömege, ami 1.42 milliószorosa Napunkénak, így is messze kimagaslónak számít a gömbhalmazok mezőnyében. Csillagai extrém koncentrációt mutatnak a mag felé. A 12 fokozatú Shapley-Sawyer féle osztályozás szerint, mely a gömbhalmazok előbb említett tulajdonságon alapszik, az I. osztályba tartozik. Nem sok riválisa akad. Csak a hazánkból is megfigyelhető M75 (Nyilas csillagkép), és az NGC7006 (Delfin csillagkép) esetében tapasztalhatunk hasonlót. Ezek viszont fényességben és méretben is elmaradnak tőle. Megjegyzem, hogy talán éppen a csillagok koncentrációja, és a mag döbbenetes fényessége jelentette a legnagyobb nehézséget a kép kidolgozása során. Ennek részleteivel azonban nem untatnám az olvasót.

NGC2808-Tejutrendszer2

Az NGC2808 elhelyezkedése a Tejútrendszerben. Napunkat a kis sárga pöttyjelöli.

Talán már magában az NGC2808 impozáns paraméterei, illetve az ennek köszönhető látványa is izgalmassá tenné a 31300 fényévre (9.1 kpc) lévő, 6.2 magnitúdós gömbhalmazt. Én elsősorban mégsem ezért választottam ki. A gömbhalmazok megismerésében játszott kulcsfontosságú szerepe volt az, ami számomra különösen érdekessé tette.

Sokáig úgy gondolták a csillagászok, hogy a gömbhalmazok csillagjai egyszerre keletkeztek. Kémiai összetételük éppen ezért teljesen homogén. A gömbhalmazok korát, azok Hertzsprung-Russel diagramja (HRD) alapján határozták meg, élve az előbbi feltételezéssel. Az egyszerre született, azonos fémtartalmú csillagok megfigyelhető fejlődési állapota csak a kiindulási tömegtől függ.

A csillagászok minden elemet a hidrogénen és a héliumon túl a periódusos rendszerben fémnek neveznek. Egy csillag fémtartalmát általában a Naphoz szokták hasonlítani a kutatók. A világegyetem története folyamán, a csillagoknak hála folyamatosan dúsult fémekkel. Az újabb és újabb csillaggenerációk egyre több fémet tartalmaztak, így minél alacsonyabb fémtartalmú egy csillag a Naphoz képest, annál ősibb objektum. Kezdetben csak a vas és a hidrogén arányát vizsgálták, és ez alapján vontak le következtetéseket. Később azonban más elemek hidrogénhez viszonyított arányát is elkezdték vizsgálni, amikor arra voltak kíváncsiak, hogy eltérő-e két csillag kémiai összetétele. Mint ezt később látni fogjuk, csak a vas relatív mennyisége nem mindig árulkodó.

A nagyobb tömegű fényesebb és forróbb csillagok hamarabb elhasználják hidrogén készleteiket, és elhagyják a fősorozatot. Az idő előrehaladtával már csak a kisebb tömegű, és kevésbé fényes csillagok maradnak a fősorozaton.

M55HRD-label

Nincs „tipikus” gömbhalmaz, de az M55 Hertzsprung-Russel diagramja jól szemlélteti a szövegben foglaltakat. Main sequence – Fősorozat, Red giant branch – Vörös óriás ág, Horizontal Branch – Horizontális ág, AGB (Asymptotic Branch) – Aszimptotikus óriás ág, Blue stragglers – Kék vándorok, White dwarfs – Fehér törpék

Az ábra forrása: Australia Telescope National Facility (ATNF)

Megnézve egy gömbhalmaz Hertzsprung-Russel diagramját rögtön szembetűnő, hogy a valaha legfényesebb, a Nap tömegét több mint nyolcszorosan meghaladó csillagok mind hiányoznak a fősorozatról. Ezek réges-régen „kihunytak”, miután szupernóvaként lángoltak fel. De a közepes tömegűeket, vagyis a Nap tömegét nagyjából kétszeresen, de maximum nyolcszorosan meghaladó csillagokat sem találjuk már ott. Bennük is leálltak a fúziós energiatermelő folyamatok, ma a gömbhalmazok fehér törpe populációját gyarapítják, hogy aztán sok-sok évmilliárd év alatt nagyon lassan kihűljenek. 10 milliárd év után a gömbhalmazokban – márpedig a Tejútrendszer gömbhalmazai jellemzően ennél is idősebbek -, már csak a Nap tömegével összemérhető, illetve a Nap tömegénél kisebb tömegű csillagok belsejében folyik energiatermelés. Azonban, ezekből is a nagyobb tömegűek magjában már kifogytak a hidrogénkészletek, és így el is hagyták a fősorozatot. Miután a csillag fejlődése során a magban elfogy a hidrogén, ennek héliummá történő átalakítása a magot körülvevő külső héjba tevődik át, és a csillag felfúvódva a vörös óriás állapotba jut. A horizontális ág tagjai a magjukban már héliumból szenet hoznak létre. (Elméleti megfontolások szerint, ehhez legalább nagyjából 0.5 naptömeg szükséges.) Ennek az ágnak a csillagai kis fémtartalmú ősi, kisebb tömegű csillagok. A Naphoz hasonló, vagy csak valamivel kisebb fémtartalmú, és tömegű csillagok nem „foglalják el” a horizontális ágat, csak némileg válnak forróbbá, miközben luminozitásuk csökken (Red Clump). Miután a hélium is elfogy az addigra szénben és oxigénben gazdag magban, a fúzió az azt körülvevő külső héjba tevődik át. Az energia nagy része azonban nem itt keletkezik, hanem a külsőbb hidrogén héjban. A csillag külső rétegei ismét felfúvódnak és lehűlnek. Ennek köszönhetően a csillag fényessége ismét megnő, túlszárnyalva a korábbi vörös óriás fázist, színe pedig ismét a vörös felé tolódik. A csillag elfoglalja helyét az aszimptotikus óriás ágon (AGB fázis). Innen, ezeknek a csillagoknak útja is a fehér törpe állapot felé vezet, ugyanis már a Napunk tömege is kevés ahhoz, hogy valaha is beinduljon a magjában a szén vagy az oxigén fúziója, nem is beszélve a nála kisebb tömegű csillagokról.

Evolutionary_track_1m.svg

Nagyjából 1 naptömegű csillag fejlődési útvonala a fősorozat után a Hertzsprung-Russel diagramon. A gömbhalmazok ma megfigyelhető, a fősorozatról korábban eltávozott csillagjai is nagyjából hasonló utat járnak be. Jelenleg, tömegüktől függően, a görbe valamelyik pontjának közelében tartózkodnak. A pontos útvonal azonban függ a csillag kémiai összetételétől is.

Ábra forrása: Wikipedia.org

Minél idősebb egy halmaz, annál lejjebb tolódik az a pont (Turn Off Point) a fősorozaton, ahol a csillagok „elkanyarodnak” a vörös óriás ág felé. Felrajzolva a HRD-t egy adott halmazra, az előbb említett pontnak a meghatározásával, továbbá felhasználva a csillagfejlődési elméleteket, izokron illesztésével megbecsülhető a halmaz kora. Az izokron a csillagfejlődésben használt kifejezés, mely a HRD-n az azonos korú csillagokat összekötő görbét jelöli. Évtizedeken keresztül alkalmazták a módszert a csillagászok, és végig egyetlen csillaggenerációt feltételezve, keresték azt „az egyetlen” görbét, mely a legjobban illeszkedik az adott halmaz Hertzsprung-Russel diagramjára. A gömbhalmazokat a csillagfejlődési elméletek tökéletesítésére, tesztelésére, kalibrálására használták, és természetesen használják még a mai napig is. De e halmazok révén a Tejútrendszer és más galaxisok kialakulásával, evolúciójával kapcsolatos elméletek is ellenőrizhetők. Fontos tehát, hogy a csillagászok alaposan ismerjék felépítésüket, tulajdonságaikat.

Mindig is volt azonban egy bizonyos probléma a gömbhalmazok Hertzsprung-Russel diagramjával kapcsolatban, ami nagyon zavarta a csillagászokat, és a múlt század hatvanas éveitől kezdve évtizedeken át nem lelték a megoldását.

Azt viszonylag hamar felismerték (ezt korábban már említettem is), hogy a csillagok „működése”, fejlődése nagyban függ a fémtartalomtól. Némileg más utat jár be a fémekben szegény csillag a HRD-n, mint a fémekben gazdagabb. A fémtartalom a csillag színhőmérsékletére is kihat. A fémekben szegények kékebbek, mint a fémekben gazdagabbak. Éppen ezért a fémekben gazdagabb gömbhalmazoknak általában vörösebbek a horizontális ágon tartózkodó csillagjai. Találtak tehát egy paramétert, amivel a horizontális ágak morfológiájának különbségét magyarázni lehetett. A halmazok horizontális ágán lévő csillagok színeloszlása azonban még így is furcsa devianciát mutatott bizonyos esetekben.

GC_masodik_parameter1-m

Az ábrán fémekben gazdagabb négy halmaz szín-fényesség diagramja (HRD) látható. A vízszintes tengelyen B és V szűrővel mért fényesség értékek különbsége van feltüntetve (ez tekinthető a csillagok színének) a színképosztály helyett. A függőleges tengelyen pedig V színszűrővel felvett fényességérték szerepel. Figyeljük meg, hogy míg a felső kettő horizontális ága csak egy „vörös csonkból” áll, vagyis vöröses árnyalatú csillagok alkotják, addig az alsó kettő horizontális ága, a vörös csillagokat követő résen túl (balra), kékes csillagokban is bővelkedik. Hasonló a fémtartalom, pontosabban a vas hidrogénhez viszonyított aránya, de mégis eltérő a horizontális ág morfológiája. Ábra forrása: C. Sosin és mások.

A csillagászok találtak olyan nagyjából hasonló fémtartalmú, hasonló vas/hidrogén arányú gömbhalmazokat, melyek horizontális ágai meglepően más képet mutattak. Egyeseké vörösebb, másoké inkább kékes árnyalatú volt, de akadtak a kettő között átmenetet képezők is. Mintha ezek nem akarták volna betartani az előbb felvázolt „szabályt”. A kutatók lázasan keresték, hogy a fémtartalom mellett a halmazok milyen más paramétere lehet hatással a horizontális brancs eloszlására. Innen származik a szakirodalomban használt elnevezés is: a második paraméter problémája.

Ennek egy példája látható a fenti ábrán is. A fémekben gazdagabb gömbhalmazok horizontális ágának vörös csillagait tökéletesen le lehetett írni a korabeli csillagfejlődési elméletekkel, melyek már a fémtartalommal is számoltak. A kékes csillagok előtt viszont némileg értetlenül álltak a csillagászok. Ezeknek nem kellett volna ott lenniük, csakis a fémszegény halmazokban tudták értelmezni a jelenlétüket.

A második paraméterre az idők folyamán több jelölt született. Ezek közül nagyon röviden megemlítenék néhányat. Volt, amelyik a fémtartalom mellett, a halmazok korkülönbségét nevezte meg második paraméterként. Sokáig talán ez volt a legnépszerűbb elképzelés. Mások lokális okokra hivatkoztak. Az egyik ilyen szerint a halmazokon belül a csillagok sűrűsége fontos tényező, ez ugyanis indirekt módon kihatással bír a csillagok késői fejlődési állapotában történő tömegvesztésre, amivel pedig megmagyarázható, hogy miért is különbözőek az azonos fémtartalmú halmazok horizontális ágai. Olyan elképzelés is akadt, mely az eltérő szén-nitrogén-oxigén (CNO) tartalmat tette felelőssé. A horizontális ág csillagainak magjában hélium fúzió zajlik, míg az azt körülvevő héjban pedig hidrogén fúzió. Eme utóbbira pedig nagy hatással van, hogy mekkora a szén-nitrogén-oxigén aránya a csillagban (CNO-ciklus). Mivel a szén-nitrogén-oxigén mennyisége a csillagban befolyásolja annak energiatermelését, így nagyban meghatározza, hogy az hol foglal helyet a Hertzsprung-Russel diagram horizontális ágán. Önmagában végül egyik elképzelés sem volt képes megoldani a problémát.

Az NGC2808 szintén a problémás esetek közé tartozott. Már a múlt század hetvenes éveiben ismert volt a tény, hogy horizontális ágát vörös és kék csillagok alkotják, melyeket tekintélyes rés választ el egymástól. A két csoport között teljesen hiányoztak a „köztes színű” csillagok.

A Hubble űrtávcső teljesen új fejezetet nyitott a csillagászatban, így a gömbhalmazok kutatásában is. A Hubble és kamrája (WPFC2 – Wide Field and Planetary Camera 2) olyan jellegű fotometriai vizsgálatokat tett lehetővé, amiről korábban a kutatók még csak nem is álmodhattak. A rendkívül zsúfolt gömbhalmazok fotometriája az akkori földi műszerekkel igencsak nehézkes volt. Pár példány esetében a Hubble-re volt ahhoz szükség, hogy egyáltalán azonosítani lehessen a horizontális ágon a csillagait. Nagy lendülettel vetették tehát bele magukat a csillagászok a munkába, mely az NGC2808 esetében is izgalmas új részleteket tárt fel. Kiderült, hogy a horizontális ág kék oldala kiterjedtebb, mint az korábban gondolták. Az kezdetben vízszintesen indult, majd hosszan lefelé hajlott a HRD-n. Első alkalommal sikerült nyomon követni a horizontális ág kék csillagait egészen 21 (V) magnitúdóig. Ráadásul, a Hubble ultraibolya szűrőjével (F218W, λeff = 2189Å) készült szín-fényesség diagramján a horizontális ág kék része csomósodásokat mutatott. Ebből kettő teljesen egyértelmű volt, míg egy harmadik jelenléte is gyanítható volt az extrém kék végén. Semmilyen mechanizmus nem volt ismert, mely megmagyarázhatta volna ezeknek a csomóknak a létét. Összefoglalva tehát, 1997-re világossá vált, hogy az NGC2808 horizontális ága három elkülöníthető, egy vörös és két kék csoportból áll. Azonban egy negyedik kék csoport létezése sem volt teljesen kizárt. Lassan gyűltek a jelei annak, hogy a gömbhalmazok talán mégsem egyetlen csillaggenerációból állnak. De az igazi áttörésre még várni kellett.

 NGC2808-HST-CMD-97Sosin-m

Balra az NGC2808 szín-fényesség diagramja (HRD) látható. A vízszintes tengelyen B és V szűrővel mért fényesség értékek különbsége van feltüntetve (ez tekinthető a csillagok színének) a színképosztály helyett. A függőleges tengelyen pedig V színszűrővel felvett fényességérték szerepel.

A jobb alsó ábrán külön kiemelésre került az NGC2808 horizontális ágának szín-fényesség diagramja (HRD). A vízszintes tengelyen FUV (ultraibolya) és B (kék) szűrővel mért fényesség értékek különbsége van feltüntetve. A függőleges tengelyen pedig B színszűrővel felvett fényességérték szerepel. A vörös része a horizontális ágnak itt nem látható, ugyanis azok a csillagok túlságosan halványak az FUV szűrős felvételeken. Jobb felső diagramon a horizontális ág kék csillagainak szín szerinti eloszlása látható. Figyeljük meg a csomósodásokat!

Ábra forrása: C. Sosin és mások.

A következő jelentős felfedezésre csak pár évet kellett várni. 2004-ben annak felismerése keltett nagy izgalmat, hogy az ω Centauri (NGC5139) gömbhalmaz fősorozatán, a Hubble űrtávcsőnek hála, sikerült elkülöníteni két különálló csillagcsoportot. Az ezt követő spektroszkópiai analízis is megerősítette azt a tényt, hogy ezek bizony különböző csillaggenerációk. A két csoport fémtartalma különböző volt. Egészen pontosan a második generációra csak olyan izokron illeszkedett, amiben a csillagok héliumban jelentősen gazdagabbak voltak a domináns öregebb populációhoz képest. Ehhez a bravúrhoz egyértelműen az űrtávcsőre volt szükség! Nemsokkal később már legalább három generáció jelenlétét sikerült igazolni a fősorozaton, mely a szubóriás ágon négy különböző brancsra bomlott kora és fémtartalma alapján. Ezek a felismerések megerősítették a gyanút, hogy az ω Centauri talán nem is gömbhalmaz, hanem egy törpe galaxis maradványa.

Kampány indult annak kiderítésére, hogy vajon a Tejútrendszer más gömbhalmazát is több csillaggeneráció alkotja-e. Éppen tíz évvel ezelőtt, 2007-ben jelent meg a tanulmány, aminek a szerzői (G. Piotto és mások) bejelentették, hogy elsőként az NGC2808 esetében siker koronázta próbálkozásukat. Már korábban, 2005-ben megszületett az a felismerés (D’Antona és mások), miszerint a halmaz fősorozata anomális kiterjedést mutat a kék szín irányába. Ebben a fősorozat csillagainak nagyjából 20%-ka volt érintett, így kimondottan ennek a jelenségnek a vizsgálata volt az egyik fő cél. A csillagászok biztosak szerettek volna lenni abban, hogy a vizsgálatuk tárgyát képező csillagok tényleg a halmazhoz tartoznak, és nem előtér vagy háttér csillagok csupán. Éppen ezért, a megfigyeléseiket 18 hónapra nyújtották el, és azt 3 különböző időpontban végezték el. Ez már elég volt ahhoz, hogy a csillagok sajátmozgását figyelembe vegyék. Az elmozdulásuk alapján így el lehetett dönteni, hogy a vizsgált csillag halmaztag-e, vagy sem. Megállapították, hogy az NGC2808 fősorozata egyértelműen 3 különböző csillagpopulációból áll. Ugyanakkor, ezek fémtartalma, pontosabban a vas és a hidrogén aránya nem tér el számottevően, ahogy ezt például az ω Centauri esetében megfigyelték. Jelentősen különbözik azonban az egyes csoportok hélium tartalma.

NGC2808-iso

Az NGC2808 gömbhalmaz fősorozata, amelyben 3 csillagpopuláció is elkülöníthető Piotto és kutatótársainak 2007-es tanulmánya szerint. Az ábrán látható, hogy a fősorozat több izokronnal írható csak le. Ezek az izokronok a csillagok kémiai összetételben (hélium tartalmában) térnek el egymástól. Ábra forrása: G. Piotto és mások

Pár évvel korábban más kutatók (E. Carretta és mások) spektroszkópiai vizsgálatoknak vetették alá az NGC2808 vörös óriás ágát. A nátrium/vas és oxigén/vas arányát vizsgálták és szignifikáns oxigén-nátrium antikorrelációt találtak. A vörös óriás csillagok túlnyomó többségének oxigéntartalma a galaktikus halóra jellemző értéket mutatott. Azonban, kimutatható volt még két másik csoport is: egy oxigénben szegény, és egy oxigénben kimondottan szegény. E mellett marginális eltérést is megállapítottak a vas és a hidrogén arányában az egyes csoportok között. Az oxigénben nagyon szegényekben némileg több volt a vas aránya a hidrogénhez képest, mint a normál mennyiségű oxigént tartalmazókban. Ezt az eltérő héliumtartalomra vezették vissza, ugyanis a héliumtöbblet, erősebbé teszi a fémek vonalait.

Végső konklúzióként az született 2007-ben (G. Piotto és mások), hogy a horizontális ág megfigyelt morfológiája, a fősorozat felépítése, a vörös óriás ág kémiai összetételében tapasztalható különbségek csakis egy módon értelmezhetők: az NGC2808 legalább három, különböző korú csillagok generációjából áll. Az első generációt követő újabbak, már az korábbiak által beszennyezett gázból formálódtak.

Az NGC2808 vizsgálata nem ért véget 10 évvel ezelőtt. A folytatáshoz nagyban hozzájárult a Hubble űrtávcső negyedik szervizmissziója 2009 májusában. Újra használhatóvá vált a WFC/ACS műszer (Wide Field Channel of the Advanced Camera for Surveys), továbbá ekkor helyezték üzembe az új UVIS/WFC3 (Ultraviolet and Visual Channel of the Wide Field Camera 3) eszközt. Az utóbbinak köszönhetően a kutatók nagyobb hangsúlyt fektetettek az NGC2808 csillaggenerációinak ultraibolya tartománybéli megfigyelésére (Hubble Space Telescope UV Legacy Survey of Galactic GCs). Az elektromágneses spektrum ultraibolya régiója kiváló lehetőségeket nyújt az eltérő kémiai összetételű csillagpopulációk tanulmányozására. Azoknak a molekuláknak a sávjai (OH, NH, CH, CN), amelyekből következtetni lehet a csillagok szén (C), nitrogén (N) és oxigén (O) tartalmára az ultraibolya tartományba esnek. A több hullámhosszon elvégzett fotometriai vizsgálatokra, eltérő kémiai összetételt feltételező szintetikus spektrumokra, és nagy felbontású spektroszkópiára épülő eredményeket taglaló cikk 2015-ben jelent meg (A. P. Milone és mások).

NGC2808-HST-CMD-15Milone-1

Az NGC2808 gömbhalmaz szín-fényesség diagramja (HRD). A belső ábrákon a vízszintes és függőleges tengelyeken, a nagy ábrától eltérő, az egyes vizsgálatok szempontjából „legpraktikusabb” hullámhosszokból konstruált szín-fényesség diagrammok láthatók. Balra alul: vörös óriás ág. Jobbra alul: fősorozat. Jobbra felül: szubóriás ág. Már szemmel is látható a többszörös szekvencia jelenléte. Az alapos analízis 5 csillaggeneráció jelenlétét mutatta ki.

Ábra források: A. P. Milone és mások

Kiderült, hogy az NGC2808 felépítése még komplexebb, mint azt korábban gondolták. A vörös óriás ágon 5 populációt sikerült elkülöníteni. Bár a fősorozaton már nem volt ennyire egyértelmű a helyzet, de végül ott is 5 külön populációt találtak. A 2007-es tanulmányban (G. Piotto és mások) kimutatott két kékebb csoport mellett, a fősorozat többséget alkotó vörös csoportot is három részre tudták bontani. Újra megerősítést nyert az is, hogy a horizontális ág kék része 3 populációból áll. Továbbá, konfirmálták más csillagászok 2014-ben publikált (Marino és mások) felismerését, hogy a horizontális ág vörös részét valójában két eltérő kémiai összetételű csillagcsoport lakja (nátriumban gazdag, és nátriumban szegény). De még az aszimptotikus óriás ágon is egyértelműen elkülöníthető volt három populáció.

Összességében tehát elmondható, hogy az NGC2808-ban ma 5 csillaggenerációról van tudomásunk, melyek kémiai összetétele eltérő, vagyis változik populációról, populációra. Azt, hogy az eltérések kimondottan diszkrétek, nem lehet figyelmen kívül hagyni. Az egyes generációk születése is diszkrét kellett, hogy legyen. Az adott generáció csillagai szinte tökéletesen egyszerre keletkeztek. A legelső az ősi gázfelhőből, így annak kémiai összetételét örökölte. Az azt követők pedig már a megelőzők által beszennyezett gázból. Az is tény, hogy a körülbelül 12.5 milliárd éves gömbhalmazban alig néhány 100 millió éve alatt le is játszódtak az epizodikus születési hullámok. Az NGC2808 példája is azt mutatja, hogy a masszív gömbhalmazokban mégis csak maradhat elég gáz az első heves csillagkeletkezés után ahhoz, hogy abból további nemzedékek születhessenek. És nem csak az NGC2808 az egyetlen példa erre.

Sőt, ma már ismerünk olyan gömbhalmazokat is, ahol több generáció él együtt, noha az nem is tartozik az igazán masszívak közé. Ilyen például az M4 és az NGC3201 is. Hogy miképpen lehetséges ez? Hogyan születnek egymást követően az egyes nemzedékek? Ez elég komplex probléma, és még ma is vita tárgyát képezi. Erről egy lehetséges „forgatókönyv” vázlatosan olvasható a gömbhalmazokról írt összefoglaló cikkemben.

Felhasznált irodalom:

Young-Wook Lee, Pierre Demarque, Robert Zinn: The horizontal-branch stars in globular clusters. 2: The second parameter phenomenon

C. Sosin, G. Piotto, S.G. Djorgovski, I.R. King, R.M. Rich, B. Dorman, S. Phinney, J. Liebert, A. Renzini: Globular Clusters Color-Magnitude Diagrams with HST

Craig Sosin, Ben Dorman, S. George Djorgovski, Giampaolo Piotto, R. Michael Rich, Ivan R. King, James Liebert, E. Sterl Phinney, Alvio Renzini: Peculiar Multimodality on the Horizontal Branch of the Globular Cluster NGC 2808

Alistair R. Walker: CCD Photometry of Galactic Globular Clusters V. NGC 2808

E. Carretta, A. Bragaglia, R.G. Gratton, F. Leone, A. Recio-Blanco, S. Lucatello: Na-O Anticorrelation And HB I. The Na-O anticorrelation in NGC 2808

G. Piotto, L. R. Bedin, J. Anderson, I. R. King, S. Cassisi, A. P. Milone, S. Villanova, A. Pietrinferni, A. Renzini: A Triple Main Sequence in the Globular Cluster NGC 2808

Jason Boyles, Duncan R. Lorimer, Phil J. Turk, Robert Mnatsakanov, Ryan S. Lynch, Scott M. Ransom, Paulo C. Freire, Khris Belczynski: Young Radio Pulsars in Galactic Globular Clusters

A. P. Milone, A. F. Marino, G. Piotto, A. Renzini, L. R. Bedin, J. Anderson, S. Cassisi, F. D’Antona, A. Bellini, H. Jerjen, A. Pietrinferni, P. Ventura: The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters. III. A quintuple stellar population in NGC2808

Az SN2016gkg szupernóva az NGC613 spirál galaxisban

NGC613-LRGB-20161020-T32-300s-TTK-label

1. ábra. Az SN2016gkg szupernóva az NGC613 spirál galaxisban.

2016-10-20, 2016-10-23, 2016-11-01, 2016-11-21 – Siding Spring Observatory

20 x 300 sec L, 8 x 300 sec R, 8 x 300 sec G, 8 x 300 sec B

iTelescope.net T32 – Corrected Dall-Kirkham Astrograph Planewave 17″ – 43 cm, f/6.8  – FLI Proline 16803 CCD kamera

A képre kattintva, az nagyobb felbontásban is elérhető.

Azok a csillagok, melyek kiindulási tömege (MZAMS) meghaladja a 8-9 naptömeget, életük végén, mikor az energia-utánpótlásuk kimerül, szupernóvaként robbannak fel. Fényük saját galaxisukat is túlragyogja, miközben anyaguk jelentős része szétszóródik az űrben beszennyezve azt a csillagban korábban létrejött és a robbanáskor keletkezett elemekkel. Minden egyes ilyen úgynevezett kollapszus-szupernóva (core collapse supernova) megfigyelésével a csillagászok közelebb jutnak a robbanást kiváltó, és a közben lejátszódó folyamatok mechanizmusának megértéséhez. Fontos ez, mert e masszív ragyogó csillagok nemcsak életükkel, de halálukkal is jelentős hatást gyakorolnak környezetükre. A szupernóva-robbanás teremt és pusztít. A táguló maradvány a közeli por és gáz ködökben lökéshullámot keltve, beindíthatja az újabb csillagok keletkezését. Más esetekben pedig tisztára söpörve a környezetét akár véget is vethet ennek az egésznek. Fontos szerepet játszanak a galaxisok fizikai és kémiai evolúciójában. Valószínűnek látszik, hogy Naprendszerünk keletkezését is egy ilyen robbanás indította be, és hogy létezésünkben benne van a kezük. Kutatásukkal eredetünk kérdésének megválaszolásához is közelebb juthatunk.

Az SN2016gkg jelölést kapott szupernóvát Victor Buso és Sebastian Otero fedezte fel 2016. szeptember 20-án az NGC613 spirál galaxisban. Az akkor még csak 17.6 (CV) magnitúdós szupernóváról nem sokkal később kiderült, hogy különleges a maga nemében. Ez inspirált arra, hogy felvételeket készítsek róla, majd azokat kimérjem. Csábított a lehetőség, hogy annyi év után újra a TTK névkóddal ellátott észlelésekkel gyarapítsam az MCSE és az AAVSO változócsillag adatbázisát. Miért? Röviden: változócsillagokat észlelni jó! Azon kevés elfoglaltságok egyike, melynek során személyesen is meggyőződhetünk róla, hogy a Naprendszeren túl elterülő világ nem is annyira örök és statikus, mint ahogyan azt sok-sok, a világegyetem életében csak röpke szempillantásnak tűnő emberöltőn keresztül elődeink gondolták. Nem is beszélve arról, hogy ebben az esetben nem hogy a Naprendszeren túl, de egy másik galaxisban volt a megfigyelésem célpontja. Ha pedig a szorgosan gyűjtött fényességértékek még tudományos célra is használhatóak, az csak külön öröm. Egyedül azonban mindez nem sikerült volna. Tordai Tamás nagyon nagy segítségemre volt a felvételek kiértékelésében. Tamás amatőrcsillagászként magas szinten űzi a fotometriát (lásd Tordai Tamás: Hogyan észlelek változókat? – Meteor 2016/2. 46-51.). Külön kiemelném a V404 Cygni jelű fekete lyuk kettős fényváltozásával kapcsolatos megfigyeléseit, mely révén egy a Nature-ben is megjelent cikk társzerzője.

Talán meglepi az olvasót, de a digitális változócsillag észleléséhez nem is kellenek feltétlenül bitang drága műszerek. A siker kulcsát nem egyedül a költséges távcső, mechanika, és képrögzítő eszköz jelenti. Ha pedig valaki a vizuális észlelésbe szeretne belekóstolni, annak elég mindössze csak binokulárt, és az összehasonlító csillagok fényességét tartalmazó csillagtérképet ragadni. A többi már csak kitartás és az időközben szerzett rutin kérdése. Érdemes kipróbálni!

Amatőrcsillagászati szempontból szerencsés korban élünk, mert noha az NGC613 a déli Szobrász (Sculptor) csillagképben található, ki se kell mozdulnom ahhoz, hogy belevágjak frissen kitalált programomba. Több helyen is bérelhetünk távcsőidőt az interneten keresztül. Az elhatározásom után alig 20 perccel már el is készült az első nyers felvétel, és nem jelentett különösebb problémát az ezt követő időszakban se a nyomon követése. A programok automatikusan lefutottak (ha éppen derült volt az ég), miközben én éltem mindennapi életemet.

Legfőbb célom tehát a szupernóva fényességváltozásának követése volt, melyhez alkalmanként akár egyetlen darab jól sikerül nyers felvétel is elegendő, de azért nem árt, ha van pár kontroll fotó is a tarsolyunkban. A cikk elején látható LRGB kép kidolgozása másodlagos szempontként szerepelt a terveimben. Előttem már eléggé sűrűn betáblázták a távoli távcsövet, így a saját programomat már csak a megmaradt lyukakba tudtam elhelyezni. A megfigyelési ablakok kiválasztásakor még egyáltalán nem tudhattam, hogy derült lesz-e az éjszaka, és milyen lesz az ég minősége. Nem tagadhatom, hogy végül örültem annak, hogy összegyűlt kellő számú, megfelelő minőségű kontroll felvétel. Ezekből és a második napon felvett RGB szűrős képekből végül elkészíthettem a saját illusztrációs képemet, ugyanis már csak maga a galaxis is elég érdekes ahhoz, hogy szenteljünk neki némi időt.

NGC613

A galaxist William Herschel fedezte fel 18.7 hüvelykes (47.5 cm-es) f/13-as műszerével a Szobrász (Sculptor) csillagképben. Ő még nem ismerte fel valódi természetét. Erre egészen 1912-ig kellet várni, mikor is elkészült róla az első fotó. Ezen jól kirajzolódtak az „örvények, és bennük a csillag kondenzációk”, így az NGC613 a spirál köd besorolást kapta. Direkt az akkori szóhasználattal éltem. Akkoriban még vita folyat arról, hogy ezek az örvénylő ködök vajon Tejútrendszerünkhöz tartoznak, vagy éppen ellenkezőleg, maguk is távoli csillagszigetek. A kérdést végérvényesen Edwin Hubble döntötte el, aki a Lokális Csoport több galaxisát is sikeresen csillagokra bontotta. Az Androméda galaxisban azonosított Cepheida típusú változócsillagok periódus-fényesség relációját felhasználva kiszámította azok távolságát. Az így kapott távolságadatokkal bizonyította 1926-ban, hogy az a Tejútrendszeren kívül helyezkedik el. Nem volt kérdéses többé, hogy a spirál ködök távoli galaxisok. Bár az elmúlt két évtizedben többször is meghatározták, azonban az NGC613 távolsága továbbra is csak elég bizonytalanul ismert. A legutóbbi, nem a vöröseltolódáson alapuló vizsgálat szerint galaxisunktól 26.4±5.3 Mpc (Nasonova és mások – 2011), vagy másképpen 86 millió ± 17 millió fényév választja el.

A galaxis különböző régióinak fényessége nagyon nagy intenzitásbeli különbségeket mutat. (Olyannyira, hogy a képek feldolgozás során erre külön figyelmet kellett fordítanom.) A kisméretű, de roppant fényes centrális régióból indulnak ki a vastag küllők. Ezek mentén porsávok kígyóznak, míg az egyik küllőt (a felvételemen a felsőt) a mi látóirányunkból nézve szinte teljes egészében vastag porfelhők takarják. A lencseszerű központi területet is porsávok szabdalják, melyek nem túl határozottan, de spirális mintázatot rajzolnak ki. Amíg a legtöbb küllős spirál galaxis esetében mindössze egy-egy kar indul ki a küllők végéből (összesen tehát csak két karjuk van), addig az NGC613 esetében több határozott kar is megkülönböztethető. A küllők végénél, illetve az ovális részt gyűrűként körbefonó karokban, de még a külső karokban is megfigyelhető kékes csomók fiatal csillagok halmazai. Ezt a színt a legnagyobb tömegű, legfényesebb tagjaik kölcsönzik nekik. Ezek könnyűszerrel túlragyogják kisebb tömegű, hűvösebb és éppen ezért inkább sárgás és vöröses árnyalatú társaikat. A vöröses árnyalatú pamacsok pedig az ionizált hidrogént tartalmazó (HII) régiók. Az itt lévő gázfelhőket az előbb említett forró csillagok intenzív sugárzása gerjeszti. E behemót csillagok élettartama tömegüktől függően mindössze néhány millió, illetve néhányszor 10 millió év. A kékes és vöröses pöttyök sora tehát mind a folyamatosan zajló csillagkeletkezésnek az egyértelmű jelei, melyek szemmel láthatóan a küllők vége környékén a legintenzívebb. Távolodva a csillagoknak életet adó területektől, a karok fényessége ugrásszerűen csökken, és lassan belevész az űr sötétjébe.

Megnézve a felvételemet, azon is szembetűnő az NGC613 kompakt, az egész galaxishoz képest fényes magja. Ez az attribútum általában az aktív galaxis magok (AGN – Active Galactic Nucleus) jellemzője. Elsőre, a mag aktivitása azonban közel sem volt teljesen nyilvánvaló. Az optikai spektruma alapján három évtizeddel ezelőtt (1997) a kompozit objektum besorolást kapta. A centrum színképe egyfelől ugyan halványan az aktív galaxis mag jellegzetességeit mutatta – az az úgynevezett Seyfert típusú galaxisokéra hajazott -, de legfőképpen ionizált gázfelhők (HII régiók) jelenlétére utalt. Éppen ezért a legtöbb katalógusban a Seyfert/HII jelölés szerepel a csillagrendszer neve mellett. 2009-ig kellet várni, míg a Spitzer infravörös műholddal felvett színkép alapján bizonyosságot nyert az AGN létezése, később ezt a röntgen tartományban működő XMM-Newton távcsővel végzett megfigyelések is megerősítették. Vagyis, az NGC613 kompakt fényes centrumában egy szupermasszív központi fekete lyuk (SMBH: supermassive black hole) bújik meg a kíváncsi tekintet elől, fontos szerepet játszva a mag aktivitásában.

VLA_Finley3_med

2. ábra. A VLA (Very Large Array) tányérantennái Új Mexikóban (Socorro). Az első nagy felbontású rádióészlelések az NGC613-ról ezzel a rádiótávcső rendszerrel rögzítették a csillagászok. Az eredményeket 1987-ben, illetve 1992-ben publikálták. A 27 darab 25 méter átmérőjű antennával fogott jeleket kombinálva egy 36 km átmérőjű rádióantenna felbontása, és egy 130 méter átmérőjű rádióantenna érzékenysége érhető el. Kép forrása: NRAO

Valójában erre már az első nagyobb felbontású rádiófelvételek is utaltak (1987, 1992). Ezeken a rádió kontinuum képeken a galaxis centrumában egy intenzíven sugárzó, elnyúlt terület volt látható. Azt ezt követő vizsgálatok megmutatták, hogy ez a nagyságrendileg 300 pc (1000 fényév) kiterjedésű képződmény három diszkrét komponensből áll.

NGC613-SINFONI-Flux-velocitydisp-VLA

3. ábra. Az NGC613 centrumának Fe II fluxus és sebesség diszperzió térképe (VLT/SINFONI). A térképre a VLA rádió kontúrok is rákerültek, melyen jól elkülönül az egy egyenes mentén elhelyezkedő három diszkrét rádióforrás. Figyeljük meg az egybeeséseket! Forrás: J. Falcón-Barroso és mások

A rádiótávcsövekkel kapott eredményeket az optikai tartomány eredményeivel kombinálva a kutatók megállapították, hogy az elnyúlt alakzatban a középső rádiófolt, és az optikai centrum szinte tökéletes (0.1ʺ-es) egybeesése nem lehet véletlen. A galaxis magja ez a rádióforrás. Az NGC613 centrumának optikai és a közeli infravörös tartományban elvégzett spektroszkópiai elemzésből nyert galaxison belüli sebességeloszlások, illetve a rádió kontinuum morfológiája pedig arra világított rá, hogy a másik két folt a magból kiinduló energikus rádió kiáramlás következménye. E rádió jet orientációja elég közel esik az égbolt síkjához, így a galaxis síkjától sem lehet túlságosan messze, melynek inklinációja 35°.

