NGC7331

NGC7331-LRGB-20160707-0135-sx-bin2-360s-TTK

NGC7331 / Deer Lick csoport

2016-07-07, 2016-08-05, 2016-08-26 – Göd

27 x 360 sec L (Bin2), 10 x 360 sec R (Bin2), 10 x 360 sec G (Bin2), 10 x 360 sec B (Bin2)

300/1200 Newton távcső – Paracorr Type2 kóma korrektor – eredő fókusz 1380 mm

SkyWatcher EQ-6 Pro GoTo mechanika

SXVR-H18 CCD kamera, Hutech IDAS P2 LPS filter és Astronomik RGBL fotografikus szűrőszett

Pegazus (vagy Pégaszosz) a görög mitológia szárnyas lova, aki Poszeidón és Medúza „nászából” fogant. Annak előtte Medúza még szépséges szűz volt, és Pallasz Athéné kísérője. Büntetésül maga Athéné Istennő változtatta szörnyű teremtménnyé, miután (egyes változatok szerint) Poszeidón erőszakot tett rajta, ártatlanságát elvesztette. Medúza fejéről kígyók tekeregtek alá, s pillantásával a halandókat kővé változtatta. Életének végül Perszeusz vetett véget, mikor az Athénétől(!) kapott pajzzsal és egy sarlóval felszerelkezve levágta annak fejét. Pegazus és Khrüszaór gigász ekkor pattant elő teljes életnagyságban anyja testéből. Pegazus további sorsát illetően már az ókorban többféle elbeszélés létezett. A reneszánsz során ezek a történetek kissé át is alakultak. Például több szerepet kapott Perszeusz történetében. A klasszikus görög mítoszokban még a Hermésztől kapott mágikus sarkantyút használta Perszeusz a sziklához kötözött Androméda megmentésekor. Azonban, a XV-XVI században már úgy mesélték, illetve ábrázolták, hogy Perszeusz Pegazus hátán érkezett, hogy a Cettől a királylányt megmentse.

Pegazus kulcsszerepet játszott Bellerophontész mítoszában is. A hős segítségével győzte le Khimairat, az oroszlántestű nőstényszörnyet, melynek hátán kecskefej meredezett, és farka kígyófejben végződött. Az amazonok ellen vívott harcban, hősünk szintén kihasználta Pegazus nyújtotta magaslati előnyét. Bellerophontészt végül sikerei olyannyira elvakították, hogy Pegazus hátán egyenesen az Olimposzra lovagolt, mert úgy gondolta, hogy magának is az istenek között a helye. Zeuszt feldühítette az arcátlanság, és böglyöt küldött, mely megcsípte Pegazust. A ló levetette hátáról Bellerophontészt, aki visszazuhant a földre. Új gazdája maga Zeusz lett. S mivel Pegazus hűen szolgálta őt, hordta villámait, Zeusz tiszteletből csillagképpé változtatta.

Ez hát Pegazus mítosza. Az viszont maga a valóság, hogy a Pegazus egyike annak a 48, Ptolemaiosz által felsorolt csillagképnek (Almageszt), melyet a mai napig használunk. Ma összesen 88 csillagkép létezik, melyeket a Nemzetközi Csillagászati Unió (International Astronomical Union, IAU) 1922-ben fogadott el.

Pegasus_IAU.svg

A Pegazus csillagkép, és a hozzá tartozó területek. A Pegazus-négyszög igen jellegzetes alakzat, noha annak „bal felső” csillaga (α Andromedae) már az Androméda csillagképhez tartozik. 

A Pegazus vidéke hemzseg a látnivalóktól. Kimondottan, ha valaki galaxisokra vadászik. Igaz, legtöbbjük olyan apró és halvány, hogy nagyobb méretű amatőrtávcsőre van szükség a megpillantásukhoz, illetve lefényképezésükhöz. Akad azonban könnyebb célpont is. Az NGC7331 katalógus számú galaxis a Pegazus csillagkép legfényesebb, és talán legismertebb galaxisa. A Matar (η Peg) nevű csillagától nem egészen 4.5 fokra, észak-északnyugatra, nem is nehéz ráakadni erre a 9.5 (V) magnitúdós és 10.5 x 3.7 ívperc látszólagos kiterjedésű csillagvárosra.

A csillagrendszert William Herschel fedezte fel 1784-ben. Érdekes, hogy Charles Messier több hasonló paraméterrel rendelkező mély-ég objektumot katalogizált, véleményem szerint ennél nehezebben megpillanthatóakat is, de ez a galaxis valamiért mégis kimaradt gyűjteményéből. Természetesen, ez mit sem von le Messier érdemeiből.

NGC7331-Pegazus-02

Az NGC7331 nem egészen 4.5 fokra, észak-északnyugatra található a Pegazus csillagkép Matar (η Peg) nevű csillagától.

Ha már megemlítettem Messier nevét, akkor megjegyzem, hogy az általa felsorolt 110 objektum megfigyelése szerintem egy nagyszerű program kezdő mély-ég észlelők számára. Gyakorlott megfigyelőknek pedig a Messier-maraton kitűnő szórakozás, melynek során egyetlen éjszaka alatt kell a lehető legtöbb Messier objektumot teljesíteni. Erre az egyik legkitűnőbb alkalom április elejének környéke. Hazánkból már többen is teljesítették a kihívást, eljutva egészen 109 objektumig (az M30 megfigyelése hazánkból lehetetlen ebben az időpontban).

Az idők folyamán azonban több katalógus, pontosabban szólva gyűjtemény is napvilágot látott, mely egyfajta további észlelési programot ad azok kezébe, akik már felkeresték az összes Messier objektumot, és a távoli világűr további szépségére is kíváncsiak. Úgy gondolom, minden lelkes mély-ég észlelő életében eljön ez a pillanat. A Messier katalógus közel sem tartalmazza az égbolt fényesebb mély-ég objektumainak teljes listáját. Nem is ezzel a céllal született. Sir Patrick Alfred Caldwell-Moore viszont azon a véleményen volt, hogy szükség lenne egy kiegészítésre, kimondottan amatőrcsillagászoknak. Ezzel az indíttatással állította össze, és publikálta saját katalógusát 1995-ben, mely Caldwell katalógusként lett ismert.

CaldwellStarChart-2000px

Caldwell objektumok az égbolton.