The VLT telescopes are ready for observation at sunset

4. ábra. A VLT (Very Large Telescope) 4 darab 8.2 méteres tükörátmérőjű távcsöveinek felkészítése folyik a közelgő éjszakai megfigyeléshez (Cerro Paranal, Chile). A csillagászok a Hubble űrtávcső mellett, a VLT-t használták a közeli infravörös és a látható tartományban végzett megfigyelésekhez (VLT/SINFONI). Kép szerzője: Gerhard Huedepohl

De hogyan jönnek létre ezek a jet-ek? A galaxis középpontjában található fekete lyuk gravitációjukkal csapdába ejtve, mohón próbálják elnyelni a környezetükben található anyagot. Az étekként szolgáló intersztelláris gáz és por, mely a környező felhőkből, vagy éppen szétszaggatott csillagokból származik, akkréciós korongot formál. A korongot kívülről sűrűbb, lassabban keringő gázfelhők veszik körül. Az akkréciós korong anyaga miközben befelé örvénylik, egyre gyorsabban mozog és felhevül. A folyamatban a mozgási energiájának egy jelentős része elektromágneses sugárzássá alakul. Az akkréciós korong mindkét oldalán, arra merőlegesen, a forgástengely mentén plazmából álló jet-ek jönnek létre, melyek a fekete lyuk közeli erős mágneses terében közel fénysebességre gyorsított, töltött szubatomikus részecskékből állnak. Ezek a töltött részecskék a mágneses térben kifelé spirálozva úgynevezett szinkrotronsugárzást hoznak létre. A jet-ek létrejöttének pontos mechanizmusa még a mai napig vita tárgyát képezi a kutatók körében. Valószínűsíthető, hogy az akkréciós korongban felcsavarodó mágneses térnek kitüntetett szerepe van abban, hogy a forgástengely mentén keskeny nyalábba terelődik a kiáramlás. Más galaxisok esetében megfigyelték már, hogy az aktív magból kiinduló rádió jet-ek képesek felgyorsítani, illetve felfűteni a környezetükben lévő molekuláris gázokat, melyek gyakran a kiáramlások tömegének jelentős részét adják. Az, hogy a két rádió tartományban megfigyelhető szélső folt ténylegesen a központi fekete lyukból kiinduló egy vonalban elhelyezkedő különálló entitások, vagy pedig a beeső sugárzás által felmelegített intersztelláris gáz buborékjai, még tisztázásra szorul.

agn_tipusok

5. ábra. Aktív galaxis mag sematikus vázlata.

A VLA rádiótávcső rendszerrel készült rádióképen a mag körül egy gyűrű alakú képződmény (nuclear ring) is felfedezhető. Ez a nagy felbontású optikai felvételeken is sejthető, de a galaxis centrumában lévő nagy mennyiségű por jórészt elfedi, és éppen ezért sokkal inkább a közeli infravörös tartományban tanulmányozható. Az infravörös megfigyelések tanulsága szerint, a gyűrű 7 különálló fényes területre bomlik. De mi ez a gyűrű, és mik ezek a csomók benne?  A galaxisban lévő intersztelláris anyag a küllők tengelye mentén áramlik be erre a területre. Olyan, mintha egy körtáncba folyamatosan emberek érkeznének két egymással szemben lévő irányból. A gáz összesűrűsödik ezeken a pontokon (ODR – Over Density Region) és beindul a csillagok rövid ideig tartó robbanásszerű keletkezése. A megszületett csillagok halmaza pedig folytatja megkezdett „körkörös táncát” a gyűrűben. De a csillagok születése csak addig zajlik, míg az első szupernóvák ki nem söprik a gázt a környezetükből. Ahogy keringése során távolodik a halmaz ezektől a sűrűsödésektől folyamatosan öregszik. Idővel újabb sűrűsödések jönnek létre a „belépési pontok” környékén, és így ott új halmaz születik. A csillagok keletkezése tehát epizodikus jellegű, a „legyártott” halmazok pedig tovahaladnak a körkörös „galaktikus futószalagon”. Így alakul ki a gyöngyökből álló nyaklánchoz hasonló formáció (pearls on a string scenario).

POS-3

6. ábra. A gyűrűn belüli folyamat sematikus ábrája. A két átellenes ponton (vastag nyilak) gáz áramlik a gyűrűbe, ahol sűrűsödések jönnek létre (ODR). A robbanásszerű, rövid ideig tartó csillagkeletkezésben kialakult halmazok pedig folytatják keringésüket a gyűrűben, miközben öregszenek. Forrás: Forrás: J. Falcón-Barroso és mások

NGC613-ring-l

7. ábra. Az NGC613 magját körbevevő gyűrű alakú képződmény (nuclear ring) a HST felvételén (F450W, F606W, F814W szűrőkkel készült kompozit kép).

NGC613-multiple-flux

8. ábra. A VLT-vel a közeli infravörös tartományban készített felvételeken még szembetűnőbbek az NGC613 „forró foltjai”, vagyis a fiatal halmazok és csillagkeletkezési régiók. A képeken speciálisan megválasztott, különböző hullámhosszakon megfigyelt emissziós fluxus látható. A fluxus térképek balról jobbra a következők: Brγ (Bracket Gamma: 2.16 μm), [Fe II] (1.64 μm), H2 (2.12 μm), kompozit színes fluxus kép. A kompozit kép színei három különböző emissziótól származnak: He I – kék, Brγ – zöld, [Fe II] – vörös,. A képek körülbelül 700 pc (kb. 2300 fényév) szélesek. Észak felül, kelet pedig balra van.

A 8. ábra fluxus térképei közül a kompozit kép illusztrálja az egész folyamatot a legjobban. Kitűnően látszik rajta a csillagkeletkezés evolúciója. A halmazban a legnagyobb tömegű csillagok a legforróbbak, de egyben a legrövidebb életűek is. Miközben a halmaz a gyűrű mentén keringve tovahalad, távolodik a sűrűsödési ponttól, ezek a csillagok pusztulnak ki a legelőször. Életük végén ezek szupernóvaként lángolnak fel. Vagyis, ha az elképzelés helyes, akkor minél távolabb van egy halmaz a sűrűsödési ponttól, annál öregebb, és így annál kevesebb benne a nagytömegű forró csillag.

A He I és Brγ emissziós vonalak létrejötte annak köszönhető, hogy a forró O és B típusú csillagok intenzív UV sugárzása fotoionizálja a környezetét. A rekombinációkor kibocsájtott foton pedig létrehozza az emissziót. Az elektron azonban közel sem biztos, hogy az alap energiaállapotra tér vissza. Gyakran gerjesztett marad, és idővel innen lép alacsonyabb energiaszintre. Ez az oka, hogy különböző színképvonal sorozatok tartoznak egy adott elemhez. A Brγ például a Brackett sorozat egyik vonala.

A He I emisszió létrejöttéhez nagyobb ionizációs energia kell, mint a Brγ-hoz, vagyis forróbb, és így nagyobb tömegű csillagra van ehhez szükség. A He I fluxus gyorsan leesik nem sokkal a robbanásszerű csillagkeletkezés után. Gyorsabban, mint a Brγ fluxus. A masszív csillagoknál ugyanis csak a még masszívabbak élik le sokkal gyorsabban az életüket. A két emisszió arányából így 0-10 millió éves időskálán meg lehet becsülni a halmaz korát. Az [Fe II] emisszió pedig a szupernóva-robbanások által felfűtött (fast shock, shock-heating) intersztelláris anyag nyomon követésére alkalmas. Az [Fe II] fluxus a tapasztalatok szerint 3-35 millió éves időskálán közel állandó marad, majd élesen letörik. E három emisszió fluxusának arányából megbecsülhető a halmazok kora 0-35 millió éves intervallumban. Mivel a gáz és a csillagok a gyűrűben körülbelül ennyi idő alatt tesznek meg egy teljes keringést, így ezzel a módszerrel ellenőrizhető, hogy a fentebb vázolt elképzelés a gyűrűvel kapcsolatban tényleg helyes-e.

Ahelyett, hogy a konkrét módszert ismertetném, győződjünk meg inkább a dologról a szemünk által. A kompozit képen látható, hogy a legnagyobb tömegű csillagok a halmazokban, a beáramlásnál kialakuló sűrűsödések közelében a leggyakoribbak. Itt a legdominánsabb a He I emisszió (kék szín) a csomókban. Kissé tovább, az óramutató járásával ellentétes irányban, a He I emisszió fluxusa jelentősen lecsökken. A kék zöldbe megy át. Majd az [Fe II] vöröse uralkodik el. A felvázolt modellt tehát ez a megfigyelés alátámasztja. Legalábbis ez a helyzet a gyűrű déli szakaszán.

De miért mutat más képet a gyűrű a „felső”, északi régióban? Ahogy a 2. ábrán is látható, a rádiótartományban intenzíven sugárzó terület hossztengelye merőleges a perspektíva miatt ellipszisnek látszó gyűrű nagytengelyére. Elfogadva, hogy a gyűrű valós alakja ténylegesen a körhöz közeli, annak inklinációja körülbelül 55°. Mint azt fentebb is említettem, a rádió jet orientációja a galaxis síkjához közeli, melynek inklinációja pedig 35°. A gyűrű e szakaszán tehát azért nem tapasztalható számottevő Brγ, [Fe II], H2, He I emisszió, mert a kúp alakú kiáramlás kisöpörte onnan a port és a gázt. Az aktív galaxis magok jelentős hatást képesek gyakorolni a galaxison belül a gázra, s mivel a jövendő csillaggenerációk számára ez jelentheti az alapanyagot, így magára a csillagkeletkezésre is.

Érdekes továbbá, hogy a gyűrűn belül a magvidéken tetemes gázkészlet található az NGC613-ban. Ehhez elég csak egy pillantást vetni a 8. ábra harmadik fluxus térképére. Nagyságrendekkel több, mint a gyűrű csillagkeletkezési csomóiban. Mégis, szinte nyoma sincs a csillagkeletkezésnek. A 8. ábra Brγ fluxus térképe a magnál szinte teljesen fekete. Elképzelhető, hogy itt is hullámokban születnek a csillagok. A legutolsó hullám körülbelül 10 millió éve történhetett, és a modellek szerint fél millió évnél hamarabb nem is várható a következő ilyen esemény. Ha egyáltalán be fog következni. Az igazat megvallva még mindig nem teljesen világos, hogy a rádió jet pontosan hogyan befolyásolja a csillagkeletkezést a magvidéken. Lehet, hogy megakadályozza? Vagy éppen segíti azt? Nem tudjuk. Az aktív galaxis magok és a csillagkeletkezés kapcsolata még mindig kevéssé ismert a csillagászok előtt.

SN2016gkg

Az SN2016gkg a felfedezését követő egy napon belül több magnitúdónyit fényesedett. Ennek, és a következő napok fényesedésének üteme, a későbbi vizsgálatok szerint tökéletesen egybevágott az ilyen típusú szupernóvákkal kapcsolatos elméleti jóslatokkal. Ezek szerint pontosan ilyen fénygörbe várható a kollapszus-szupernóvák esetében az úgynevezett hűlési fázisban, azt követően, hogy a kifelé tartó pusztító lökéshullám áttörte a csillagfelszínét (shock break-out).

SN1016gkg-AAVSO-Calendar_Date-crd

9. ábra. A szupernóva közel 2 hónapot átfedő fénygörbéje. A megfigyelések amatőrcsillagászoktól származnak, melyet akár csak én, elküldtek az AAVSO-nak. A zöld négyzetek V szűrővel, a kék csillagok B szűrővel, a sötétzöld négyzetek csillaggal a belsejükben pedig L szűrővel, vagy szűrő nélkül meghatározott fényességet jelölik. Érdemes megfigyelni, hogy a szupernóva fényessége mennyivel gyorsabban hanyatlott a maximum után B szűrővel vizsgálva, mint V szűrővel. Vagyis, a B-V színindexe (a két fényesség különbsége) miként nőtt. Látható, hogy a kezdetben inkább kékesebb árnyalata idővel hogyan vált egyre vörösebbé.

Már az első kisfelbontású spektroszkópiai vizsgálatok is arra utaltak, hogy II típusú szupernóva lángolt fel az NGC613-ban, vagyis egy nagytömegű csillag halálát nézhettük végig. A nagyfelbontású spektroszkópiával sikerült az altípust is meghatározni. Az SN2016gkg színképe, és annak időbeli változása a IIb altípus jellegzetességeit mutatta. Ezek viszonylag ritkábbak, ugyanis a II típusú szupernóvák mindössze egytizede tartozik a IIb altípusba.

Történeti okokból a színképük alapján a szupernóvákat két fő típusba, és azokon belül altípusokba sorolják. II típusúnak nevezik azokat a szupernóvákat, melyek színképében a maximum környékén (pontosabban a fotoszferikus fázisban) erős hidrogén vonalak figyelhetőek meg. E típus képviselői mind kollapszus-szupernóvák. Az egyes altípusok közti különbségek a szülőcsillagok paramétereinek eltéréséből fakad. Az I típus színképéből hiányoznak a hidrogén vonalai. Ráadásul az Ia altípus esetén a kataklizmát nem is a korosodó csillag magjának energia-utánpótlás hiányában összeomló magja okozza. Az egyik vezető elmélet szerint a robbanásra akkor kerül sor, amikor a fehér törpe kísérőjétől elég anyagot gyűjtött ahhoz, hogy tömege átlépje a kritikus Chandrasekhar-határt (1.44 naptömeg). A másik elmélet szerint két fehér törpe kering egy kettős rendszerben, egymáshoz folyamatosan közeledve. Míg végül egymásba spiráloznak, és ekkor történik az Ia típusú szupernóva-robbanás. Az I típus többi altípusa esetén (Ib/Ic), a szupernóva-robbanások minden részlete még nem teljesen tisztázott, de valószínűleg ezek is kollapszus-szupernóvák. Ennél sokkal mélyebben most nem mennék bele a témába, ennyi is elegendő a továbbiak megértéséhez. (Nyomtatásban és az interneten több alapos publikáció is fellelhető a témában. Lásd Vinkó József cikkét a felhasznált irodalmaknál.)

Az SN2016gkg spektrumában, a tipikus IIb szupernóvákra jellemzően, kezdetben P Cygni profilú hidrogénvonalak voltak megfigyelhetőek. Ezek aztán a maximum után gyorsan gyengülni kezdtek, hogy helyüket átadják a domináns hélium abszorpciós vonalaknak. Mindez azzal magyarázható, hogy a kidobódott hidrogénburok csak viszonylag vékony lehetett, és éppen ezért igen gyorsan szét is terjedt. Így rövid idő elteltével láthatóvá vált az alatta lévő héliumban gazdag csillaganyag.

p_cygni_profil

9. ábra. Az úgynevezett P Cygni profil a kidobódott, nagy sebességgel táguló gázburoknak köszönhető. A színképben a széles emissziós komponensre egy rövidebb hullámhosszak felé eltolódott abszorpciós komponens rakódik rá. Baloldalon látható a megfigyelt a spektrum intenzitása a hullámhossz függvényében. Míg a jobboldalon látható, hogy honnan származnak az emisszió egyes részei, és minek köszönhető az abszorpció. A Doppler-effetusnak miatt a felénk legnagyobb sebességgel közeledő gázburok abszorpciója erősen a kék felé tolódik. A tőlünk legnagyobb sebességgel távolodó, a gázburok túl felöli részének emissziója pedig a legnagyobb a vöröseltolódású. A vonalak kiszélesedéséből kiszámolható a tágulás sebessége. Ábra forrása: Vinkó József

De miért ilyen vékony a hidrogénburok? Mitől ennyire speciálisak a IIb szupernóvák? Ma a legvalószínűbbnek az tűnik, hogy ezek szülőcsillagai kettősrendszerek tagjai.

Egy kettős rendszerben mindkét komponens esetén megvan az a térrész, amit az adott égitest gravitációja ural. Ezt Roche-térfogatnak nevetik. Ami azon kívül kerül az akár el is hagyhatja a rendszert, vagy a páros körüli pályára áll. A belső Langrange-ponton keresztül azonban anyag áramolhat át az egyik Roche-térfogatból a másikba. Ez meg is történik akkor, mikor a nagyobb tömegű, és ezért rövidebb életű komponens késői fejlődési fázisában kitölti a saját Roche-térfogatát. A kisebb tömegű társ így elszipkázza a nagyobb külső rétegeinek anyagát. Az anyagátadás ténye megmagyarázza a hidrogénburok vékonyságát, illetve egyes IIb szupernóvák közvetlen környezetének sajátosságait. Vajon az SN2016gkg is alátámasztja ezt az elképzelést?

Roche-lobes-corrected

10. ábra. A Roche-térfogat. Az L1 a szövegben is említett belső Langrange-pont. Az eredeti ábra forrása: Wikipedia.org (az eredeti ábra hibás volt, így módosítottam)

Ahogy a bevezetőben is írtam, minden egyes kollapszus-szupernóva (core collapse supernova) megfigyelésével a csillagászok közelebb jutnak a robbanást kiváltó, és a közben lejátszódó folyamatok mechanizmusának megértéséhez. Kiváltképp szerencsés a helyzet, ha sikerül azonosítani a szupernóva szülőcsillagát (progenitor). Az 1987A, a Nagy Magellán-felhőben 1987. február 23-án feltűnt szupernóva volt az első ilyen eset. Az azonosításkor több minden is a csillagászok kezére játszott. A Nagy Magellán-felhő, a nagyjából 163 ezer fényéves távolságával a Tejútrendszerünk legközelebbi kísérő galaxisai közé tartozik. (A felrobbant csillagot mindössze 168000 fényév választotta el tőlünk a későbbi mérések szerint.) A szülőcsillag pedig elég fényes volt ahhoz, hogy ilyen távolságból is jól látszódjon a korábban készült felvételeken. Ez utóbbira számítottak is a csillagászok. Amit azonban az SN1987A pozíciójában találtak a fotókon, az mégis meglepte a csillagászokat. Az elődobjektum, a Sanduleak -69° 202 ugyanis kék szuperóriás csillag volt. Akkoriban a nagytömegű csillagok fejlődésével kapcsolatos elméletek inkább a vörös szuperóriásokat tartották potenciális szupernóva jelölteknek.

Ma az azonosított szülőcsillagok száma 20 körül van. Nem hatalmas a minta, de ahhoz elég, hogy bizonyos következtetéseket le lehessen vonni. Az egyik ilyen, hogy eltekintve pár esettől, a B-V színindexük, vagyis B szűrővel felvett fényességük és V szűrővel felvett fényességük különbsége nagyobb, mint 0.3. Ebből következően effektív felszíni hőmérsékletük 7300 K alatti. A sikeresen azonosított szülőcsillagok legtöbbje, pedig valóban vörös szuperóriás volt. Különösen érdekesek tehát az olyan szülőcsillagok, melyek színe (színindexe) és fényessége (luminozitása) eltér „a megszokottól”. Ezek próbára teszik a csillagfejlődési elméleteket, illetve a szupernóvák fizikájával kapcsolatos ismereteket.

Charles D. Kilpatrick-nek és munkatársainak sikerült a Hubble űrtávcső WFPC2 (Wide Field Planetary-Camera 2) műszerével készült korábbi felvételein ráakadnia a szülőcsillagra.

SN2016gkg-KECK-HST-F-cut1

11. ábra. A felső fotó a Keck-II 10 méteres távcsővel, a közeli infravörös tartományban (NIRC2 – Near-Infrared Camera 2), adaptív optikai eljárással készült. A megjelölt fényes objektum az SN2016gkg, míg a vörös karikával jelölt 10 darab objektum referencia csillag az asztrometriai mérésekhez. Az alsó fotó a Hubble űrteleszkóppal korábban készült felvétel. A 10 vörös kör, azokat a felső felvételen is szereplő referencia csillagokat jelöli, melyhez képest meghatározták a szülőcsillag pozícióját, s amely elég jól egybeesett a megjelölt kékes színű pontforrással. Forrás: Charles D. Kilpatrick és mások.

A szülőcsillag azonosítását követően külön-külön megmérték annak fényességét a Hubble három különböző színszűrővel készített archív felvételén, majd figyelembe véve az intersztelláris anyag hatását, a kapott magnitúdó értékeket korrigálták. Ez után megkeresték, hogy milyen típusú csillag színképe illeszkedik erre a három fényességértékre a legjobban. Eredményül azt kapták, hogy a szülőcsillag egy 9500 K felszíni hőmérsékletű, A0Ia színképosztályú, vagyis kékes-fehér színű szuperóriás volt. Ismét egy újabb eset, mikor is a várt vörös szuperóriás helyett forróbb, kékes árnyalatú szuperóriás csillagot találtak. Fontos megjegyezni, hogy nem ez az első. Korábban is akadt már példa arra, hogy a IIb szupernóvák elődobjektuma a vörös szuperóriásoknál némileg melegebb sárga szuperóriásnak, illetve kék szuperóriásnak bizonyult.

Kilpatrick és csapata nem állt meg itt. Az aktuális csillagfejlődési modellek leírják, hogy adott kiindulási tömegű (MZAMS), és fémtartalmú csillag milyen utat jár be a születésétől a haláláig a Hertzsprung-Russell diagramon. Ilyen modellszámítások kettős rendszerek esetén is léteznek, ahol a tömegátadás miatt a tagok kölcsönösen befolyásolják egymás életútját. A csillagászoknak csupán olyan kezdő tömegparamétert, kettős csillag esetén pedig kezdő tömegpárosítást kellett választaniuk (a fémtartalom ismert volt), ahol a csillag végül eljut a Hertzsprung-Russell diagram azon pontjába, ahol az SN2016gkg szülőcsillaga is tartózkodott a robbanás előtt. A modellezett csillag életútja végén tehát pont a megfigyelt fényességet (luminozitást), és a kiszámított felszíni hőmérsékletet kellett, hogy felvegye.

Először magányos csillaggal próbálkoztak, de nem találtak olyan fejlődési útvonalat, mely annak közelében ért volna véget, ahol az SN2016gkg szülőcsillaga tartózkodott. Volt azonban másik érv is a magányos csillag elképzelés ellen. Kétségtelen, hogy a nagytömegű csillagok képesek a végstádiumban, még a szupernóva-robbanás előtt ledobni szinte a teljes külső hidrogénburkukat. Pontosan ez figyelhető meg az úgynevezett Wolf-Rayet csillagoknál. Ahhoz azonban, hogy a csillagot a halála előtt kiterjedt, ám csak kicsiny tömegű hidrogénburok vegye körül, nagyon finoman hangolt tömegvesztési folyamat szükséges. Máskülönben nem jön létre a IIb szupernóváknál megfigyelhető fénygörbe, spektrum, illetve a szülőcsillag fizikai paraméterei is mások lesznek.

A kettős rendszerek csillagfejlődési modelljei között azonban több olyan életpályát is találtak, ahol a csillag a szupernóva-robbanás pillanatában az SN2016gkg szülőcsillagához elég közel tartózkodott a Hertzsprung-Russel diagramon. A kettőscsillag modellekkel már sokkal meggyőzőbb eredményre jutottak. A legjobban illeszkedő életpálya esetén a főkomponens kiindulási tömege 15 naptömeg, míg az 1000 napos keringési periódusú kisebb társ kiindulási tömege mindössze 1.5 naptömeg volt. Azonban az anyagátadást is figyelembe vevő modell szerint, közvetlenül a szupernóva-robbanást megelőzően már csak 5.2 naptömeg volt a főkomponens tömege. Ez a modell nemcsak hogy produkálta a végpontban a megfigyelthez nagyon közeli luminozitást, és felszíni hőmérsékletet, de a megmaradt hidrogénburok tömegére kapott 5 x 10-3 naptömeg is jól illett a IIb szupernóvákról alkotott képbe.

Természetesen nagy fegyvertény lenne a modellbeli másodkomponens megtalálása, mely eredendően sokkal halványabb, mint az SN2016gkg szülőcsillaga volt. Mindazonáltal, talán a jövőben lehetséges lesz a detektálása a megfelelően „mély” felvételeken, miután a szupernóva már jelentősen elhalványodott. Elfogadva a galaxis korábban említett távolságát, a Hubble űrtávcső WFPC2 detektorával, és az F300W (300 nm, U-Band) szűrő alkalmazásával egy 25.9 magnitúdós csillagot kellene keresni az adott helyen.

SN2016gkg-eletpalyak

12. ábra. Balra a magányos szülőcsillagok, jobbra a kettős rendszerbeliek életpályája látható a Hertzsprung-Russell diagramon az aktuális csillagfejlődési modellek alapján, különböző kiindulási tömeg, de adott fémtartalom mellett. Az SN2016gkg-t vörössel jelölték (a felszíni hőmérséklet, és a luminozitást csak némi bizonytalansággal sikerült meghatározni). E szupernóva mellett más IIb típusú szupernóvák szülőcsillagai is feltüntetésre kerültek. Részletekért lásd a szöveget. Forrás: Charles D. Kilpatrick és mások.

Beillesztve Kilpatrick és csillagász kollégáinak az SN2016gkg és szülőcsillagával kapcsolatos munkáját a korábbi IIb típusú szupernóvákkal kapcsolatos vizsgálatok sorába úgy tűnik, hogy bár nem elképzelhetetlen, hogy a IIb szupernóvák szülőcsillagainak kis része talán mégis csak magányosan élte le életét, de sokkal valószínűbb, hogy a nagytöbbség kettősrendszer tagjaként jutott el a szupernóva-robbanásig.

A kutatók mindenesetre folytatják a jövőben is és újabb IIb és más típusú szupernóvák szülőcsillagainak azonosítását, vizsgálatát. Ezzel párhuzamosan a csillagfejlődési modelleket is folyvást tökéletesítik. Úgy gondolom, hosszú még az út, hogy pontosan megértsük a kollapszus-szupernóvákat. Ráadásul én ebben a cikkben csak a IIb típusról tettem mindössze említést. Az olvasót e mellett csak arra tudom biztatni, hogy amennyiben módja van rá, kövesse nyomon egy-egy szupernóva fényváltozását. Remek elfoglaltság a természet jelenségeinek megfigyelése. Azt meg sosem lehet tudni, talán a beküldött adatokat egyszer tudományos céllal is felhasználják. Ez utóbbi két kijelentés amúgy szinte bármely változócsillag észlelés esetében megállja a helyét. 

Felhasznált irodalom:

Stephen James O’Meara: Deep-Sky Companions: Southern Gems (ISBN: 1-10701-501-4)

Martin Bureau and E. Athanassoula: Formation and Evolution of Galaxy Bulges (IAU S245) (Proceedings of the International Astronomical Union Symposia and Colloquia)

West, R. M.; Lauberts, A.; Schuster, H.-E.; Jorgensen, H. E.: Astrometry of SN 1987A and Sanduleak-69 202

Veron, P., Goncalves, A. C., & Veron-Cetty, M.-P.: AGNs with composite spectra

Andy D. Goulding, David M. Alexander, Bret D. Lehmer, James R. Mullaney: Towards a Complete Census of AGNs in Nearby Galaxies: The Incidence of Growing Black Holes

Olga G. Nasonova, José A. de Freitas Pacheco, Igor D. Karachentsev: Hubble flow around Fornax cluster of galaxies

Vinkó József: Rejtélyes csillagrobbanások

P. Castangia, F. Panessa, C. Henkel, M. Kadler, A. Tarchi: New Compton-thick AGN in the circumnuclear water maser hosts UGC3 789 and NGC 6264

J. Falcón-Barroso, C. Ramos Almeida, T. Böker, E. Schinnerer, J. H. Knapen, A. Lançon, S. Ryder: The circumnuclear environment of NGC613: a nuclear starburst caught in the act?

Charles D. Kilpatrick, Ryan J. Foley, Louis E. Abramson, Yen-Chen Pan, Cicero-Xinyu Lu, Peter Williams, Tommaso Treu, Matthew R. Siebert, Christopher D. Fassnacht, Claire E. Max: On the Progenitor of the Type IIb Supernova 2016gkg

L. Tartaglia, M. Fraser, D.J. Sand, S. Valenti, S. J. Smartt, C. McCully, J. P. Anderson, I. Arcavi, N. Elias-Rosa, L. Galbany, A. Gal-Yam, J.B. Haislip, G. Hosseinzadeh, D. A. Howell, C. Inserra, S. W. Jha, E. Kankare, P. Lundqvist, K. Maguire, S. Mattila, D. Reichart, K. W. Smith, M. Smith, M. Stritzinger, M. Sullivan, F. Taddia, L. Tomasella: The progenitor and early evolution of the Type IIb SN 2016gkg

 

Abell1060 (Hidra I Halmaz)

Abell1060-LRGB-20160527-T32-300s-bin2-TTK

Abell1060

2016-05-27, 2016-05-29, 2016-05-30, 2016-05-31 – Siding Spring Observatory

19 x 300 sec L (Bin2), 9 x 300 sec R (Bin2), 9 x 300 sec G (Bin2), 9 x 300 sec B (Bin2)

iTelescope.net T32 – Corrected Dall-Kirkham Astrograph Planewave 17″ – 43 cm, f/6.8  – FLI Proline 16803 CCD kamera

A képre kattintva, az nagyobb felbontásban is elérhető.

A kertem azon zuga, ahonnan saját távcsövemmel az eget szoktam fürkészni viszonylag védett az utcai fényektől. Természetesen Budapest fényeivel, illetve északi irányban, 5-6 km-re lévő ipari parkkal nem tudok mit kezdeni. Szerencsére a mostani szomszédjaimat sikerült meggyőzni arról, hogy éjszaka nincs sok értelme a felém néző lámpákat égetni, kimondottan akkor nem, amikor már ők régen alszanak. Tudomásul vették, hogy mellettük lakik valami fura fickó, aki derült éjszakákon a távcsöve mellett gubbaszt. Direkt pedig miért is babrálnának ki vele? Elvégre, mindenkinek lehet valami furcsa heppje! Csendes őrült. Gondolják ők!

A házam nagyjából 30 fok magasságig kitakarja az eget ÉNY-É-ÉK irányba, így közvetlenül nem látok rá azokra az égtájakra, ahonnan a felhőket gyakorta fölém sodorja az áramlat. Ősszel és telente a köd is gyakorta erről szokott támadni. Éppen ezért, miközben hátul a kertben a távcső végén dolgozik a kamera, alkalmanként átsétálok a telkem északi oldalára, az utcafrontra, hogy lássam közelít-e valami, mely véget vethet az éjszakai mókának. Ilyenkor az utcalámpák narancsos ragyogásában, hunyorogva kémlelem a messzi horizontot, reménykedve abban, hogy a csillagok fénye még mindig töretlen.

Így tettem azon az éjszakán is, mikor az NGC6015 izolált galaxisról rögzítettem az első felvételeket. Hátamat a falnak vetve azon töprengtem, hogy ha már itthonról magányos galaxis fotózásába kezdtem, akkor az iTelescope hálózat Ausztráliában lévő egyik távcsövével belefogok valamelyik távoli galaxis halmaz fotózásába. De melyik legyen az? Még tavaly ősszel készítettem egy listát azon galaxis halmazokról, melyeket a jövőben majd le szeretnék fotózni. Időközben sok publikációt is elolvastam róluk, ugyanis nagyon érdekelt ez a csillagászati téma.

A lehetséges célpontok között volt az Abell1060 is. A halmaz tagjaira két sziporkázó, a Tejútrendszerünkhöz tartozó csillag fénye mögött látunk rá. Kápráztatóak, akárcsak a nátrium utcalámpák a csillagos égbolt előtt. Sosem gondoltam volna, hogy az éjszaka fölénk boruló Univerzum látványától megfosztó közvilágításról valaha is az Abel1060-nak, az SDSS (The Sloan Digital Sky Survey) program keretében készült fotója fog beugrani. Az észlelési programomba, ha élhetek ezzel a kifejezéssel, viszont nem kimondottan a látványa, sokkal inkább érdekességei miatt került be anno. Hamarosan ezekből fogok majd szemezgetni, s rajtuk keresztül igyekszem majd képet festeni a galaxis halmazok világáról. Előbb azonban, had szenteljek egy kis figyelmet magának az Abell katalógusnak, és megalkotójának.

Az Abell katalógus (Abell catalog of rich clusters of galaxies)

Abell1976

George Ogden Abell (1927-1983) előadást tart 1976-ban a Summer Science Program keretében. A program nyári foglalkozásaival a tudományos pálya felé igyekezett terelni a tehetséges középiskolásokat. Megismertette a résztvevőket a csoportos kutatómunka nagyszerűségével. Nappal elméleti képzést kaptak (csillagászat, fizika, matematika, szférikus trigonometria, szoftverfejlesztés, stb.), éjszaka pedig például kisbolygó megfigyeléseket végeztek, és kiszámolták pályájukat. Abell fontosnak tartotta, és sokat is tett azért, hogy a fiatalokat oktassa. Nemcsak kiváló tudós, de igen népszerű tanár is volt a hallgatók körében. Fotó: Ken Nordhauser

George Ogden Abell megfigyelő csillagászként kezdte pályafutását a Palomar Égboltfelmérő Programban (Palomar Sky Survey). A Palomar Obszervatórium 48 hüvelykes Schmidt típusú távcsövét használta a projekt fotólemezeinek elkészítéséhez. A Schmidt távcsövek (szokás még Schmidt kamerának is hívni) speciális felépítésüknek köszönhetően egyszerre az égbolt viszonylag nagy területéről képesek éles képet rögzíteni. Bernhard Schmidt-nek, a távcsőtípus feltalálójának pontosan egy ilyen rendszer megalkotása volt a célja. Az ötvenes évektől szinte az ezredfordulóig három nagy Schmidt távcső, köztük a Samuel Oschin (régebben Palomar Schmidt) biztosította az egész égboltra kiterjedő felmérésekhez a fotografikus források túlnyomó többségét.

George Abell preparing to take plate with 48-inch Schmidt telescope

A fiatal George Ogden Abell a Palomar Obszervatórium Samuel Oschin 48 hüvelykes (1.2 méteres) Schmidt távcsövével. Abell ezzel a távcsővel készítette a Palomar Égboltfelmérő Programhoz a felvételeket. A távcső napjainkban már teljesen automatizált, praktikusan működésközben senki sincs fizikailag a kupolában. A fotólemezeket pedig CCD technológia váltotta fel. Teljesen hasonlóan készült a saját felvételem is az Abell1060-ról. Az iTelescope távcsöve teljesen önállómódon, az általam megadott program alapján készítette el a kívánt felvételeket. – A kép forrása: Caltech

Egy-egy felvétel az égbolt nagyjából 6 fokos területét fedte le. Összehasonlításként, a Hold látszólagos mérete mindössze ½ fok. A teljes ég nagyjából 75%-át sikerült lefényképezni a program keretében, mely magában foglalta majdnem a teljes északi éggömböt, illetve a délinek egy részét. Abell 879 fotólemezt használt fel a 935-ből, hogy a galaxis halmazok után kutasson. Egyenként átnézte ezeket, s olyan régiókat keresett, ahol az átlagosnál nagyobb volt a galaxisok koncentrációja. 1958-ban publikálta katalógusát, mely 2712 galaxis halmazt tartalmazott. Vizsgálatait munkatársaival később a déli égboltra is kiterjesztette. Ehhez, a UK Schmidt teleszkóppal az 1970-es években készült felvételeket használta fel. E távcső otthonául ugyanaz a Siding Spring Observatory szolgál, ahol az iTelescope ausztráliai robottávcsövei találhatóak. A felvételem az Abell1060 halmazról egészen közel készült egy olyan távcsőhöz, ami maga is kulcsfontosságú szerepez játszott Abell munkássága során. A kiegészített katalógusának előzetes változata 1983-ban került bemutatásra, de egy hónappal későbbi halála miatt félbemaradt a projekt. A munkát végül társzerzői fejezték be, és 1989-ben került kiadásra, s így az Abell katalógusba az egész égboltot lefedő kutatás után 4073 galaxisokban gazdag halmaz került be.

Az Abell katalógus meghatározó munka volt már az 1958-as megjelenésekor is, ugyanis elég nagy mintát jelentett ahhoz, hogy össze lehessen hasonlítani az egyes halmazok karakterisztikáját. Továbbá először kínálkozott alkalom a galaxisok térbeli eloszlásának vizsgálatára a felmérés nagyságrendjének és kiterjedtségének köszönhetően.

Abell a halmazokat a szerint osztályozta, hogy azok mennyire gazdagok galaxisokban (Richness). Ha belegondolunk, akkor a halvány galaxisokat egyáltalán nem könnyű detektálni. Abell úgy próbált fogást venni a problémán, hogy egy bizonyos luminozitási (fényességi) tartományba eső tagokat számlálta meg. Saját definíciója szerint, az m3 és az m3+2 tartomány számosságát vette figyelembe, ahol m3 a halmaz harmadik legfényesebb tagjának a fényessége (magnitúdóban). A kapott érték alapján 6 külön csoportba osztotta a halmazokat.

Munkájához távolság adatokra is szüksége volt, ami akkoriban közel sem állt rendelkezésre a halmazok legtöbbje esetén. Azt a korábbi tapasztalati összefüggést használta fel, miszerint minden egyes népes halmaznak a 10 legfényesebb tagja meghatározott fényességű. Csillagász kollégái alig két évvel korábban publikálták az első eredményeket a halmazok luminozitás függvényével kapcsolatban (Humason, Mayall, és Sandage – 1956). Abell így a fényesebb tagok látszó fényességét, mint távolságindikátort használta fel. Ez a módszerrel ugyan csak igen durva becsléseket tett lehetővé, de arra éppen megfelelt, hogy eldönthető legyen egy-egy halmazról, hogy az közelebbinek vagy távolabbinak számít-e. Végül a halmazokat 7 különböző csoportba sorolta a fenti módszerrel a távolságuk alapján.

Arra is metodikát dolgozott ki, hogy miként jelölje ki a halmazokat és tagjaikat. Tudatában volt annak, hogy vannak előtér, és háttér galaxisok. Látóirányunkban lehetnek véletlen egybeesések, s így talán nem is egy valódi halmazt látunk.  Megszámolta a galaxisokat a fotólemez egyes területein. S, hogy minimalizálja az előbb említett hibákat, azt mondta, hogy akkor beszélünk halmazról, amennyiben az, adott sugárban 50 vagy több galaxist tartalmaz a centruma körül. Vagyis, a távolság függvényében a fotólemezen meghatározott méretűnek látszó körön belül kell lennie annak a minimum 50 galaxisnak, melyek luminozitása átlép egy bizonyos küszöböt. Későbbi kutatásokból kiderült, hogy nem is járt messze az igazságtól. Erre az általa definiált, halmazokra érvényes „standard” sugárra manapság Abell rádiuszként (AR) szoktak hivatkozni, és a Hubble-állandó elfogadott értéke alapján pedig 2 Mpc a mérete. Az eredetileg a katalógusában szereplő 2712 galaxis halmaz jelölt közül, végül 1682 esetében jelentette ki, hogy statisztikailag ezek valószínűsíthetően tényleg valódi halmazok.  És valóban, mások ezt követő tanulmányai szerint, az esetek túlnyomó többségében igaza is lett.

Az Abell névvel azonban nemcsak galaxis halmazok nevében találkozhatunk amatőrcsillagászként. Egyik korai munkája az alacsony felületi fényességű planetáris ködök tanulmányozása volt. Ehhez szintén a Palomar Égboltfelmérő Program során készült fotólemezeket használta fel. A 48 hüvelykes Schmidt távcső ideális volt a nagy kiterjedésű, de halvány felületi fényességű objektumok megörökítéséhez. 1966-ban kiadott publikációja 86 planetáris ködöt tartalmazott. Ezekre nem mind ő akadt rá. Nagyjából a felük Albert George Wilson, míg a maradék hozzá, illetve Robert George Harrington és Rudolph Minkowski nevéhez köthető. Bár 4 planetáris köd jobban ismert más katalógusokból, és szintén 4-ről később kiderült, hogy valójában más objektum, de Abell-nek Peter Goldreicher-rel karöltve fontos szerepe volt abban, hogy a csillagászok kapcsolatot teremtsenek a vörös óriás csillagok életének végső fázisa és a planetáris ködök között. Vagyis, neki is köszönhető, hogy a nagyjából a Napunk tömegével rendelkező csillagok halálához vezető útja elkezdett kirajzolódni.

Abell1060 (Hidra I Halmaz)

Abell1060-LRGB-20160527-T32-300s-bin2-TTK-label

Abell1060 – A felvételemen szereplő galaxisok NGC és PGC azonosítói, melyek közül többre is hivatkozom majd a lenti szövegben.

A két fényes csillag (HD 91964 balra, HD 92036 jobbra) távolsága alig valamivel több, mint 16 ívperc, vagyis nagyjából fele, mint a Hold mérete az égen. A felvételen szereplő, két legnagyobbnak látszó galaxis mérete pedig, a katalógusok szerint 3.5 ívperc (NGC3311), illetve 3.2 ívperc (NGC3312). A fotóm az égbolt durván Hold méretű területét fedi le. A halmaz 157 tagja viszont az égbolt nagyjából 2 fokos szeletén helyezkedik el. Én mindössze csak a központi részt örökítettem meg.

A képre kattintva, az nagyobb felbontásban is elérhető.

E galaxis halmaz megfigyeléséhez mindenképpen érdemes délre utaznunk, ugyanis hazánkból a legnagyobb delelési magassága is mindössze 14-16 fok körüli. Én is ennek okán választottam Ausztráliát a felvétel elkészítéséhez.

A látómező legfényesebb objektuma a HD 92036 katalógusszámú vörös óriás csillag (színképosztály: M1III). 4.85 (V) magnitúdós fényességével szabad szemmel is megpillantható a Hidra csillagképben. Távolsága 488 fényév. Ha jóval közelebb lenne hozzánk, akkor könnyen megcsodálhatnánk pompás színét, mely leginkább a Betelgeuse narancsos vöröséhez hasonlatos. Így aki látta már téli egünk ezen égkövét, az el tudja képzelni milyennek is látnánk saját szemünkkel. Valójában a HD 92036 egy árnyalattal még vörösebb is, ugyanis B-V színindexe 1.64, míg a Betelgeuse B-V színindexe 1.52.

A másik fényes csillag a képen a HD 91964. Ez szintén vörös óriás csillag (pontosabban narancs óriás, színképosztály: K4/K5III), azonban már távolabb, 1042 fényévre van tőlünk. Fényessége 6.65 (V) magnitúdó, így ezzel már a szabadszemes láthatóság határa alatt marad.

Ez a két csillag, akár csak a többi a felvételen, mind a Tejútrendszerhez tartozik, és igen csak közelinek számítanak a háttérben látható galaxisokhoz képest. Az Abell1060, vagy más néven a Hidra I halmaz (Hydra I Cluster) távolsága nagyjából 51-54 Mpc (166-176 millió fényév), vagyis ezek a csillagrendszerek durván 36 ezerszer távolabb vannak, mint a fényesen ragyogó HD 92036.

Abell1060-map04

Az Abell1060 a Hidra csillagképben található, nagyjából 4 foknyira a Légszivattyú (Antlia) csillagkép legfényesebb csillagától (α Antliae).

Az egész Univerzum galaxisok alkotta bonyolult hálózat. Leginkább egy óriási pókhálóra hasonlít. Egyes részei szinte teljesen sötétek és üresek, míg mások galaxisokkal zsúfoltak. Galaxisok, galaxis csoportosulások, galaxis halmazok alkotják ezt a kusza „szövetet”.

cosmic_web2_s

A kozmikus pókháló – Kép forrása: Volker Springel/Max Planck Institute For Astrophysics/SPL

A legnagyobb struktúrák az úgynevezett szuperhalmazok. A népes Hidra I halmaz, akár csak hozzá képest eltörpülő Lokális Csoport, melynek Tejútrendszerünk is része, a Laniakea vagy Lokális szuperhalmazhoz tartozik. A Lokális szuperhalmaz létezéséről teljes bizonyossággal nem is olyan régen tudunk.

2014. szeptember 4-én jelent meg az a cikk a Nature-ben, melyben Brent Tully (University of Hawaii) és kutatócsapatának 8000 galaxis mozgásának megfigyelésén alapuló kutatási eredményét közölte. Az Ősrobbanás óta táguló világegyetem globális hatását figyelembe véve korrigálták a mért eredményeket, és ebből megkapták, hogy miként hatnak pusztás a galaxisok egymásra. Egy háromdimenziós térképet alkottak, mely teljesen újradefiniálta a szuperhalmazok fogalmát.

A földrajzban is ismert vízválasztó vonalakhoz hasonló analógiával élve, galaxisok csoportjai különböző gravitációs vonzócentrumok irányába mozognak, akárcsak a víz egy vízválasztó vonal két oldalán.  Jól elhatárolható felületek vannak a világegyetemben, melyek egyik oldalán az egyik, míg a másik oldalán egy másik ilyen vonzócentrum felé mozognak a galaxisok halmazai. A galaxisok mozgása alapján felfedezett, 500 millió fényévénél valamivel nagyobb képződményt Laniakea szuperhalmaznak nevezték el. A Laniakea hawaii nyelven mérhetetlen mennyet, mérhetetlen eget jelent. Ezzel az elnevezéssel próbálták a kutatók érzékeltetni, hogy milyen hatalmas struktúráról is van szó a világegyetemben. A Laniakea szuperhalmazban a galaxisok halmazai a „Nagy Vonzó” („Great Attractor”) felé mozognak, míg például a szomszédos Perseus-Halak szuperhalmazban egy másik pont felé igyekeznek.

A Nature Youtube csatornáján publikált angol nyelvű videó, mely bemutatja a Laniakea szuperhalmazt. Érdemes figyelni, a videón a Lokális Csoport (Local Group) mellett, a Hidra I Halmaz (Hydra I Cluster) is feltűnik (2:21)!

(Akiket ennél is mélyebben érdekel a téma, azoknak a tanulmány egyik társszerzőjének Youtube csatornáján lévő szintén angol nyelvű videót is érdemes megnéznie.)

A fotóm az égbolt durván Hold méretű területét fedi le. A teljes halmaz azonban hozzávetőlegesen 2 fok kiterjedésű, így a képen csak az Abell1060 központi, de egyben legizgalmasabb része látszik.

Abell1060-LRGB-20160527-T32-300s-bin2--NGC3311-NGC3309-TTK-cut1-l1cAz galaxis halmaz dinamikai központjában, tőlünk nagyjából 51-54 Mpc-re (166 -176 millió fényévre) az NGC3311 óriás diffúz galaxis foglal helyet. Morfológiai típusa: cD.

Nem egyedi jelenségről van szó. Igen gyakori, hogy a népes, nagyobb galaxis halmazok középpontjában egy olyan óriás galaxis figyelhető meg, mely gravitációjával uralja a halmazt. Az angol szakirodalomban ezeket BCG-nek (Brightest Cluster Galaxy) is nevezik, és a Világegyetem legnagyobb csillagrendszereinek többsége közülük kerül ki. Az óriási elliptikusak mintegy egyötödét kitevő alosztály a cD típus, melyek óriás méretüket roppant kiterjedt, de kis felületi fényességű halójuknak köszönhetik. Nem ritka, hogy a galaxis sűrűbb, belső régióját akár százezer, több százezer, vagy extrém esetekben millió fényéves haló veszi körül. Az NGC3311 esetében a centrumtól körülbelül 24-30 kpc távolságig sikerült nyomon követni a csillagászoknak a külső halót, így a galaxis átmérője hozzávetőlegesen 156-196 ezer fényév, valamivel több, mint másfélszerese a Tejútrendszerünkének. (A külső haló olyan halvány, hogy az éppen csak előbújik a felvételemen.)

De hogyan nőnek ekkorára? Miként jönnek létre? Erre a válasz a galaxis csillagaiban keresendő.

A különböző régiók kémiai összetétele, fémtartalma, illetve az egyes elemek egymáshoz viszonyított aránya árulkodik a csillagok koráról, a kialakulásuk körülményiről, és származási helyéről. A csillagászok minden elemet a hidrogénen és a héliumon túl a periódusos rendszerben fémnek neveznek. Egy csillag fémtartalmát általában a Naphoz szokták hasonlítani a kutatók. A világegyetem története folyamán, a csillagoknak hála folyamatosan dúsult fémekkel. Az újabb és újabb csillaggenerációk egyre több fémet tartalmaztak, minél alacsonyabb fémtartalmú egy csillag az adott rendszerben, vélhetőleg annál ősibb objektum. A fémtartalom azonban nemcsak a csillagok korától függ, hanem attól is, hogy milyen körülmények között alakultak ki.

Az NGC3111 esetébe, a centrum 8.4-8.9 kpc sugarú területének fénye, a galaxis nagyon korai időszakában kialakult, közel 13 milliárd éves ősi csillagaitól származik. De ezen távolságon túl is jelentős a hozzájárulásuk a galaxis fényéhez. Az ilyen korú csillagokhoz képest relatíve magas a fémtartalmuk. Ez arra utal, hogy a galaxis már fejlődése kezdetén is tekintélyes tömegű volt, s az erős gravitáció nem engedte a szupernóvák által a csillagközi anyagba szétterített fémeket eltávozni a galaxisból.

Ezekben a csillagokban az alfa elemek aránya a vashoz képest szintén viszonylag magas. Hogy mi következik ebből? Ennek megértéséhez tegyünk egy kis kitérőt.

Az alfa folyamat (alpha process) az egyik fajtája annak a termonukleáris fúziónak, amiben a csillagok életük későbbi szakaszában héliumból nehezebb elemeket hoznak létre. Ehhez egy hélium-4 atommag (alfa részecske) és egy héliumnál nehezebb néggyel osztható rendszámú elemre van csak szükség a vasig bezárólag. A másik héliumot felhasználó fúzió a 3-alfa folyamat, amiben 3 hélium-4 atommagból végül szén jön létre. Az alfa elemek ezekben folyamatokban keletkeznek, melyeket aztán a szupernóvák terítenek szét a galaxisban. A masszív nagytömegű, és ezért rövid életű csillagok II típusú szupernóva-robbanásai az O, Ne, Mg, Si, S, Ar, Ca, Ti (az alfa folyamatok termékeivel), továbbá az N és Na elemekkel szennyezik be a környezetet. Az I típusú szupernóvák ugyan szintén szórnak szét alfa elemeket, de jellemzően a Fe és Cr elemek tekintetében mutatnak jelentős csúcsot. Ez utóbbi esetben viszont nem egy rövid életű masszív csillag haláláról van szó. Éppen ellenkezőleg. Ezek a robbanások kisebb tömegű, és ezért tovább élő csillagok végső állapotát jelentő fehér törpékhez köthetőek, melyek kettős rendszer tagjai.  Az egyik vezető elmélet szerint a robbanásra akkor kerül sor, amikor a fehér törpe kísérőjétől elég anyagot gyűjtött ahhoz, hogy tömege átlépjen a kritikus Chandrasekhar-határt (1.44 naptömeg). A másik elmélet szerint két fehér törpe kering egy kettős rendszerben, egymáshoz folyamatosan közeledve. Míg végül egymásba spiráloznak, és ekkor történik a szupernóva-robbanás. Akármelyik elmélet is igaz az I típusra, az biztos, hogy a galaxisok csillagainak megszületése után sokkal hamarabb került sor II típusú robbanásra, mint I típusúra. Vagyis az Univerzum korai idejében az alfa elemek aránya relatíve nagyobb volt a vashoz képest.

Itt az ideje megválaszolni a fentebb feltett kérdést. Az NGC3311 belső területének csillagaiban az alfa elemek aránya a vashoz képest azért viszonylag magas, mert rövid időintervallumon belül, a galaxis születése után keletkeztek. Az NGC3311 élete tehát igen heves és nagymennyiségű csillag keletkezésével kezdődött.

A haló csillagai azonban már egyáltalán nem mutatják ezt a homogén kémiai összetételt. Ott a fémtartalom, és az alfa elemek aránya a vashoz képest is változó, több csúcs és hullámvölgy is megfigyelhető az eloszlásban. Ellentétben tehát az NGC3311 belső részéhez képest, ezek nem annak a korai gyors, és intenzív csillagszületési hullámnak a produktumai, amelyben a galaxis kialakulásakor összehúzódó gázfelhők, egyesülő sűrű gázcsomósodások játszották a főszerepet. Sokkal inkább valószínű, hogy a haló fényének 40%-ért felelős csillagok, különböző kiindulási tömeggel és más csillagfejlődési történettel megáldott galaxisokkal történt interakciókból kerültek oda. Ezt támasztják alá az NGC3311 csillagaival kapcsolatos kinematikai vizsgálata is. A befogott csillagoknak, a galaxis maradványoknak csillagászati értelemben sok időre van szüksége, hogy elvegyüljenek a többiek között (viszonylag hosszú a relaxációs idő), és ez az a jelenség, ami megfigyelhető az NGC3311 esetében is.

NGC3311-multiband

Az ábra az NGC3311 nagyméretű struktúráit mutatja a külső halóban. Az „A” panelen a galaxis optikai tartományban (V szűrővel) készült  intenzitás térképe látható. A „B” panelen a külső haló excentrikus alrendszere speciális módszerrel kiemelve. (Az NGC3311 felületi fényessége a centrumtól mért távolság függvényében jól leírható egyetlen úgynevezett Sérsic profillal, vagyis egy matematikai függvénnyel, amennyiben az úgynevezett Sérsic index n=10. Azonban, ha e Sérsic profil adta szimmetrikus modellt, a levonjuk a felvételből, akkor a maradékból előbukkan az említett struktúra.) A „C” panel XMM-Newton röntgen műhold felvétele forró gáz jelenlété mutatja a galaxis halmaz középpontjában. A vörös körök az NGC3311 körüli törpe galaxisokat jelöli. Forrás: Barbosa és mások

A külső halónak ráadásul van egy alrendszere, aminek centruma nem esik egybe a galaxiséval, attól nagyjából ÉK-i irányba található. Az optikai tartományban ez igen halvány. A haló fényének mindössze 30%-át adja. Az excentricitás legjobban a központi galaxis és a körülötte lévő törpe galaxisok sötét anyagból álló halójának, vagy esetleg (de közel sem biztosan!) az NGC3311 és az NGC3309 sötét halóinak kölcsönhatásával értelmezhető. Vagyis, az ezek okozta árapályerők tehetőek felelőssé azért, hogy a galaxis és a külső haló ezen alrendszerének centruma nem esik egybe. Míg a szimmetrikus haló jelentős részére korábban, más galaxisokkal történt kölcsönhatások eredményeként tett szert ez a csillagrendszer, addig az excentrikus haló létezése annak is a bizonyítéka, hogy e kiterjedt struktúra építése az NGC3311 körül még mindig folyamatban van.

A jelenségnek nemcsak az optikai tartományban van nyoma. Jellemzően a galaxis halmazok központja környékén, a csillagrendszerek között, forró (10-100 millió K), és ezért a röntgentartományban sugárzó ritka gáz (Intercluster Medium, ICM) található. Ezt leegyszerűsítve, még a halmaz kialakulásakor felszabaduló gravitációs potenciális energia táplálta lökéshullámok fűtötték fel, illetve később fontos szerep jutott ebben a galaxisok szupernóváinak, a masszív csillagok kibocsájtotta csillagszélnek, összefoglalóan az úgynevezett galaktikus szélnek is. Egyes teóriák az aktív galaxisok magjában található fekete lyukak jet-jeinek is nagy jelentőséget tulajdonítanak. A galaxisok közti anyag, ahogy a neve is mutatja, nem köthető a halmaz egyik tagjához sem, ha csak nincs a rendszer gravitációs központjában domináns galaxis. Az XMM-Newton röntgen műhold felvételén is jól látszik a forró intergalaktikus anyag, illetve az, hogy az excentrikus külső haló területén sugárzási többlet figyelhető meg. A röntgen tartományban intenzívebben sugárzó régió körül találhatóak a fentebb említett, a Hidra halmazhoz képest relatíve nagy látóirányú sebességgel rendelkező törpe galaxisok csoportja. Ezek a szemünk előtt zuhannak az Abell1060 központi csillagrendszerébe, felkavarva és tovább hizlalva annak külső halóját.

Abell1060-LRGB-20160527-T32-300s-bin2--NGC3311-NGC3309-HCC1-l-TTK-cut1

Az NGC3311 körüli törpe galaxisok a felvételemen. A fotón még éppen kivehető leghalványabb törpék: HCC35 – 19.15 magnitúdó, HCC45 – 19.91 magnitúdó. A pozíciók forrás: Misgeld és mások (2008), NED

Az NGC3311-gyel kapcsolatos imént ismertetett megfigyelési tapasztaltak jól egybevágnak azokkal az elméletekkel, melyek szerint az óriás elliptikusak kialakulása két fázisban történik. A fejlődésük legelején bekövetkező igen gyors, a centrumtól kifelé terjedő, intenzív csillagontást a galaktikus kannibalizmus követi. Megjegyzem, hogy hasonló eredményre vezettek más cD galaxisokkal kapcsolatos kutatások is. Továbbá, a Hidra I halmaz óriása és környezete kitűnő terepet nyújt a csillagászoknak, hogy ellenőrizzék és csiszolgassák a galaxisok fejlődésben igen fontos szerepet betöltő sötét anyaggal kapcsolatos elméleteiket.

Az NGC3311 olyan érdekességeket is tartogat, amik a saját felvételemen már nem látszanak, mégis érdemes róla szót ejteni. 1999-ben Hilker és munkatársainak tanulmányában bukkantak fel először az ultrakompakt törpe galaxisok (Ultra-Compact Dwarf galaxy, UCD galaxy). A kutatók e különös objektumokra először a Fornax galaxis halmazban akadtak rá. Majd más, népes halmazokat átfésülve újabb, és újabb példányok kerültek elő. Ősi, a világegyetem korával összemérhető korú csillagok alkotta objektumok ezek. Abszolút fényességük (MV) -9 és -14 magnitúdó közé esik, míg fél-fényesség sugaruk (half-light radius, rh), vagyis az a sugár, amiből a rendszer fényességének 50%-ka származik 10 pc és 100 pc közötti. Ahhoz tehát túl halványak és kompaktak, hogy törpe galaxisoknak lehessen őket nevezni, ahhoz viszont túlontúl nagyok és fényesek, hogy a konvencionális gömbhalmaz elnevezést használják rá a csillagászok.

De hogyan jöttek létre? Ezek galaxisok vagy inkább óriási gömbhalmazok? Éppen e kérdések miatt gyakran törpe galaxisok és gömbhalmazok közötti átmeneti objektumoknak (Dwarf-Globular Transition Objects, DGTOs) is hívják őket tudományos cikkekben. A lehetséges válaszok alapvetően három csoportba oszthatóak. Az első szerint ezek valaha törpe galaxisok voltak, hasonlatosak azokhoz melyek bőségesen találhatóak a Hidra I halmazban is. Mostani megjelenésüket annak köszönhetik, hogy a halmazon belüli pályájukon, akár többször is, túl közel merészkedtek az óriás galaxisokhoz, azok pedig könyörtelenül megtépázták őket. E törpék elveszítették diffúz külső burkukat, s csupán lecsupaszított sűrű magjuk maradt hátra, így manapság UCD galaxisok képében figyelhetjük meg őket. De az is lehetséges, hogy több csillaghalmaz egyesüléséből jöttek létre, még azokban az időkben, mikor az ősi galaxisok sűrű csomóiban megindultak a robbanásszerű csillagkeletkezési folyamatok. A harmadik elmélet szerint pontosan ugyanúgy keletkeztek, mint kisebb tömegű unokatestvéreik a gömbhalmazok. Ebben az esetben, az UCD-k valójában ultra nagytömegű gömbhalmazok.

Az UCD galaxisok eredetét tisztázandó, a csillagászok az Abell1060 népes halmaz központját is átvizsgálták. Kimondottan annak a ténynek a tudatában, hogy az NGC3311 bővelkedik gömbhalmazokban. Becslések szerint 16000 ilyen csillaghalmaznak szolgál otthonául, így ezzel a számmal simán versenybe száll a Virgo halmaz óriásával, az M87-tel. Érdekességként és összehasonlításként megjegyzem, hogy a Tejútrendszerünkben, a jelölteket is beleszámítva, mindössze valamivel 150 fölött van az ismert gömbhalmazok száma, de a teljes populáció sem lehet sokkal több 180-200-nál.

NGC3311-Gemini-20080310ngc33110001-cut1-rot

Az NGC3311-ről, Chilében, a Cerro Pachón hegyen álló 8.1 méteres Gemini South teleszkóppal készült felvétel. A látómezőben az NGC3309 elliptikus galaxis mellet törpe galaxisok egész garmadája látható. A apró kis pöttyök pedig a galaxis gömbhalmazai. Nem egy pötty azonban a vizsgálatok tanulsága szerint ultrakompakt törpe galaxis (Ultra-Compact Dwarf, röviden UCD). Érdemes a képre kattintani, és nagyobb felbontásban is megszemlélni a képet. A látvány igen csak lenyűgöző. A kép forrása: Gemini Observatory

A vizsgálatokhoz a Gemini South távcsövének GMOS (Gemini Multi-Object Spectrographs) műszerét használták a kutatók. A fenti képre pillantva is látható, hogy még nagy távcső esetén sem olyan egyszerű azonosítani a keresett objektumokat, ezek még a 8.1 méteres távcsőre szerelt kamera számára is csillagszerűek. Első lépésként ki kellett zárni, hogy a kiválasztott „pöttyök” a felvételen esetleg saját galaxisunk csillagai. De azt is meg kellett állapítani nagy bizonyossággal, hogy a vizsgálni kívánt objektum tényleg a Hidra I halmaz, pontosabban az NGC3311 távolságában van, és nem csak egy még nagyobb távolságban lévő háttér galaxis. Először is, ha ezek előtér csillagok lennének, akkor színük sokkal egyenletesebb eloszlást mutatna, ugyanakkor pedig a látómezőben véletlenszerűbben oszlanának el. A lenti ábrákra tekintve látható, hogy nem ez a helyzet.

NGC3311-UCD2

Az NGC3311 körüli UCD jelöltek. Kép forrása: Elizabeth M. H. Wehner és William E. Harris

NGC3311-UCD1

A NGC3311 gömbhalmazainak, és a vörös téglalapban az UCD jelöltjeinek vagy masszív gömbhalmazainak szín-fényesség diagramja. A vízszintes tengelyén a csillag vizuális és közeli infravörös fényesség különbsége, míg a függőleges tengelyén a közeli infravörös fényessége szerepel. Az ábrán szerepeltetett adatok már az intersztelláris anyag okozta vörösödéstől megtisztított értékek. Jól látszik a diagramon is, hogy az UCD jelöltek egy jól definiálható tartományban csoportosulnak. Ábra forrása: Elizabeth M. H. Wehner és William E. Harris

Mivel megjelenésük csillagszerű, továbbá nem csomókban helyezkednek el, ez valószínűtlenné teszi, hogy ezek galaxisok a háttérben, pontosabban távoli galaxis halmazok tagjai. Természetesen az igazán meggyőző bizonyítékot nem a „szemrevételezés”, hanem az eloszlás alapos matematikai vizsgálata jelenti. Az analízisből kiderült, hogy az UCD jelöltek nagyon nagy bizonyossággal az NGC3311 körül csoportosulnak, és legalább annyira koncentráltak, mint a gömbhalmazok.

Ahogy ezt a fenti szín-fényesség diagramon is látható, az NGC3311 esetében az UCD-k a gömbhalmazok folytatásaként értelmezhetőek. A vörös és fémekben viszonylag gazdag gömbhalmaz populáció és az UCD-k között fölfelé fokozatos az átmenet.

Az objektumok tömegére tömeg-fényesség reláció, vagyis az (M/L)V arányszám alapján próbáltak becslést adni a kutatók. Tipikus gömbhalmazok esetén ez 1 és 3 közötti érték. UCD-k esetén ezt eredetileg 6 és 9 közöttinek gondolták, ám az UCD és az óriás galaxisok közötti kölcsönhatást is figyelembevevő szimulációk inkább a 3 és 5 közötti értékeket valószínűsítik. Más modell, inkább arra fektette a hangsúlyt, hogy a legfontosabb tényező a csillagrendszerek 12 milliárd évnél is idősebb kora. Ezen utóbbi szerint 1 és 6 közötti az arányszám. Nem folytatnám a sort, a csillagászatban ez a fokú bizonytalanság egyáltalán nem szokatlan. Végül, mivel az NGC3311 körüli UCD-k a szín-fényesség diagramon elfoglalt helyük, és eloszlásuk alapján is leginkább a gömbhalmazokhoz hasonlítnak, így e megfigyelésben részt vett tudósok az „arany középutas” 3 mellett tették le a voksukat, és ezzel számoltak. Az UCD jelöltek, vagy ha úgy tetszik, az ultra nagytömegű gömbhalmazok tömegének alsó határára 6 x 106 naptömeget, míg felső határára 3 x 107 naptömeget kaptak. A Fornax és Virgo halmazbeli rokonaiknál némileg kisebb tömegűek, melyek tömege inkább a 107-108 naptömegű intervallumba esik.

Nemcsak a tömegre próbáltak azonban becslést adni, hanem a méretekre is. Összehasonlításképpen, a normál törpe galaxisok 300 pc mérettartományba esnek. Mivel a Gemini South GMOS műszerével a felvételek éjszakáján 0.5ʺ felbontást értek el, és az UCD-k még mindig csillagszerűek voltak, így méretük bizonyosan kisebb, mint 50 pc. Pár ilyen objektumra, korábban a Hubble űrteleszkóp WPFC2 kamerájával készült felvételek között is ráakadtak, így annak felbontása alapján a UCD-k effektív átmérője nagyon nagyjából 20 pc lehet. Bár az alkalmazott módszerrel mindössze csak durva becslést adtak, mégis az eredmény összeegyeztethető a Fornax és Virgo halmazbeli UCD-k méreteivel.

A 29 UCD jelölt, továbbá más korábbi tanulmányok alapján végül a csillagászok igen érdekes konklúzióra jutottak. Az NGC3311 UCD jelöltjei világosan megmutatták, hogy kapcsolatban állnak a gömbhalmazokkal. Régen ismert tény, hogy a gömbhalmazok méretskálája független a tömegüktől. Az rh ~ 3 pc, vagyis az a sugár, ahonnan fényességük 50%-ka származik, többé-kevésbé 3 pc körüli. Az elliptikus galaxisok esetében ez a sugár azonban összefügg a tömegükkel: rh ~ M0.6. Minden jel szerint, a 107 naptömeget meghaladó masszív csillaghalmazok kialakulása, környezettől függetlenül, mindinkább egyre nagyobb méretskálán zajlik. Így az UCD-k eltérő módon is kialakulhattak, s nem feltétlenül egyetlen evolúciós utat jártak be. Igen valószínű, hogy folyamatos az átmenet a gömbhalmazok, az NGC3311 UCD jelöltjei, a más halmazokban talált nagytömegű UCD-k, és a törpe elliptikus galaxisok között a strukturális paraméterek tekintetében. Az NGC3311 UCD jelöltjei mindenesetre egy szekvenciát alkotnak annak gömbhalmazaival. Bárhogyan is keletkeztek tehát az ultrakompakt törpe galaxisok, hidat képeznek a gömbhalmazok és az elliptikus törpe galaxisok között. Úgy látszik, hogy mégis csak van valamiféle kapocs e két, mindig is teljesen különállónak gondolt objektum típus között. Logikusnak tűnik a kutatások folytatása, hogy teljesen bizonyosak legyenek a csillagászok abban, hogy feltételezésük helyes, és meglássák, hogy vajon a híd elér-e egészen a közepes tömegű ősi csillagrendszerekig.

Az NGC3311 egyértelműen az egyik, ha nem „a központi figurája” az Abell1060-nak, de mellette az NGC3309 elliptikus és NGC3312 spirál galaxisok is meghatározóak. Majdnem 150 ezer fényéves átmérőjükkel e két galaxisnak sincs szégyenkeznivalója. Ugyan kisebbek, mint az NGC3311, de Tejútrendszerünket így is lekőrözik.

Az NGC3009 E3 morfológiai besorolású elliptikus galaxis. A klasszikus Hubble-féle osztályozásban az E után álló érték a galaxis „nyúltságára” utal. Definíció szerint ez 10 x ( 1 – (b/a) ), ahol „a” a csillagrendszer kontúrjának nagytengelye, és „b” a kistengelye. A képletből kapott eredményt pedig a közelebbi egész számhoz kerekítik.  A legtöbb esetben ez 3 körül van. Az NGC3311 így ebben az értelemben tipikus. Abban az értelemben viszont egyáltalán nem, hogy az ekkora méretű elliptikus galaxisokhoz képest, meglepően kevés a gömbhalmazainak a száma, alig néhány százat tudhat a magáénak. Megjegyzem, hogy ez nagy könnyebbséget jelentett az NGC3311 gömbhalmazainak vizsgálata esetében. A Gemini South távcsővel készült felvételen látható halmazoknak ugyanis mindössze pár százaléka tartozik az NGC3309-hez, így azok, az NGC3311 halmazaira vonatkozó statisztikai vizsgálatokat nem befolyásolták számottevően. De miért relatíve ily szegény gömbhalmazokban ez az óriás elliptikus? Az NGC3309 az NGC3311 centrumától az égen látszólag csak 100 ívmásodpercre van. S mint azt korábban is említettem, ez utóbbi, a halmaz központjában pöffeszkedő óriás igyekszik a környezetében lévő dolgokat magába gyűjteni. Ez azt sugallja, hogy a kérdésre a válasz az, hogy a közte és az NGC3309 között lévő kölcsönhatásban az NGC3311 egyszerűen „elhalászta” annak halmazait. Logikusnak tűnik. A látszó közelség azonban még nem perdöntő bizonyíték. Amennyiben a két óriás között tényleg heves kölcsönhatás zajlik, vagy zajlott a múltban, annak az NGC3309 morfológiájában is meg kell mutatkoznia. A csillagászoknak nagyon jól jön, ha több hasonló objektumot, illetve jelenséget is meg tudnak figyelni. Egy-egy jelenség értelmezésében sokat segít, ha minél több minta áll a rendelkezésükre. A Fornax halmaz NGC1399 és NGC1404 párosa sok tekintetben hasonlít az Abell1060 kettőséhez. Az NGC1404 ott is gömbhalmazokban szegény. Azonban, míg a Chandra röntgen űrtávcső felvételen az NGC1404 kontúrja jól láthatóan torzult az NGC1399 hatására, az NGC3309 esetében semmilyen deformáció nem figyelhető meg. Így, az NGC3311-gyel való kölcsönhatásnak, ha egyáltalán van vagy volt ilyen köztük, nem találták nyomát. Valószínűsíthető, hogy a két galaxis közelség mindössze csak látszólagos, és az NGC3309 igazából hozzánk közelebb, az előtérben helyezkedik el. Mindenesetre, ezt támasztja alá az a 2005-ös, a Hidra halmaz tagjainak távolságát (is) taglaló publikáció, mely szerint az NGC3309 5 Mpc-kel (16.3 millió fényévvel) közelebb van hozzánk, mint az NGC3311. Összességében tehát, a mai napig nem teljesen tisztázott, hogy mi is az igazi oka annak, hogy egy ilyen népes galaxis halmaz, óriás elliptikusa miért is van viszonylag szűkében a gömbhalmazoknak. Továbbra is megoldatlan az NGC3309 e különös rejtélye.

Abell1060-LRGB-20160527-T32-300s-bin2--NGC3312-TTK-cut1-lAzt már láttuk, hogy a népes halmazokban, mint amilyen az Abell1060 is, a centrumban kolosszális galaxisok képesek kialakulni az idők folyamán. Arra is láttunk példát, hogy uralkodásuk árnyékában a másodhegedűsöknek, még ha maguk is óriások, már nem annyira „fényes” a pályafutásuk. Had mutassam be a halmaz harmadik prominens galaxisát is, az NGC3312-t. S e spirál galaxis révén folytassuk ismerkedésünket a galaxis halmazok világával.

Ehhez ugorjunk vissza az időben két-három évtizedet. Akkoriban a csillagászok a spirál galaxisok statisztikai vizsgálata során érdekes összefüggésekre akadtak. Történt ugyanis, hogy összehasonlították a spirál galaxisok korongjának optikai tartományban és rádiótartományban megfigyelhető méretét. Arra a kérdésre keresték a választ, hogy mennyi atomos hidrogént tartalmaz az adott csillagrendszer. A rádió tartományban jól megfigyelhetőek a galaxisok HI régiói, vagyis az olyan intersztelláris felhők melyeket javarészt atomos hidrogén alkot (a területek ionizációs foka jellemzően igen alacsony: 1:10000) némi héliummal, és a héliumnál nehezebb elemekkel szennyezve. Az optikai tartományban pedig főleg a csillagok fénye a domináns. Így, az optikai és rádió korongok méretének arányából már le lehet vonni a megfelelő következtetéseket. Ha a rádió korong bizonyult nagyobbnak, akkor atomos hidrogénben gazdagnak, ha az optikai, akkor atomos hidrogénben szegénynek tekintették a spirál galaxist. Kiderült, hogy a halmazok spirál galaxisai atomos hidrogénben jóval szegényebbek magányos társaikhoz képest. Továbbá, az atomos hidrogénben legszegényebb spirál galaxisok az adott halmazon belül a centrum közelében helyezkednek el. Arra is fényderült, hogy az atomos hidrogénben szegény spirál galaxisok aránya egy adott halmazon belül korrelációt mutat annak röntgen luminozitásával. De mi ennek az oka?

Fentebb már említést tettem a halmazokat kitöltő, galaxisok közötti igen forró (10-100 millió K) gázról, illetve arról, hogy az erősen sugároz a röntgentartományban.  A galaxisok közötti gáz bár forró, de extrém alacsony a sűrűsége, mindössze 10-4-10-2 elektron/cm3. Sok-sok nagyságrenddel kisebb, mint a galaxisok atomos hidrogénjének sűrűsége, ami 0.2-100 atom/cm3.  Elsőre azt hihetné az olvasó, hogy a halmazban mozgó galaxisokra nincs hatással a roppant ritka gáz. S mégis! Több galaxis halmaz megfigyelése, például a Virgo halmazé is, azt mutatta, hogy torlónyomás lép fel, mely a csillagrendszer korongjának külső területeiről képes letépni a csillagközi anyagot (Ram Pressure Stripping). Hasonlóan ahhoz, ahogy a menetszél kerékpározás közben lefújja az ember fejéről a sapkát. Ehhez nem kell más, csak az, hogy a galaxis relatív nagy sebességgel mozogjon a halmazon belül, illetve elég sűrű legyen a halmazon belüli gáz. Ez utóbbi két feltétel pedig teljesül a halmaz centrumának közelében.

A kilencvenes évek legelejére tehát már ismert volt a fenti jelenség, és a kutatók igyekeztek egyre több halmazra kiterjeszteni ez irányú vizsgálataikat. Éppen ezért, csillagászok csoportja a Hidra I halmazt is górcső alá vette. Még egy szándék vezérelte őket, miszerint akkoriban még nem volt pontosan ismert a halmaz galaxisainak távolsága. Talán e utóbbin csodálkozik az olvasó, de ne feledje, hogy ebben az időben még sem a Keck távcsövek, sem a VLT távcsövek, sem a Subaru, de még csak a Gemini-k sem készültek el! És ezzel, még csak néhány ma használatos óriástávcsövet említettem. Még mindig a Palomar Obszervatórium Hale távcsöve volt, a maga 5 méteres tükrével a hadra fogható műszerek között a legnagyobb. A Hubble űrtávcső ugyan már keringett a Föld körül, de az 1993-as első szervizig, optikai hibája miatt, képtelen volt nyújtani az elvárt teljesítményt. A műszeres forradalom újabb hulláma csak pár év múlva vette kezdetét. De nézzük, mire jutottak a kutatók!

Az NGC3312 az égen látszólag nincs messze a Hidra I halmaz centrumától. Ráadásul alakja szabálytalan, a galaxis kissé „féloldalas”. Az egyik felén szálas, úgynevezett filamentáris szerkezetet mutat, míg a csillagkeletkezés jelentős része éppen az ezzel ellentétes oldalára koncentrálódik. Ha ez nem lett volna elég, akkor a radiális sebessége is messze elmaradt a halmazban megfigyelhető középértéktől. Elképzelhető, hogy szuperszonikus sebességgel vágtat keresztül a Hidra I-en? Minden oka megvolt hát a csillagászoknak, hogy gyanakodjanak. A vizsgálat során bár az aszimmetriát a rádió megfigyelések is igazolták, azonban az NGC3312 atomos hidrogénben csak kevésbé bizonyult szegényebbnek, mint a hozzá hasonló típusú spirál galaxisok. Végül az a konklúzió született, hogy a halmaz galaxisai közti anyag igen valószínűtlen, hogy számottevő hatást gyakorolna az NGC3312-re. S ebből következően, ez a csillagrendszer bizonyosan nem a Hidra I halmaz középpontjában helyezkedik el. Sokkal inkább hozzánk valamivel közelebb, azzal a pár környező galaxissal együtt, melyek szintén nem bizonyultak atomos hidrogénben igazán szegénynek.