Ezek nem az ő önálló felfedezései, csupán összegyűjtötte az égbolt izgalmas, és viszonylag fényes mély-ég objektumait, melyeket mások figyelmébe szeretett volna ajánlani, és melyek hiányoztak a Messier katalógusból. A Caldwell katalógusban az objektumok deklinációjuk szerint következnek sorba. Továbbá az égbolt déli féltekének gyönyörűségeiből is tartalmaz egy jókora merítést. Az NGC7331 éppen a harmincadik objektum a Caldwell katalógusban, így amatőrcsillagász körökben gyakran C30-ként is szoktak rá hivatkozni.

NGC7331-LRGB-20160707-0135-sx-bin2-360s-TTK-label

A felvételen elsőként a négy apró galaxisokkal körülvett NGC7331 spirál galaxis vonja magára a szemlélő figyelmét, és természetesen ott van a csillagokkal telehintett látómező. A csillagok mind a Tejútrendszerünkhöz tartoznak. De mi a helyzet a galaxisokkal? Vajon van fizikai kapcsolat a Deer Lick csoport tagjai, vagyis az NGC7331, az NGC7336, az NGC7335, az NGC7340 és az NGC7337 között?

Az NGC7331 távolságát az elmúlt évtizedekben több módszerrel is megpróbálták meghatározni. A spirál galaxis felépítése és nagy inklinációja (kb. 73°) ideális körülményeket biztosított az úgynevezett Tully-Fisher reláció használatára. A Tully-Fisher reláció (elliptikus galaxisok esetén nem használható, csak spirális és lentikuláris galaxisoknál) egy tapasztalati összefüggés a galaxisok tömege vagy luminozitása és emissziós vonalainak szélessége, vagyis a galaxison belüli szögsebességek között. A részletekbe nem nagyon elmerülve, arról van szó, hogy a galaxison belüli sebességekből meghatározható a galaxis luminozitása, és ebből pedig távolsága. Ugyanis, a galaxis csillagainak dinamikáját a galaxis tömege határozza meg, mely pedig összefüggésben áll annak luminozitásával. Az így kapott luminozitást felhasználva a látszólagos fényesség ismeretében a távolság már meghatározható. Ezzel a módszerrel a kilencvenes évek elején végzett alapos vizsgálatok után 12Mpc (kb. 39 millió fényév) távolságot kaptak a csillagászok.

Ezt követően nem sokkal, a kilencvenes évek közepén indult egy projekt (The Hubble Space Telescope Extragalactic Distance Scale Key Project), melyben a Hubble űrtávcsővel kívánták meghatározni 20 Mpc-en belül 18 galaxis távolságát a benne található Cepheida típusú változócsillagok segítségével.

A Cepheida változócsillagok radiálisan pulzálnak. Az átmérőjükben és hőmérsékletükben bekövetkező változás az oka, hogy fényességük meghatározott, stabil periódus szerint változik.

Henrietta Swan Leavitt még 1912-ben felfedezte fel a Cepheida-k fényváltozási periódusa és abszolút fényessége között fennálló kapcsolatot, miután a Nagy Magellán-felhő Cepheida változóiról készült több száznyi fotólemezt áttanulmányozta. E csillagok úgynevezett standard gyertyaként használhatók az őket tartalmazó halmazok, galaxisok távolságának meghatározására. A Cepheida periódusából adódik, annak abszolút fényessége. Ennek, és a mért látszólagos fényességnek a birtokában a távolság pedig már meghatározható.

Maga Edwin Hubble is Cepheida típusú változócsillagokat használt az Androméda galaxis távolságának meghatározásához. Sikeresen azonosította őket, majd a periódus-fényesség relációjuk felhasználásával bizonyította 1926-ban, hogy az Androméda galaxis a Tejútrendszeren kívül elhelyezkedő önálló csillagváros.

Hubble_V1

Edwin Hubble egyik felvétele, rajta az Androméda galaxisban azonosított Cepheida változókkal.

Ezúttal a Hubble-ről elnevezett űrtávcsőn volt a sor, hogy megismételje azt a bravúrt, amit a Hooker távcső itt a Földön közel 70 évvel ezelőtt. A kitűzött távolság azonban ebben az esetben 25-ször nagyobb volt. Végül a kutatók 13 Cepheida változót azonosítottak biztosan az NGC7331-ben, és ezeket használták fel a galaxis távolságának meghatározására.

NGC7331-Ceph-HST

Cepheida típusú változócsillagok az NGC7331-ben a Hubble űrtávcső felvételén.

Az 1998-ban publikált eredmények szerint a galaxis távolsága 15.1 (+1.0/-0.9) Mpc, vagyis nagyjából 49 millió fényév.

A csillagászok a „kis” galaxisok távolságát is meghatározták. Ezek jóval távolabb vannak, mint az NGC7331. Olyannyira, hogy még a Hubble űrtávcső is képtelen megpillantani bennük az amúgy igen fényes Cepheida változócsillagokat. E négy galaxis esetében egészen más módszert is használtak.

A világegyetem tágulásának köszönhetően a galaxisok távolodnak tőlünk, méghozzá annál nagyobb sebességgel, minél nagyobb a távolságuk. Ez az összefüggést nevezik Hubble-törvénynek. A Doppler-effektus miatt, a távolodó égitest spektrumában a színképvonalak a sebességgel arányosan a vörös szín felé tolódnak. Megmérve a vöröseltolódást kiszámítható a távolodás sebessége, ebből pedig a Hubble-törvény alkalmazásával már következik a galaxis távolsága.

Az NGC7335, NGC7337, és az NGC7340 hasonló távolságra vannak, de jóval az NGC7331-en túl. Szám szerint, 264 millió fényévre, 275 millió fényévre, 268 millió fényévre. Az NGC7336 a maga 371 millió fényéves távolságával azonban, még rajtuk is túltesz.

A fentebb feltett kérdésre válaszolva: a Deer Lick csoport tagjai, bár pompásan mutatnak így együtt, három jelentősen eltérő távolságban vannak. A csoportosulás mindössze látszólagos.

Az NGC7331 valójában tényleg része egy galaxis csoportnak. Ez nem túlságosan sűrű, és tagjai az égbolt viszonylag nagy területén, szétszórtan helyezkednek el. Elég nagy területen ahhoz, hogy az én látómezőmbe már ne férjenek bele. E csoport fényesebb tagjai: az NGC7217 (kb. 6° távolságra az NGC7331-től, ez a második legfényesebb), az NGC7320, az NGC7292, az NGC7457 (a harmadik legfényesebb), az UGC12060, az UGC12082, az UGC12212, az UGC12311, és az UGC 12404. Talán az NGC7320 a leginkább ismert közülük, a Stephan´s Quintett révén. Igaz, nincs fizikai kapcsolatban az ötös másik négy galaxisával. Megint csak egy véletlen egybeesés!