Ma már tudjuk, hogy távolsága körülbelül 46 Mpc  (150 millió fényév). Vagyis, valóban igaza volt pár évtizede a csillagászoknak. Miért is vettem elő pont egy ilyen régi kutatást? Mert meg akartam mutatni az NGC3312 példáján keresztül, hogy miként vonnak le indirekt módon következtetéseket a csillagászok, és nem utolsó sorban egy, a galaxis halmazokon belül munkálkodó jelenséget is megmutathattam általa.

A megfigyeléseknek azonban gyakran van valamiféle „mellékterméke”. Az NGC3312 alapos vizsgálata is rámutatott valami másra. Mégpedig arra, hogy szabálytalan alakját az NGC3314a-val nagyjából 1 milliárd éve történt kölcsönhatásnak köszönheti. Folytassuk is a sort ezzel a galaxissal! Vagy még inkább, galaxisokkal.

Abell1060-LRGB-20160527-T32-300s-bin2--NGC3314AB-TTK-cut1-HST2

A Hubble űrtávcső mozaikokból összerakott felvétele az NGC3314A és NGC3314B galaxisokról. A jobb felső sarokban a saját felvételem a galaxisokról. Az eredeti kép forrása: NASA, ESA, – „The Hubble Heritage” program (STScI/AURA) – W. Keel

Az NGC3314A és NGC3314B galaxisok kitűnő bizonyítékai annak, hogy a természet igazi illuzionista, és könnyen képes megtéveszteni érzékeinket. Bár az első benyomása az embernek az, hogy kölcsönható spirál galaxisokat lát a képen, de erről szó sincs. Az egész látvány csak a kozmikus perspektíva játéka. Az NGC3314B-t valójában az NGC3314A-n keresztül, annak takarásában látjuk. Most, hogy elárultam a trükköt, azt is megmutatom, hogy miként fejtették meg a csillagászok.

Már korábban is említettem, hogy mindig vannak árulkodó jelek két galaxis gravitációs kölcsönhatásakor. A köztük munkálkodó hatalmas erők eltorzítják a csillagrendszerek alakját. De ezen túl, ha a galaxis gázban kellően gazdag, márpedig ezek a spirál galaxisok ilyenek, akkor a kölcsönhatás csillagok új generációinak születését indítja be. Ennek folyományaként az ilyen galaxisokban több helyen is nagytömegű forró, és ezért fényes csillagok kékes ragyogása és vöröses fényű gázködök figyelhetőek meg. Az NGC3314A, vagyis az előtérben lévő galaxisban némi deformáció valóban megfigyelhető. A két galaxis rotációs mintájának tanulmányozása során azonban a kutatók megállapították, hogy az NGC3314A és NGC3314B nincs gravitációs hatással egymásra. Az NGC3314A enyhe torzultságáért sokkal inkább egy másik galaxis, valószínűleg az NGC3312 tehető felelőssé.

A másik érv a fizikai kapcsolatuk valószínűtlensége mellett, hogy a ma elfogadott távolságadatok szerint a két galaxis ahhoz túlságosan messze van egymástól. Az NGC3314A 36 Mpc (117 millió fényév), míg az NGC3314B 43 Mpc (140 millió fényév) távolságra van tőlünk.

A szerencsés együttállás szó szerint teljesen más megvilágításba helyezi ezeket a galaxisokat. A legtöbb spirál galaxis porsávjai csak nehezen láthatóak. Ezek a porfelhők jellemzően csak az infravörös tartományban figyelhetőek meg egyszerűen. Azonban, az NGC3314A porsávjainak éles sziluettje, az NGC3314B hátsó megvilágításban kitűnően tanulmányozható. Megjegyzem, hogy az NGC3314B porsávjai pedig azért érzékelhetőek kevésbé, mert azt, az előtérben lévő NGC3314A fényes csillagfüggönyén keresztül látjuk.

NGC1376-NGC3370-HST-m

Milyen lenne a két galaxis külön-külön? Hasonló, mint az Eridanus csillagkép területén látható NGC1376 (balra), illetve az Oroszlán csillagképben az NGC3370 (jobbra). Eredeti képek forrás: NASA, ESA, – „The Hubble Heritage” program (STScI/AURA)

A fotón több olyan galaxis is van, ami még megérne pár sort. De talán majd máskor. Ebben a cikkben inkább csak a nagyobbakkal, és én legalábbis úgy vélem, az érdekesebbekkel kívántam foglalkozni. Illetve, kissé átfogóbban magával az Abell1060-nal. Persze, akadnak még érdekesek, csak éppen azok fotón már a láthatóság határán vannak, vagy éppen ebben a felbontásban alig kivehető izgalmas felépítésük. A látómező tanulmányozásakor igen gyakran belebotlottam olyan objektumba is, melyekről szinte semmi biztos nem tudható. Talán magánál az Abell1060-nál is távolabb helyezkednek el. Ki tudja? De nincs ezen semmi csodálkoznivaló, ha az ember ily messzire tekint otthonától. Igaz, „a messzire” is csak relatív. Maradjunk annyiban, hogy műkedvelők számára hozzáférhető technikával, illetve nekem, az eddig direkt megcélzott galaxis halmazok tekintetében számít ez csak nagy távolságnak. Igazából, az Abell1060 galaxisai közt tett sétával még mindig csak a Laniakea (Lokális) szuperhalmaz viszonylag közeli szegletébe ruccantatunk ki. S bár sok minden egyre világosabb a csillagászok előtt, remélem azt is sikerült megmutatnom, hogy akadnak még elvarratlan szálak bőven. De ez utóbbi cseppet sem zavar, hisz ez biztosíték arra, hogy a jövőben is olvashatok majd még meghökkentő publikációkat, új felfedezéseket ebben a témában.

Felhasznált irodalom:

Abell, George O.: The Distribution of Rich Clusters of Galaxies.

Abell, George O.; Corwin, Harold G., Jr.; Olowin, Ronald P.: A catalog of rich clusters of galaxies

Mark H. Jones, Robert J. Lambourne, David John: An Introduction to Galaxies and Cosmology

Abell, George O.: Properties of Some Old Planetary Nebulae

R. Brent Tully, Helene Courtois, Yehuda Hoffman, Daniel Pomarède: The Laniakea supercluster of galaxies

Carlos Eduardo Barbosa, Magda Arnaboldi, Lodovico Coccato, Michael Hilker, Cláudia Mendes de Oliveira, Tom Richtler: The Hydra I cluster core. I. Stellar populations in the cD galaxy NGC 3311

Elizabeth Wehner, Bill Harris, Brad Whitmore, Barry Rothberg, Kristin Woodley: The Globular Cluster Systems around NGC 3311 and NGC 3309

I. Misgeld, S. Mieske, M. Hilker: The early-type dwarf galaxy population of the Hydra I cluster

Thomas, Daniel; Maraston, Claudia; Bender, Ralf; Mendes de Oliveira, Claudia: The Epochs of Early-Type Galaxy Formation as a Function of Environment

Elizabeth Wehner, William Harris: UCD Candidates in the Hydra Cluster

Elizabeth Wehner, Bill Harris, Brad Whitmore, Barry Rothberg, Kristin Woodley: The Globular Cluster Systems around NGC 3311 and NGC 3309

T. Richtler, R. Salinas, I. Misgeld, M. Hilker, G.K. T. Hau: The dark halo of he Hydra I galaxy cluster: core, cusp, cosmological? Dynamics of NGC 3311 and its globular cluster system

S. Mieske, M. Hilker, L. Infante: The distance to Hydra and Centaurus from surface brightness fluctuations: Consequences for the Great Attractor model

P. M. McMahon, J. H. van Gorkom, O.-G. Richter, H. C. Ferguson: H I imaging of NGC 3312 and NGC 3314a – A foreground group to the Hydra cluster?

A trick of perspective — chance alignment mimics a cosmic collision

NGC3201 (Caldwell 79/Dunlop 445/Mel 99)

NGC3201-LRGB-20160208-T30-180s-TTK

NGC3201 (Caldwell 79/Dunlop 445/Mel 99)

iTelescope.net T30 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI-PL6303E CCD kamera

2016-02-08, 2016-02-09, 2016-02-12 – Siding Spring Observatory – 20 x 180 sec L, 8 x 180 sec R,G,B

Elöljáróban felhívnám az olvasó figyelmét a gömbhalmazokról korábban írt általános összefoglaló cikkemre, melyben részletesebben is bemutatom ezen égi objektumokat. A bejegyzés elkészítésekor mindenesetre szem előtt tartottam, hogy az említett cikk olvasása nélkül is érthető legyen. Bízom benne, hogy ez sikerült.

A gömbhalmazok több tízezernyi, több százezernyi, sőt akár milliónyi csillag (nagyjából) szférikus halmaza. A legnagyobbak átmérője, vagyis az a térrész ahol a gömbhalmaz gravitációs dominanciája még együtt tartja a csillagokat, akár a 200 fényévet is meghaladhatja. A Tejútrendszer halójának igen ősi objektumai, a legfiatalabbak is legalább 8-10 milliárd évesek. Csillagaik már akkor ragyogtak, mikor Naprendszerünk, és vele együtt bolygónk még csak nem is létezett.

A William Herschel által gömbhalmaznak keresztelt mély-ég objektumok fényesebb példányai a csillagászati bemutatók alkalmával is mindig osztatlan sikert aratnak. Kétségtelenül van valami varázslatos a látványukban. Népszerűségük titka talán az is, hogy az észlelési gyakorlattal egyáltalán nem rendelkezők számára is könnyen értelmezhető a megjelenésük a távcsőben. Itt természetesen csak a fényesebb, és nagyobb látszó mérettel rendelkező gömbhalmazokról van szó. Galaxisunk nagyjából 150 ismert gömbhalmaza között akadnak szép számmal olyanok, melyek megpillantása vagy éppen fotózása igazán komoly kihívást jelent (lásd Szabó Sándor: Az NGC-n túl: Terzan-gömbhalmazok, Meteor 2016/2. 58. oldal). Az NGC3201 azonban nem tartozik ezek közé, viszonylag könnyű célpontnak számít. Olyannyira, hogy Sir Patrick Alfred Caldwell-Moore saját katalógusában, vagy ahogyan 1995-ös publikációja után ismertté vált, a Caldwell katalógusban is szerepel. Ezek nem a szerző önálló felfedezései. Célja az volt, hogy összegyűjtse a Messier katalógusból hiányzó izgalmas, és viszonylag fényes mély-ég objektumokat, s ezeket mások figyelmébe ajánlja. A Caldwell katalógusban az objektumok deklinációjuk szerint következnek sorba. Továbbá az égbolt déli féltekének látnivalóiból is tartalmaz egy jókora merítést. Az NGC3201 éppen a hetvenkilencedik objektum a Caldwell katalógusban, így amatőrcsillagász körökben gyakran C79-ként is hivatkoznak rá. Nem csodálkozom, hogy Sir Patrick Alfred Caldwell-Moore beválogatta a déli égbolt eme szépségét, valóban figyelemreméltó objektum.

A Vela (Vitorla) csillagkép területén található gömbhalmaz hazánkban egyáltalán nem emelkedik a horizont fölé. Saját tapasztalatom szerint, azonban Gran Canaria-ról és Krétáról már kitűnően látható. Igaz, itt is viszonylag alacsonyan delel. Amennyiben lehetőségünk adódik, érdemes tehát még ennél is délebbre utaznunk a megfigyeléséhez.

NGC3201-Vela-map02

A Vela (Vitorla) csillagkép Ausztrália égboltján (Siding Spring 2016. 02. 08. 14:22 UT). Az NGC3201 a megjelölt pozícióban található.

NGC3201-Vela-map03b

Az NGC3201 gömbhalmaz a Vela (Vitorla) csillagképben.

A gömbhalmazt még a XIX. században fedezte fel a skót származású James Dunlop Ausztráliából. 1826. május 1-én a következőket írta a halmazról:

„Szép nagy kerek köd, 4ˊ-5ˊ átmérővel. Közepe felé fokozatosan sűrűsödik, és könnyen csillagokra bontható. Alakja meglehetősen szabálytalan, a csillagok szétszórtabbak a délnyugati oldalon. Némileg vegyes fényességű csillagok alkotják.”

Szerintem elég pontosan leírja a halmaz vizuális megjelenését. Sőt az említett jegyek a fotón is felfedezhetőek. Dunlop neve leginkább a déli égbolt felméréséről vált ismertté a korabeli Angliában. 7385 csillag katalogizálását végezte el, melyből igen jelentős számú volt a kettőscsillag. Szám szerint 256. Ez irányú megfigyeléseit 1829-ben publikálta (Approximate Places of Double Stars in the Southern Hemisphere, observed at Paramatta in New South Wales). Emellett feljegyezte azokat a fényesebb mély-ég objektumokat is, melyeket a katalogizált csillagok közelében észrevett. Nem is csoda, hogy John Herschel, aki szintén kiemelkedő eredményeket ért el a kettőscsillag és mély-ég objektumok felmérésben, nagy érdeklődéssel fogadta Dunlop déli égbolton folytatott munkásságának eredményeit. Amikor Herschel 1834-ben megérkezett Dél-Afrikába, azonnal nekilátott Dunlop megfigyeléseinek tüzetes ellenőrzéséhez. Herschel a következőket írta az NGC3201-ről:

„Gömbhalmaz szabálytalan köralakkal. Közepe felé fokozatosan fényesedik, nem igazán sűrű. Mérete 6ˊ. 13-15 magnitúdós csillagokra bontható.”

Herschel Dunlop megfigyeléseivel kapcsolatban több pontatlanságra is fényt derített. Ennek köszönhetően az addig a Brit csillagászok körében ünnepelt Dunlop népszerűsége ugyan jelentősen csökkent, de ez mit sem változtat azon a tényen, hogy több déli mély-ég objektumnak is ő a felfedezője, többek között az NGC3201-nek is. Továbbá, kettőscsillag katalógusokban igen gyakran találkozhatunk a DUN előtaggal. Nevét vitathatatlanul beírta a csillagászat történetébe. Nem ez az első, és remélhetőleg nem is az utolsó, hogy nevét meg kell említsem.

Ez a 8.24 (V) magnitúdó fényességű gömbhalmaz több olyan tulajdonsággal is rendelkezik, mellyel felhívja magára a figyelmet. Más gömbhalmazokkal összehasonlítva rögtön igen szembetűnő, ahogyan Dunlop és Herschel is leírta, hogy szerkezete laza, csillagaik a mag felé kevéssé koncentráltak. A Shapley–Sawyer 12. fokozatú osztályozás szerint a besorolása: X. Ezen a skálán római számokkal jelölik a koncentráció mértékét. Az I. osztályúak a legkoncentráltabbak, míg a XII. osztályba tartoznak a leglazább halmazok.

Az NGC3201 látszólagos mérete 18.2ˊ, nemcsak igen laza a felépítése, de igen kiterjedt is. Minthogy 10°-nál alacsonyabb galaktikus szélességen helyezkedik el (l=277.2°, b=8.6°), így Tejútrendszerünk viszonylag sűrű csillagmezején keresztül látunk rá. A felvételen is mindössze egy 8ˊ-10ˊ átmérőjű, kissé aszimmetrikus terület az, ami elsőre megragadja a tekintetet. Hosszabban szemlélve a képet, azonban összeáll a látvány, és az ember rádöbben, hogy a külső régiók halványabb csillagai szinte mindenütt ott vannak a látómezőben. (Az említet látszó méretek érzékeltetése végett megjegyzem, hogy a kép jobb felső részében található két fényes, kékes színű előtércsillagot nagyjából 5.5ˊ választja el egymástól.) Természetesen a csillagászok nem a látványra hagyatkoznak, amikor halmaztagokra „vadásznak” a látómezőben. Könnyen előfordulhat, hogy a magvidéken látható fényes csillag valójában közelebb van hozzánk, míg a képen a magtól távolabb lévő csillag nem is előtércsillag.

Tekintve, hogy a halmaz csillagai gravitációsan kötődnek egymáshoz, így együtt mozognak a térben. Amennyiben a halmaz közeledik, vagy távolodik tőlünk, akkor a Doppler-effektusnak köszönhetően csillagainak színképvonalai eltolódnak a kék, illetve a vörös irányba. Ennek mértékéből kiszámolható a csillagok radiális sebessége (látóirányú sebessége). Ebből pedig következtetni lehet a csillagok hovatartozására, ugyanis a tagok, egy az egész halmazra jellemző radiális sebesség értékhez közel mutatnak szórást. A csillagok sajátmozgása (látóirányunkra merőleges mozgása), akár csak a radiális sebessége, szintén segíthet eldönteni azt a kérdést, hogy azok a halmazhoz tartoznak-e, vagy sem. A gömbhalmazok nagy távolsága miatt a sajátmozgás kimérése már sokkal nehezebb feladat, azonban közel sem lehetetlen. Vagyis a spektroszkópián alapuló eljárásokkal, illetve a csillagok sok év alatt történő elmozdulását felhasználva, megfelelő matematikai módszerekkel kiválogathatóak a gömbhalmazhoz tartozó csillagok.

Az NGC3201 esetében a színképvonalak, a Doppler-effektusból származó kék eltolódása arról tanúskodik, hogy a gömbhalmaznak 494 km/s a radiális sebessége, vagyis őrült tempóban közeledik felénk. Ezzel ő tartja a pozitív radiális sebességrekordot a gömbhalmazok között (az NGC6934 negatív rekorder is „csak” 411 km/s-mal távolodik tőlünk). Ennek a kiugróan magas értéknek köszönhetően e halmaz csillagai jól elkülönülnek a látómező többi csillagától. De honnan ez a hatalmas radiális sebesség? Valójában mi is egy „száguldó vonaton ülünk”, ugyanis a Nap a galaxisunk centruma körüli keringési sebessége igen tekintélyes: nagyjából 230 km/s. A vizsgálatok tanulsága szerint az NGC3201 a galaxis centruma körül igen elnyúlt (nagy excentricitású), a galaxis síkjával jelentős (18°) szöget bezáró pályán, durván 250 km/s-os sebességgel kering a Napunkkal és a galaxis korongjának csillagaival ellentétes irányba. Mozgása tehát retrográd, és éppen ennek köszönhetően látjuk hatalmas sebességgel közeledni felénk. Az extrém sebességű retrográd pályára a legkézenfekvőbb magyarázat az lenne, hogy az NGC3201 nem a Tejútrendszerünkben született. Amennyiben egy befogott, majd később szétszaggatott galaxisban keletkezett volna, vagy éppen egy néhai törpe galaxis magja lenne, akkor annak összetételében meg kellene mutatkoznia. Mindezidáig azonban a spektroszkópiai alapú kémiai vizsgálatoknak ezt nem sikerült igazolnia. Bár a kinematikája alapján valószínűnek tűnik extragalaktikus eredete, azonban kémiai evolúciója nagyban hasonlít a többi, feltehetőleg „őshonos” galaktikus gömbhalmazéhoz.

Nincs is túlságosan messze tőlünk, sőt a legközelebbi gömbhalmazok egyike. De honnan tudjuk mindezt? A gömbhalmazok bővelkednek RR Lyrae típusú pulzáló változócsillagokban. Ezen halmazváltozóknak is nevezett csillagok fényességváltozásának periódusa és abszolút fényessége között reláció áll fenn, így tökéletesek távolság meghatározásra. Elég megmérni a periódusukat, amiből meghatározható abszolút fényességük, vagyis milyen fényesek lennének, ha 10 pc távolságba lennének tőlünk. Az látszó fényesség és a számított abszolút fényességből a távolság már meghatározható. Az NGC3201 esetében csak a mag durván 1/2° sugarú környezetében 86 RR Lyrae csillag található, melyek közül az elsőket még 1919-ben fedezték fel. Van tehát bőven miből válogatni, nagyszámú minta áll a csillagászok rendelkezésére. A kutatóknak azonban egy jelentős nehezítő körülménnyel is meg kellett küzdeniük. Ahogy fentebb is említettem az NGC3201 nem sokkal a galaxis síkja fölött látszik, és bizony erre nemcsak sok előtércsillag, de tekintélyes mennyiségű por is található. A por pedig vörösíti a csillagok fényét, illetve a látszó fényességükre is hatással van. Hogy a dolog még több kihívással legyen teli, ez a hatás változó a gömbhalmaz különböző területein. A csillagászok azonban előbb utóbb mindig kitalálnak valamit, hogy a fizika az ő kezükre játsszon. Már a múlt század hatvanas éveiben észrevették, hogy ezen változó csillagok „színe” közel hasonló minimum környékén. Tudományosabban megfogalmazva a B és V szűrőkkel felvett minimumbeli fényességek különbsége (kis korrekciók után) nagyon hasonló. Így az előtér okozta vörösödés már meghatározható. A kétezres évek elején kiderült, hogy a V és I szűrőkkel felvett minimumbeli fényességek különbsége még jobb indikátor. Mindenesetre a csillagászok kezében mára megvannak a megfelelő eszközök, hogy az RR Lyrae csillagokat felhasználva, és a vörösödést csillagonként figyelembe véve viszonylag nagy pontossággal meghatározzák az NGC3201 távolságát.  Egy 2014-es vizsgálat tanulsága szerint a gömbhalmaz távolsága 5 kpc (kb. 16300 fényév) ± 0.001 kpc (statisztikai hiba) ± 0.220 (szisztematikus hiba).

NGC3201-TTK-animvar2

Változócsillagok az NGC3201-ben. A könnyebb azonosítás végett párat külön megjelöltem.  A „pislákoló”, fényüket változtató csillagok többsége RR Lyrae típusú. Az animáció egy-egy nyers kép felhasználásával készült. A két felvétel között közel 22.5 óra telt el. (Az apró fel, majd eltűnő pixelek nem csillagok, azok a kamera műtermékei.)

Nem az RR Lyrae típusú változócsillagok az egyedüliek a gömbhalmazokban melyek felhasználhatóak a távolság meghatározására. Az SX Phoenicis (SX Phe) gyors pulzációt (0.7-1.9 óra) mutató csillagok fényváltozása és fényessége között is van reláció. Az előbb említett tanulmány szerzői e független módszer segítségével is meghatározták az NGC3201 távolságát és szintén 5 kpc távolságot kaptak eredményül.

NGC3201-f01

Az NGC3201 elhelyezkedése Napunkhoz és a galaxis centrumához képest a Tejútrendszer északi pólusa felől nézve.

NGC3201-o01

Az NGC3201 elhelyezkedése Napunkhoz és a galaxis centrumához képest a Tejútrendszer síkjával párhuzamos nézetből. Napunk 8 kpc távolságban van a centrumtól. Az 5 kpc-re lévő NGC3201 gömbhalmaz pozíciója a galaktikus koordinátarendszerben szintén ismert. Így elmondható, hogy a gömbhalmaz 0.8 kpc távolságban van a Tejútrendszer síkjától, illetve 8.94 pc-re a galaxis magjától.

A távolság ismeretében az égen látszó méretek átszámolhatóak valós méretekké. Az NGC3201 csillagai közel 43 fényéves sugarú szférikus tartományát tölti ki a világűrnek (18.2ˊ látszó méret és 16300 fényéves távolság esetén). Méreteit tekintve nem számít nagy gömbhalmaznak a Tejútrendszerben, csak nagyjából fele akkora, mint például az M3. A mag sugara, vagyis az a távolsága, ahol a halmaz centrumától fokozatosan csökkenő luminozitás a felére esik vissza 6.2 fényév (r. A gömbhalmaz fényének 50%-ka pedig mindössze 14.7 fényév sugarú tartományból származik (rh=3.1ˊ).

ngc3201-BV-VI-V-CMD

Az NGC3201 szín-fényesség diagramja.

A gömbhalmaz B-V színindexe 0.94, vagyis csillagait „összemosva” sárgás színt kapnánk, némi narancsos árnyalattal. Ebben igen nagy szerepe van a fentebb említett galaktikus por vörösítő hatásának, azonban sokkal fontosabb, hogy miféle csillagok alkotják, és milyen mértékben járulnak hozzá a fényéhez.

Ahogy az idő múlásával én is lassan ráncosodom, hajam ritkább és őszebb lesz, úgy a gömbhalmazok fölött is eljár az idő. Születése óta eltelt durván 11.5 milliárd év nem múlt el nyomtalanul.

Egy csillaghalmazról sok mindent elmond a szín-fényesség diagramja, mely tulajdonképpen a klasszikus Hertzsprung-Russel diagram modern, „gyakorlatias” változata. A vízszintes tengelyen két különböző szűrővel mért fényesség értékek különbsége (ebben az esetben B-V és V-I) van feltüntetve a színképosztály helyett. A függőleges tengelyen pedig az egyik színszűrővel (V szűrő) felvett fényességérték szerepel.

Megnézve az NGC3201 felül látható szín-fényesség diagramját rögtön szembetűnő, hogy a jelentősebb fényességű, a Nap tömegét jelentősen meghaladó nagytömegű csillagok már mind hiányoznak a fősorozatról, sőt már ki is hunytak, miután szupernóvaként lángoltak fel. A nagyobb tömegű csillagok gyorsabban leélik az életüket. Mára csak a közepes tömegű (0.5-10 naptömeg) csillagok alsó tartományának képviselői maradtak meg a halmazban.

csillaghalmazok_kora

A sematikus animáción látható, hogy a csillaghalmazok szín-fényesség diagramja az idők folyamán megváltozik. A nagyjából azonos időben keletkezett csillagok közül először a nagyobb tömegűek vándorolnak el a fősorozatról, miután magjukban felhasználták a hidrogén fúzióhoz szükséges készleteiket. Mivel nagyobb tömegűek, így ezek a csillagok forróbbak is, s éppen ezért kékebbek. Az elvándorlás folytatódik, ahogy telik az idő, méghozzá a kisebb tömegű, ezért hűvösebb, vörösebb csillagok irányába. Az Myr millió évet, a Gyr milliárd éveket jelent. (Forrás: http://astro.berkeley.edu/~dperley/univage/univage.html)

A Nap tömegének nagyságrendjébe eső, a fősorozatot elhagyó csillag esetén a hidrogén fúzió már régen nem a magban zajlik. Ekkorra, a hidrogén héliummá történő átalakítása már a magot körülvevő külső héjba tevődik át, melynek következtében a csillag felfúvódik, és külső része lehűl, így jut el a vörös óriás fázisba. A horizontális ág tagjai pedig a magjukban már héliumból szenet hoznak létre. Ez a folyamat a kék szín irányába tolja a csillag fényét. Az óriások és a horizontális ág közötti rés baloldalán találhatóak a már korábban említett RR Lyrae csillagok. Azért van ott a rés, mert csillagászati értelemben, a két fejlődési állapot közötti utat a csillagok hamar bejárják. Az RR Lyrae váltózó csillagok magjában már javában folyik a hélium szénné alakítása. Miután a hélium is elfogy az addigra szénben és oxigénben gazdag magban, a fúzió az azt körülvevő külső héjba tevődik át. Az energia nagy része azonban nem itt keletkezik, hanem a külsőbb hidrogén héjban. A csillag külső rétegei ismét felfúvódnak és lehűlnek. Ennek köszönhetően a csillag fényessége ismét megnő túlszárnyalva a korábbi vörös óriás fázist, színe pedig ismét a vörös felé tolódik. A csillag elfoglalja helyét az aszimptotikus óriás ágon. Ezen csillagok tömege már nem elég nagy, hogy a héliumnál nehezebb elemek fúziója beinduljon. A héjakban is idővel elfogynak a tartalékok, leáll a fúzió. A csillag külső rétegeit a világűrbe pöfékelve megindulnak a fehér törpévé válás útján.

NGC3201-CMD-var-bs-02

Az NGC3201-ről készült felvételemen is az aszimptotikus óriáság ág, és a korábban említett vörös óriások narancsos, vöröses színű csillagai uralják a látványt. Ehhez társulnak, az NGC3201 más gömbhalmazokhoz képest viszonylag népes horizontális ágán lévő csillagainak sárgás, sárgásfehér, kékesfehér színű csillagai.

Nem minden kékesfehér csillag tartozik azonban a horizontális ághoz. Amennyiben a kedves olvasó még egyszer alaposan megnézi a fenti ábrán a HRD-t feltűnhet neki valami furcsaság, hacsak eddig nem tűnt már fel. A fősorozatot meghosszabbítva ott, ahol az az óriás ág felé elkanyarodik (Turn Off Point), csillagokkal találkozunk a diagramon. (A piros szaggatott vonallal határolt területről van szó). Ezek a csillagok nagyon nem illenek bele abba a képbe, amit éppen az imént vázoltam fel. A fősorozat közelében abban a tartományban találhatóak, ahonnan korábban a nagytömegű kékes csillagok már régen elfejlődtek. Mit keresnek mégis ott, ezek a kék vándoroknak nevezett égitestek?

Létezésükre a ma elfogadott egyik magyarázat, hogy halmaztagok összeolvadásával jönnek létre. Az így keletkező csillag potenciálisan nagyobb tömegű, mint a fősorozaton tartózkodó társaik. A nagyobb tömegű csillagok pedig forróbbak és így kékebbek is. Az ellentmondás ezek fényében mindössze csak látszólagos. Az összeolvadást látszik megerősíteni, hogy jellemzően a gömbhalmaz sűrűbb régiói környékén fordulnak elő. Illetve, sokuk igen gyorsan forog. A leggyorsabban forgók pedig a centrum körül figyelhetőek meg, melyek közül ráadásul néhány igen gyorsan, hiperbola pályán mozog. Ezek sorsa már megpecsételődött, úton vannak, hogy végleg elhagyják a halmazt. A másik favorizált elmélet szerint e csillagokat a kezdetben nagyobb tömegű párjuk hizlalta fel. Mivel a társ nagyobb tömegű volt, így gyorsabban fejlődött. A fősorozatot elhagyva felfúvódott és kitöltötte a Roche-térfogatát, így a ma a kék vándorok jellegzetességeit mutató komponens megszerezhette annak anyagát. Ezt az elméletet látszik alátámasztani, hogy bizonyos kék vándorok felszínének szén és oxigén tartalma jóval kevesebb, mint az szokásos. Ez pedig anyagátadásra utal.

Egyes kutatások arra engednek következtetni, hogy a két mechanizmus akár egyszerre is jelen lehet a gömbhalmazokban. Míg az anyagátadásos „megfiatalodás” inkább a külső régiókra, addig az ütközéses/összeolvadásos keletkezés inkább a halmaz magja környékén lehet jellemző. Az igazság az, hogy nehéz eldönteni, hogy melyik elmélet a helyes. Könnyen lehet, hogy ez a kérdés nem is a gömbhalmazokban dől majd el.

Kék vándorok nyílthalmazokban is előfordulnak. Csillagászok a Hubble Űrteleszkóppal megvizsgálták az NGC188 21 kék vándorát. Miért éppen nyílthalmaz volt a célpont? Mert a gömbhalmazokkal ellentétben nem zsúfolt csillagkörnyezetben kellett elvégezni a megfigyeléseket. Azért választották ezt a nyílthalmazt, mert 7 milliárd éves korával az egyik legöregebb a Tejútrendszerben, s így a kék vándoraik sem annyira „kékek”, megkönnyítve a kísérők kimutatását. Több jelöltről már eleve tudható volt, hogy kettős rendszer része. Az egymáskörül „táncoló” tagok vagy közelednek felénk, vagy távolodnak tőlünk. A spektrumukban pedig mindez megmutatkozik (Doppler-effektus). A kettősség másik jele, hogy a főkomponens spektrumára rárakódik a második tag színképe. Vagyis valójában nem egy, hanem két csillag spektrumát látjuk. Ezek a spektroszkópiai kettőscsillagok. Az izgalmas kérdés a kísérő mibenléte volt. A kék vándorok emissziójában kerestek olyan UV többletet, melyet csak egy fehér törpe társ okozhat, és 7 csillag esetében találtak is ilyet.

A közvetett bizonyítékok mellett, így közvetlen bizonyíték is van már arra, hogy a kék vándoroknak a fejlődésben előrehaladott kísérőik vannak. Ezek a fehér törpék a Nap tömegével nagyjából megegyező, illetve nem sokkal nagyobb tömegű csillagoknak a felfúvódást követő végstádiumai. A fúziós folyamatok már megszűntek bennük, így szép lassan kihűlnek. 7 csillag esetén meglett tehát a társ, akitől korábban a ma kék vándorok „gúnyáját” viselő csillagok anyagot szereztek. A vizsgálati módszer limitációjának köszönhetően az öregebb, 11000 K alá hűlt fehér törpék már nem ragyognak elég fényesen az UV tartományban, így a Hubble-el azokat már nem lehet detektálni. Vagyis, csak az utóbbi 250 millió évben kialakult fehér törpék megfigyelésére volt csupán mód. Mindazonáltal további 7 csillag színképe, és kísérőjének kikövetkeztetett tömege alapján arra gyanakodnak a kutatók, hogy azok körül is fehér törpe kísérő keringhet. Nagyon óvatosan fogalmazva, a következő a konklúziója a publikációnak: a tömegátadásos folyamatok alsó limitje 33% körüli, vagyis legalább a kék vándorok egyharmada köszönheti ennek a létét. Jóval kisebb valószínűséggel ugyan, de ez a limit akár 67% is lehet. Mindenesetre az NGC 188 21 csillagának kutatását még nem zárta le a csapat, és tervezik folytatni a munkát.

NGC3201-LRGB-20160208-T30-180s-TTK-blue_stragglers1

Az NGC3201-ről készült felvételemen külön megjelöltem két kék vándort, melyek egyben az SX Phe változócsillagok családjába is tartoznak. Az SX Phe változócsillagok ismert gömbhalmazbeli példányai egytől egyig kék vándorok.

Az NGC3201 különlegessége, hogy ő a második olyan gömbhalmaz (az M4 után), ami annak ellenére, hogy nem tartozik a masszív halmazok közé, mégis kimutathatóan inhomogén csillagpopulációval rendelkezik.

A gömbhalmazokat sokáig úgy kezelték, amiben minden csillag egyszerre keletkezett. A kutatók azonban felfedezték, hogy bizonyos gömbhalmazok nem is egy nemzedék csillagaiból állnak. Van olyan példánya ezen objektumoknak, melyeknél az első nemzedék után 100 millió évvel alakult ki a következő. De olyan is akad, ahol 3 különböző generációt sikerült kimutatni. Minderre a gömbhalmazok utóbbi időben elvégzett spektroszkópiai és fotometriai elemzése világított rá.

A különböző brancsoknak más a hélium és fémtartalma, melynek oka az eltérő életkoruk. Ugyanis, a később született csillagok már tartalmazták a korábbi generációk által legyártott elemeket, melyeket azok késői fejlődési fázisukban kibocsájtott csillagszél, illetve a nagyobb tömegűek halálakor bekövetkező szupernóva-robbanások révén juttattak az akkor még a gömbhalmazokban jelenlévő intersztelláris gázba. Éppen ezért, az ebből a szennyezett gázból születő újabb populációk már héliumban és fémekben jóval gazdagabbak lettek.

Ha veszünk két azonos tömegű, de eltérő kémiai összetételű csillagot, majd megvizsgáljuk, milyen életpályát futnak be a szín-fényesség diagramon, akkor azt fogjuk tapasztalni, hogy kissé különböző görbéket fognak majd követni. Ugyanabban az életszakaszban az egyik kissé kékebb vagy éppen fényesebb lesz, mint a másik. Fotometriai vizsgálatokkal a csillagászoknak sikerült összefüggést feltárni az NGC3201-ben a csillagok színe, fényessége és a halmazon belüli eloszlása között, vagyis az előbbiek alapján, különböző csillagpopulációk jelenlétére bukkantak.

Ehhez a szubóriás és óriás ág csillagait vették górcső alá. Leegyszerűsítve, a szín-fényesség diagram e két sávját felszeletelték kékebb és vörösebb, illetve fényesebb és halványabb részekre, majd vizsgálták ezek eloszlását a gömbhalmazon belül a centrumtól mért távolság függvényében. Azt tapasztalták, hogy a szubóriás ág U szűrővel fényesebbnek mutatkozó tagjai kevésbé koncentráltak a mag felé, mint a halványabb társaik. Hasonlóan, távolodva a centrumtól, növekszik az óriás ág kékebb tagjainak aránya. Ezt a kutatást követte egy külön spektroszkópiai elemzése a halmaznak, mely megerősítette a fotometriával kapott eredményt. Az NGC3201 óriáságának kémiai összetétele alapján megállapították, hogy a második generáció óriáscsillagai nagyobb koncentrációt mutatnak a halmaz centruma felé, mint a korábban születettek. Ez jó összhangban van a gömbhalmazok kialakulásával és fejlődésével kapcsolatos multi populációs elméletekkel.

Ugyan még sok részlete nem tisztázott annak, hogy miként is születtek a csillagok különböző generációi a gömbhalmazokban. Nem teljesen világos az sem, hogy pontosan milyen mechanizmusok révén szennyezték be az elsők a következő nemzedék bölcsőjéül szolgáló por és gázfelhőket. Az NGC3201 mindenesetre fontos darabja a kozmikus „kirakós játéknak”. Rajta keresztül (is) talán egyszer még ennél is pontosabban megértjük majd a gömbhalmazokat, s így a Tejútrendszerünk kialakulását és fejlődését. Az azonban látszik, hogy a csillagászoknak addig is akad még bőven teendőjük.

Végére egy személyes megjegyzés. Sok éven keresztül követtem vizuális megfigyelőként, amatőrcsillagászként csillagok fényességváltozását. Éppen ezért, mióta elkezdtem asztrofotózással foglalkozni dédelgettem a tervet, hogy egyszer magam készítette felvételek segítségével mutathassam meg egy gömbhalmaz változócsillagait. Talán meglepi az olvasót, de nekem a monokróm felvételen pislogó csillagok nagyobb élményt jelentettek, mint a végső színes kép. Noha tagadhatatlan, hogy a csillagok színes kavalkádja is nagyszerű látvány.

Felhasznált irodalom:

Stephen James O’Meara: Deep-Sky Companions: Southern Gems (ISBN: 9781107015012)

Guillermo Gonzalez, George Wallerstein: Elemental abundances in giants in NGC 3201, A globular cluster with a retrograde orbit

D. I. Casetti-Dinescu, T. M. Girard, D. Herrera, W. F. van Altena, C. E. López, D. J. Castillo: Space Velocities of Southern Globular Clusters. V. A Low Galactic Latitude Sample

V. Kravtsov, G. Alcaíno, G. Marconi, F. Alvarado: Multi-color photometry in wide field of the Galactic globular cluster NGC 3201

Paust, Nathaniel E. Q.; Reid, I. Neill; Piotto, Giampaolo; Aparicio, Antonio; Anderson, Jay; Sarajedini, Ata; Bedin, Luigi R.; Chaboyer, Brian; Dotter, Aaron; Hempel, Maren; Majewski, Steven; Marín-Franch, A.; Milone, Antonino; Rosenberg, Alfred; Siegel, Michael: The ACS Survey of Galactic Globular Clusters. VIII. Effects of Environment on Globular Cluster Global Mass Functions

V. Kravtsov, G. Alcaino, G. Marconi, F. Alvarado: Evidence of the inhomogeneity of the stellar population in the differentially reddened globular cluster NGC 3201

C. Muñoz, D. Geisler, S. Villanova: The Origin and Chemical Evolution of the Exotic Globular Cluster NGC3201

Mirko Simunovic, Thomas H. Puzia: Blue Straggler Star Populations in Globular Clusters: I. Dynamical Properties of Blue Straggler Stars in NGC 3201, NGC 6218 and ω Centauri

A. Arellano Ferro, J.A. Ahumada, J.H. Calderón, N. Kains: Fourier Decomposition of RR Lyrae light curves and the SX Phe population in the central region of NGC 3201

Natalie M. Gosnell, Robert D. Mathieu, Aaron M. Geller, Alison Sills, Nathan Leigh, Christian Knigge: Implications for the Formation of Blue Straggler Stars from HST Ultraviolet Observations of NGC 188

 

NGC7582, NGC7590, NGC7599 – A Grus Kvartett háromnegyede, s még sokan mások

NGC7582-90-99-LRGB-20151014-T30-300s-TTK

NGC7582, NGC7590, NGC7599

iTelescope.net T30 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI-PL6303E CCD kamera

2015-10-14, 2015-10-16 – Siding Spring Observatory – 25 x 300 sec L, 8 x 300 sec R,G,B

Régi vágyam volt, amatőrcsillagászati léptékben nagy átmérőjű távcsővel egy olyan felvételt készíteni, ahol több galaxis „játssza a főszerepet”, miközben a háttérben távoli galaxisok sokasága látható. Vagyis, ezek száma összemérhető a Tejútrendszerünkhöz tartozó előtércsillagokéval. Illetve terveim között szerepelt (szerepel) távoli galaxishalmazok fotózása.

Az őszi borús, ködös estéken bújtam a déli égboltot ábrázoló csillagtérképeket (planetárium programokat használva), böngésztem a galaxishalmaz katalógusokat, miközben az adott területek SDSS (Sloan Digital Sky Survey) felvételeit nézegettem. Végül a Daru csillagképben akadtam rá valami olyasmire, amit kerestem. Már csak ki kellett szerkesztenem az elképzelt fotó közepének égi koordinátáit, hogy a távoli Ausztráliában a robot távcső a megfelelő pontot célozza meg.

Had invitáljam meg az olvasót egy rövid „tárlatvezetésre”. Ismerkedjünk meg először a galaxisokat tartalmazó csillagképpel.

A Daru csillagkép

A XVI. században az egyik legnagyobb nyereséggel kecsegtető üzletet az egzotikus fűszerekkel való kereskedelem jelentette. A Portugál Birodalom pedig monopolhelyzetben volt ezen a téren (is). A Holland kereskedők kénytelenek voltak készleteiket a Portugáloktól beszerezni, akik így lefölözték a haszon jelentős részét. A század utolsó évtizedében a Spanyolok és Hollandok között kiéleződött a helyzet, mely háborúskodássá fajult. Mivel Portugália ebben az időben dinasztikus unióban állt Spanyolországgal, így a Hollandok számára a fűszerbeszerzések forrása teljesen elapadt. Tenniük kellett valamit. Kézenfekvőnek látszott, hogy saját maguk szerezzék be az értékes portékát, és megdöntsék végre a Portugál hegemóniát. Egyetlen bökkenő akadt csak, hogy a Portugálok titokban tartották az útvonalat mely Indonéziába vezetett. 1592-ben Petrus Plancius német térképész és csillagász végül publikálta azokat a térképeket, mely a Hollandok előtt megnyitotta a fűszerekhez vezető utat. Biztos, ami biztos, a holland kereskedők Portugáliában, a beépített embereikkel még ellenőriztették a térképet, és további információkat szereztek. Megfelelő itiner birtokában 1595-ben elindították expedíciójukat Indonézia felé. A küldetés két évig tartott, és közel sem volt problémamenetes. Hol a szél, hol a hajón kitört betegségek miatt kellett vesztegelniük. Rengeteg embert veszítettek, de végül a vállalkozás elérte a célját. A holland kereskedők számára busásan megtérült az anyagi befektetés és a sok vállalt kockázat.

Pieter Dirkszoon Keyser és Frederick de Houtman szintén résztvevői voltak az első Hollandok indította kereskedelmi expedíciónak Indonéziába. A tengeri navigációhoz elengedhetetlen volt az égbolt ismerete. Nemcsak jó minőségű földi, de megfelelő égi térképre is nagy szükség volt, főleg a jövőben indítandó kereskedelmi hajózáshoz. A két úriember a nevét, a déli égbolt feltérképezésével írta be magát a történelembe. Megfigyeléseiket az elsők között, a már korábban is említett Petrus Plancius használta fel, aki ennek nyomán 12 új déli csillagképet konstruált. Ezek egyike volt a Daru (Grus) csillagkép. A Daru először Petrus Plancius és Jodocus Hondius által készített éggömbön jelent meg 1598-ban. Az elnevezést Johann Bayer is átvette, és fel is tüntette az új konstellációt az 1603-ban kiadott híres Uranometria-ban. A Daru ekkor kerül először csillagtérképre. Később, egyéb alternatív elnevezések is felbukkantak például a kócsag és a flamingó, azonban Bayer munkájának népszerűsége oly nagy volt, hogy végül Plancius elnevezése győzedelmeskedett, és a XX. század első felében a Nemzetközi Csillagászati Unió is ezt fogadta el.

Grus-Bayer-Uraniometria

Johann Bayer csillagtérképének, az Uranometria-nak (1603) az úgynevezett déli madarakat ábrázoló lapja. A Daru (Grus) csillagkép a bal felső sarokban látható – Kép forrása: U.S. Navy Library

A Daru csillagkép „kialakítása” a szomszédos Déli Hal (Piscis Austrinus) rovására történt. A ma γ Gru-ként ismert, a Daru szemét jelölő kék óriás csillag, Ptolemaiosz Almagesztjében még a Déli Hal farkát alkotta. Erről a csillag Al Dhanab arab elnevezése is tanúskodik. A Dhanab szó farkat jelent, utalva a Déli Hal farkára. Bayer egyszerűen kiegyenesítette a Déli Halat, hogy az ne érintkezzen az újonnan született csillagalakzattal.

Grus-map6

A Daru (Grus) csillagkép és szomszédjai Ausztráli egén: Szobrász (Sculptor), Déli Hal (Piscis Austrinus), Mikroszkóp (Microscopium), Indián (Indus), Tukán (Tucana), Főnix (Phoenix)

Ennek, a nagy földrajzi felfedezések korában született csillagképnek, csak a legészakiabb része emelkedik hazánkban a horizont fölé. Az előbb említett γ Gru mindössze 5° magasan delel lakóhelyemről nézve. A csillagkép látnivalóinak személyes megcsodálásához délre kell utazni, bár nem feltétlenül kell elhagynunk Európát. Aki viszont a teljes konstellációt szeretné látni, annak el kell merészkednie nagyjából az északi szélesség 30°-ig. Bár még ott sem emelkedik túl magasra a horizont fölé.

A Daru (Grus) csillagkép irányába tekintve, a Tejútrendszerünk síkjától délre, attól már kellő messzeségben, pompás kilátás nyílik az igen távoli galaxisok világára. Errefelé fordítva a távcsövet, csillagvárosunkban nincs jelentős mennyiségű por, sem jelentős mennyiségű gáz, ami számottevően tompítaná a fényüket. Továbbá galaxisunk csillagainak koncentrációja is alacsonyabb, mint a korongban. Ezért is fésültem át ezt a területet is célpontok után kutatva.

Ez a régió főleg a galaxisok és kettőscsillagok kedvelőinek nyújt felejthetetlen élményeket, ám nem szabad elfeledkezni az IC5148 gyönyörű planetáris ködről sem. Aki pedig az igazán különleges csemegéket kedveli, az felkeresheti a Gliese 832-őt. Ez a 8.7 magnitúdó látszó fényességű vörös törpe csillag mindössze 16 fényévre van tőlünk. Különlegessége, hogy bolygórendszerrel rendelkezik, és a kettő ismert bolygójából az egyik, a Gliese 832c az (optimista) lakhatósági zónában kering. Ha van rajta víz, akkor elképzelhető, hogy az folyékony halmazállapotú. Ez az exobolygó a szuper-föld típusba tartozik, vagyis a Földnél csak néhányszor nagyobb tömegű.

Grus-map5

A Daru (Grus) csillagkép Ausztrália égboltján (Siding Spring 2015. 10. 14. 11:48 UT). A Tejút sávja viszonylag messze húzódik a konstellációtól.

Kinek kvartett, kinek trió

A Daru csillagkép területén található a Grus Kvartett, melyet az NGC7582, az NGC7590, az NGC7599 és a NGC7552 kölcsönható spirál galaxisok alkotnak. Az égen egymástól a legtávolabbi tagokat 42ˊ választja el egymástól. A különböző nyomtatott és internetes irodalmak gyakran hivatkoznak Grus Triplettként csak az NGC7582, az NGC7590, és az NGC7599 hármasára. Most akkor kvartett vagy trió? Mondhatni, ez csak látómező kérdése. Valójában mindegyikük egy nagyobb struktúrának, a laza IC1459 Grus galaxis csoportosulásnak a tagjai. A továbbiakban csak a képemen látható tagokkal fogok foglalkozni.

Grus-map3b-m1

Csillagtérkép a Grus Kvartetthez. A távcső látómezejébe csak az NGC7582, az NGC7590, az NGC7599 fért bele (baloldali kék kör). Az NGC7552 (jobboldali kék kör) kissé távolabb helyezkedik el az égen az előbb felsorolt három galaxishoz képest. A térkép baloldalán a Daru két csillaga, a θ Gru (4.3 magnitúdó) és az ι Gru (3.85 magnitúdó) látható.

A fotó alapján már elsőre is roppant szembetűnő, hogy a három spirál galaxis mennyire különböző. Szépségüket tekintve én még mindig nem tudtam eldönteni, hogy melyik a kedvencem. Talán nem is kell. Eltérő megjelenésük a távcső okulárján keresztül is szépen megmutatkozik, ahogy erről Sánta Gábor vizuális észlelése is tanúskodik. Gábor a megfigyelését még 2011. szeptember 27-én végezte Görögországban (Kotronas, Monastery Sotiros). 25 cm-es tükrös távcsövet és 163x nagyítást használt.

grus-kvartett_snt_25t_163x

„A 24ˊ-es LM három galaxist tartalmaz (NGC 7582, 7590, 7599), amely a kissé távolabbi (a LM-n kívül maradó) NGC 7552-vel kvartetté egészül ki. A látómező mindhárom galaxisa jókora méretű, az NGC 7582 kb. 5 x 1.5ˊ-es, centruma elliptikus, és nincs csillagszerű magja. Két folt látszik benne. Az NGC 7590 a legfényesebb, alakja háromszög (!), pereme éles. Csillagszerű magja neki sincsen, de a centrális rész 1ˊ kiterjedésű, fényes. Északi részén egy markáns spirálkar látható. Az NGC 7599 a legnagyobb és egyszersmind a leghalványabb a három objektum közül. 5 x 2ˊ-es foltja igen diffúz, centruma alig van. A keleti részén egy alacsony kontrasztú foltocska látható.”

Az NGC7582

NGC7582-fn-cut1

NGC7582 – Morfológiai besorolása: R1SB(s)ab. Távolsága (középérték): 22Mpc. Látszólagos mérete az égen: 5ˊ x 2.1ˊ. Fényessége: 11 magnitúdó

A Tejútrendszerünkhöz hasonló méretű, körülbelül 100-135 ezer fényév átmérőjű NGC7582 küllős spirál galaxis a legalaposabban tanulmányozott a hármasból. Tudományos értelemben is ő az egyik legérdekesebb. Kompakt magja a lencse alakú központi régiónál sokkalta fényesebben ragyog. A korongban, mivel a galaxis majdnem élével fordul felénk, lehetetlen spirális struktúrákat felfedezni, de így is nagyon jól látszik, hogy roppant komplex a felépítése. Itt-ott csillagkeletkezési régiók tűnnek fel, porsávok, foltok tarkítják. Ennek a zűrzavaros sokszínűségnek szöges ellentétei, a korong két átellenes pontjaiból kiinduló, kis felületi fényességű, vastag külső spirálkarok. Ezek simák, nincsenek benne igazán feltűnő struktúrák. A külső karok szinte teljesen körülölelik az NC7582-t, egy úgynevezett álgyűrűt (pseudoring) alkotnak a galaxis körül.

PR1-galaxy

Az NGC7582 így nézne ki, ha merőlegesen látnánk rá. A karok gyűrűként (pseudoring) ölelik körül a fényes, lencse alakú, küllős szerkezetű korongot. Forrás: Ronald J. Buta

Megfigyelések szerint, a küllős spirál galaxisok 10%-kának van a galaxist körülvevő külső gyűrűje, vagy álgyűrűje. Tekintve, hogy ezek felületi fényessége igen alacsony, a valóságban akár 20% is lehet a valódi arány. E képződmények általában kissé kékes árnyalatúak, jellemző rájuk némi kék színtöbblet. Létezésükre a magyarázat, a küllős spirál galaxisok belső dinamikájában keresendő. Az egyik legvalószínűbb elképzelés szerint a csillagok és a csillagközi anyag centrum körüli mozgása és a rotáló küllő közötti, úgynevezett keringési rezonancia hozza létre a gyűrű alakú struktúrákat. Amennyiben a küllő forgása során megelőzi, lehagyja a külsőbb régióban lévő csillagokat és intersztelláris gázt, azok epiciklusos galaktikus keringése során, akkor milliárd éves időskálán kialakul a külső gyűrű. A küllő képes teljesen átrendezni a spirál galaxist, miközben maga is változik, fejlődik. A álgyűrűk és külsőgyűrűk között nem mindig egyszerű különbséget tenni, ráadásul a szimulációk szerint fejlődési kapcsolat van közöttük.

Barred_galaxy_High_Pattern_Speed_Evo

A gyűrűk (ring), álgyűrűk (pseudoring) kialakulása, evolúciója olyan küllős spirál galaxisokban, ahol a küllő mintázat nagy szögsebességgel forog. Az egyes sorok különböző szögsebességre vonatkozó eseteket mutatnak be. Forrás: Byrd és mások

Lassan két évtizedes felismerés, hogy az aktív galaxis maggal rendelkező csillagrendszerek centrumának néhányszor 100 pc sugarú környezetében sokszor igen nagyszámú fiatal és középkorú csillag figyelhető meg. Ez sokkal kevésbé jellemző a nem aktív magú társaikra. De mi az oka ennek? Az aktív magú galaxisoknál a korong síkjában gáz áramlik befelé a centrumba. A masszív beáramlás heves csillagkeletkezést vált ki a centrum környékén, továbbá ellátja a mag aktvitásáért felelős központi szupermasszív fekete lyukat gázzal, kielégítve annak „határtalan étvágyát”, és így fenntartva a mag aktivitását. Egy másik elképzelése szerint a beáramló gáz többnyire csak a csillagkeletkezésért felelős, míg az így keletkező csillagok életük folyamán elszenvedett tömegvesztéséből (csillagszél, külső héjak ledobása) és a szupernóva-robbanásokból származik annak a gáznak túlnyomórésze, amit a galaxis centrumában lévő fekete lyuk elnyel. A második teória szerint, a csillagkeletkezés valamivel megelőzi a mag aktivizálódását.

A csillagászok a fentebb vázolt folyamatok tanulmányozása végett az NGC7582-őt is górcső alá vették, ugyanis az Seyfert 2 típusú, aktív magú galaxis. A vizsgálatok szerint, por takarta centrumában a szupermasszív fekete lyuk tömege 55-70 milliószorosa a Napunkénak. Több csillagkeletkezési régió is megfigyelhető a mag közelében, melyek nagyjából 190 pc sugarú gyűrű mentén helyezkednek el. Ezek a területek bővelkednek a fiatal, nagytömegű csillagokban. Sugárzásával két csillagbölcső is kiemelkedik a csillagkeletkezési gyűrűből. Fluxusuk alapján, ezek egyenként nagyságrendileg 1000 darab, 5 millió év körüli, nagytömegű O6 típusú csillagot tartalmaznak. A csillagászok megvizsgálva a molekuláris gáz mozgását, azt találták, hogy az az NGC7582 korongja mentén áramlik befelé a centrum irányába. Ez a beáramlás strukturált, úgynevezett magbéli küllő (nuclear bar) mentén történik. (Küllős spirál galaxisok esetében a magbéli küllő jóval kisebb, mint a galaxis fő küllője. Az, eme utóbbiba ágyazódva, a galaxis centrumában található. Adott esetben még az orientációjuk is eltérő lehet.) A gáz a centrumban egyenletes eloszlású. Mivel a csillagkeletkezési gyűrű mentén nem mutatható ki egyértelmű sűrűsödés, vagyis úton a fekete lyuk felé a „készletek” nem csappannak meg, a gáz képes eljutni egészen a „célig”. A csillagászok az NGC7582 esetében kiszámolták, hogy mennyi gázt kell begyűjtenie a magnak évente ahhoz, hogy a röntgentartományban megfigyelhető sugárzását fedezni tudja. A megfigyelt beáramlás ezt igen hosszútávon képes biztosítani. Meghatározták azt is, hogy a gyűrű csillagainak mekkora az éves tömegvesztesége. Ez is nagyságrendekkel több, mint ami az aktív mag sugárzásának a fenntartásához kell. Vagyis akár a csillagok szele is, évmilliók alatt eljutva a központig, képes lehet táplálni a fekete lyukat.

NGC7582-core02

Felül a baloldalon az NGC7582 központi része. Felül jobboldalon a Hubble űrtávcső WFPC2 kamerájával készült felvétel a mag vidékéről. Lent a galaxis magvidékének Brγ fluxus térképe. (A Brγ hidrogén emisszió a HII régiók, így közvetve OB csillagok jelenlétére utal.) A magenta körök a fiatal csillaghalmazokat jelölik. Forrás: Rogemar A. Riffel és mások.

Az NGC7582 esetében a kutatók egyelőre nem tudták egyértelműen eldönteni, hogy a mag aktivitása a csillagkeletkezési hullámnak köszönhető-e, vagy mind a kettőt szimplán a galaxis centrumába beáramló gáz indítja be. Mind a kettő lehet igaz. A dolgot az is nehezítette, hogy nem a most megfigyelhető csillagkeletkezési hullám volt az első ebben a galaxisban. Ezt megelőzőleg, legalább 10 millió éve is volt egy nagyobb. Így e csillagok tömegveszteségéből származó gáz mára már akár el is elérhette a fekete lyukat. A csillagok termelése pedig tovább folyik. Egyes vizsgálati eredmények arra utalnak, hogy a gyűrűn belül egy újabb születési hullám van kibontakozóban. Az NGC7582 esete is jól mutatja, hogy a spirál galaxisokban a centrum környéki heves csillagkeletkezés és az aktív galaxis mag gyakorta kéz a kézben járnak, a mögöttes pontos mechanizmusok azonban még továbbra is tisztázásra szorulnak.

Az NGC7590 és az NGC7599

NGC7590-99-fn-cut1

Felül az NGC7599 – Morfológiai besorolása: SB(s)c. Távolsága (középérték): 19.7 Mpc (elég pontatlanul ismert). Látszólagos mérete az égen: 4.4ˊ x 1.3ˊ. Fényessége: 12 magnitúdó

Alul az NGC7590 – Morfológiai besorolása: SA(rs)bc. Távolsága (középérték): 25.5 Mpc (elég pontatlanul ismert). Látszólagos mérete az égen: 2.7ˊ x 1ˊ. Fényessége: 12 magnitúdó

A két galaxis tudományos szempontból sokkal „elhanyagoltabb”, mint az NGC7582. Mivel csak igen kevés kutatás foglalkozott konkrétan velük, így én is csak nagyon röviden írnék róluk.

A távolságadatok bizonytalansága ellenére elmondható, hogy a két galaxis közül az NGC7599 a nagyobb, hozzávetőlegesen 90000 fényév az átmérője. Ugyan az NGC7590 távolsága még az előző galaxisénál is pontatlanabbul ismert, ám ha a távolságértékek közül a legnagyobbat választjuk ki, még akkor is durván 10000 fényévvel alulmarad a versenyben.

Az NGC7590-et és NGC7599-et viszonylag egyszerű spirális struktúrával áldotta meg a természet. Azonban, ez utóbbinak a karjait több csillagkeletkezési régiónak és fényes csillaghalmaznak a foltja tarkítja, és több a karokban az elágazás. Azért az NGC7590-nek sincs szégyenkeznivalója. Kompakt magja fényesen ragyog az egész galaxishoz mérten, belső diszkje domináns.

Az NGC7590 Seyfert 2 típusú galaxis. Legalábbis ezt a besorolást kapta 1999-ben az ASCA (Advanced Satellite for Cosmology and Astrophysics) röntgentávcsővel végzett megfigyelések alapján. Már akkor voltak olyan kutatók, akik az eszköz kis szögfelbontása miatt (∼1ˊ PSF FWHM) kétségbe vonták, hogy a sugárzás csakis a galaxis magjából ered. A kétkedőket igazolta az a 2010-es tanulmány, mely már a modernebb, így sokkal jobb szögfelbontású (∼6˝ PSF FWHM) XMM-Newton röntgentávcső megfigyeléseire támaszkodott. Kiderült, hogy a megfigyelt sugárzás túlnyomórésze egy a centrumon kívüli ultrafényes röntgenforrástól (ULX: ultra-luminous X ray source), illetve a galaxis egy kiterjedtebb részétől származik. A mag röntgensugárzása igen-igen gyenge az előzőleg felsorolt forrásokhoz képest, melynek legvalószínűbb oka, hogy a sugárzás forrását tekintélyes mennyiségű, a röntgensugárzást elnyelő anyag veszi körbe. Mivel az NGC7590-re majdnem oldalról látunk rá, a Seyfert galaxisok általános modellje szerint (lásd a lenti ábrát), a fekete lyukat körülvevő vastag portórusz felfogja a sugárzás zömét. Ez azonban csak egy lehetséges magyarázat. A tanulmány szerzői is kiemelik, hogy további megfigyelésekre van szükség ahhoz, hogy egészen biztosan kijelenthessük: az NGC7590 Seyfert 2 típúsú galaxis, közepében egy aktív maggal, annak szívében egy szupermasszív fekete lyukkal.

Seyfert_uniform

Az ábra a Seyfert galaxisok általános modelljét szemlélteti. A központi sugárzás forrását, molekula felhők tórusza veszi körül. Ezek a felhők portartalmuknak, és a szabad elektronoknak köszönhetően bizonyos betekintési szög esetén leárnyékolják a magban keletkező sugárzás zömét. A Seyfert 1 típusú galaxisoknál a pólusok felől belátunk a rendszerbe, míg a Seyfert 2 típusúak esetén legfeljebb a szórt sugárzást (electron scattering) figyelhetjük csak meg. Forrás: H. Netzter

Az NGC7590 példája is jól mutatja, hogy a műszerek fejlődésével miként változik egy adott objektumról, jelenségről, így a világegyetem működéséről alkotott kép.

Számomra különösen érdekes, hogy mind az előző pontban tárgyalt NGC7582, mind az NGC7590 (valószínűleg) aktív magú (Seyfert 2 típusú) galaxis, mégis mennyire merőben más a felépítésük. Nem irigylésre méltó a csillagászok helyzete, rendszert kell alkotniuk, és az elméleteiknek igen változatos környezetben is helyt kell állniuk.

Galaxisok a háttérben

NGC7582-90-99-LRGB-20151014-T30-300s-TTK_lab4

A háttérben több száz galaxis látható. Csak a Pixinsight beépített programja (ImageSolver script) 68 PGC katalógusbeli galaxist azonosított a látómezőben. A galaxishalmazok közül, az Abell S1111-et emelném ki, mely igen hangsúlyos szerepet játszott abban, hogy a többi jelölt helyett, inkább az égbolt e területét választottam. Érdemes a képre kattintani, és a nagyobb felbontású változatot tanulmányozni.

Az előzőekben tárgyalt három spirál galaxis „csupán” 20-25 Mpc (65-80 millió fényév) távolságban van. A fény akkor indult útnak felénk, amikor még a dinoszauruszok uralkodtak a Földön, ám ez lassan a végéhez közeledett. Vajon milyen messze van a felvételen látható többi galaxis? Távoliak, és ezért látszanak kisebbnek, vagy csupán eltörpülnek az NGC7582, az NGC7590, az NGC7599 mellet? Az apró fénypöttyök galaxisunkhoz tartozó előtér csillagok, vagy szinte felfoghatatlan messzeségben lévő extragalaktikus objektumok?

A kérdések megválaszolásához először azonosítanom kellett az objektumokat, majd a publikusan elérhető adatbázisokból (NASA/IPAC Extragalactic Database, Simbad) ki kellett keresnem a távolságukat. A kis hobbikutatás oroszlánrészét nem manuálisan, hanem számítógépes programok (Pixinsight, Astrometry) segítségével végeztem el. Meg kellett állapítanom, hogy a galaxisnak vagy kvazárnak bizonyuló objektumok nagytöbbsége esetén, a pozícióján, a látszó méretén és a fényességadatain túl szinte semmilyen információ nem nyerhető ki a fent említett adatbázisokból. Szerencsére azért akadtak szép számmal olyanok is, ahol legalább a vöröseltolódást megmérték valamikor a múltban.

A világegyetem tágulásának köszönhetően a galaxisok távolodnak tőlünk, méghozzá annál nagyobb sebességgel, minél nagyobb a távolságuk. Ez az összefüggést nevezik Hubble-törvénynek. A Doppler-effektus miatt, a távolodó égitest spektrumában a színképvonalak a sebességgel arányosan a vörös szín felé tolódnak. Tehát a mérhető vöröseltolódásból kiszámítható a távolodás sebesség, s így Hubble-törvény felhasználásával megkapható a távolság.

A kozmológiában egy vöröseltolódáshoz többfajta távolság típus tartozik. Erről Dr. Kiss László írt egy remek összefoglalót pár éve az MCSE oldalán. Én itt a fényidőtávolságot fogom használni, pontosabban azt a visszatekintési időt, amennyi év alatt a fény elér hozzánk.  A legközelebbi csillagról a fény 4 év alatt ér ide, azaz mondhatjuk azt, hogy távolsága 4 fényév. Hasonlóan kiszámítható, hogy egy z vöröseltolódású galaxisból kibocsátott fény mennyi ideig utazott, ami a fényidőtávolság, vagy a visszatekintési időből származó távolság definiálását teszi lehetővé.

Lássuk ezek után, hogy mi a megfogalmazott kérdésekre a válasz! Nem szándékozom az olvasót hosszas felsorolással untatni, így csak pár objektumot ragadnék ki.

Kezdjük rögtön egy kivétellel. A PGC 70982 nagyságrendileg az NGC7582, az NGC7590, és az NGC7599 távolságában van. A galaxisok nagytöbbsége azonban nem a méretüknek köszönhetőn látszik kisebbnek. Rögtön az Abell S1111 galaxishalmazzal kezdeném (lásd a fenti képet), melyről a fény durván 600 millió évig utazott hozzánk. Megduplázva a „tétet”, a PGC 123621 közel 1.4 milliárd fényéves távolságból ragyog ránk. Igazi óriás, a látszó mérete alapján elsőre nem gondoltam volna, hogy ennyire távoli. Az RX J231829.9-422041 röntgenforrás, és aktív magú galaxis 3.4 milliárd fényévnyi távolságban van. De az abszolút rekorder, legalábbis a képen látható, és ismert vöröseltolódású objektumok között a PKS 2315-424 katalógusjelű kvazár, mely 11 milliárd évvel ezelőtt bocsájtotta ki azokat a fotonokat, melyeket most a CCD kamera érzékelői felfogtak. Ekkora távolságból, a galaxis aktív magja, ez ugyanis maga a kvazár, mindössze egy kékes színű csillagnak látszik a felvételen.

NGC7582-90-99-LRGB-20151014-T30-300s-TTK_labs4

Az alábbi táblázat, a fenti képen megjelölt extra galaktikus objektumok vöröseltolódását, visszatekintési idejét, fényességét, és az objektum típusát tartalmazza.

Anélkül, hogy pontosan megmagyaráznám (természetesen az olvasó szabadon utánanézhet a szakirodalomban), a távolság kiszámításánál a kozmológiai korrekcióban a következő értékek kerültek felhasználásra: H = 73.00 km/sec/Mpc, Ωmatter=0.27, Ωvacuum=0.73. Az adatok forrása: NASA/IPAC Extragalactic Database (NED)

Objektum z (vöröseltolódás) visszatekintési idő fényesség (magnitúdó) típus
PGC 70982 0.005397 ± 0.000267 61 millió év 16.09 Galaxis
PGC 093936 0.054491 ± 0.000133 693 millió év 18.21 Galaxis
PGC 071043 0.054541 ± 0.000133 693 millió év 14.2 (R) Galaxis (BL Lac?)
PGC 164573 0.056656 ± 0.000150 720 millió év 16.82 Galaxis
PGC 123621 0.112621 ± 0.000163 1387 millió év 16.81 Galaxis
PGC 126608 0.141114 ± 0.000350 1708 millió év 18.28 Galaxis
RX J231829.9-422041 0.316000 3433 millió év ? Aktív Galaxis (Röntgenforrás)
PKS 2315-424 2.850000 11093 millió év 19.58 Kvazár

Végül teljesült hát a vágyam. Készítettem, amatőrcsillagászati léptékben nagy átmérőjű távcsővel egy olyan felvételt, amin az előtérben több galaxis uralja a látványt, míg a háttérben távoliak sokasága látható.

Lehet, hogy hosszabb és több expozícióval még „mélyebbre” tekinthettem volna. Talán léteznek ennél részletesebb, vagy szebb felvételek. De ez nekem mind nem számít, csak maga az élmény, melyet a terület kiválasztása, a felvételek feldolgozása, a témával való foglalkozás jelentett. Ezt pedig minden egyes alkalommal felidézhetem, mikor majd elsétálok otthon a falra akasztott kép mellett, és vetek rá egy hosszabb-rövidebb pillantást.

Felhasznált irodalom:

Ian Ridpath: Star Tales (Grus)

R.A. Wittenmyer, Mikko Tuomi, R.P. Butler, H.R.A. Jones, Guillem Anglada-Escude, Jonathan Horner, C.G. Tinney, J.P. Marshall, B.D. Carter, J. Bailey, G.S. Salter, S.J. O’Toole, D. Wright, J.D. Crane, S.A. Schectman, P. Arriagada, I. Thompson, D. Minniti, J.S. Jenkins, M. Diaz: GJ 832c: A super-earth in the habitable zone

Stephen James O’Meara: Deep-Sky Companions: Southern Gems (ISBN: 9781107015012)

John Kormendy: Secular Evolution in Disk Galaxies

Ronald J. Buta: Galaxy Morphology

J. A. Acosta-Pulido, A. M. Pérez García, M. A. Prieto, J. M. Rodríguez-Espinosa, L. M. Cairós: The MID-IR emission of seyfert galaxies: relevance for CANARICAM

Rogemar A. Riffel, Thaisa Storchi-Bergmann, Oli L. Dors Jr, Claudia Winge: AGN-Starburst connection in NGC7582: Gemini near-infrared spectrograph integral field unit observations

X. W. Shu, T. Liu, J. X. Wang: XMM Observations of the Seyfert 2 Galaxy NGC 7590: the Nature of X-ray Absorption

J. S. Farnes, D. A. Green, N. G. Kantharia: Spectropolarimetry with the Giant Metrewave Radio Telescope at 610 MHz: a case study of two Southern Compact Group fields

H. Netzter: AGN EMISSION LINES

NGC7793

NGC7793-LRGB-20150907-T30-300s-TTK

NGC7793

iTelescope.net T30 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI-PL6303E CCD kamera

2015-09-07, 2015-09-10, 2015-09-13 – Siding Spring Observatory – 20 x 300 sec L, 8 x 300 sec R,G,B

Az augusztusi késő éjszakában, a Balaton parton álldogálva néztem, ahogy a Fomalhaut bágyadtan pislákolva már ott csücsül a horizont fölött. Fénye próbált áttörni a vízparti párán. A Déli Hal (Piscis Austrinus) csillagkép mindössze 25 fényévre lévő csillaga gondolatokat indított el bennem. Azon töprengtem, hogy lassan megfelelő pozícióba kerülnek a Déli Hal keleti szomszédságában lévő Szobrász (Sculptor) csillagkép galaxisai Ausztrália egén, és ideje lenne 3-4 órányi távcsőidőt foglalni a Siding Spring-ben lévő, az iTelescope hálózatához tartozó csillagvizsgálóban.

Augusztus közepe, az MTT2015 után a családé lett, a hónap maradék pár derült éjszakáján pedig szerettem volna bemutatóként részt venni a Polaris Csillagvizsgáló esti nyitva tartásain. Továbbá, a szeptember asztrofotózásra alkalmasnak látszó hétvégéjét inkább a családdal, és mellesleg egy kis pecázással kívántam tölteni. Ez utóbbi elhatározást nem a Déli Hal csillagkép látványa ihlette. Mivel az előbbiek miatt nem sok esélyét láttam, hogy októberig saját távcsövemet használjam az égbolt fotózására, nem hezitáltam sokat. Még ott álldogálva kigondoltam a célpontot, ami végül az NGC7793 lett. Nem volt könnyű a választás, mert sok szép és izgalmas galaxis található ebben a régióban. Végül a kérdést az döntötte el, hogy egy bizonyos típusú spirál galaxis még hiányzott a gyűjteményemből, illetve van az NGC7793-nak (legalább) két különös lakója, akikről talán szintén írhatnék pár sort. Megvolt a cikk alapötlete, már csak az illusztrációt kellett elkészíteni.

Másnap le is foglaltam az időpontokat. Bíztam abban, hogy hetekkel később kegyes lesz majd az időjárás, de nincs ez nagyon másként egy észlelő hétvége esetén sem. Nem teljesen úgy alakultak a dolgok, ahogy terveztem. Sem a légkör nyugodtsága, sem az az átlátszóság nem volt igazán ideális. Háromszor is nekifutottam a felvételnek, bízva abban, hogy talán majd a következő éjszakán kristálytiszta lesz az ég, és nyugodt a légkör. Nem lett. Több távcsőidőt már nem akartam elpazarolni, ezúttal ennyi adatott. Nem vagyok az a típus, akit az ilyen dolgok összetörnek, így ahelyett hogy búnak adtam volna fejem, inkább nekiláttam a feldolgozásnak. Amúgy is bőven volt még mit tanulni (és van is még!) a PixInsight programmal kapcsolatban, és a cikket is nyélbe szerettem volna ütni végre.

Szomszédok és lakótársak

A Szobrász csillagkép területén több fényes és nagy látszólagos kiterjedésű galaxis is található. Ezek közé tartozik az NGC7793 is. A térben különböző távolságban szétszórt magányos vándorokról van szó, akik véletlenül látszanak csak egy irányba, vagy van kapcsolat közöttük? Ezt a kérdést már a múlt század első felében megfogalmazták a csillagászok. Nem sokkal az után, hogy felismerték, egy galaxisokkal benépesített, táguló világegyetemben élünk.

Sculptor-map1

A Szobrász (Sculptor) csillagkép Siding Spring (Ausztrália) egén 2015. szeptember 7-én, helyi idő szerint 21:45-kor. Az északi égboltot ismerők számára ismerős csillagképek a keleti, északkeleti részen (a jobboldalon) láthatóak. Felfedezhető a Cet feje (Cetus), a Halak (Pisces), a Vízöntő (Aquarius), a Pegazus (Pegasus) négyszöge, hogy csak egy párat említsek.

Sculptor-map2

A Szobrász csillagkép területén több fényesebb galaxis is található. A méretek érzékeltetése végett megjelöltem 20° távolságot az égen. Ez magunk elé kinyújtott karokkal nagyjából kétarasznyi „hosszúság”.

A Szobrász csillagkép irányában látszó galaxisok távolságát az idők folyamán, többféle módon is meghatározták. Egyáltalán nem szokatlan ez a csillagászatban. A technológia folyamatosan fejlődik, és újabb és újabb tudományos eredmények látnak napvilágot. Tekintsük át röviden milyen módszereket vetettek be a különböző kutatók!

A spirál galaxisok és a lentikuláris galaxisok esetén használható az úgynevezett Tully-Fisher reláció, a galaxisok tömege vagy luminozitása és emissziós vonalainak szélessége, vagyis a galaxison belüli szögsebességek között. Nagyon leegyszerűsítve, a galaxison belüli sebességekből meghatározható a galaxis luminozitása, és ebből pedig távolsága. Ugyanis, a galaxis csillagainak dinamikáját a galaxis tömege határozza meg, mely pedig összefüggésben áll annak luminozitásával. Az így kapott luminozitást felhasználva a látszólagos fényesség ismeretében a távolság könnyen kiszámítható. A módszer előnye, hogy akkor is alkalmazható, ha az adott galaxist nem lehet csillagokra bontani.

A következő módszer a galaxis felületi fényesség fluktuációjának (SBF: Surface Brightness Fluctuations) meghatározásán alapul. Ehhez sincs szükség arra, hogy a galaxist csillagokra bontsuk. Sőt! A módszer megértéséhez tekintsünk a következő ábrára.

sbfluc

Az ábrán egy közeli galaxisról (nearby galaxy) és távoli galaxisról (distant galaxy) készült CCD felvétel modellje látható. Az ábrán minden egyes kis négyzet, egy CCD pixelt reprezentál. Látható, hogy a galaxisokat nem tudjuk csillagokra bontani. A távoli galaxis esetén sokkal „simább” képet kapunk, a csillagok halványabbak, de többen is vannak. Az ábra forrása: Stéphane Courteau

Egy galaxisból érkező fluxus fordítottan arányos a távolság négyzetével.  Az egy pixelre eső csillagok száma ellenben a távolság négyzetével arányos. Így az egy pixelre jutó fluxus, mely az egy csillagra eső fluxus és a csillagszám szorzata, nem függ a galaxis távolságától. Azonban, mint az a fenti ábrán is látható, azonos távcső és detektor páros mellett a közeli és a távoli galaxis esetében a felbontás eltérő. A távolabbi galaxis képe „simább” lesz, így ebben az esetben kisebb felületi fényesség fluktuációt fogunk mérni. Mondhatjuk úgyis, hogy a kétszer távolabbi galaxis képe, kétszer „simább”.