Gyakran beszélnek, vagy éppen írnak az NGC7331-ről, mint galaxisunk ikertestvéréről. Ez azonban csak félig-meddig igaz.

A 49 millió fényév körüli távolságot elfogadva, a galaxis átmérője nagyjából 100000 fényév, vagyis Tejútrendszerünk és az NGC7331 hasonló méretű spirál galaxis. Szintén, a Cepheida változócsillagokra alapozott távolságát alapul véve, látszólagos fényességéből már következik a valódi fényessége (luminozitása). Ez utóbbi és a galaxis kinematikai vizsgálatainak eredménye alapján tömege 4.6 x 1011 naptömeg (Tully-Fisher reláció). Kijelenthető tehát, hogy az NGC7331 a saját galaxisunkkal egy „súlycsoportjába” tartozik. Morfológiai típusa SA(s)b D. Ellentétben saját Tejútrendszerünkkel, ez a spirális csillagrendszer nem küllős, vagyis a galaxis karjai közvetlenül a magból indulnak. Ha már mindenképpen az NGC7331 ikertestvérét keressük „a közelben”, akkor morfológiáját tekintve, az az Androméda-galaxis (M31).

 Hubble_-_de_Vaucouleurs_Galaxy_Morphology_Diagram-mini

A Hubble – de Vaucouleurs galaxis morfológiai diagram.

Bár a korai elképzelések miatt, ma is használják a korai típusú (elliptikus, lentikuláris galaxisok), és a késői típusú galaxis elnevezést (spirál galaxisok, irreguláris galaxisok), ma már tudjuk, hogy valójában a galaxisok fejlődése nem a balról jobbra irányt követi az ábrán. Most csak a spirál galaxisokra koncentrálva, ezek három osztályba sorolhatóak. Normál spirál galaxisok (felül), átmeneti spirál galaxisok (középen), küllős spirál galaxisok. Figyeljük meg, hogy ez utóbbi esetben a küllőből indul a spirálkar. A Hubble Űrtávcső 2000 galaxist magában foglaló felmérése, a Cosmic Evolution Survey (COSMOS) eredményei szerint a múltban kisebb volt a küllős galaxisok aránya a spirális galaxisok között. A mai univerzumban a spirál galaxisok körülbelül 65% rendelkezik küllős szerkezettel, míg a múltban ez az arány, mindössze 20% volt. 7 milliárd év alatt megháromszorozódott a számuk. Az is kiderült, hogy a galaxis tömege is fontos szerepet játszik abban, hogy mikor válik egy spirális galaxis küllőssé, vagyis mikor éri el a fejlettség/érettség eme szintjét. A nagytömegűek gyorsan legyártják csillagaikat, miközben felélik intersztelláris gázkészletük jelentős részét. A rövidéletű forró kék csillagok kihalásával, az újabb populációk utánpótlásának hiányában, vörös korongokká válnak az űrben. A kisebb tömegű galaxisok azonban nem fejlődnek olyan gyorsan. Náluk később alakul ki a küllős struktúra. A csillagászok ma úgy vélik, hogy a küllős szerkezet létrejötte a spirál galaxisok fejlődésének egyik állomása.

Első ránézésre az NGC7331 átlagos spirál galaxis benyomását kelti. A kilencvenes években azonban furcsa felfedezést tett csillagászok egy csoportja, miközben a Kanári-szigeteken (La Palma) lévő 4.2 méter tükörátmérőjű William Herschel Távcsővel megvizsgálták a galaxist a közeli infravörös tartományban. Felvételeket készítettek, illetve spektroszkópiai méréseket végeztek. A galaxis felépítését, szerkezetét, a galaxison belüli sebesség eloszlásokat igyekeztek feltérképezni. Megfigyeléseik igen meghökkentő eredménnyel zárultak. Megállapították, hogy a galaxis központi régiója lassú ellentétes irányú forgást végez a gyorsan forgó koronghoz képest. De mi lehet ez a furcsa háromtengelyű képződmény a belső 5ʺ sugarú területen? Erre két lehetséges magyarázattal is szolgáltak a felfedezők. Az első szerint elképzelhető, hogy mégis küllős galaxis az NGC7331, és a küllő éppen a végével fordul felénk. A második lehetőség azonban a sokkal valószínűbb, miszerint ez külső eredetű, és egy korábbi nagyobb méretű, galaxisok közötti összeolvadás eredménye. Az ellentétes irányba forgó rendszer nem más, mint a másik galaxis maradványa. Amennyiben, ez valahogy mégiscsak belső eredetű lenne, az nagyon feladná a leckét a csillagrendszerek kialakulásával foglalkozó kutatóknak és elméleteiknek.

Infravörös tartományban azonban nemcsak a Föld felszínéről vizsgálták az NGC7331-et, hanem a NASA Spitzer űrtávcsövével is. Ez az objektum is része volt annak a programnak (Spitzer Infrared Nearby Galaxies Survey), melyben 75 viszonylag közeli galaxis infravörös tartományban történő feltérképezését tűzték ki célul. A Spitzer olyan dolgokat is képes volt meglátni, ami a látható fény tartományban többnyire rejtve marad előlünk.

NGC7331-PIA06322-rot

Az NGC7331 az infravörös tartományban a Spitzer űrtávcsővel készült felvételen.

A fényképen négy szín jelöli a különböző hullámhosszú infravörös sugárzást: 3.6 mikron a kék, 4.5 mikron a zöld, 5.8 mikron a sárga és végül 8.0 mikron a vörös szín. A rövidebb hullámhosszú sugárzás (kék és zöld szín) az idősebb hidegebb csillagoktól származik, főleg ezek sugárzása uralja ezt a tartományt. A hosszabb hullámhosszakon (sárga és vörös szín) a csillagok már kevésbé sugároznak, ott a porfelhők válnak hangsúlyossá.  Egészen pontosan az úgynevezett policiklusos aromás szénhidrogének (PAH – Polycyclic Aromatic Hydrocarbons) sugárzását láthatjuk ezeken a hullámhosszakon.