A módszer hatalmas távolságokra, vagyis akár 100 Mpc-en túl is működik. Vannak azonban gyengeségei. Először is körültekintően meg kell tisztítani a mintát, vagyis el kell távolítani például a csillagokat és más galaxisokat. Ténylegesen csak a mérni kívánt galaxis SBF-jére vagyunk ugyanis kíváncsiak. Továbbá, az eljárás nagy csillagsűrűséget feltételezve működik csak. Vagyis csak elliptikus galaxisokon, illetve nagy központi dudorral (bulge) rendelkező spirál galaxisok esetén használható. Mivel az SBF egy másodlagos távolság indikátor, így kalibrálni kell, ami nem egyszerű feladat. Ez Cepheida változócsillagok (lásd alább) segítségével például igen problematikus, mert azok jellemzően spirál galaxisokban fordulnak elő. Éppen ezért gyakorta galaxishalmazokon végzik el a kalibrációt, ahol egy ismert távolságú spirál galaxis közelében látszó elliptikusról feltételezik, hogy annak távolsága szintén hasonló.

A Scupltor galaxisainak viszonylagos közelsége lehetővé tette, hogy bizonyos tagok esetén modern földi távcsövekkel Cepheida típusú változócsillagokat keressenek bennük a csillagászok, és így ezek segítségével meghatározzák azok távolságát. A fényes, így nagy távolságból is megfigyelhető Cepheida változók fényváltozási periódusa és abszolút fényessége közötti reláció egy kitűnő távolság meghatározási módszer. A csillag periódusából származtatott abszolút fényességéből, és a mért látszólagos fényességből, pedig már egyszerűen következik az objektum távolsága.

A Hubble űrtávcsőnek köszönhetően egy merőben új korszak köszöntött be a csillagászatban. Hirtelen megnyílt az út még több csillagváros egyedi csillagainak vizsgálata felé. Így még több galaxisban vált lehetővé a Cepheida típusú változócsillagok detektálása, továbbá a kellő számú vörös óriás csillag minta mellett egy újabb távolságmérési eljárást vethettek be a csillagászok.

HRD-TRGB.PNG

A naptömegű csillagok életpályája. A vízszintes tengelyen a csillag effektív hőmérsékletének logaritmusa, míg a függőleges tengelyen a Naphoz viszonyított luminozitásának logaritmusa található.

A vörös óriás fázis a Naphoz hasonló tömegű csillagok életében akkor következik be, amikor a magban a hidrogén készletek már fogytán vannak. A hidrogén fúzió a magot körülvevő külső héjba tevődik át, miközben a csillag külső részei ennek hatására kitágulnak, míg felszíni hőmérséklete lecsökken. A csillag elhagyja a fősorozatot, és a görbén elvándorol egészen az F pontig. Jól látható, hogy ebben a luminozitás csúcspontban valami drasztikus történik, és jelentős fordulat következik be a naptömeg körüli csillagok életében: robbanásszerűen beindul a hélium fúziója a degenerált héliumból álló magban, és ez után a csillag luminozitása jelentősen lecsökken. Ezt a pontot az első vörösóriás ág tetejének nevezik. A pont neve az angol nyelvű szakirodalomban: Tip of the Red Giant Branch (TRGB).

A vörös óriások eloszlását felrajzolva egy szín-fényesség diagramon, ahol a szín a vizuális és a közeli infravörös tartományban megfigyelt fényességek különbsége (g’-i’), míg a fényesség a közeli infravörös tartományban látszó fényesség (i’), azok eloszlása egyszerű hatványtörvényt követ. Ezt a csillagfejlődési elméletek és a megfigyelések egyaránt alátámasztják. Megfelelő matematikai apparátus, és csillagászati ismeretek birtokában meghatározható az első vörösóriás-ág tetejének (TRGB: Tip of the Red Giant Branch) látszólagos közeli infravörös fényessége.

NGC7793-lr

Az NGC7793 galaxis vizsgált területeinek szín-fényesség diagramja, melynek vízszintes tengelyén a csillag vizuális és közeli infravörös fényesség különbsége, míg a függőleges tengelyén a közeli infravörös fényessége szerepel. MS: fősorozat, RGB: vörös óriás ág, AGB: aszimptotikus ág. Forrás: Marija Vlajić, Joss Bland-Hawthorn, Kenneth C. Freeman

Az idős (több milliárd éves) vörös óriás csillagok esetén, melyek fémtartalma kicsi ([Fe/H] ≤ -0.7), a közeli infravörös tartományban a TRGB pont abszolút fényessége független azok fémtartalmától. Ez már nem teljesen igaz a fiatalabb, így nagyobb fémtartalmú csillagokra. A csillagászok minden olyan elemet, ami nem hidrogén vagy hélium, fémnek neveznek. A csillagok fémtartalma fontos szerepet játszik fejlődésükben, és ennek köszönhetően kissé más utat járnak be. A nagyobb fémtartalmú vörös óriások életpályája a diagramon kissé a kékes tartomány felé tolódik. A módszer egyik lényeges sarokköve tehát, hogy a csillagok fémtartalma, vagyis kora egy tág intervallumban (>2 milliárd év) nem befolyásolja szignifikánsan a távolság meghatározás pontosságát. Ráadásul idősebb csillagpopulációk minden galaxisban akadnak, míg a fiatalabbak, a csillagkeletkezés hiányában szinte teljesen hiányoznak például az elliptikus galaxisokból.

A kutatók a TRGB abszolút fényesség kalibrációját olyan a Tejútrendszerhez tartozó gömbhalmazokon és csillagpopulációkon végezték el, ahol más távolság meghatározási módszerek is rendelkezésre álltak. Ez után a TRGB abszolút fényességének ismeretében, és a látszólagos fényességének birtokában a csillagászok már ki tudták számítani a galaxisok távolságát.

Természetesen, több nehézség is felmerül a pusztán matematikai „kihívások” mellett. Megfelelő csillagjelölteket kell választani, és a látszólagos fényesség esetén több korrekciós tényezőt is figyelembe kell venni. Ilyen például, hogy a saját galaxisunkban lévő intersztelláris médium némi vörösödést okozhat a megfigyelt objektumok fényében, illetve tompíthatja azt. Magában a távoli galaxisban található por és gáz szintén hatással lehet a megfigyelt csillagok színére és fényességére.

E rövid áttekintés után nézzük meg, hogy a galaxisok távolságának és radiális sebességének meghatározása után milyen következtetésre jutottak a csillagászok!

Eredetileg a Szobrász csillagkép irányában látszó öt, viszonylag fényes galaxisról, vagyis az NGC55, az NGC247, az NGC253, az NGC300 és az NGC7793 asszociációjáról gondolták azt, hogy ezek egy csoportosuláshoz tartoznak, vagyis kezdetben ezeket tekintették a Sculptor csoport tagjainak. Az elmúlt évtizedekben aztán, a különböző felmérésekben sorra fedezték fel az ég e területén a törpe galaxisokat. Azonban, az ezredforduló környékén sokukról kiderült, hogy csupán ebbe az irányban látszó háttér galaxisok.

Mai ismereteink szerint a következők mondhatóak el a világűr eme szegletéről. A Sculptor csoport alakja leginkább egy 1 x 6 Mpc kiterjedésű szivarra emlékeztet, mely hosszan nyúlik el látóirányunk mentén. Nem is klasszikus értelemben vett csoportról van szó, inkább galaxisok ritka felhőjének nevezhető, ugyanis „a szivar” közeli és távoli vége között úgy tűnik, nincs gravitációs kapcsolat. A Sculptor komplexumnak nincs határozott központja, sem éles határa.

Sculptor-gxs01

A közeli galaxisok eloszlása az égbolton a Sculptor csoport irányába, mely leginkább kis galaxis rendszerek felhőjének tekinthető. A sötét négyzetek a domináns, fényes galaxisokat reprezentálják. A fekete körök a szabálytalan törpe galaxisokat, míg az üres körök a szferoidális törpe galaxisokat jelölik. (Az NGC55 valójában a Nagy Magellán felhőhöz hasonlóan úgynevezett Magellán típusú küllős törpe spirál galaxis.) Az egyenes vonalak a főbb galaxisokat és kísérőiket kötik össze. A kis számok az egyes galaxisok radiális (látóirányunkban eső) sebességét (Km/s) mutatja. Forrás: I. D. Karachentsev és mások.

Az előtérben, hozzánk legközelebb az NGC300, az NGC55, az ESO410–05 és ESO294–10 kvartettje helyezkedik el a maga 1.95 Mpc (6.4 millió fényéves) átlagos távolságával.

Az NGC253 luminozitása a többi galaxisét jelentősen túlszárnyalja, ezért a csillagászok úgy vélik, hogy ez a nagyjából 3.94 Mpc (12.8 millió fényév) távolságra lévő galaxis lehet a kísérőivel együtt, tehát a NGC247-tel, a DDO 6-tal, Sc 22-vel, KDG 2-vel és a FG 24-gyel a komplexum dinamikai központja.

A vidék egy másik meghatározó csoportosulását a 3.91 Mpc-re (12.7 milló fényévre) található NGC7793, az UGCA 442, és az ESO 349–031 hármasa képviseli. Érdekes, hogy mérési hibahatáron belül az NGC253 és az NGC7793 látóirányú távolsága szinte teljesen azonos.

Az NGC625 és ESO245-005 bár látszólag közel helyezkednek el egymáshoz az égen, illetve radiális sebességükben sincs hatalmas különbség, mégis szeparációjuk a térben majdnem 2 Mpc. Meg kell jegyeznem azonban, hogy az NGC625 2.7 Mpc-es, és az ESO245-005 4.4 Mpc-es távolság értéke igen jelentős bizonytalanságot hordoz magában.

A fenti ábrán is feltüntetett galaxisok közül többeknél is felmerült a gyanú, a csoport egészéhez képest kiugróan magas a radiális sebességük miatt, hogy azok csupán háttér galaxisok. Így például igen valószínű, hogy az ESO 149-03, az NGC59, és a DDO 226 is az.

A távolság és dinamikai vizsgálatok másra is rávilágítottak. A 6 Mpc hosszú, a Szobrász csillagkép irányába látszódó galaxis felhő a Lokális Csoporttal (Tejútrendszerünk ennek a része), és a Canes Venatici I galaxis felhővel együtt egy nagyjából 10 Mpc hosszan elnyúló amorf szálnak a része. Bár hatalmas méretű ez a kozmikus képződmény, azonban még így is csak kis szigete a nagyjából 150 Mpc kiterjedésű Laniakea szuperhalmaznak.

NGC7793, avagy a káosz és a rend

Az NGC7793, ahogy már fentebb is említettem, 3.91 Mpc-re (12.7 milló fényévre) található és látszólagos mérete az égen 9.3ˊ × 6.3ˊ. Átmérője nagyjából 35 ezer fényév körül lehet, így nagyságát tekintve csak harmad akkora, mint Tejútrendszerünk. A katalógusokban rákeresve az NGC7793-ra, általában 9 és 10 magnitúdó közötti fényességértékeket találunk, ami könnyen megtéveszthető lehet annak, aki vizuálisan szeretné felkeresni, ugyanis az NGC7793 kis felületi fényességű galaxis.

A spirál galaxis kifejezés hallatán az olvasók többségének valószínűleg nem a fotómhoz hasonlatos kép fog megjelenni a fejében. Sokkal inkább valami olyasmi, mint amilyen mondjuk az M51 (a társától most egy pillanatra tekintsünk el), ahol két szabályos kar spirálozva tekeredik a mag körül.

NGC7793-M51-01-cut1

Balra az NGC7793-ról, jobbra az M51-ről készült felvételem látható. Figyeljük meg, hogy mennyire más a két galaxisban a spirálkarok felépítése.

A spirál galaxisokat a karok megjelenési formája szerint a csillagászok három fő csoportba sorolják. Az első csoportba a szabályos spirál galaxisok (grand design galaxy) tartoznak. Fő jellemzőjük a két szimmetrikus, egybefüggő és határozott spirálkar. Igen, a legtöbbünkben ez a kép él a tipikus spirál galaxisról, annak ellenére, hogy mindössze csak a 10%-uk ilyen. A második csoportot az úgynevezett pelyhes galaxisok (flocculent galaxy) alkotják. Ezeknél a karok nehezen kivehetőek, szakadozottak, kissé „szedett-vedett”, kaotikus a korong. Az NGC7793 is ide sorolható, akárcsak a spirál galaxisok 30%-a. Végül a harmadik csoportot a sok-karú (multiple arm) galaxisok képviselik, melyekre az erősebb belső karok és a kaotikus külső a jellemző. Ezek képviselik 60%-kal a spirál galaxisok túlnyomó többséget. Megjegyzem, hogy a kutatók egy része egy csoportként tekint a pelyhes és a sok-karú galaxisokra.

De hogyan jönnek egyáltalán létre a spirál karok? Miért is látunk spirális struktúrákat egyes galaxisokban?

A klasszikus Lin-Shu elmélet szerint nagyon tömören a válasz az, hogy sűrűséghullám forog körbe a korongon merev testként. Ne ijedjen meg a kedves olvasó, mert máris elmagyarázom anélkül, hogy nagyon el kellene mélyedni a matematika és a fizika rejtelmeiben.

Először is mi is az a sűrűséghullám? Ennek könnyebb megértéséhez előveszem, az ilyenkor szinte kötelezően elhangzó analógiát. Bizonyára már mindenki utazott autóval, így elmondhatja magáról, hogy közelről látott már sűrűséghullámot, és részt is vett benne. Tegyük fel, hogy egy soksávos autópályán haladunk mondjuk a megengedett 130 Km/h sebességgel. Vidámak vagyunk, megfelelő a tempó, semmi sem akadályoz minket. Előttünk azonban pár kilométerrel valakik lassabban vezetnek, mondjuk csak 90 Km/h sebességgel. Ide mindenki helyettesítse be a kedvenc szereplőjét, én egymás előzgető kamionok sorára fogok gondolni, ami tökéletes ehhez a példához. Előbb utóbb a többiekkel utolérjük őket, és lassítanunk kell nekünk is 90 Km/h-ra, hogy biztonságosan átjussunk a dugón. Miután a lassabb járműveken keresztül verekedtük magunkat, ismét szabad az út és visszagyorsítunk 130 Km/h-ra, akár csak a többiek. A forgalmi akadály (a sok kamion) 90 Km/h-val „közlekedik”, míg a személyautók számára a tipikus (megengedett) sebesség 130 Km/h. Ez a szituáció egy jó példája a sűrűséghullámnak, és az általa okozott zavarnak.

Ültessük most át az előzőeket a galaxisokra. Itt a forgalmi dugókat a Lin-Shu teória szerint a spirál galaxisokban jelenlévő sűrűséghullámok jelentik. A hullámokban a tömegsűrűség nagyobb, mint a korong más részein. Nagyon egyszerűen fogalmazva: az anyag egy ilyen hullámban „szorosabban tömörödik”. Tudományosabban: itt a tömegsűrűség relatív fluktuációja 10-20%. A spirál alakú hullámok a galaxis anyagától függetlenül merev testként rotálnak, és több rotációs perióduson keresztül képesek állandó állapotban fennmaradni, ami sok-sok 100 millió évet jelent. A csillagok, a gáz- és a porfelhők azonban annál gyorsabban kerülik meg a galaxis centrumát, minél közelebb vannak hozzá. Így a belső vidékeken ezek utolérik a sűrűséghullámokat, míg a külső régiókban a sűrűséghullám éri be őket. Amikor egy csillag közel kerül a hullámhoz, a nagyobb tömegsűrűsége „behúzza” a csillagokat, és „visszafogja” egy darabig. Idővel azonban a csillag keresztüljut a sűrűséghullámon. Hasonló történik a gázfelhőkkel és a porfelhőkkel is. A különbség az, hogy ezek összenyomódnak a magasabb tömegsűrűség miatt. Ha egy gázfelhő kellően sűrűvé válik (Jeans-kritérium) elkezd összehúzódni, és megkezdődik benne a csillagok kialakulása. A hideg molekuláris gázfelhőkben születő csillagoknak időre van szüksége, hogy kellően összesűrűsödve, magjukban beinduljon a hidrogén fúziója. Egy nagytömegű csillag esetén ehhez nagyjából 100 ezer év szükséges, míg a kisebb tömegűeknél ez akár több 10 millió évig is eltarthat. Mindeközben a sűrűséghullám továbbhalad, de mire az újszülött csillagok bölcsője eléri a hullám peremét, már felragyognak a nagytömegű csillagok. Ezek az O és B típusú csillagok erős UV sugárzásukkal nagy területen ionizálják az őket körülvevő gázfelhőket, melyek ennek köszönhetően szintén világítani kezdenek. A fiatal nagytömegű csillagok és az ionizált gázfelhők, vagyis az úgynevezett HII régiók keltik életre a spirálkarokat, az ezeknek köszönhetően válik láthatóvá. A hatalmas tömeggel rendelkező csillagok azonban nem élnek sokáig. Alig 5-10 millió év alatt leélik életüket. E rövid idő alatt galaktikus keringésük során nem jutnak messzire a születési helyüktől, vagyis mindig a sűrűséghullám peremén figyelhetőek meg. A kisebb tömegű társaik azonban megkezdik számtalan cikluson át tartó keringésüket, benépesítve a korongot. A karok nem is tömegük, hanem a bennük zajló csillagkeletkezés miatt fényesebbek a közöttük lévő térnél.

C.C. Lin és F. Shu az 1960-as évek derekán dolgozták ki elméletüket, amit az óta többen továbbfejlesztettek. Ők még egyáltalán nem foglalkoztak magának a sűrűséghullámnak a kialakulásával. Ezt a kérdést egyébként a mai napig sem sikerült megnyugtatóan tisztázni.

Egyes tanulmányok szerint a galaxison belüli bármilyen kis instabilitás felelőssé tehető a sűrűséghullámok kialakulásáért. Indukálhatták ezeket akár a galaxis korongjának keletkezésekor, az abban létrejött sűrűsödések is.

A videóban a Tejútrendszer kialakulásának szimulációja látható. Figyeljük meg, a spirális struktúra kialakulását!

De egy másik galaxissal történő kölcsönhatás ugyanúgy kiválthatja a sűrűséghullámokat. Talán a fentebb említett M51 esetén is erről van szó. Érdekességképpen megjegyzem, hogy a legpompásabb karokkal rendelkező spirál galaxisok közül igen soknak van kísérője.

Léteznek azonban más sűrűséghullámon alapuló elméletek is, melyek közül a kaotikus spirálkar elméletet emelném ki, és annak is csak az egyik legegyszerűbb változatát mutatnám be. Ahogy a nevéből is sejthető, ez inkább a kaotikus, töredezett karokkal rendelkező spirál galaxisokra koncentrál, mint amilyen például a pelyhes NGC7793 galaxis. Ne feledjük el, hogy ezek a galaxisok jelentősen nagyobb számban fordulnak elő, mint a szabályos, szimmetrikus, egybefüggő karokkal rendelkező társaik. Ellentétben a Lin-Shu elmélettel itt a karok egyáltalán nem hosszú életűek, folyamatosan születnek és meghalnak, ám itt is kapcsolatban állnak a csillagkeletkezéssel. A karok kialakulása azzal kezdődik, hogy a gázban igen gazdag galaxis bizonyos régióiban lokális gravitációs instabilitás lép fel az intersztelláris gázfelhőkben, melynek hatására beindul a tömeges csillagkeletkezés. Mivel a galaxis differenciális rotációt végez, vagyis a centrumhoz közelebbi égitestek keringési sebessége nagyobb, így az előző folyamatban született csillagok lassan spirális mintázatot rajzolnak ki. Létrejön a kar, vagy kartöredék teletűzdelve kékes fényű csillaghalmazokkal és vöröses színben pompázó HII régiókkal. Az idő előrehaladtával a nagyobb tömegű, fényesebb csillagok elpusztulnak, így a kar (a kartöredék) „kivilágítása” megszűnik, a struktúra lassan elenyészik. Mindez a galaxis több pontján, az időben eltolva zajlik. Karok alakulnak ki itt, és tűnnek el ott.

Mint a fentiekből is látható, bár nem törekedtem a teljességre, nem csak egyetlen elmélet létezik, amely megpróbálja megmagyarázni, hogy miért is látunk spirál galaxisokat az világegyetemben. Az utóbbi időkben egyre többen adnak hangot annak, hogy talán más folyamatok alakíthatták ki a szabályos, szimmetrikus karokkal rendelkező galaxisok, mint például a pelyhes galaxisok korongbeli struktúráit. Előtérbe került annak vizsgálata, hogy miként lépnek fel az instabilitások a gázban, a csillagok mozgásában, mikor viselkednek állóhullámként a sűrűséghullámok, illetve mikor nem. A spirál galaxisokat pedig ennek megfelelően kezdték inkább osztályozni.

És akkor még nem is említettem, hogy a technika fejlődésének köszönhetően ma sokkal messzebbre tekinthetünk az univerzumban, így láthatjuk a galaxisok igen korai fejlődési állapotát. Ez a lehetőség a múltszázad közepén még nem állt a kutatók rendelkezésére.

Ma már tudjuk, hogy a korai világegyetemben egyáltalán nem voltak még spirál galaxisok. Ezek elődjei csak a korongból álltak, és fényes, masszív csillagkeletkezési csomókból. Alig volt még bennük rendezett struktúra. Milliárd évek teltek el, míg a dolgok lassan rendeződni kezdtek. A hatalmas csomók többnyire eltűntek, és lassan megjelent a központi dudor. A kisebb csomók elkezdték kirajzolni, az akkor még igencsak elmosódott, határozatlan spirálkarokat. Az első határozott karokkal rendelkező galaxisok akkor jelentek meg, amikor a világegyetem már nagyjából 3.6 milliárd éves volt. Erre a korszakra a spirálisok két típusa volt a jellemző. A „kétkarúak” és a vastag szabálytalan karokkal rendelkezők, melyek még mindig tartalmaztak csomókat. Az olyan négykarú galaxisokra, mint a mi Tejútrendszerünk vagy az Androméda galaxis 8 milliárd évet kellett várni az ősrobbanástól számítva.

Térjünk még vissza egy picit a felvételem célpontjához, vegyük szemügyre alaposabban. Az optikai tartományban készült felvételemen is nagyszerűen látszik, hogy az NGC7793 galaxis bővelkedik a csillagkeletkezési régiókban. Mindenfelé vöröses, némileg rózsaszínben hajló HII régiók tarkítják a korongját. A látványhoz pedig hozzáadódik a 100-150 pc (kb. 300-500 fényév) méretű OB csillagasszociációk csoportjának kék fénye. Az asszociációk tagjai, a nyílthalmazokkal ellentétben, nem kötődnek egymáshoz gravitációsan. Kiterjedésük pedig sokszorosa lehet a nyílthalmazokénak. Gázfelhők közelében, vagy abba ágyazódva akadhatunk rájuk. A felvételen a legnagyobb kék foltok mérete a 300 pc-et (közel 1000 fényév) is eléri. Bár ebben az esetben már inkább csillagkomplexumokról van szó, vagyis asszociációk csoportjáról.

Az NGC7793 karjainak struktúráját igazán azonban a róla készült infravörös felvételek teszik láthatóvá. A Spitzer űrtávcső könnyedén keresztüllát a sűrű gázfelhőkön és a poron.

NGC 7793 Spitzer

A Spitzer infravörös tartományban készült felvétele az NGC7793-ról. A kék a 3.6 mikronos, a zöld a 4.5 mikronos, a vörös szín az 5.8 és 8.0 mikronos infravörös emissziónak felel meg. Mivel a 3.6 mikronos sugárzáshoz erősen hozzájárulnak a csillagok is, így azt a képen erősen csökkentették. Ennek a levonásnak köszönhetően, a poros régiók jobban láthatóvá váltak. Kép forrása: NASA/JPL-Caltech/R. Kennicutt (University of Arizona) – SINGS (Spitzer Infrared Nearby Galaxy Survey) projekt

A kék és zöld szín az idősebb hidegebb csillagoktól származik, főleg ezek sugárzása uralja a 3.6 mikronos és 4.5 mikronos tartományt. 5.8 és 8.0 mikronos hullámhosszon a csillagok infravörös fénye azonban már elhalványul. Ebben a tartományban feltűnik a por szerkezete a galaxison belül. Egészen pontosan az úgynevezett policiklusos aromás szénhidrogének (PAH – Polycyclic Aromatic Hydrocarbons) sugárzását láthatjuk ezeken a hullámhosszakon.

A csillagok sugárzása által felmelegített por emissziója folytonos az infravörös tartományban. Ezt a folytonos spektrumot szilikát elnyelési vonalak (vagy sávok), illetve a policiklusos aromás szénhidrogének emissziós vonalai (vagy sávjai) tarkítják. A Spitzer teleszkóp infravörös kameráját pedig kimondottan úgy tervezték, hogy eme utóbbi megfigyelésére (is) alkalmas legyen. A csillagászok korábban azt tapasztalták, hogy ahol előfordul a csillagközi por, ott a policiklusos aromás szénhidrogének is előfordulnak. A csillagok sötét helyeken, sűrűs gáz- és porfelhők mélyén keletkeznek, ahová optikai tartományban vajmi kevés esélyünk van bepillantani. Az 5.8 és 8.0 mikronos emisszió azonban elárulja e fészkek helyét. Nemcsak elárulja, de egyben fel is tárja a részletek. Amíg a csillagkeletkező régióknak csak sziluettjét látjuk mindössze az optikai tartományában, addig a policiklusos aromás szénhidrogének szépen kirajzolják a ködök struktúráját.

Az előbbiek értelmében, így a vörös szín reprezentálja az NGC7793-ról készült felvételen azokat a területeket, ahol a csillagok következő generációja születik majd. Infravörös hullámhosszon még sokkal szembetűnőbb, hogy mennyire kaotikus az NGC7793 felépítése. A spirálkarok inkább csak töredezett ívek, és nem oly fenségesen csavarodnak, mint az M51 esetében, ahogy az a lenti, szintén a Spitzer űrtávcsővel készült képen látható. Zavaros szépségében mégis van számomra valami magával ragadó.

m51-infra

Az M51 (NGC5194) és az NGC5195 az infravörös tartományban a Spitzer űrtávcső felvételén. A színekre itt a fentebb leírtak érvényesek. Kép forrása: NASA/JPL-Caltech/R. Kennicutt (University of Arizona) – SINGS (Spitzer Infrared Nearby Galaxy Survey) projekt

Mikrokvazár és fekete lyukak az NGC7793-ban

NGC7793-P13-S26-01

Az NGC7793-ról készült felvételem részletének negatív változata. Két vonal fogja közre a P13 elnevezésű ultrafényes röntgenforrás (ULX) optikai tartományban is látható komponensét. A vörös kör azt a régiót jelöli, ahol az S26 nevű mikrokvazár lakik.

Mielőtt mesélnék az NGC7793 két furcsa lakójáról általánosságban is ismerkedjünk meg a csillagászati objektumok egy bizonyos csoportjával.

A világegyetemben előforduló fekete lyukak tömege igen széles tartományban változik. A galaxisok magjában tanyázó, központi szupermasszív fekete lyukak (SMBH: supermassive black hole) tömege pár milliótól több milliárd naptömegig is terjedhet. A skála másik oldalán a Napnál 5-30-szor nagyobb tömegűek helyezkednek el, melyek a nagyon nagytömegű csillagok életét lezáró szupernóva-robbanását követően keletkeznek. A szakirodalom ezeket csak csillag tömegű fekete lyukaknak (stellar black hole, stellar-mass black hole) nevezi. A hipotézisek szerint, a két véglet között foglalnak helyet a köztes tömegű fekete lyukak (IMBH: intermediate-mass black hole), melyekre egyelőre csak viszonylag kevés jelölt akadt. A fekete lyukak, ahogy ez a nevükből is sejthető a környezetükre gyakorolt hatásuk révén figyelhetőek csak meg, vegyük sorra miként állnak elénk az univerzum porondján.

A kvazárok több milliárd fényéves távolságban lévő aktív galaxis magok (Active Galactic Nucleus – AGN). A ma elfogadott modellek szerint a kvazárok magjában szupermasszív központi fekete lyuk található. Ezek a fekete lyukak gravitációjukkal csapdába ejtve, mohón próbálják elnyelni a környezetükben található anyagot. Az étekként szolgáló intersztelláris gáz és por, mely a környező felhőkből, vagy éppen szétszaggatott csillagokból származik, akkréciós korongot formál. A korongot kívülről sűrűbb, lassabban keringő gázfelhők veszik körül. Az akkréciós korong anyaga miközben befelé örvénylik, egyre gyorsabban mozog és felhevül. A folyamatban a mozgási energiájának egy jelentős része elektromágneses sugárzássá alakul. Az akkréciós korong mindkét oldalán, arra merőlegesen, a forgástengely mentén plazmából álló jet-ek jönnek létre, melyek a fekete lyuk közeli erős mágneses terében közel fénysebességre gyorsított, töltött szubatomikus részecskékből állnak. Ezek a töltött részecskék a mágneses térben kifelé spirálozva felelősek az úgynevezett szinkrotronsugárzásért.

A jet-ek létrejöttének pontos mechanizmusa még a mai napig vita tárgyát képezi a kutatók körében. Valószínűsíthető, hogy az akkréciós korongban felcsavarodó mágneses térnek kitüntetett szerepe van abban, hogy a forgástengely mentén keskeny nyalábba terelődik a kiáramlás. A jet-ek, kilövellések hatalmasak is lehetnek, hosszuk nemritkán eléri akár a több millió fényévet. Ehhez képest maga a belső szerkezet, vagyis a korong és az azt körülvevő gázfelhők a fényéves nagyságrendbe esnek. Emlékeztetőül a Tejútrendszer átmérője 100000 fényév. A kvazárok óriási mennyiségű energiát sugároznak ki, méghozzá csillagászati értelemben véve roppant kis területről.

agn_tipusok

Az, hogy a galaxis aktív magját miként látjuk az égen, milyen objektumként soroljuk be, attól függ csak, hogy a jet milyen irányba mutat. Leegyszerűsítve, ha pontosan felénk mutat az egyik jet, akkor blazárként jelenik meg az objektum. Ha a jet szöge egy kisebb szöget zár be a látóirányunkkal, akkor kvazár vagy Seyfert I típusú galaxis figyelhető meg.  Amennyiben oldalról látjuk a jet-et, akkor rádió galaxisként, vagy Seyfer II típusú galaxisként észleljük. A dolog hátterében álló mechanizmus azonban minden esetben ugyanaz.

A köztes tömegű fekete lyukaknál teljesen hasonló akkréciós mechanizmusok működnek. Ebben az esetben is a környező por és gáz a napi menü. Leggyakrabban az ultrafényes röntgenforrásokkal (ULX: ultra-luminous X ray source) hozzák őket kapcsolatba.

A csillagok tömegének nagyságrendjébe esők, akkor válnak láthatóvá, ha van egy kísérőjük, akitől csillaganyagot tudnak zsákmányolni. Egy kettős rendszerben mindkét komponens esetén megvan az a térrész, amit az adott égitest gravitációja ural. Ezt Roche-térfogatnak nevetik. Ami azon kívül kerül az akár el is hagyhatja a rendszert, vagy a páros körüli pályára áll. A belső Langrange-ponton keresztül azonban anyag áramolhat át az egyik Roche-térfogatból a másikba. Ez meg is történik akkor, ha a fekete lyuk társa fejlődése során felfúvódik és kitölti a saját Roche-térfogatát. Az átáramló csillaganyag a fekete lyuk körül akkréciós korongot hoz létre, és beindul a kvazároknál már ismertetett folyamat, csak éppen „kicsiben”. Ennek köszönhetően intenzív röntgensugárzás keletkezik, és így a „láthatatlan” láthatóvá válik a Föld körül keringő röntgen távcsövek felvételein.

Roche-lobes-corrected

Az ábra a Roche-térfogatot szemlélteti. Az L1 a szövegben is említett belső Langrange-pont. Az eredeti ábra forrása: Wikipedia.org (az eredeti ábra hibás volt, így módosítottam)

A hosszú évtizedek kutatásai azt a képet formálták a fekete lyukakról a kutatók fejében, hogy minél nagyobb egy ilyen égitest tömege, annál gyorsabban képes habzsolni a gázt, és így annál intenzívebb a megfigyelhető elektromágneses sugárzás.

Ebből a képből lóg ki az NGC7793-ban a P13 ultrafényes röntgenforrás (ULX: ultra-luminous X-ray source). A röntgentartománybeli kiugró fényességével azonnal felkeltette a kutatók figyelmét. Érthető volt az izgatottságuk, mert úgy tűnt, egy újabb köztes tömegű fekete lyuk akadhatott horogra. Nekiláttak, hogy meghatározzák a fizikai paramétereket. A csillagászok szerencsés helyzetben voltak, ugyanis sikerült azonosítani a fekete lyuk kísérőjét az optikai tartományban. A körülbelül 20.5 (V) magnitúdós csillag az én felvételemen is látszik. B8I színképtípusa alapján, egy késői típusú kék szuperóriásról van szó. Luminozitásából és színképéből pedig következtetni lehetett a kísérő tömegére és sugarára. A kapott értékek szerint, a csillag tömege valahol 10 és 20 naptömeg között lehet, sugara pedig 40-60-szorosa központi csillagunkénak. A csillag fejlődése során kitöltötte Roche-térfogatát, és éppen anyagot ad át a fekete lyuknak. A csillagászok észrevették, hogy a színképben megfigyelhető abszorpciós és emissziós színképvonalak radiális sebességgörbéje éppen ellentétes fázisú. Ez a viselkedés a spektroszkópikus kettőscsillagok színképének egyik jellegzetessége, vagyis az olyan párosoké, ahol a komponensek szeparációja távcsővel lehetetlen, csak a színkép árulkodik arról, hogy ketten vannak. A közös tömegközéppont körüli keringésük során hol az egyik közelít felénk, a másik meg távolodik, hol pedig éppen fordítva. A változó radiális (látóirányú) sebesség miatt a színképvonalak hol a kék, hol a vörös felé tolódnak (Doppler-effektus). Mivel a P13 abszorpciós és emissziós színképvonalainak radiális sebesség görbéjének amplitúdója közel azonos, így ebből következően a csillag és a fekete lyuk tömegének is közel azonosnak kell lennie. A fekete lyuk tömegére így 10-20 naptömeget kaptak „mindössze”, vagyis az „csak” egy csillag tömegű fekete lyuk.

A fenti eredményeket taglaló publikáció még 2010-ben jelent meg. Már itt megjegyezték a szerzők, hogy még több mérésre van szükség a dolgok tisztázásához. A kutatócsapat tehát ezután sem pihent, és folytatták a vizsgálatokat, immáron több évnyi mintával a tarsolyukban újabb, pontosabb következtetéseket tudtak levonni.

A kísérő színképtípusát pontosították B9Ia-ra, és tömegére is kissé más értéket kaptak, azonban ez nagyságrendileg nem tért el a korábbi publikációtól. A csillag eredeti tömege anno 20-25 naptömeg lehetett, de mára már csak 18-23 naptömegű. A kék szuperóriás 8 évnyi fénygörbéjét (UV, V) tanulmányozva sikerült kimutatni, hogy a keletkező röntgensugárzás a kísérő fekete lyuk felé tekintő oldalát felfűti. A fűtött terület révén lehetőség adódott, hogy meghatározzák a keringési periódusát, melyre 64 napot kaptak, és a pálya excentricitását (elnyúltságát).

NGC7793-P13-artp

A P13-as ULX fantáziarajza. A fekete lyuk felöli oldalt felfűti az akkréciós korong röntgensugárzása. A rajzon az is látszik, ahogy a korong leárnyékolja a sugárzás egy részét. Kép forrása: International Centre for Radio Astronomy Research

A csillagászok kezükben a fekete lyuk társának paramétereivel, vagyis tömegével, keringési periódusával, a pálya alakjával, stb., illetve a megfigyelt luminozitás görbékkel, nekiláttak a rendszert modellezni. Eredményül azt kapták, hogy a fekete lyuk tömege nem lehet nagyobb 15 naptömegnél. Ellenkező esetben a Roche-térfogat túl kicsi lenne, amikor a B9Ia óriáscsillag a legközelebb kerül a fekete lyukhoz.

A modellek azt is megmutatták, hogy a röntgenforrás nagy fényessége, a 15 naptömegnél kisebb tömegű fekete lyuk esetében, az úgynevezett szuperkritikus akkrécióval (supercritical accretion) magyarázható. De mit is jelent ez? Ahogy fentebb is utaltam rá, a kibocsájtott sugárzás intenzitása függ a fekete lyuk tömegétől. Szférikus anyagbeáramlás esetén az objektum nem lehet fényesebb az úgynevezett Eddington luminozitásnál. A beáramló gázzal szemben áll ugyanis a sugárnyomás, így van egy limit, amit nem léphet át a sugárzás erőssége, különben az „elfújja” a beáramló anyagot. Amennyiben viszont egy vékony korongban spirálozik befelé a gáz, akkor a sugárzás anizotrópiája miatt a sugárzás túllépheti az Eddington határt, a korongot nem „fújja el” a sugárzás. Az, hogy milyen nagy luminozitást látunk, mennyivel lépi túl a sugárzás erőssége a küszöböt, nagyban függ a betekintési szögtől. Természetesen ebben az esetben is létezik egy elméleti maximum, de ennek tárgyalásától most eltekintek.

Eddington_Limit-c02

Az Eddington luminozitást, és a szuperkrikitus akkréciót szemléltető ábra. Részletek a fenti szövegben. Az eredeti ábrák forrása: Shin Mineshige és mások

Az előzetes várakozásokkal ellentétben a P13 ultrafényes röntgenforrás tehát nem egy köztes tömegű fekete lyukat tartalmaz, mindössze egy masszív csillag tömegű fekete lyukat, ami kicsi tömege ellenére meglepően „nagyétvágyú”.

Végezetül ejtenék pár szót az az NGC7793 egy másik különös lakójáról. Ez az NGC7793-S26 (a továbbiakban csak S26) jelű HII régióban található mikrokvazárról.

Az NGC7793-ról készült kompozit képen A képen megjelölt NGC7793-S26 HII régió egy mikrokvazárt rejt magában. A Chandra űrtávcső felvételéről származik, és a különböző energiájú röntgensugárzást jelöli a vörös, a zöld és a kék szín. A világoskék az optikai tartománynak felel meg (luminance kép). Ez az utóbbi felvétel a VLT (Very Large Telescope array) egyenként 8.2 méteres átmérőjű tükrökkel rendelkező távcsőrendszerével készült. Az aranyszínű régiók pedig a CTIO 1.5 méteres távcsővel felvett Hα keskenysávú felvételről származnak.