A csillagok sugárzása által felmelegített por emissziója folytonos az infravörös tartományban. Ezt a folytonos spektrumot szilikát elnyelési vonalak (vagy sávok), illetve a policiklusos aromás szénhidrogének emissziós vonalai (vagy sávjai) tarkítják. A Spitzer teleszkóp infravörös kameráját pedig kimondottan úgy tervezték, hogy eme utóbbi megfigyelésére (is) alkalmas legyen. A csillagászok korábban azt tapasztalták, hogy ahol előfordul a csillagközi por, ott a policiklusos aromás szénhidrogének is előfordulnak. A csillagok sötét helyeken, sűrűs gáz- és porfelhők mélyén keletkeznek, ahová optikai tartományban vajmi kevés esélyünk van bepillantani. Az 5.8 és 8.0 mikronos emisszió azonban elárulja e fészkek helyét. Nemcsak elárulja, de egyben fel is tárja a részletek. Amíg a csillagkeletkező régióknak csak sziluettjét látjuk mindössze az optikai tartományában, addig a policiklusos aromás szénhidrogének szépen kirajzolják a ködök struktúráját.

A felvételen tisztán látszik, hogy a központi rész szinte csak öreg csillagokat tartalmaz, míg a karok bővelkednek porban és gázban, de nemcsak a karok. A galaxis centrumát egy 20000 fényév sugarú gyűrű alakú aktív csillagkeletkezési terület veszi körül. A Spitzer adatai alapján nagyjából még 4 milliárd Naphoz hasonló tömegű csillag keletkezéséhez elég gáz lehet ebben a hatalmas gyűrűben. E roppant méretű struktúra a rádió és infravörös megfigyelések előtt teljes mértékben ismeretlen volt. Ez az optikai tartományban, így az én felvételemen sem látható. Ez is azt mutatja, hogy mennyire fontos a világegyetem folyamatainak megértése szempontjából a teljes elektromágneses spektrumot lefedő kutatás. Ezt azonban a csillagászokra hagyom, én amatőrcsillagászként (egyelőre) maradok az optikai tartományban történő észlelésnél, saját kedvtelésre.

A felvételről dióhéjban

Pár éve már készítettem felvételt az NGC7331-ről. Akkori főműszerem egy UMA-GPU APO Triplet 102/635 volt, melyhez ASI 120MM monokróm kamerát használtam. Mindig is dédelgettem a tervet, hogy egyszer majd egy nagyobb távcsővel és jobb dinamikával rendelkező kamerával visszatérek erre a galaxisra, vagy legalább újra feldolgozom a képet. Nem voltam sosem teljesen elégedett az eredménnyel, de akkor ennyit tudtam. Természetesen ma sem tartom magam nagy mágusnak. 🙂

Ennek a fotónak az L (Luminance) komponenseit mégsem azzal a céllal készítettem, hogy valóra váltsam az említett tervet. Egészen más témát fotóztam, és nem voltam tökéletesen elégedett a vezetéssel. Nem volt rossz, de mintha bolyongott volna kissé a mechanika. Kíváncsi voltam, hogy a jelenség függ-e attól, hogy milyen irányban néz, és milyen magasan áll a távcső. Ehhez az egyik tesztobjektum az NGC7331 volt. Kiderült, valóban a mechanikán kellett állítani, de erre nem azon az éjszakán került sor. A teszt közben készült felvételeket először ki akartam dobni, de külső unszolásra végül mégsem tettem. Augusztusban felvettem a színszűrős felvételeket is. Közel másfél hónap után pedig végre arra is lett időm, hogy kidolgozzam a képet, és felújítsam a korábbi cikket. Megérdemelne még a téma némi törődést (több L kép, alaposabb kidolgozás), de most ennyi fért bele.

Felhasznált irodalom:

F. Prada, C. Gutierrez, R.F. Peletier, C.D. McKeith: A Counter-rotating Bulge in the Sb Galaxy NGC 7331

Hughes, Shaun M. G.; Han, Mingsheng; Hoessel, John; Freedman, Wendy L.; Kennicutt, Robert C., Jr.; Mould, Jeremy R.; Saha, Abhijit; Stetson, Peter B.; Madore, Barry F.; Silbermann, Nancy A.; Harding, Paul; Ferrarese, Laura; Ford, Holland; Gibson, Brad K.; Graham, John A.; Hill, Robert; Huchra, John; Illingworth, Garth D.; Phelps, Randy; Sakai, Shoko: The Hubble Space Telescope Extragalactic Distance Scale Key Project. X. The Cepheid Distance to NGC 7331

Kartik Sheth, Debra Meloy Elmegreen, Bruce G. Elmegreen, Peter Capak, Roberto G. Abraham, E. Athanassoula, Richard S. Ellis, Bahram Mobasher, Mara Salvato, Eva Schinnerer, Nicholas Z. Scoville, Lori Spalsbury, Linda Strubbe, Marcella Carollo, Michael Rich, Andrew A. West: Evolution of the Bar Fraction in COSMOS: Quantifying the Assembly of the Hubble Sequence

Johannes Ludwig, Anna Pasquali, Eva K. Grebel, John S. Gallagher III: Giant Galaxies, Dwarfs, and Debris Survey. I. Dwarf Galaxies and Tidal Features Around NGC 7331

Joshua Davidson, Sanjoy K. Sarker, Allen Stern: Possible Evidence of Thermodynamic Equilibrium in Dark Matter Haloes

Guillermo A. Blanc, Tim Weinzirl, Mimi Song, Amanda Heiderman, Karl Gebhardt, Shardha Jogee, Neal J. Evans II, Remco C. E. van den Bosch, Rongxin Luo, Niv Drory, Maximilian Fabricius, David Fisher, Lei Hao, Kyle Kaplan, Irina Marinova, Nalin Vutisalchavakul, Peter Yoachim: The VIRUS-P Exploration of Nearby Galaxies (VENGA): Survey Design, Data Processing, and Spectral Analysis Methods

NGC7793

NGC7793-LRGB-20150907-T30-300s-TTK

NGC7793

iTelescope.net T30 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI-PL6303E CCD kamera

2015-09-07, 2015-09-10, 2015-09-13 – Siding Spring Observatory – 20 x 300 sec L, 8 x 300 sec R,G,B

Az augusztusi késő éjszakában, a Balaton parton álldogálva néztem, ahogy a Fomalhaut bágyadtan pislákolva már ott csücsül a horizont fölött. Fénye próbált áttörni a vízparti párán. A Déli Hal (Piscis Austrinus) csillagkép mindössze 25 fényévre lévő csillaga gondolatokat indított el bennem. Azon töprengtem, hogy lassan megfelelő pozícióba kerülnek a Déli Hal keleti szomszédságában lévő Szobrász (Sculptor) csillagkép galaxisai Ausztrália egén, és ideje lenne 3-4 órányi távcsőidőt foglalni a Siding Spring-ben lévő, az iTelescope hálózatához tartozó csillagvizsgálóban.

Augusztus közepe, az MTT2015 után a családé lett, a hónap maradék pár derült éjszakáján pedig szerettem volna bemutatóként részt venni a Polaris Csillagvizsgáló esti nyitva tartásain. Továbbá, a szeptember asztrofotózásra alkalmasnak látszó hétvégéjét inkább a családdal, és mellesleg egy kis pecázással kívántam tölteni. Ez utóbbi elhatározást nem a Déli Hal csillagkép látványa ihlette. Mivel az előbbiek miatt nem sok esélyét láttam, hogy októberig saját távcsövemet használjam az égbolt fotózására, nem hezitáltam sokat. Még ott álldogálva kigondoltam a célpontot, ami végül az NGC7793 lett. Nem volt könnyű a választás, mert sok szép és izgalmas galaxis található ebben a régióban. Végül a kérdést az döntötte el, hogy egy bizonyos típusú spirál galaxis még hiányzott a gyűjteményemből, illetve van az NGC7793-nak (legalább) két különös lakója, akikről talán szintén írhatnék pár sort. Megvolt a cikk alapötlete, már csak az illusztrációt kellett elkészíteni.

Másnap le is foglaltam az időpontokat. Bíztam abban, hogy hetekkel később kegyes lesz majd az időjárás, de nincs ez nagyon másként egy észlelő hétvége esetén sem. Nem teljesen úgy alakultak a dolgok, ahogy terveztem. Sem a légkör nyugodtsága, sem az az átlátszóság nem volt igazán ideális. Háromszor is nekifutottam a felvételnek, bízva abban, hogy talán majd a következő éjszakán kristálytiszta lesz az ég, és nyugodt a légkör. Nem lett. Több távcsőidőt már nem akartam elpazarolni, ezúttal ennyi adatott. Nem vagyok az a típus, akit az ilyen dolgok összetörnek, így ahelyett hogy búnak adtam volna fejem, inkább nekiláttam a feldolgozásnak. Amúgy is bőven volt még mit tanulni (és van is még!) a PixInsight programmal kapcsolatban, és a cikket is nyélbe szerettem volna ütni végre.

Szomszédok és lakótársak

A Szobrász csillagkép területén több fényes és nagy látszólagos kiterjedésű galaxis is található. Ezek közé tartozik az NGC7793 is. A térben különböző távolságban szétszórt magányos vándorokról van szó, akik véletlenül látszanak csak egy irányba, vagy van kapcsolat közöttük? Ezt a kérdést már a múlt század első felében megfogalmazták a csillagászok. Nem sokkal az után, hogy felismerték, egy galaxisokkal benépesített, táguló világegyetemben élünk.

Sculptor-map1

A Szobrász (Sculptor) csillagkép Siding Spring (Ausztrália) egén 2015. szeptember 7-én, helyi idő szerint 21:45-kor. Az északi égboltot ismerők számára ismerős csillagképek a keleti, északkeleti részen (a jobboldalon) láthatóak. Felfedezhető a Cet feje (Cetus), a Halak (Pisces), a Vízöntő (Aquarius), a Pegazus (Pegasus) négyszöge, hogy csak egy párat említsek.

Sculptor-map2

A Szobrász csillagkép területén több fényesebb galaxis is található. A méretek érzékeltetése végett megjelöltem 20° távolságot az égen. Ez magunk elé kinyújtott karokkal nagyjából kétarasznyi „hosszúság”.

A Szobrász csillagkép irányában látszó galaxisok távolságát az idők folyamán, többféle módon is meghatározták. Egyáltalán nem szokatlan ez a csillagászatban. A technológia folyamatosan fejlődik, és újabb és újabb tudományos eredmények látnak napvilágot. Tekintsük át röviden milyen módszereket vetettek be a különböző kutatók!

A spirál galaxisok és a lentikuláris galaxisok esetén használható az úgynevezett Tully-Fisher reláció, a galaxisok tömege vagy luminozitása és emissziós vonalainak szélessége, vagyis a galaxison belüli szögsebességek között. Nagyon leegyszerűsítve, a galaxison belüli sebességekből meghatározható a galaxis luminozitása, és ebből pedig távolsága. Ugyanis, a galaxis csillagainak dinamikáját a galaxis tömege határozza meg, mely pedig összefüggésben áll annak luminozitásával. Az így kapott luminozitást felhasználva a látszólagos fényesség ismeretében a távolság könnyen kiszámítható. A módszer előnye, hogy akkor is alkalmazható, ha az adott galaxist nem lehet csillagokra bontani.

A következő módszer a galaxis felületi fényesség fluktuációjának (SBF: Surface Brightness Fluctuations) meghatározásán alapul. Ehhez sincs szükség arra, hogy a galaxist csillagokra bontsuk. Sőt! A módszer megértéséhez tekintsünk a következő ábrára.

sbfluc

Az ábrán egy közeli galaxisról (nearby galaxy) és távoli galaxisról (distant galaxy) készült CCD felvétel modellje látható. Az ábrán minden egyes kis négyzet, egy CCD pixelt reprezentál. Látható, hogy a galaxisokat nem tudjuk csillagokra bontani. A távoli galaxis esetén sokkal „simább” képet kapunk, a csillagok halványabbak, de többen is vannak. Az ábra forrása: Stéphane Courteau

Egy galaxisból érkező fluxus fordítottan arányos a távolság négyzetével.  Az egy pixelre eső csillagok száma ellenben a távolság négyzetével arányos. Így az egy pixelre jutó fluxus, mely az egy csillagra eső fluxus és a csillagszám szorzata, nem függ a galaxis távolságától. Azonban, mint az a fenti ábrán is látható, azonos távcső és detektor páros mellett a közeli és a távoli galaxis esetében a felbontás eltérő. A távolabbi galaxis képe „simább” lesz, így ebben az esetben kisebb felületi fényesség fluktuációt fogunk mérni. Mondhatjuk úgyis, hogy a kétszer távolabbi galaxis képe, kétszer „simább”.