Kép forrása: http://chandra.harvard.edu – Röntgentartomány (NASA/CXC/Univ of Strasbourg/M. Pakull és mások); Látható fény (ESO/VLT/Univ of Strasbourg/M. Pakull és mások); H-alfa (NOAO/AURA/NSF/CTIO 1.5m)

Ahogy fentebb is írtam, a kvazárok és az aktív galaxisok „védjegye” a két hatalmas jet. Ritkán, eddig nem teljesen tisztázott okokból, azonban a csillag tömegű fekete lyukak esetében is keletkeznek jet-ek, melyek a rádiótartományban két lebenyként figyelhetőek meg. Mivel ezen kilövellések mérete eltörpül a galaxisok magjából kiindulókéhoz képest, ezért gyakran nevezik az ilyen fekete lyuk és egy csillag alkotta rendszereket mikrokvazároknak.

A Tejútrendszerünkben ennek az égitest típusnak az egyik prominens képviselője az SS443, de az NGC7793 mikrokvazárjának jet-jei messze lekőrözik azét. Eme utóbbinak a mérete kétszer akkora, energiája pedig tízszerese az SS443-énak. Az S26 a világegyetem általunk ismert „legfényesebb” ilyen objektuma. A fenti képen, a bal felső kinagyított kis képkockán (röntgentartomány) jól látszik a fekete lyuknak a környező gázra gyakorolt hatása. Középen a kékes-zöld röntgenfolt jelöli a fekete lyuknak és társának a „búvóhelyét”. Az idők folyamán a kilövellések, a környező intersztelláris anyagba 1000 fényév kiterjedésű forró gázbuborékot fújtak. Egymással szemben, a mikrokvazár két ellentétes oldalán pedig az figyelhető meg, ahogy a jet-ek az intersztelláris gázba ütköznek, és felfűtik azt.

Miért érdekli annyira a csillagászokat a kvazárok és rádió galaxisok kistestvérei? Miért ölnek annyi energiát az NGC7793 különös objektumainak tanulmányozásába? A válasz roppant egyszerű: közel vannak, így rajtuk keresztül megérthetjük a távoli nagyok működését. Segítségükkel bepillantást nyerhetnek az akkréciós folyamatok rejtelmeibe. Láthatják kicsiben és közelről, milyen hatása van a jet-eknek, illetve az akkréciós korongban és a fekete lyuk közelében keletkező sugárzásnak a környezetre. Így arra is meglelhetik a választ, hogy az aktív galaxis magok miként befolyásolták a galaxis fejlődését az univerzum hajnalán.

Zárszó

Messzire kalandoztam a Balatontól úgy hiszem. Nem volt nehéz, mert a csillagászok több nemzedéke által kemény munkával kitaposott, néha tévutakkal tarkított ösvényen kellet csupán végiggyalogolnom. Bízom benne, hogy e galaxis szépségén túl sikerült, a számomra gyakorta többet jelentő mögöttes dolgokból is átadnom valamelyest az olvasónak. Miért? Hogyan? Felnőve se féljünk feltenni e kérdéseket, és keresni a válaszokat.

Felhasznált irodalom:

I. D. Karachentsev, E. K. Grebel, M. E. Sharina, A. E. Dolphin, D. Geisler, P. Guhathakurta, P.W. Hodge, V. E. Karachentseva, A. Sarajedini, P. Seitzer: Distances to Nearby Galaxies in Sculptor

W. Gieren, G. Pietrzynski, A. Walker, F. Bresolin, D. Minniti, R.P. Kudritzki, A. Udalski, I. Soszynski, P. Fouque, J. Storm, G. Bono: The Araucaria Project. An improved distance to the Sculptor spiral galaxy NGC 300 from its Cepheid variables

Marija Vlajić, Joss Bland-Hawthorn, Kenneth C. Freeman: The Structure and Metallicity Gradient in the Extreme Outer Disk of NGC 7793

Elmegreen, Debra Meloy; Elmegreen, Bruce G.: Arm classifications for spiral galaxies

Bruce G. Elmegreen: Star Formation in Spiral Arms

Pietrzyński, G.; Ulaczyk, K.; Gieren, W.; Bresolin, F.; Kudritzki, R. P.: A survey for OB associations in the Sculptor Group spiral galaxy NGC 7793

C. Motch, M.W. Pakull, F. Grisé, R. Soria: The supergiant optical counterpart of ULX P13 in NGC7793

C. Motch, M. W. Pakull, R. Soria, F. Grisé , G. Pietrzyński: A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source

M. A. Dopita, J. L. Payne, M. D. Filipović, T. G. Pannuti: The Physical Parameters of the Micro-quasar S26 in the Sculptor Group Galaxy NGC 7793

 

NGC4945

NGC4945-LRGB-20150216-T30-300s-TTK

NGC4945

iTelescope.net T30 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI-PL6303E CCD kamera

2015-02-16, 2015-02-17, 2015-04-15, 2015-04-16– Siding Spring Observatory – 25 x 300 sec L, 8 x 300 sec R,G,B

Az NGC1316-ról (Fornax A) készült fotó befejezése után hosszasan töprengtem, hogy melyik déli galaxis legyen a következő célpontom. Az M97 és M108 párosról még készülőben volt a fotó, amikor megszületett az elhatározás: az NGC4945 galaxis lesz a következő távészleléssel megörökítendő csillagváros. Az utóbbi időben párhuzamosan használom kis műszeremet a kertből, és az iTelescope.net Ausztráliában (Siding Spring Observatory) található egy-egy távcsövét. Hogy mi a kapocs a kettő között? Ez esetben az M108 megjelenése nagyban inspirált, hogy nagyobb távcsővel „lencsevégre kapjak” egy kusza porsávokkal tarkított, (majdnem) éléről látszó galaxist. (Előtte még tettem egy kis kitérőt a Wolf-Rayet csillagok körül található különös ködök világába.) Hamarosan látni fogjuk azonban, hogy ennek a galaxisnak az asztrofizikája legalább olyan izgalmas, mint megjelenése.

Az NGC4945 a Centaurus csillagkép déli területén található, így sosem emelkedik lakhelyem horizontja fölé. Bár hazánk égboltján is sok az érdekes csillagváros, mégis irigylem azokat, akik tőlünk délebbre, saját maguk is megfigyelhetik ezt a 20ˊ x 3.8ˊ látszólagos méretű 9.3 magnitúdós galaxist. Valószínűleg a déli féltekén élő amatőrcsillagászok is hasonlóan éreznek pár nagyszerű északi objektum említése esetén. Talán ezekben a percekben valaki éppen elhatározza, hogy északra utazva végre megcsodálja, lefotózza az Örvény-ködöt (M51), vagy távcsőidőt bérel egy északi félteken lévő csillagvizsgálóban.

NGC4945-map1.PNG

Az NGC4945 a Centaurus csillagkép déli területén található. A kép az első expozíciók készítésekor, az ausztráliai (Siding Spring Observatory) égbolt állapotát mutatja. Kelet-északkelet felé (a baloldalon) a hazánkból is megfigyelhető csillagképek láthatóak fejjel lefelé.

De hol helyezkedik el a kozmoszban?  Távolságát csak az elmúlt egy évtizedben többször is meghatározták. Alapvetően két módszert használtak a csillagászok: a Tully-Fisher relációt, és a galaxisban lévő vörös óriásokat.

A Tully-Fisher relációról már korábban is írtam. Azoknak, akik ezeket a cikkeket nem olvasták:

A Tully-Fisher reláció (elliptikus galaxisok esetén nem használható, csak spirális és lentikuláris galaxisoknál) egy tapasztalati összefüggés a galaxisok tömege vagy luminozitása és emissziós vonalainak szélessége, vagyis a galaxison belüli szögsebességek között. A részletekbe nem nagyon elmerülve, arról van szó, hogy a galaxison belüli sebességekből meghatározható a galaxis luminozitása, és ebből pedig távolsága. Ugyanis, a galaxis csillagainak dinamikáját a galaxis tömege határozza meg, mely pedig összefüggésben áll annak luminozitásával. Az így kapott luminozitást felhasználva a látszólagos fényesség ismeretében a távolság már meghatározható.

Ezzel a módszerrel maga Tully és kutatótársai, továbbá Nasonova és csapata is meghatározta az NGC4945 távolságát. Az első esetben 3.55 Mpc, míg a másodikban 4.5 Mpc adódott a galaxis távolságára.

A vörös óriás csillagok földi távcsövek esetén 3 Mpc távolságon belül kitűnően használhatóak a galaxisok távolságának meghatározására. A Hubble űrtávcsővel ez a távolság még a négyszeresére kiterjeszthető, ugyanis ilyen távolságig képesek vele a kutatók csillagokra bontani a galaxisokat. Egészen pontosan a fényesebb csillagok, így a vörös óriások is, ekkora távolságban még detektálhatóak. A módszer megértéséhez nézzük meg a Napunk tömegével rendelkező csillagok fejlődését egy olyan diagramon, ahol a vízszintes tengelyen a csillag effektív hőmérsékletének logaritmusa, míg a függőleges tengelyen a Naphoz viszonyított luminozitásának logaritmusa található. A csillag fejlődése során jellegzetes görbe mentén mozog. Nem célom bemutatni a teljese életpályát, csupán a módszer megértéséhez szüksége fogalmakat szeretném tisztázni.

HRD-TRGB.PNG

A naptömegű csillagok életpályája. A vízszintes tengelyen a csillag effektív hőmérsékletének logaritmusa, míg a függőleges tengelyen a Naphoz viszonyított luminozitásának logaritmusa található.

A vörös óriás fázis a Naphoz hasonló tömegű csillagok életében akkor következik be, amikor a magban a hidrogén készletek már fogytán vannak. A hidrogén fúzió a magot körülvevő külső héjba tevődik át, miközben a csillag külső részei ennek hatására kitágulnak, míg felszíni hőmérséklete lecsökken. A csillag elhagyja a fősorozatot, és a görbén elvándorol egészen az F pontig. Jól látható, hogy ebben a luminozitás csúcspontban valami drasztikus történik, és jelentős fordulat következik be a naptömeg körüli csillagok életében: robbanásszerűen beindul a hélium fúziója a degenerált héliumból álló magban, és ezután a csillag luminozitása jelentősen lecsökken. Ezt a pontot az első vörösóriás-ág tetejének nevezik. A pont neve az angol nyelvű szakirodalomban: Tip of the Red Giant Branch (TRGB).

A vörös óriások eloszlását felrajzolva egy szín-fényesség diagramon, ahol a szín a vizuális és a közeli infravörös tartományban megfigyelt fényességek különbsége (V-I), míg a fényesség a közeli infravörös tartományban látszó fényesség (I), azok eloszlása egyszerű hatványtörvényt követ. Ezt a csillagfejlődési elméletek és a megfigyelések egyaránt alátámasztják. Megfelelő matematikai apparátus birtokában meghatározható a TRGB látszólagos közeli infravörös fényessége.

NGC4945-TRGB-2.JPG

A vörös óriások eloszlása az NGC4945 galaxis szín (V-I) és közeli infravörös fényesség diagramján. Forrás: M. Mouhcine, H.C. Ferguson, R.M. Rich, T.M. Brown, T.E. Smith

Az idős (több milliárd éves) vörös óriás csillagok esetén, melyek fémtartalma kicsi ([Fe/H] ≤ -0.7), a közeli infravörös tartományban a TRGB pont abszolút fényessége független azok fémtartalmától. Ez már nem teljesen igaz a fiatalabb, így nagyobb fémtartalmú csillagokra. A csillagászok minden olyan elemet, ami nem hidrogén vagy hélium, fémnek neveznek. A csillagok fémtartalma fontos szerepet játszik fejlődésükben, és ennek köszönhetően kissé más utat járnak be. A nagyobb fémtartalmú vörös óriások életpályája a diagramon kissé a kékes tartomány felé tolódik. A módszer egyik lényeges sarokköve tehát, hogy a csillagok fémtartalma, vagyis kora egy tág intervallumban (>2 milliárd év) nem befolyásolja szignifikánsan a távolság meghatározás pontosságát. Ráadásul idősebb csillagpopulációk minden galaxisban akadnak, míg a fiatalabbak, a csillagkeletkezés hiányában szinte teljesen hiányoznak például az elliptikus galaxisokból.

Adott vörös óriások csoportja esetén, megfelelő csillagászati és matematikai ismeretek birtokában a TRGB meghatározható. Ennek a pontnak a közeli infravörös tartományban látszó fényességéből, illetve az abszolút fényessége birtokában már kiszámítható a galaxisok távolsága.

Ez elsőre igen jól hangzik, és ígéretessé teszi ezt a távolság meghatározási eljárást. Természetesen, több nehézség is felmerül a pusztán matematikai „kihívások” mellett. Megfelelő csillagjelölteket kell választani, és a látszólagos fényesség esetén több korrekciós tényezőt is figyelembe kell venni. Egy ilyen például, hogy az NGC4945 viszonylag közel látszik a saját galaxisunk síkjához, így az intersztelláris médium némi vörösödést okoz a megfigyelt objektumok fényében, illetve tompítja azt. Magában a távoli galaxisban található por és gáz szintén hatással lehet a megfigyelt színre és fényességre. Mint az hamarosan látni fogjuk, ez a hatás nagyban csökkenthető, ha megfelelő helyről választjuk a vörös óriásokat.

Végezetül a TRGB abszolút fényességét is be kell kalibrálni. A kalibrációkat olyan gömbhalmazokon és csillagpopulációkon végezték el, ahol más távolság meghatározási módszerek is rendelkezésre álltak.

Mouhcine, H.C. Ferguson, R.M. Rich, T.M. Brown, T.E. Smith az NGC4945 halójából választott célpontokat, ahol az idősebb csillagpopulációk találhatóak, viszonylag könnyen azonosíthatóak, illetve a por által okozott vörösödés kevésbé számottevő. A TRGB meghatározásával kiszámították a galaxis távolságát, mely szerintük 3.36 Mpc.

NGC4945-TRGB-halo.PNG

A bekeretezett területeken fésülték át a kutatók az NGC4945 halóját megfelelő vörös óriások után kutatva.

Jeremy Mould és Shoko Sakai az előbb vázolt módszert is felhasználva 3.8 Mpc-et kapott a csillagváros távolságára. Céljuk azonban egy kissé más volt, mint Mouhcine csapatának, ugyanis különböző távolságmérési módszereket hasonlítottak össze tanulmányukban.

Anélkül, hogy felsoroltam volna az összes távolsággal kapcsolatos kutatást, az értékek láthatóan eltérnek valamelyest. Amennyiben a témával kapcsolatban fellelhető publikációk eredményeinek középértékét fogadjuk el, az NGC4945 távolsága 3.8 Mpc. Ha az átlagot vesszük, akkor pedig 4.1 Mpc jön ki. Valószínűleg nem tévedünk nagyot, ha azt mondjuk: az NGC4945 távolsága 12-13 millió fényév. Ez jól összeegyeztethető a Centaurus galaxis csoport (súlypontjának) távolságával, melynek az NGC4945 az egyik a legfényesebb tagja.

Tudva, hogy milyen messze van, illetve ismerve az égen a látszólagos méretét, az NGC4945 átmérője nem sokkal marad el a Tejútrendszerünké mögött: nagyjából 70000-75000 fényév (12-13 millió fényéves távolság és 20ˊ látszólagos átmérő esetén). Az Androméda galaxis után a második legközelebbi nagyméretű spirál galaxis.

A felvételre pillantva jól látható, hogy a galaxis hemzseg a csillagkeletkezési területektől. Fiatal, forró csillagok halmaza festi helyenként kékre a csillagvárost, míg a vöröses szín e csillagok által gerjesztett, ionizált hatalmas hidrogénfelhőktől származnak. A csillagok keletkezési üteme felülmúlja Tejútrendszerünkét, így az NGC4945-öt a csillagontó galaxisok közé sorolják.

A csillagok ragyogása, a világító hidrogénfelhők, a sötét kanyargó porfelhők igazán impozánssá teszik ezt a majdnem éléről látszó galaxist. Ám ami nekem a szépséget jelenti, az a csillagászoknak a nehézséget. Egy nagyjából 78° inklinációval rendelkező spirál galaxisra „rápillantva” roppant nehéz megmondani a pontos morfológiai felépítését. Hogyan helyezkednek el a karok? Mennyire szorosan csavarodnak a galaxis köré? Küllős-e a spirál galaxis? Van központi dudor? Mi történik a magban?

Természetesen vannak árulkodó nyomok már az optikai tartományban is. A látható spektruma alapján, az NGC4945 Seyfert II típusú galaxis, vagy aktív galaxis maggal rendelkezik (Active Galactic Nucleus – AGN). A mag által kisugárzott nagymennyiségű energia az ott elhelyezkedő szupermasszív fekete lyuk jelenlétével magyarázható. Az egész jelenséget azonban por és molekula felhők takarásából kell szemlélnünk. Találóan kijelenthető, hogy az NGC4945 titkai jórészt ködbe burkolóznak. Hagyjuk hát el a vizuális tartományt, és pillantsunk a dolgok mélyére.

Preserving the Legacy of the X-ray Universe

Az NGC4945 magjának optikai tartományban és röntgen tartományban (kék és rózsaszín) készült kompozit képe.  – Röntgen tartomány: NASA/CXC/Univ degli Studi Roma Tre/A.Marinucci és mások, optikai tartomány: ESO/VLT & NASA/STScI

ngc4945-Xray-cut.JPG

Az NGC4945 1ˊx1ˊ központi régiója a röntgen tartományban (vörös:0.3-2 keV, zöld: 2-10 keV) – Forrás: NASA/CXC/Univ degli Studi Roma Tre/A.Marinucci és mások

Amíg az optikai spektrum csak „sejtetni engedi”, hogy a magban nagyenergiájú folyamatok zajlanak, megfigyelve az NGC4945 által kibocsájtott röntgensugárzást ez teljesen nyilvánvalóvá válik. A 10 keV (kemény) röntgen tartományban direkt emissziót láthatunk, míg a 0.3-2 KeV (lágy) nem kibocsájtó közeg, csupán szóródik rajta a sugárzás. Ez az utóbbi jelenség az úgynevezett Compton-szórás. Nagyon leegyszerűsítve: amikor egy nagyenergiájú röntgen foton atomos anyaggal ütközik, akkor energiájának csak egy részét adja át a „kibillentett” elektronnak, majd kisebb energiájú (lágyul a sugárzás), megváltozott irányú fotonként folytatja az útját („mintegy szóródik az atomon”).

A röntgensugárzás keletkezésének egyik oka a galaxis magjában található szupermasszív, 1-1.5 millió naptömegű fekete lyuk. A fekete lyuk megpróbálja elnyelni a környezetében található anyagot, mely akkréciós korongot formál körülötte. Ezt pedig kívülről sűrűbb, lassabban keringő gázfelhők veszik körül. Az akkréciós korong anyaga miközben befelé örvénylik, egyre gyorsabban mozog és felhevül. Mozgási energiájának egy jelentős része elektromágneses sugárzássá alakul. Míg a felszabaduló energiája másik része biztosítja a töltött részecskék relativisztikus (közel fénysebességre) történő gyorsítását. A fekete lyuknál az akkréciós korongra merőleges, a forgástengellyel párhuzamosan plazmából álló jet-ek jönnek létre, melyben az említett részecskék kifelé haladva spiráloznak a mágneses térben, miközben szinkrotonsugárzást bocsájtanak ki.

De vannak csillagászok, akik vitatják, hogy egyedül a fekete lyuk lenne felelős a megfigyelt sugárzásért, illetve a magot körülvevő intersztelláris anyag felfűtéséért. Az NGC4945 centruma körül más viharos események is zajlanak.

A csillagászok rádiótávcsöveikkel feltérképezték a molekuláris gázfelhők eloszlását és azok dinamikáját az NGC4945-ben. Ehhez az atomos hidrogén és az a CO (karbon-monoxid) által kibocsájtott rádiósugárzást vizsgálták. Az intenzitás térkép mellett felrajzolták a felhők pozíció-sebesség diagramját is. Így a molekuláris felhők eloszlása és sűrűsége mellett, a galaxison belüli sebességükre és mozgásuk irányára is fény derült. A megfigyelések igazolták, hogy az NGC4945 valóban küllős spirál galaxis. A küllő mentén pedig gáz áramlik a galaxis középpontja felé. Igen valószínű, hogy ennek a folyamatnak köszönhető az, hogy a csillagváros centrumát hatalmas, nagyjából 200 pc (652 fényév) átmérőjű gyűrű alakú molekuláris gázfelhőkből álló képződmény veszi körül. Az ennek mélyén elhelyezkedő tórusz alakú régióban pedig robbanásszerű csillagkeletkezés zajlik, melynek nyomai a rádió és infravörös tartományban egyaránt megfigyelhetőek.

NGC4945-Pa_emission-a.JPG

Az NGC4945 Paschen alfa (Pa-α) emissziós térképén jól látszik a tórusz alakú csillagkeletkezési régió a centrum körül. Az 1875 nm-es infravörös Pa-α sugárzás a gerjesztet hidrogén atom n=4-ről n=3 energiaszintre történő átmenete során keletkezik. Kép forrása: Marconi és mások.

Ebben a régióban igen jelentős mennyiségben keletkeznek a Napnál jóval nagyobb tömegű csillagok, melyek intenzív UV sugárzásukkal gerjesztik, ionizálják a körülöttük lévő intersztelláris anyagot. Ezek a forró, kék csillagok hatalmas üregeket fújnak azokba a ködökbe, melyben korábban megszülettek. A tovaterjedő ionizációs frontok felfűtik a csillagközi anyagot. A fényes behemótok tömegtől függően pár millió, vagy pár tízmillió év alatt leélik életüket, és szupernóvaként lángolnak fel. A robbanás keltette lökéshullámok újabb sokkhatást hoznak létre az intersztelláris médiumban, még tovább fűtve azt. A több millió fokosra hevült gáz sugározni kezd a röntgen tartományban. (Ez a gáz roppant ritka, így ha űrhajósként ellátogatnánk ebbe a környezetbe, sokkal jobban kéne aggódnunk a nagyenergiájú fotonok és a csillagszél töltött részecskéi okozta káros hatások miatt, mint hogy „megsülünk” a több millió fokos gázban.) A fiatal csillagok erős csillagszelének és a szupernóva-robbanásoknak köszönhetően, a felhevült gáz nagy sebességgel áramlik kifelé a galaxis magjából. A szakirodalomban ezt a jelenséget nevezik galaktikus szuperszélnek (superwind). Két ellentétes hatás dolgozik tehát ebben a galaxisban. A befelé áramló gáz újabb csillagok keletkezéséhez biztosít nyersanyagot, míg a galaktikus szuperszél kisöpri azt. A megfigyelések szerint egyelőre az első folyamat áll nyerésre, a robbanásszerű csillagkeletkezés még nem érte el a csúcsát az NGC4945-ben.

Miközben rátekintünk az NGC4945 fotójára, vagy miközben a szerencsésebbek az okuláron keresztül szemlélik a látványt, érdemes azon elgondolkodni, hogy kizárólag az optikai megfigyelésekre támaszkodva viszonylag keveset tudnánk erről a galaxisról. Ahhoz, hogy egy csillagászati objektum természetét teljesen megérthessék, a kutatóknak több hullámhosszon is vizsgálniuk kell azt. Ez a tény azonban ne tántorítson el minket az égbolt látnivalóinak élvezetétől. Derült éjszakákon pillantsunk fel az égre, ragadjunk távcsövet. Hagyjuk, hogy lelkünk szárnyaljon! Tapasztalni fogjuk, hogy a racionális és kíváncsi tudományon túl, van az ég dolgainak megfigyelésében valami spirituális. Valami, ami a léleknek szól. Én így hiszem.

Felhasznált irodalom:

M. Salaris, S. Cassisi: The ‘Tip’ of the Red Giant Branch as a distance indicator: results from evolutionary models

Mouhcine, H.C. Ferguson, R.M. Rich, T.M. Brown, T.E. Smith: Halos of Spiral Galaxies. I. The Tip of the Red Giant Branch as a Distance Indicator

Jeremy Mould és Shoko Sakai: The Extragalactic Distance Scale without Cepheids

Ott, J.B. Whiteoak, C. Henkel, R. Wielebinski: Atomic and Molecular Gas in the Starburst Galaxy NGC4945

Richard C. Y. Chou, A. B. Peck, J. Lim, S. Matsushita, S. Muller, S. Sawada-Satoh, Dinh-V-Trung, F. Boone, C. Henkel: The Circumnuclear Molecular Gas in the Seyfert Galaxy NGC4945

A. Marconi, E. Oliva, P.P. van der Werf, R. Maiolino, E.J. Schreier, F. Macchetto, A.F.M. Moorwood: The Elusive Active Nucleus of NGC 4945

A. Marinucci, G. Risaliti, Junfeng Wang, E. Nardini, M. Elvis, G. Fabbiano, S. Bianchi, G. Matt: The X-ray reflector in NGC 4945: a time and space resolved portrait

RCW58

RCW58-20150205-T30-TTK.JPG

RCW58

2015-02-05 – Siding Spring Observatory – 13 x 600 sec Hα Bin2

iTelescope.net T30 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI-PL6303E CCD kamera

A déli Carina (Hajógerinc) csillagképben található az RCW58. Ahogyan azt a fénykép alapján az olvasó is valószínűleg sejti, a körülbelül 3000 pc távolságra lévő köd különös megjelenését a közepén elhelyezkedő fényes csillagnak, a WR40-nek köszönheti. Ismerkedjünk meg egy kicsit közelebbről ezzel a végnapjait élő objektummal.

A Napnál jóval nagyobb tömegű csillagok egész életükben nagy befolyással bírnak környezetükre. Szinte attól a pillanattól kezdve átformálják az univerzumot, amint születésük után beindul a magjukban a hidrogén fúziója. Intenzív UV sugárzásukkal gerjesztik, ionizálják a körülöttük lévő intersztelláris anyagot. A közelükben lévő hidrogén felhők ennek köszönhetően „világítani” kezdenek. Erős sugárzásuk nemcsak életet lehel ezekbe a felhőkbe, de azonnal erodálni is kezdi azokat. Ezek a forró, kék csillagok hatalmas, látványos üregeket fújnak azokba a ködökbe, melyben korábban megszülettek. A tovaterjedő ionizációs frontok pedig szemet gyönyörködtető formákat hoznak létre, miközben beleütköznek a nagyobb sűrűségű csillagközi anyagba, vagy éppen felgyorsulnak ott, ahol a sűrűség kisebb. A kibocsájtott nagyenergiájú fotonok mellett, a kisebb csillagokhoz képest erős csillagszelük, vagyis a belőlük kiáramló anyag is fontos szerepet játszik a környező világűr formálásában. A fényes behemótok tömegtől függően pár millió, vagy pár tízmillió év alatt felhasználják magjukban található hidrogénkészletük jelentős részét, és elhagyják a Hertzsprung-Russell diagramon a fősorozatot.

Stellar_evo.JPG

Csillagok fejlődési útja a Hertzsprung-Russell diagramon. A nagytömegű csillagoknál használt angol rövidítések: MS – fősorozat, BSG: kék szuperóriás, YSG: sárga szuperóriás, RSG: vörös szuperóriás, LBV: fényes kék változó, WR: Wolf-Rayet csillag

A 8-15 naptömegű csillagok a fősorozatot elhagyva vörös szuperóriássá válnak, majd szupernóvaként robbannak fel. Fényük saját galaxisukat is túlragyogja, miközben anyaguk jelentős része szétszóródik az űrben. Még halálukban is képesek befolyást gyakorolni. A táguló maradvány lökéshullámot hoz létre a körülötte lévő por és gáz ködökben, melyekben így újabb csillagok összesűrűsödése indulhat meg. A nagytömegű csillagok halála gyakran egy új genezis kezdete.

A 15-20 naptömeg közti tartományba eső csillagok élete nem közvetlenül a vörös szuperóriás állapot után ér véget. Előbb a külső rétegeiket dobják le, és a vörös szuperóriás állapotot elhagyva, sárga szuperóriás lesz belőlük. Majd vagy ekkor, vagy innen is továbbfejlődve, a kék szuperóriás állapotban következik be a szupernóva-robbanás. A 20 naptömegnél nagyobb csillagokból azonban a fősorozat után sosem lesz vörös szuperóriás. Bár felszíni hőmérsékletük a fősorozat után lecsökken, így a diagram vörös oldala felé indulnak, de idővel visszakanyarodnak. Ezek végig megtartják kékesfehér árnyalatukat, és idővel úgynevezett Wolf-Rayet csillagokká fejlődnek, akárcsak az RCW58 középpontjában található WR40. Sorsukat azonban ezek sem kerülhetik el, és életük lezárásaként szupernóvává válnak.

A Wolf-Rayet csillagok tudományos históriája egészen a XIX. századig nyúlik vissza. Charles Wolf és Georges Rayet 1867-ben a Hattyú csillagképben három különös csillagot talált, melyek színképében nagyon széles emissziós vonalak voltak megfigyelhetők. Már akkor tudták, hogy valami különösre akadtak. 1929-ben aztán értelmezést nyert a színkép. A WR csillagok igen nagy ütemben és hatalmas sebességgel veszítenek anyagot. A Napunknak is van csillagszele (napszél), mely révén folyamatosan anyagot veszít. Ez évente 10-14 naptömeget jelent. Ehhez képest egy WR csillagról évente 10-5 naptömeg áramlik ki, méghozzá észveszejtő 300-2400 Km/s sebességgel. Mindez megmagyarázza a spektrum tulajdonságait, miszerint a nagysebességgel kiáramló forró anyag emissziós vonalait látjuk a csillag színképében a Doppler-effektus által kiszélesítve. A WR40 is egyike a Tejútrendszerben ismert valamivel több, mint 200 WR csillagnak.

Wr137_spc.png

A WR137 spektruma a széles emissziós vonalakkal. A WR137 az első Wolf-Rayet csillagok egyike, melyet még 1867-ben fedezett fel a Hattyú csillagképben Charles Wolf és Georges Rayet.

De hogyan jött létre az RCW58, vagyis maga a köd? Ahogy fentebb is írtam, a nagytömegű csillagok már a fősorozaton is jelentős csillagszéllel rendelkeznek, folyamatosan anyag áramlik ki belőlük. Ennek és sugárzásuknak köszönhetően mire elhagyják a fősorozatot egy igen forró gázból álló óriási buborék jön létre, melyet néhány km/s sebességgel táguló semleges (nem ionizált) anyagból álló héj határol. Ennek sugara addigra 20 pc-et is meghaladhatja. A fejlődés későbbi állapotában, a tömegveszteség nagysága még jelentősebbé válik, az ekkor jelentkező csillagszél sebessége ugyan viszonylag lassú, de a sűrűsége jelentősen megnő. A csillag, annak tömegétől függően, a vörös szuperóriás, a sárga szuperóriás, vagy a nagy luminozitású kék változó csillag fázisban akár tömege felét is elveszítheti. A legjelentősebb anyagkibocsájtások epizódokban történnek, a kiáramló anyag eloszlása pedig nem gömbszimmetrikus. A csillag szép komótosan „saját maga köré pöfékel”. A kellően nagytömegű csillagok a végső WR stádiumban, extrém UV sugárzásukkal ionizálják a korábban kidobódott anyagot. Ezáltal a köd a H-alfa (Hα), vagyis a 656.81 nm-es hullámhosszon sugározni kezd. (Ez az objektum e tulajdonsága alapján került be anno a déli égbolt 182 objektumot tartalmazó Hα régióit összegyűjtő RCW katalógusba, melyet Alexander William Rodgers, Colin T. Campbell és John Bartlett Whiteoak állított össze.) Gyors csillagszelük pedig utolérve a korábbi lassabb csillagszél anyagát kölcsön hat azzal. Ez és az ionizációs hatás együttese felszabdalja az előzőleg kialakult struktúrákat, így létrehozva azt a lenyűgöző formavilágot, amit a felvételen láthatunk.

A fenti leírt folyamatot az elmúlt évtizedekben több kutató is megpróbálta modellezni. Az idők folyamán egyre több tényezőt vettek figyelembe, hogy a valósághoz minél közelebb álló eredményeket kapjanak. Míg a kilencvenes évek közepén még pusztán hidrodinamikai módszereket alkalmaztak csak a lassú és a gyors szél kölcsönhatásának leírására, addig a kétezres években már az ionizációs sugárzás hatását is figyelembe vették. Továbbá számoltak a csillagok tengelyforgásával, a fémtartalommal, a csillagszél időbeli változásával egy adott fejlődési állapoton belül, és így tovább. J. A. Toalá és S. J. Arthur 2011-ben egy tanulmányt publikált (J. A. Toalá, S. J. Arthur: Radiation-Hydrodynamic Models of the evolving Circumstellar Medium around Massive Stars), melyben korábbi kutatások eredményeit felhasználva, máig talán az egyik legrészletesebben kidolgozott modellel álltak elő. Ahelyett, hogy alaposan belemennék a részletekbe, inkább megmutatom, milyen struktúrák alakulnak ki a WR csillagok környezetében a két kutató 2D-s szimulációjában.

WR-sym-40M-ntherm-nrot-MM2003-a-c.JPG

40 naptömegű WR csillag körül kialakuló struktúrák. A modellben a csillag nem forog, és nincs hővezetés. A felső sorban az ionizációs sűrűség, míg az alsó sorban a hőmérséklet látható a távolság függvényében. Az értékek logaritmikusak. Balról jobbra a WR csillagszél beindulása óta eltelt idő: 10600, 22600, 32650, és 36600 év.

WR-sym-40M-ntherm-rot-MM2003-a-c.JPG

40 naptömegű WR csillag körül kialakuló struktúrák. A modellben a csillag forog, de nincs hővezetés. A felső sorban az ionizációs sűrűség, míg az alsó sorban a hőmérséklet látható a távolság függvényében. Az értékek logaritmikusak. Balról jobbra a WR csillagszél beindulása óta eltelt idő: 6800, 8800, 12800, és 16900 év.

WR-sym-60M-ntherm-nrot-MM2003-a-c.JPG

60 naptömegű WR csillag körül kialakuló struktúrák. A modellben a csillag nem forog, és nincs hővezetés. A felső sorban az ionizációs sűrűség, míg az alsó sorban a hőmérséklet látható a távolság függvényében. Az értékek logaritmikusak. Balról jobbra a WR csillagszél beindulása óta eltelt idő: 6800, 14800, 24800, és 30900 év.

WR-sym-60M-ntherm-rot-MM2003-a-c.JPG

60 naptömegű WR csillag körül kialakuló struktúrák. A modellben a csillag forog, de nincs hővezetés. A felső sorban az ionizációs sűrűség, míg az alsó sorban a hőmérséklet látható a távolság függvényében. Az értékek logaritmikusak. Balról jobbra a WR csillagszél beindulása óta eltelt idő: 19450, 21450, 23450, és 25500 év.

Vegyük észre, hogy mennyiben függ az eredmény attól, hogy mekkora tömegű csillaggal számoltak a kutatók, illetve, hogy mekkora a csillag tengelyforgási sebessége. Ez a két paraméter nagyban befolyásolja a csillag által a WR stádiumot megelőző életpályáját, így a korábban és a WR stádiumban kibocsájtott csillagszél sebességét, sűrűségét, térbeli eloszlását, folytonosságát.

Az mindenesetre szépen látszik, hogy a késői fejlődési stádiumban (a fősorozat után) kibocsájtott lassú csillagszél és a WR állapot gyors csillagszelének kölcsönhatása a szimulációkban is létrehozza azt a morfológiát, ami a felvételemen is látható.

A WR csillagok kialakulása, működése és fejlődése körül még mindig rengeteg a tisztázatlan kérdés. E csillagoknak és a szupernóvák kapcsolatának vizsgálata talán az egyik legizgalmasabb kutatási terület. Az elméletek az Ib/c és IIn típusú szupernóva-robbanásokat kötik ehhez a csillagtípushoz, azonban továbbra is megerősítésre szorul a WR csillagok és a szupernóvák direkt kapcsolata. Eddig csak közvetett bizonyítékok vannak a kutatók kezében. Tudomásom szerint a mai napig nem sikerült olyan szupernóva-robbanást elcsípni, melynek progenitora egyértelműen azonosítható lett volna bármilyen olyan égitesttel, mely korábban a WR csillagok jellemzőit mutatta volna. 2013 októberében egy rövid időre felcsillant a remény, hogy talán az NGC5806-ban feltűnt iPTF13bvn Ib típusú szupernóva egy WR csillag volt a robbanás előtt. Ezt 2014 márciusában azonban megcáfolták. A 2014-es publikáció két dolgot azért elismert. Először is, az előző csapat minden jel szerint jól azonosította azt a csillagot a korábbi felvételeken, amelyik felrobbant. Másodszor valóban Ib típusú volt a szupernóva.

Ugyan „a végső” bizonyíték még nincs a csillagászok kezében, de az a legvalószínűbb, hogy a WR40 valamikor a jövőben szupernóvaként fog felrobbanni. Bármi is legyen azonban a WR40 sorsa, egyvalami biztos, számomra az RCW58 az egzotikus csillagászati objektumok egyik megtestesítője.

A felvételről

Korábban még sosem használtam keskenysávú szűrőt a csillagászati felvételeim elkészítéséhez. Bár láttam mások képeit, de régóta szerettem volna magam is kipróbálni, hogy milyen eredmény érhető el Hα szűrővel fényesen ragyogó Hold mellett. A puding próbája az evés. Olyan objektumot kerestem, mely szinte csak Hα tartományban sugároz, igen halvány, és nem utolsósorban kellőképpen izgalmas számomra. Ezért felütöttem az RCW katalógust, és átnéztem a déli ég HII régióit. Végül választásom az RCW58-ra esett.

RCW58-M51-SDSS-m.jpg

Balra az RCW58, jobbra az M51 látható az SDSS adatbázisból származó felvételeken. Jól érzékelhető a két objektum közötti fényességkülönbség.

Amikor elkezdtem a felvételt a 97.5%-osan megvilágított Hold majdnem 50° magasan állt az égen. E körülmények között készült a 6nm-es Hα szűrővel a 13 darab egyenként 10 perces (Bin2) expozíció.