A módszer hatalmas távolságokra, vagyis akár 100 Mpc-en túl is működik. Vannak azonban gyengeségei. Először is körültekintően meg kell tisztítani a mintát, vagyis el kell távolítani például a csillagokat és más galaxisokat. Ténylegesen csak a mérni kívánt galaxis SBF-jére vagyunk ugyanis kíváncsiak. Továbbá, az eljárás nagy csillagsűrűséget feltételezve működik csak. Vagyis csak elliptikus galaxisokon, illetve nagy központi dudorral (bulge) rendelkező spirál galaxisok esetén használható. Mivel az SBF egy másodlagos távolság indikátor, így kalibrálni kell, ami nem egyszerű feladat. Ez Cepheida változócsillagok (lásd alább) segítségével például igen problematikus, mert azok jellemzően spirál galaxisokban fordulnak elő. Éppen ezért gyakorta galaxishalmazokon végzik el a kalibrációt, ahol egy ismert távolságú spirál galaxis közelében látszó elliptikusról feltételezik, hogy annak távolsága szintén hasonló.

A Scupltor galaxisainak viszonylagos közelsége lehetővé tette, hogy bizonyos tagok esetén modern földi távcsövekkel Cepheida típusú változócsillagokat keressenek bennük a csillagászok, és így ezek segítségével meghatározzák azok távolságát. A fényes, így nagy távolságból is megfigyelhető Cepheida változók fényváltozási periódusa és abszolút fényessége közötti reláció egy kitűnő távolság meghatározási módszer. A csillag periódusából származtatott abszolút fényességéből, és a mért látszólagos fényességből, pedig már egyszerűen következik az objektum távolsága.

A Hubble űrtávcsőnek köszönhetően egy merőben új korszak köszöntött be a csillagászatban. Hirtelen megnyílt az út még több csillagváros egyedi csillagainak vizsgálata felé. Így még több galaxisban vált lehetővé a Cepheida típusú változócsillagok detektálása, továbbá a kellő számú vörös óriás csillag minta mellett egy újabb távolságmérési eljárást vethettek be a csillagászok.

HRD-TRGB.PNG

A naptömegű csillagok életpályája. A vízszintes tengelyen a csillag effektív hőmérsékletének logaritmusa, míg a függőleges tengelyen a Naphoz viszonyított luminozitásának logaritmusa található.

A vörös óriás fázis a Naphoz hasonló tömegű csillagok életében akkor következik be, amikor a magban a hidrogén készletek már fogytán vannak. A hidrogén fúzió a magot körülvevő külső héjba tevődik át, miközben a csillag külső részei ennek hatására kitágulnak, míg felszíni hőmérséklete lecsökken. A csillag elhagyja a fősorozatot, és a görbén elvándorol egészen az F pontig. Jól látható, hogy ebben a luminozitás csúcspontban valami drasztikus történik, és jelentős fordulat következik be a naptömeg körüli csillagok életében: robbanásszerűen beindul a hélium fúziója a degenerált héliumból álló magban, és ez után a csillag luminozitása jelentősen lecsökken. Ezt a pontot az első vörösóriás ág tetejének nevezik. A pont neve az angol nyelvű szakirodalomban: Tip of the Red Giant Branch (TRGB).

A vörös óriások eloszlását felrajzolva egy szín-fényesség diagramon, ahol a szín a vizuális és a közeli infravörös tartományban megfigyelt fényességek különbsége (g’-i’), míg a fényesség a közeli infravörös tartományban látszó fényesség (i’), azok eloszlása egyszerű hatványtörvényt követ. Ezt a csillagfejlődési elméletek és a megfigyelések egyaránt alátámasztják. Megfelelő matematikai apparátus, és csillagászati ismeretek birtokában meghatározható az első vörösóriás-ág tetejének (TRGB: Tip of the Red Giant Branch) látszólagos közeli infravörös fényessége.

NGC7793-lr

Az NGC7793 galaxis vizsgált területeinek szín-fényesség diagramja, melynek vízszintes tengelyén a csillag vizuális és közeli infravörös fényesség különbsége, míg a függőleges tengelyén a közeli infravörös fényessége szerepel. MS: fősorozat, RGB: vörös óriás ág, AGB: aszimptotikus ág. Forrás: Marija Vlajić, Joss Bland-Hawthorn, Kenneth C. Freeman

Az idős (több milliárd éves) vörös óriás csillagok esetén, melyek fémtartalma kicsi ([Fe/H] ≤ -0.7), a közeli infravörös tartományban a TRGB pont abszolút fényessége független azok fémtartalmától. Ez már nem teljesen igaz a fiatalabb, így nagyobb fémtartalmú csillagokra. A csillagászok minden olyan elemet, ami nem hidrogén vagy hélium, fémnek neveznek. A csillagok fémtartalma fontos szerepet játszik fejlődésükben, és ennek köszönhetően kissé más utat járnak be. A nagyobb fémtartalmú vörös óriások életpályája a diagramon kissé a kékes tartomány felé tolódik. A módszer egyik lényeges sarokköve tehát, hogy a csillagok fémtartalma, vagyis kora egy tág intervallumban (>2 milliárd év) nem befolyásolja szignifikánsan a távolság meghatározás pontosságát. Ráadásul idősebb csillagpopulációk minden galaxisban akadnak, míg a fiatalabbak, a csillagkeletkezés hiányában szinte teljesen hiányoznak például az elliptikus galaxisokból.

A kutatók a TRGB abszolút fényesség kalibrációját olyan a Tejútrendszerhez tartozó gömbhalmazokon és csillagpopulációkon végezték el, ahol más távolság meghatározási módszerek is rendelkezésre álltak. Ez után a TRGB abszolút fényességének ismeretében, és a látszólagos fényességének birtokában a csillagászok már ki tudták számítani a galaxisok távolságát.

Természetesen, több nehézség is felmerül a pusztán matematikai „kihívások” mellett. Megfelelő csillagjelölteket kell választani, és a látszólagos fényesség esetén több korrekciós tényezőt is figyelembe kell venni. Ilyen például, hogy a saját galaxisunkban lévő intersztelláris médium némi vörösödést okozhat a megfigyelt objektumok fényében, illetve tompíthatja azt. Magában a távoli galaxisban található por és gáz szintén hatással lehet a megfigyelt csillagok színére és fényességére.

E rövid áttekintés után nézzük meg, hogy a galaxisok távolságának és radiális sebességének meghatározása után milyen következtetésre jutottak a csillagászok!

Eredetileg a Szobrász csillagkép irányában látszó öt, viszonylag fényes galaxisról, vagyis az NGC55, az NGC247, az NGC253, az NGC300 és az NGC7793 asszociációjáról gondolták azt, hogy ezek egy csoportosuláshoz tartoznak, vagyis kezdetben ezeket tekintették a Sculptor csoport tagjainak. Az elmúlt évtizedekben aztán, a különböző felmérésekben sorra fedezték fel az ég e területén a törpe galaxisokat. Azonban, az ezredforduló környékén sokukról kiderült, hogy csupán ebbe az irányban látszó háttér galaxisok.

Mai ismereteink szerint a következők mondhatóak el a világűr eme szegletéről. A Sculptor csoport alakja leginkább egy 1 x 6 Mpc kiterjedésű szivarra emlékeztet, mely hosszan nyúlik el látóirányunk mentén. Nem is klasszikus értelemben vett csoportról van szó, inkább galaxisok ritka felhőjének nevezhető, ugyanis „a szivar” közeli és távoli vége között úgy tűnik, nincs gravitációs kapcsolat. A Sculptor komplexumnak nincs határozott központja, sem éles határa.

Sculptor-gxs01

A közeli galaxisok eloszlása az égbolton a Sculptor csoport irányába, mely leginkább kis galaxis rendszerek felhőjének tekinthető. A sötét négyzetek a domináns, fényes galaxisokat reprezentálják. A fekete körök a szabálytalan törpe galaxisokat, míg az üres körök a szferoidális törpe galaxisokat jelölik. (Az NGC55 valójában a Nagy Magellán felhőhöz hasonlóan úgynevezett Magellán típusú küllős törpe spirál galaxis.) Az egyenes vonalak a főbb galaxisokat és kísérőiket kötik össze. A kis számok az egyes galaxisok radiális (látóirányunkban eső) sebességét (Km/s) mutatja. Forrás: I. D. Karachentsev és mások.

Az előtérben, hozzánk legközelebb az NGC300, az NGC55, az ESO410–05 és ESO294–10 kvartettje helyezkedik el a maga 1.95 Mpc (6.4 millió fényéves) átlagos távolságával.

Az NGC253 luminozitása a többi galaxisét jelentősen túlszárnyalja, ezért a csillagászok úgy vélik, hogy ez a nagyjából 3.94 Mpc (12.8 millió fényév) távolságra lévő galaxis lehet a kísérőivel együtt, tehát a NGC247-tel, a DDO 6-tal, Sc 22-vel, KDG 2-vel és a FG 24-gyel a komplexum dinamikai központja.

A vidék egy másik meghatározó csoportosulását a 3.91 Mpc-re (12.7 milló fényévre) található NGC7793, az UGCA 442, és az ESO 349–031 hármasa képviseli. Érdekes, hogy mérési hibahatáron belül az NGC253 és az NGC7793 látóirányú távolsága szinte teljesen azonos.

Az NGC625 és ESO245-005 bár látszólag közel helyezkednek el egymáshoz az égen, illetve radiális sebességükben sincs hatalmas különbség, mégis szeparációjuk a térben majdnem 2 Mpc. Meg kell jegyeznem azonban, hogy az NGC625 2.7 Mpc-es, és az ESO245-005 4.4 Mpc-es távolság értéke igen jelentős bizonytalanságot hordoz magában.

A fenti ábrán is feltüntetett galaxisok közül többeknél is felmerült a gyanú, a csoport egészéhez képest kiugróan magas a radiális sebességük miatt, hogy azok csupán háttér galaxisok. Így például igen valószínű, hogy az ESO 149-03, az NGC59, és a DDO 226 is az.

A távolság és dinamikai vizsgálatok másra is rávilágítottak. A 6 Mpc hosszú, a Szobrász csillagkép irányába látszódó galaxis felhő a Lokális Csoporttal (Tejútrendszerünk ennek a része), és a Canes Venatici I galaxis felhővel együtt egy nagyjából 10 Mpc hosszan elnyúló amorf szálnak a része. Bár hatalmas méretű ez a kozmikus képződmény, azonban még így is csak kis szigete a nagyjából 150 Mpc kiterjedésű Laniakea szuperhalmaznak.

NGC7793, avagy a káosz és a rend

Az NGC7793, ahogy már fentebb is említettem, 3.91 Mpc-re (12.7 milló fényévre) található és látszólagos mérete az égen 9.3ˊ × 6.3ˊ. Átmérője nagyjából 35 ezer fényév körül lehet, így nagyságát tekintve csak harmad akkora, mint Tejútrendszerünk. A katalógusokban rákeresve az NGC7793-ra, általában 9 és 10 magnitúdó közötti fényességértékeket találunk, ami könnyen megtéveszthető lehet annak, aki vizuálisan szeretné felkeresni, ugyanis az NGC7793 kis felületi fényességű galaxis.

A spirál galaxis kifejezés hallatán az olvasók többségének valószínűleg nem a fotómhoz hasonlatos kép fog megjelenni a fejében. Sokkal inkább valami olyasmi, mint amilyen mondjuk az M51 (a társától most egy pillanatra tekintsünk el), ahol két szabályos kar spirálozva tekeredik a mag körül.

NGC7793-M51-01-cut1

Balra az NGC7793-ról, jobbra az M51-ről készült felvételem látható. Figyeljük meg, hogy mennyire más a két galaxisban a spirálkarok felépítése.

A spirál galaxisokat a karok megjelenési formája szerint a csillagászok három fő csoportba sorolják. Az első csoportba a szabályos spirál galaxisok (grand design galaxy) tartoznak. Fő jellemzőjük a két szimmetrikus, egybefüggő és határozott spirálkar. Igen, a legtöbbünkben ez a kép él a tipikus spirál galaxisról, annak ellenére, hogy mindössze csak a 10%-uk ilyen. A második csoportot az úgynevezett pelyhes galaxisok (flocculent galaxy) alkotják. Ezeknél a karok nehezen kivehetőek, szakadozottak, kissé „szedett-vedett”, kaotikus a korong. Az NGC7793 is ide sorolható, akárcsak a spirál galaxisok 30%-a. Végül a harmadik csoportot a sok-karú (multiple arm) galaxisok képviselik, melyekre az erősebb belső karok és a kaotikus külső a jellemző. Ezek képviselik 60%-kal a spirál galaxisok túlnyomó többséget. Megjegyzem, hogy a kutatók egy része egy csoportként tekint a pelyhes és a sok-karú galaxisokra.

De hogyan jönnek egyáltalán létre a spirál karok? Miért is látunk spirális struktúrákat egyes galaxisokban?

A klasszikus Lin-Shu elmélet szerint nagyon tömören a válasz az, hogy sűrűséghullám forog körbe a korongon merev testként. Ne ijedjen meg a kedves olvasó, mert máris elmagyarázom anélkül, hogy nagyon el kellene mélyedni a matematika és a fizika rejtelmeiben.