Az eredményt látva úgy gondolom, hogy érdemes lenne beszereznem egy keskenysávú (Hα) szűrőt, így a holdas éjszakákat is ki tudnám használni. Túl kevés a derült éjszaka idehaza, hogy előbb vagy utóbb ne éljek ezzel a nagyszerű lehetőséggel.

Felhasznált irodalom:

A. Toalá, S. J. Arthur: Radiation-Hydrodynamic Models of the evolving Circumstellar Medium around Massive Stars

Robert A. Gruendl, You-Hua Chu, Bryan C. Dunne, Sean D. Points: A Morphological Diagnostic for Dynamical Evolution of Wolf-Rayet Bubbles

Linda J. Smith, Max Pettini, J. E. Dyson, Thomas W. Hartquist: An optical study of the dynamics of the clumpy wind-blown nebula RCW 58

Jose H. Groh, Cyril Georgy, Sylvia Ekstrom: Progenitors of supernova Ibc: a single Wolf-Rayet star as the possible progenitor of the SN Ib iPTF13bvn

Fremling, J. Sollerman, F. Taddia, M. Ergon, S. Valenti, I. Arcavi, S. Ben-Ami, Y. Cao, S.B. Cenko, A.V. Filippenko, A. Gal-Yam, D.A. Howell: The rise and fall of the Type Ib supernova iPTF13bvn – Not a massive Wolf-Rayet star

NGC1316 (Fornax A)

NGC1316-LRGB-20150115-T32-TTK

NGC1316

2014-11-18, 2014-11-19, 2014-11-20, 2015-01-15, 2015-01-16, 2015-01-17, 2015-01-18 – Siding Spring Observatory – 3 x 300 sec és 10 x 600 sec L, 8 x 600 sec R,G,B

iTelescope.net T32 – Corrected Dall-Kirkham Astrograph Planewave 17″ – 43 cm, f/6.8  – FLI Proline 16803 CCD kamera

(A keleti irány felül, az északi jobbra van.)

Az NGC1316 a Fornax halmaz óriás rádiógalaxisa. Majdnem pont egy éve látogattam meg az iTelescope hálózat távcsövét használva, a szintén ehhez a halmazhoz tartozó NGC1365 küllős spirál galaxist. Már akkor elterveztem, hogy egy év múlva visszatérek, és „lencsevégre kapom”, ezt a tőlünk nagyjából 62 millió fényévre lévő, páratlan formavilágú galaxist.

Az NGC1316 morfológiai besorolása SAB(s)00 pec, vagyis úgynevezett lentikuláris galaxis. A „pec” (peculiar) tag pedig arra utal, hogy szerkezetükben van valamiféle különleges, egyéni sajátosság, szabálytalanság. (Megjegyzem, hogy több helyen elliptikus galaxisként is hivatkoznak rá, azonban átnézve az utóbbi évek tudományos publikációit, személy szerint a lentikuláris besorolást tekintem elfogadhatónak.) Természetesen tipikus lentikuláris galaxis nem létezik, az NGC1316 pláne nem az, azonban érdemesnek tartom röviden áttekinteni, hogy milyen jellemzőkkel bírnak általában ezek a galaxisok.

A típus átmenetet képez a spirál és az elliptikus galaxisok között. A lentikuláris galaxisok alapvetően diszk alakúak akárcsak a spirál galaxisok. Nincsenek azonban spirálkarjaik, a korongban nem figyelhetőek meg határozott struktúrák. Jellemző rájuk, hogy a központi dudor a galaxis korongjához képest viszonylag nagyméretű, és meghatározó a galaxis felépítése szempontjából.

Van egy másik jelentős különbség is a spirál galaxisokhoz képest. Interszteláris anyaguk jelentős részét elveszítették, hiányzik belőlük a csillagok kialakuláshoz szükséges gázanyag. Honnan tudják mindezt a csillagászok? Mint a legtöbb esetben, most is az objektum elektromágneses sugárzása az, ami erről árulkodik.

Elsőként nézzük meg, miként bocsájtanak ki sugárzást a csillagközi gázfelhők a Hα (Hidrogén alfa) 656.81 nm-es hullámhosszon. Az atomban meghatározott, diszkrét energiaszintek tartoznak az elektronhoz. Az elektron mindig igyekszik elfoglalni a legalacsonyabb, n=1 energiaszintet. A fényes, fiatal, kék csillagok által kibocsátott nagyenergiájú fotonok gerjesztik, ionizálják a közelükben lévő gázfelhők hidrogén atomjait, vagyis az elektront egy magasabb energiaszintre „lökik”, vagy akár le is szakítják magáról a hidrogén atomról. Az előbbi a gerjesztés, az utóbbi az ionizáció jelensége. Annak a valószínűsége, hogy az n=3-as energiaszintre kerüljön az elektron anélkül, hogy leszakadna a hidrogén atomról, roppant kicsi. Vagyis, ha akkora energiát „közlünk” az elektronnal, ami az n=3 szintre juttatná, a hidrogén atom ionizálódik. A szabad elektron hamar találkozik egy elektron nélküli csupasz hidrogén atommaggal, egy protonnal, és új hidrogén atom jön létre (rekombináció). Ebben a folyamatban az elektron bármilyen energiaállapotot felvehet, de végül kaszkád folyamatban visszatér az alapszintre (n=1). A „lefelé lépéskor” a szintek különbségével megegyező energiájú foton sugárzódik ki. Nagyjából az átmenetek felét képezi az n=3 szintről az n=2 szintre történő átmenet, amikor is a 656.81 nm-es sugárzás keletkezik. Végső soron a Hα emisszió annak köszönhető, hogy az atomos hidrogén korábban ionizálódott. A csillagászok ezen a hullámhosszon tudják a legkönnyebben feltérképezni a gázfelhők hidrogénjét az optikai tartományban. Pontosabban, az úgynevezett HII régiókat, vagyis az ionizált hidrogént tartalmazó területeket.

A 21 cm-es rádiósugárzást pedig az úgynevezett HI régiók bocsájtják ki. A HI régiók olyan intersztelláris felhők, melyeket javarészt atomos hidrogén alkot (a területek ionizációs foka jellemzően igen alacsony: 1:10000) némi héliummal, és a héliumnál nehezebb elemekkel szennyezve. A HI területek 21 cm-es rádió tartományban sugároznak, a hidrogén hiperfinom szerkezetében nagyon kis spontán valószínűséggel (A=2.88×10−15 s−1 ≈ 1/107 év) végbemenő átmenetnek köszönhetően. Nagyon leegyszerűsítve, tekintsük a hidrogén atom protonjának és elektronjának spinjét kvantummechanikai impulzusmomentumnak. Egy adott spin állapot hiperfinom állapotokra bomlik a proton és az elektron spinjei szerint. Nagyobb energiájú állapotról van szó, amikor a proton és az elektron spinje megegyezik, azzal szemben, amikor éppen ellentétes. A két energiaállapot közötti hiperfinom átmenetkor keletkezik a 21 cm-es elektromágneses sugárzás.  Mivel ez a jelenség roppant kisvalószínűséggel következik csak be, így jelentős mennyiségű atomos hidrogéngáznak kell jelen lennie ahhoz, hogy ezen a hullámhosszon a csillagászok megfigyelhessék sugárzásukat, és így felmérés készülhessen a HI régiókról.

21cm-es_sugarzas

A hiperfinom átmenet keltette 21 cm-es sugárzás. Ne feledjük, hogy a spin, mint kvantummechanikai impulzusmomentum csak egy analógia, de segít megérteni a jelenséget.

Mivel a lentikuláris galaxisok színképében jellemzően nincs domináns Hα emissziós vonal, illetve a 21 cm-es rádió tartományban sem bocsátanak ki szignifikáns sugárzást, így nincs nekik jelentős mennyiségű atomos, illetve ionizált hidrogénkészletük.

Kellő mennyiségű gázanyag híján ma már nem, vagy csak alig keletkeznek csillagok a lentikuláris galaxisokban, ezért az ilyen galaxisokat az idősebb csillagok populációi uralják. Mivel teljesen hiányoznak belőlük a kékszínű, fényes, nagytömegű, ez utóbbi okán rövid életű csillagok, így e galaxisok színe inkább vörösesbe hajló.

Érdekes, hogy bár a csillagközi gáz szinte teljesen hiányzik ebből a típusú galaxisokból, azonban számottevő bennük a csillagközi por mennyisége. Ez az egyik jelentős különbség az elliptikus galaxisokhoz képest, melyek csak igen minimális mennyiségű port és gázt tartalmaznak.

Az elliptikus galaxisokat és a lentikuláris galaxisokat gyakran nem is olyan könnyű megkülönböztetni egymástól. Igen gyakran a csillagászok a felületi fényesség profil alapján szokták eldönteni a galaxisról, hogy az melyik típusba tartozik. Ez a profil leírja, hogy miként változik a galaxis fényessége a centrumtól távolodva. A spirál galaxisok, illetve a lentikuláris galaxisok korongjának profilja tipikusan lapos, míg az elliptikusak szférikus része, illetve a lentikulárisok központi dudorának profilja meredek esésű. A gyakorlat azonban sosem ennyire egyszerű, ugyanis lentikuláris galaxisok esetén a központi dudor jellemzően dominánsabb a koronghoz képest. Tipikusan akkor kap a galaxis lentikuláris, és nem elliptikus besorolást, ha felületi fényesség profilja nem írható le egyetlen indexszel (Sérsic index). Vagyis, csak több, különböző meredekségű görbével írható le.

Sersic_models

Felületi fényesség profilok különböző Sérsic index-ek esetén. A vízszintes tengelyen található a centrumtól mért távolság logaritmusa, míg a függőleges tengelyen a felszíni fényesség logaritmusa. Az n=1 a spirál galaxisokat és a lentikuláris, az n=4 az elliptikus galaxisokat írja le jól.

Máig bizonytalanság övezi a lentikuláris galaxisok kialakulásának körülményeit. Manapság két elképzelése versenyez egymással.

Az első szerint a lentikuláris galaxisok valaha spirál galaxisok voltak, melyek az idők folyamán felélték csillagkeletkezés révén gázkészletüket, és így elvesztették spirális struktúrájukat is. A csillagkeletkezési folyamatokat több hatás is felgyorsíthatta, melyek közül az egyik legvalószínűbb a másik galaxissal történt kölcsönhatás.

Ezt az első elképzelést alátámasztja a lentikuláris galaxisok diszkszerű felépítése, illetve hogy eltolva rájuk is érvényes az úgynevezett Trully-Fisher reláció. A Tully-Fisher reláció, mely elliptikus galaxisok esetén nem használható csak spirális és lentikuláris galaxisoknál, egy tapasztalati összefüggés a galaxisok tömege vagy luminozitása és emissziós vonalainak szélessége, vagyis a galaxison belüli szögsebességek között. A reláció felhasználásával a csillagvárosok távolsága kiszámítható. A módszer lényege röviden az, hogy a galaxison belüli sebességekből meghatározható a galaxis luminozitása, és ebből pedig távolsága. Ugyanis, a galaxis csillagainak dinamikáját a galaxis tömege határozza meg, mely pedig összefüggésben áll annak luminozitásával. Az így kapott luminozitást felhasználva, a látszólagos fényesség ismeretében a távolság már kiszámolható.

A lentikuláris galaxisoknak jellemzően nagyobb a felületi fényessége, mint a spirál galaxisoknak. Ez pedig nehezen egyeztethető össze azzal az előbb felvázolt elmélettel, miszerint ezek gázkészletüket felélt, „elhalványult” spirál galaxisok, melyekben manapság már alig keletkeznek csillagok. A másik ellenérv, amit már fentebb is említettem, hogy a lentikuláris csillagvárosok esetében az úgynevezett központi dudor és korong luminozitási arányszám nagyobb, mint a spirál galaxisok esetében. E két ellenérv a második elmélet támogatóinak a malmára hajtja a vizet, akik szerint a lentikuláris galaxisok spirál galaxisok összeolvadásával jönnek létre. Ezzel az előbb említett tulajdonságok megmagyarázhatóak, továbbá az is, hogy az ilyen galaxisok körül nagyobb számban fordulnak elő gömbhalmazok. Sajnos azonban az ütközések szimulációi nem eredményeznek kellően nagyméretű központi dudort, továbbá ez az elmélet a spirál galaxisokhoz képest eltolt Trully-Fisher relációval sem tud elszámolni, hacsak a múltban nem voltak mások a spirál galaxisok tulajdonságai ahhoz képest, mint amit manapság látunk.

A lentikuláris galaxisok általános áttekintése után térjünk vissza kimondottan az NGC1316-hoz.

Elég csak ránézni a felvételre, hogy az ember meggyőződjön róla, az NGC1316 galaxis múltja közel sem volt békés. A központi fényesebb részen héjak, fodrozódások figyelhetőek meg, mintha csak valaki kavicsokat dobott volna a tóba. A mag körüli részt porsávok ölelik körül. A látványt megkoronázva, nagyon halvány, de kiterjedt árapálycsóva veszi körül az egész galaxist. Szinte kínálja magát, hogy a közelében elhelyezkedő NGC1317-es küllős spirál galaxist gyanúsítsa meg az ember. Ennek valóban van némi valóságalapja, ugyanis a két galaxis kölcsönhatása kétségtelen, azonban a vizsgálatok szerint az NGC1317 tömege nem elég nagy ahhoz, hogy ennyire összekuszálja az NGC1316-ot. Itt valami egészen más áll a dolgok hátterében.

A kutatók olyan felvételeket készítettek, melyeken megpillanthatóak akár az NGC1316 csillaghalmazai is. Kiválasztottak 37 jelöltet. Ebből voltak olyanok, melyekről kiderült, hogy csak előtér csillag. Végül 24-en maradtak versenyben, vagyis ennyi bizonyult a későbbiekben valós csillaghalmaznak. Ezeknek a vizsgálatával több tulajdonságát is felderítették a galaxisnak. A halmazok mozgásából meghatározták, hogy a galaxis mekkora tömeget tartalmaz 24 kpc sugáron belül. Erre (6.6±1.7) x 1011 naptömeget kaptak (2 faktoros bizonytalansággal). A halmazok közül 4 roppant fényesnek bizonyult. Fényesebbnek, mint bármelyik halmaz a Tejútrendszerben, vagy az Androméda galaxisban. Ennek hála ilyen távolságból is nagyon jó jel/zaj viszonnyal sikerült spektrumokat felvenni, melyből további részletekre derült fény. A vizsgált halmazokról kiderült, hogy középkorú gömbhalmazok, vagyis 3.0±0.5 milliárd évesek, és fémtartalmuk a Napéhoz hasonló. Kialakulásuk két galaxis összeolvadásának köszönhető, amikor is az ütközéskor fellépő gravitációs hatások beindították a robbanásszerű csillagkeletkezést a galaxisok gázfelhőiben. A megfigyelések nemcsak arra adtak bizonyítékot, hogy galaxisok ütközésekor gömbhalmazok alakulhatnak ki, de arra is, hogy ezek a halmazok képesek túlélni az ekkor fellépő árapály erők pusztító hatását, vagyis a halmazok nem „szakadnak szét”.

NGC1316-LRGB-20150115-T32-gc1

Az NGC1316 két gömbhalmaza a saját felvételemen is felfedezhető

A csillagászok sikeresen tetten érték a körülbelül 3 milliárd évvel ezelőtti ütközést az NGC1316 azon gömbhalmazainak hála, melyek a Tejútrendszer saját halmazait is túlragyogják. Azonban nemcsak gömbhalmazokban keletkeztek csillagok az ütközéskor. A csillagváros belső 3˝ területén, egy durván 2 milliárd éves csillagpopuláció található, melyet színképfelvételek segítségével azonosítottak. Ezek a csillagok az összeolvadás után keletkeztek azokból a molekuláris felhőkből, melyek a másik galaxis bekebelezése után az NGC1316 központja felé zuhantak.

Az NGC1316-nak a 3 milliárd évvel ezelőtti viharos esemény után jött csak meg igazán az étvágya. Valamivel kevesebb, mint 1 milliárd évvel ezelőtt egy kisebb, de gázban igen gazdag galaxist kebelezhetett be, melynek maradványa a nyugati és délnyugati oldalon végighúzódó lebeny. A régiót (a szakirodalomban L1 loop) megvizsgálták az optikai, rádió és röntgentartományban is. Az ottani forró interszteláris gáz megfigyelt tulajdonságai alapján a kis galaxis „becsapódása” igen nagy sebességű volt, a számítások szerint 380 Km/s. Az NGC1316 fényes központi részét körülvevő halványabb struktúrák közül ez a képződmény a legfiatalabb, és legfényesebb. A többi igen valószínű, hogy a korábbi 3 milliárd évvel ezelőtti összeolvadás maradványa.

Végezetül ott van a por az NGC1316-ban, mely esetében több jel is arra mutat, hogy az a galaxison kívülről származik. A galaxisokban található csillagközi por egy részét a késői fejlődési stádiumban lévő csillagok termelik, miközben anyagot veszítenek, illetve a szupernóvák is jelentős szerepet játszanak ebben. A csillagpopulációk feltérképezésével megbecsülhető, hogy mennyi por jelenlétét várhatjuk a galaxisban. Az NGC1316-ban túl sok a megfigyelt por, ennyit maguk a galaxis csillagai nem állíthattak elő. Ha a csillagfejlődési modellek hibásak is lennének, vagyis a valóságban máshogy és más mennyiségben keletkezne a por, érvként még mindig ott van a por eloszlása.

A felvételemen is jól látszik, hogy mennyire furcsa az alakja, az elrendeződése a porsávoknak. A Spitzer infravörös űrteleszkóp felvételén ez még sokkal szembetűnőbb.

NGC1316-spitzer-01

Az NGC1316 porsávjainak különös struktúrája a Spitzer infravörös űrtávcső felvételén. – NASA JPL Caltech

Amennyiben a por a galaxison belülről származna, akkor sokkal egyenletesebben oszlana el, például korongszerűen vagy sávosan, illetve kinematikája egyezést mutatnak az azt termelő csillagokéval.  A helyzet viszont egyáltalán nem ez. Az előbbiek értelmében nagy bizonyossággal kijelenthető, hogy a por az NGC1316-on kívülről, felfalt galaxisokból származik.

Láthattuk a sok megfigyelési eredményt, mely mind arra utal, hogy az NGC1316 igen sikeres nagyragadozó. Mindent elfogyaszt, ami csak a közelébe kerül. Vajon ki lesz a következő áldozat? Az NGC1317 küllős spirál galaxis a közelében, vagy az NGC1310 nyugatra (a felvételemen alul)?

Az NGC1316 a Fornax csillagkép legerősebb rádióforrása, ezért a rádiócsillagászat hőskorában használt nevezéktannak megfelelően, a Fornax A elnevezést kapta. Nem kell akkor sem szégyenkeznie, ha az égbolton megfigyelhető összes rádióforrással kell „megküzdenie” az 1.4 Ghz frekvencián. A negyedik helyezést akkor is kiérdemli. Két hatalmas rádiólebeny keretezi a galaxist, melyek egyenként 600 000 fényév kiterjedésűek. A saját csillagvárosunk majdnem hatszor elférne csak az egyikben.

NGC1316_NRAO-rot

A Fornax A (NGC1316) hatalmas rádió lebenyeivel. A kép az optikai és a rádiótartományban készült felvételek összemontírozása. Forrás: NRAO/AUI – J. M. Uson

De hogyan jön létre a rádiógalaxisok sugárzása? Magjukban szupermasszív központi fekete lyuk található, melynek tömege a pár milliótól több milliárd naptömegig terjedhet. Az NGC1316 130-150 millió naptömegűvel büszkélkedhet. Ezek a fekete lyukak próbálják elfogyasztani a környezetükben található anyagot, mely ebben az esetben javarészt a pórul járt galaxisokból származó intersztelláris médium. Az étekként szolgáló anyag akkréciós korongot formál, melyet kívülről sűrűbb, lassabban keringő gázfelhők vesznek körül. Az akkréciós korong anyaga miközben befelé örvénylik, egyre gyorsabban mozog, és felhevül. A mozgási energiájának pedig egy jelentős része elektromágneses sugárzássá alakul. Továbbá a mozgási energia egy része biztosítja a töltött részecskék relativisztikus (közel fénysebességre) történő gyorsítását. Az akkréciós korongra merőleges, a forgástengellyel párhuzamosan plazmából álló jet-ek jönnek létre, melyben az említett részecskék kifelé haladva spiráloznak a mágneses térben, miközben szinkrotonsugárzást bocsájtanak ki. A jet-ek mérete hatalmas is lehet, elérhetik akár a több millió fényévet. Ehhez képest maga a belső szerkezet, vagyis a korong és az azt körülvevő gázfelhők a fényéves nagyságrendbe esnek. Az idők folyamán lassan változik a sugárzás intenzitása, iránya, a mágneses tér. A galaxist körülvevő ritka anyag eloszlása, amibe a jet-ek beleütköznek, szintén változik. Ezeknek köszönhetően az NGC1316 körül festői szépségű mintázat rajzolódott ki évmilliók alatt a rádiótartományban.

Az NGC1316 sok titka legalább olyan izgalmas, mint a megjelenése. Bár nem vagyok kutató, az univerzum szépségének és az ismereteknek a befogadása mindig nagy öröm számomra. Csak remélni merem, hogy ebből sikerült átadnom valamennyit a kedves olvasónak.

Felhasznált irodalom:

 

Paul Goudfrooij, Jennifer Mack, Markus Kissler-Patig, Georges Meylan, Dante Minniti: Kinematics, ages and metallicities of star clusters in NGC 1316: a 3-Gyr-old merger remnant

 

Swati Pralhadrao Deshmukh, Bhagorao Tukaram Tate, Nilkanth Dattatray Vagshette, Sheo Kumar Pandey, Madhav Khushalrao Patil: A multiwavelength view of the ISM in the merger remnant galaxy Fornax A

 

Horellou, J.H. Black, J.H. van Gorkom, F. Combes, J.M. van der Hulst, V. Charmandaris: Atomic and molecular gas in the merger galaxy NGC 1316 (Fornax A) and its environment

 

Mackie, G. Fabbiano: Evolution of gas and stars in the merger galaxy NGC 1316 (FORNAX A)

 

Alister W. Graham, Simon P. Driver: A concise reference to (projected) Sersic R^{1/n} quantities, including Concentration, Profile Slopes, Petrosian indices, and Kron Magnitudes

NGC1313 – A zűrzavaros galaxis

NGC1313-LRGB-20141028-TTK

NGC1313

2014-09-19, 2014-09-20, 2014-10-28, 2014-10-29 – Siding Spring Observatory – 20 x 300 sec L, 10 x 600 sec L, 5 x 600 sec R,G,B

iTelescope.net T32 – Corrected Dall-Kirkham Astrograph Planewave 17″ – 43 cm, f/6.8  – FLI Proline 16803 CCD kamera

A zűrzavar, a felfordulás olyan dolgok, melyet a legtöbb ember szeret messzire elkerülni az életben. Azonban, ha egy csillagászati objektumra mondják, hogy zűrzavaros, a helyzet máris merőben más. Ezek gyakran meghökkenthetik kinézetükkel a szemlélőt, illetve próbára teszik a tudományos elméleteket. Hamarosan látni fogjuk, hogy az NGC1313 katalógusjelű galaxis méltán érdemelte ki ezt a jelzőt, és nemcsak a kinézete miatt.

A déli égbolt egy kicsiny csillagképe a Reticulum. Nicolas Louis de Lacaille francia csillagásztól származik ez a ma is használatos elnevezés. Lacaille híres csillagtérképének összeállításában bizonyára sokat segítette okulárjának szálkeresztje, a reticulum. Elképzelhető, hogy ezért (is) keresztelte át Isaac Habrecht svájci órakészítő által, korábban csak Rombusznak nevezett déli konstellációt. Ennek a csillagképnek a területén található az NGC1313.

NGC1313-Reticulum

Az NGC1313 a Reticulum csillagképben. A csillagtérképen a baloldali ködösség a Nagy Magellán-felhő, míg a jobboldali a Kis Magellán-felhő, melyek Tejútrendszerünk kísérő galaxisai.

A skót származású James Dunlop 1826-ban, Ausztrália egén akadt rá erre a 9.2 magnitúdós, kis felületi fényességű és 9.1ˊ x 6.9ˊ látszólagos méretű csillagvárosra. Dunlop ekképpen jellemezte: halvány, egyértelmű határok nélküli, elmosódott ködösség.

Dunlop neve leginkább a déli égbolt felméréséről vált ismerté a korabeli Angliában. 7385 csillag katalogizálását végezte el, melyből igen jelentős számú volt a kettőscsillag. Szám szerint 256. Ez irányú megfigyeléseit 1829-ben publikálta (Approximate Places of Double Stars in the Southern Hemisphere, observed at Paramatta in New South Wales). Emellett feljegyezte azokat a fényesebb mély-ég objektumokat is, melyeket a katalogizált csillagok közelében észrevett. Nem is csoda, hogy John Herschel, aki szintén kiemelkedő eredményeket ért el a kettőscsillag és mély-ég objektumok felmérésben, nagy érdeklődéssel fogadta Dunlop a déli égbolton folytatott munkásságának eredményeit. Amikor Herschel 1834-ben megérkezett Dél-Afrikába, azonnal nekilátott Dunlop megfigyeléseinek tüzetes ellenőrzéséhez. Több pontatlanságra is fény derült, melynek köszönhetően, az addig a Brit csillagászok körében ünnepelt Dunlop népszerűsége jelentősen csökkent. Ez azonban mit sem változtat azon a tényen, hogy ő volt az első ember, aki megpillanthatta az NGC1313-at, illetve kettőscsillag katalógusokban igen gyakran találkozhatunk a DUN előtaggal.

Ha már Herschel szóba került, lássuk milyennek láthatta ő a galaxist. A következő jellemzőket jegyezte fel az NGC1313-ról: kiterjedt, szabálytalan körvonalú, illetve kissé elnyúlt, a közepe felé apránként fényesedő objektum. Herschel 3 ívperces átmérőt említ a feljegyzésében. Ez azt jelenti, hogy ő a 18 inch (kb. 46 cm) átmérőjű távcsövével a galaxisnak a belső fényes tartományait, illetve a karok egy részét láthatta csak. Herschel azt is feljegyezte, hogy csillagokra bontható. Legalábbis ő úgy hitte.

Hazánkból ez a galaxis nem látható, de az elmúlt években több alkalommal is ellátogattak hazánkfiai a messzi Namíbiába, hogy megcsodálják és megörökítsék a déli égbolt látványos világát. Az NGC1313 két magyar vizuális észlelésről van tudomásom. Kernya János Gábor és Sánta Gábor azzal büszkélkedhet, hogy saját szemükkel látták ezt a pompás galaxist. Megfigyelésükhöz egy 40 cm-es tükrös távcsövet használtak. A galaxisról mindketten készítettek szöveges feljegyzést és rajzot is. Hogy milyen látvány tárult a szemük elé?

Sánta Gábor erről a következőképpen írt:

„Hatalmas, foltos galaxis, amelyet egyértelműen ural a rajta keresztül húzódó markáns küllő. A mag csillagszerű, de mellette még egy igen kompakt és fényes folt is látható észak felé. A küllő déli végéből kiinduló egyik spirálkar nagyon határozott, benne több inhomogenitás érződik. A másik spirálkar nem ilyen erőteljes megjelenésű, ezt elsősorban egy fényesebb, leszakadt folt uralja a magtól ÉÉK felé. A küllő északi végénél lévő fényes előtércsillag mellett, valamint a magtól kelet felé is látszik egy-egy diffúzabb, megnyúlt folt. A kissé irreguláris galaxis spirálkar régiói elég halványak a maghoz viszonyítva.”

Kernya János Gábor rajzát megnézve pedig megtudhatjuk, hogy mit is látott ő a távcsövön keresztül.

NGC1313_KJG_40cm_220x_17ivperc

NGC1313 vizuális megjelenése egy 40 cm-es tükrös távcsőben 220x nagyítással. A látómező mérete 17ˊ. – Kernya János Gábor rajza

Az NGC1313 15 millió fényéves távolságával kozmikus értelemben viszonylag közeli galaxisnak számít. Átmérője nagyjából 50000 fényév, mintegy a fele Tejútrendszerünkének. Inklinációja 48°, így ferde rálátásból csodálhatjuk meg furcsa, kaotikus felépítését. Különös megjelenése ellenére, úgynevezett késői típusú küllős spirál galaxisként sorolták be. SB(s)d típusú a de Vaucouleurs osztályozás szerint. Az ilyen galaxisokra jellemző, hogy fényes maggal, és markáns küllős szerkezettel rendelkeznek. Továbbá, a nyitott karok a küllő végéből indulnak ki. Úgy gondolom, ha az NGC1313-ról csak ennyit mondanék el, akkor a fotón látható galaxistól merőben eltérő kép jelenne meg az olvasó fejében. Olyan ez, mintha egy illetőről csak annyit közölnének, hogy 180 cm magas, sötét hajú, sötét szemű, vékony testalkatú. Ez alapján nem biztos, hogy felismernénk az utcán. Vegyük hát szemügyre alaposabban az egyedi jegyeket, és próbáljunk a dolgok mögé látni, amennyire ez a mai ismeretek alapján lehetséges.

A küllőből kiinduló két rövid kar tele van porban és gázban gazdag csillagkeletkezési területtel. Az NGC1313 egy úgynevezett csillagontó galaxis. Míg a Tejútrendszerben nagyjából 1 naptömeg/év a csillagkeletkezés üteme, ebben a galaxisban ez az 1000 naptömeg/év nagyságrendbe esik. Hihetetlen ütemben keletkeznek a csillagok. Egy galaxis csillagpopulációját 70%-ban M típusú, kistömegű, halvány vörös törpe csillagok alkotják. Azonban hiába nagyobb a kistömegű sárgás-vöröses halvány csillagok aránya, oly nagyszámban keletkeznek a csillagok ezeken a területeken, hogy igen magas a forró nagytömegű csillagok száma. A kisebb testvéreiket pedig kékes fényükkel könnyűszerrel túlragyogják. Így végső soron, nekik köszönhetően világítanak a fiatal csillagok halmazai fényfüzérekként a galaxisban.

Ha nem lenne folyamatos az utánpótlás, akkor életüket leélve hamar eltűnnének a nagytömegű csillagok. Ezek ugyanis, csillagászati értelemben korai és látványos halált halnak, méghozzá szupernóva robbanások keretében. Ezzel egyfelől újabb születési hullámot indítanak be, másfelől gázt és port pumpálnak kifelé a galaxis halójába. Így a szupernóvák az új generációk genezise szempontjából egyik kezükkel adnak, míg a másikkal elvesznek.

A forró fiatal csillagok nemcsak beragyogják a galaxist, de gerjesztik is a környezetükben található gázködöket intenzív sugárzásukkal. Ezek a területek ennek hatására vöröses/rózsaszínes árnyalattal világítanak. A felvételemen e régiók közül azok látszanak csak, melyek kellőképpen nagyok és fényesek, hogy kiemelkedjenek a háttérből.

Csillagkeletkezési területek, és a fiatal csillagok halmazai jellemzően a karokban szoktak csak előfordulni egy spirál galaxis esettében. Azonban az NGC1313 esetében nemcsak a galaxis torzult, aszimmetrikus karjaiban figyelhetőek meg, hanem azon kívül is. Ez pedig, a galaxis deformált alakjával együtt, igencsak feladja a leckét a csillagászoknak.

A heves csillagkeletkezést a csillagontó galaxisok többsége esetén egy másik galaxissal történő kölcsönhatás váltja ki. Legyen szó ütközésről, összeolvadásról vagy csak arról, hogy megközelítik egymást, a gravitációs kölcsönhatás felkavarja, összenyomja a galaxisokban található gázt és port, ezzel elindítva a heves csillagkeletkezést. Erre rengeteg példa található az univerzumban.

Csak a saját észleléseim közül említenék meg párat, ahol a kölcsönhatás tetten érhető, és heves csillagkeletkezés zajlik legalább az egyik komponensben. Ilyen például az M51 (Örvény-köd) és az NGC5195, vagy az NGC1532 és NGC1531 párosa.

Az egyetlen probléma ezzel a magyarázattal ebben az esetben, hogy bár látjuk az intenzív csillagkeletkezést, és a meggyötört szerkezetét a galaxisnak, az NGC1313 magányos. Nincs a közelben másik olyan jelentős galaxis, mely gravitációjával eltorzíthatta volna az NGC1313-at, és felkavarhatta volna benne a port és a gázt, kiváltva ezzel a robbanásszerű csillagkeletkezést.

A galaxis pedig deformáltabb és kiterjedtebb, mint azt elsőre a fent látható LRGB szűrős felvételem alapján gondolnánk. Alaposabban megnézve a fotót, megfelelő monitor mellett feltűnhet, hogy a galaxis körüli térben valami titokzatosan gomolyog. Bár csak alig észrevehetően, ezt elismerem. Az NGC1313 külső tartományai igen messzire elnyúlnak, és a galaxis külső nagyon halvány része „füstként” tölti be a látómezőt. Sokkal hosszabb, és több expozícióval ez igen látványosan megmutatható. Az információ azonban ott van az én fotómon is, így szemléltetés céljából „túlhúztam” a Luminance szűrős felvételem negatív változatát, szemet hunyva afelett, hogy mindeközben maga a galaxis és a csillagok beégnek.

NGC1313-LRGB-20141028-TTK-neg4

Az NGC1313 egy nagyméretű, de roppant halvány „lepel” veszi körül, mely egyik jele zaklatott múltjának. (Az NGC1313-ról készült Luminance szűrős felvételem „túlhúzott” negatív változata.)

Ha látjuk fodrozódni a tó felszínét, tapasztalataink alapján joggal gondolhatjuk, hogy valószínűleg valami belesett. A vízfelszín azonban fodrozódhat más miatt is. Ugyanígy kézenfekvőnek tűnik az NGC1313 tulajdonságait korábban egy másik galaxissal történt kölcsönhatással magyarázni, azonban egyelőre ehhez nem áll minden bizonyíték a csillagászok rendelkezésére. Nincs meg a kavics.

Természetesen vannak más lehetséges magyarázatok is arra nézve, hogy mi a heves csillagkeletkezés oka, illetve miért találhatóak a galaxis karjain kívül is csillagkeletkezési régiók. A rádió tartományban történt megfigyelések egy táguló, 3.2 kpc szuperbuborék (supershell) jelenlétét mutatták ki az NGC1313-ban (Ryder, S. D., Staveley-Smith, L., Malin, D., & Walsh, W. 1995, AJ, 109, 1592). T. Suzuki és csapata alapos vizsgálatnak vetette alá ezt a galaxist. A kutatók valószínűsítik, hogy kapcsolat van a szuperbuborék és a déli kar, illetve a karon kívüli szatellit HII régiókban megfigyelhető intenzív csillagkeletkezés között (T. Suzuki, H. Kaneda, and T. Onaka – AKARI view of star formation in NGC 1313, A&A 554, A8 (2013)).

NGC1313-supershell1

Az NGC1313-ban található táguló supershell (szuperbuborék). Alul a galaxis rádió képe, míg felette az ESO 8 méteres távcsövével rögzített keskenysávú felvétel látható. – Forrás: ESO Gemini Observatory, Ryder, Suzuki

Ezeknek az angol nyelvű irodalomban csak supershell-eknek nevezett szuperbuborékoknak a vizsgálata sok évtizedes múltra tekint vissza. Még 1979-ben a Tejútrendszer HI (atomos hidrogén) területeinek a 21 cm-es hullámhosszon történt felmérése közben fedeztek fel a galaxis síkjától távolodó szálas szerkezeteket. A felmérést a Nagy Magellán-felhőben a hatvanas években talált hatalmas HI üregek miatt végezték el. Ahogy folytatták a kutatásokat a Tejútrendszerben, találtak újabb alakzatokat, melyek legtöbbször táguló üregekre, héjakra, hurkokra emlékeztettek. A 80-as évek közepétől világossá vált, hogy bizony más gázban gazdag spirál galaxis is rendelkezik ilyen, akár több 10000 fényév kiterjedésű folyamatosan táguló struktúrával. Ez a méret igen jelentős az egyes galaxisok átmérőjéhez képest. Innentől kezdve folyamatosan keresték az újabb, és újabb jelölteket. Találtak is bőven. Egyetlen probléma volt csak, és van a mai napig is, hogy pontosan megmagyarázzák mik is ezek. Az elképzeléseknek se szeri se száma. Egy biztos, hogy egy ilyen supershell tágulásukhoz hatalmas energia szükséges. Van olyan elképzelés, hogy az intergalaktikus térből beáramló gáz és a galaxis kölcsönhatása a hajtómotor. Vannak, akik heves csillagkeletkezés hatásának tudják be, melyek később nagyszámú szupernóva robbanást generálnak. Szerintük ezek fújják a hatalmas héjakat és alakítják a struktúrákat. Mások szerint az aktív galaxisokra jellemző jet a felelős ezért. Ezen elmélet szerint ez az aktivitás időszakos, periodikus. Így nem kell feltétlenül ilyen aktív jet-et tetten érnünk akkor, amikor ezeket a hatalmas héjakat megfigyeljük. Ezen elmélet kidolgozói úgy vélik, hogy ez a periodikusság a különböző buborékok korában is tetten érhető. Megjegyzem, hogy eddig az NGC1313-ban nem sikerült kimutatni masszív nagytömegű központi fekete lyuk jelenlétét, ez a csillagváros úgy tűnik, nem rendelkezik aktív galaxis maggal. Vannak, akik szerint gamma felvillanások (GRB) közben felszabaduló energia indítja el a buborékok tágulását. Mint látható, létrejöttük még évtizedek múltán sem tisztázott, de azt sejtik a kutatók, hogy a galaxisok fejlődése szempontjából nagy jelentőséggel bírnak ezek a képződmények.

A csillagászati műszerek újabb generációja talán hozzásegíti a csillagászokat a válaszok megtalálásához. T. Suzuki szerint, mivel az NGC1313 közeli galaxis, és az egyik legnagyobb ma ismert supershell található benne, ezért kitűnő célpont lehet a 2013-ban elkészült ALMA rádiótávcső-rendszer (Atacama Large Millimeter/submillimeter Array) számára. Az ALMA lehetőséget biztosít arra, hogy a korábbiaknál nagyságrendekkel jobb felbontásban tanulmányozhassák a kutatók ennek a hatalmas buboréknak a tulajdonságait, illetve kapcsolatát a csillagkeletkezési területekkel. Talán éppen pont ez rádiótávcső-rendszer lesz az, mely elvezeti a csillagászokat ahhoz a válaszhoz, hogy miért is annyira zűrzavaros ez a galaxis.