Először is mi is az a sűrűséghullám? Ennek könnyebb megértéséhez előveszem, az ilyenkor szinte kötelezően elhangzó analógiát. Bizonyára már mindenki utazott autóval, így elmondhatja magáról, hogy közelről látott már sűrűséghullámot, és részt is vett benne. Tegyük fel, hogy egy soksávos autópályán haladunk mondjuk a megengedett 130 Km/h sebességgel. Vidámak vagyunk, megfelelő a tempó, semmi sem akadályoz minket. Előttünk azonban pár kilométerrel valakik lassabban vezetnek, mondjuk csak 90 Km/h sebességgel. Ide mindenki helyettesítse be a kedvenc szereplőjét, én egymás előzgető kamionok sorára fogok gondolni, ami tökéletes ehhez a példához. Előbb utóbb a többiekkel utolérjük őket, és lassítanunk kell nekünk is 90 Km/h-ra, hogy biztonságosan átjussunk a dugón. Miután a lassabb járműveken keresztül verekedtük magunkat, ismét szabad az út és visszagyorsítunk 130 Km/h-ra, akár csak a többiek. A forgalmi akadály (a sok kamion) 90 Km/h-val „közlekedik”, míg a személyautók számára a tipikus (megengedett) sebesség 130 Km/h. Ez a szituáció egy jó példája a sűrűséghullámnak, és az általa okozott zavarnak.

Ültessük most át az előzőeket a galaxisokra. Itt a forgalmi dugókat a Lin-Shu teória szerint a spirál galaxisokban jelenlévő sűrűséghullámok jelentik. A hullámokban a tömegsűrűség nagyobb, mint a korong más részein. Nagyon egyszerűen fogalmazva: az anyag egy ilyen hullámban „szorosabban tömörödik”. Tudományosabban: itt a tömegsűrűség relatív fluktuációja 10-20%. A spirál alakú hullámok a galaxis anyagától függetlenül merev testként rotálnak, és több rotációs perióduson keresztül képesek állandó állapotban fennmaradni, ami sok-sok 100 millió évet jelent. A csillagok, a gáz- és a porfelhők azonban annál gyorsabban kerülik meg a galaxis centrumát, minél közelebb vannak hozzá. Így a belső vidékeken ezek utolérik a sűrűséghullámokat, míg a külső régiókban a sűrűséghullám éri be őket. Amikor egy csillag közel kerül a hullámhoz, a nagyobb tömegsűrűsége „behúzza” a csillagokat, és „visszafogja” egy darabig. Idővel azonban a csillag keresztüljut a sűrűséghullámon. Hasonló történik a gázfelhőkkel és a porfelhőkkel is. A különbség az, hogy ezek összenyomódnak a magasabb tömegsűrűség miatt. Ha egy gázfelhő kellően sűrűvé válik (Jeans-kritérium) elkezd összehúzódni, és megkezdődik benne a csillagok kialakulása. A hideg molekuláris gázfelhőkben születő csillagoknak időre van szüksége, hogy kellően összesűrűsödve, magjukban beinduljon a hidrogén fúziója. Egy nagytömegű csillag esetén ehhez nagyjából 100 ezer év szükséges, míg a kisebb tömegűeknél ez akár több 10 millió évig is eltarthat. Mindeközben a sűrűséghullám továbbhalad, de mire az újszülött csillagok bölcsője eléri a hullám peremét, már felragyognak a nagytömegű csillagok. Ezek az O és B típusú csillagok erős UV sugárzásukkal nagy területen ionizálják az őket körülvevő gázfelhőket, melyek ennek köszönhetően szintén világítani kezdenek. A fiatal nagytömegű csillagok és az ionizált gázfelhők, vagyis az úgynevezett HII régiók keltik életre a spirálkarokat, az ezeknek köszönhetően válik láthatóvá. A hatalmas tömeggel rendelkező csillagok azonban nem élnek sokáig. Alig 5-10 millió év alatt leélik életüket. E rövid idő alatt galaktikus keringésük során nem jutnak messzire a születési helyüktől, vagyis mindig a sűrűséghullám peremén figyelhetőek meg. A kisebb tömegű társaik azonban megkezdik számtalan cikluson át tartó keringésüket, benépesítve a korongot. A karok nem is tömegük, hanem a bennük zajló csillagkeletkezés miatt fényesebbek a közöttük lévő térnél.

C.C. Lin és F. Shu az 1960-as évek derekán dolgozták ki elméletüket, amit az óta többen továbbfejlesztettek. Ők még egyáltalán nem foglalkoztak magának a sűrűséghullámnak a kialakulásával. Ezt a kérdést egyébként a mai napig sem sikerült megnyugtatóan tisztázni.

Egyes tanulmányok szerint a galaxison belüli bármilyen kis instabilitás felelőssé tehető a sűrűséghullámok kialakulásáért. Indukálhatták ezeket akár a galaxis korongjának keletkezésekor, az abban létrejött sűrűsödések is.

A videóban a Tejútrendszer kialakulásának szimulációja látható. Figyeljük meg, a spirális struktúra kialakulását!

De egy másik galaxissal történő kölcsönhatás ugyanúgy kiválthatja a sűrűséghullámokat. Talán a fentebb említett M51 esetén is erről van szó. Érdekességképpen megjegyzem, hogy a legpompásabb karokkal rendelkező spirál galaxisok közül igen soknak van kísérője.

Léteznek azonban más sűrűséghullámon alapuló elméletek is, melyek közül a kaotikus spirálkar elméletet emelném ki, és annak is csak az egyik legegyszerűbb változatát mutatnám be. Ahogy a nevéből is sejthető, ez inkább a kaotikus, töredezett karokkal rendelkező spirál galaxisokra koncentrál, mint amilyen például a pelyhes NGC7793 galaxis. Ne feledjük el, hogy ezek a galaxisok jelentősen nagyobb számban fordulnak elő, mint a szabályos, szimmetrikus, egybefüggő karokkal rendelkező társaik. Ellentétben a Lin-Shu elmélettel itt a karok egyáltalán nem hosszú életűek, folyamatosan születnek és meghalnak, ám itt is kapcsolatban állnak a csillagkeletkezéssel. A karok kialakulása azzal kezdődik, hogy a gázban igen gazdag galaxis bizonyos régióiban lokális gravitációs instabilitás lép fel az intersztelláris gázfelhőkben, melynek hatására beindul a tömeges csillagkeletkezés. Mivel a galaxis differenciális rotációt végez, vagyis a centrumhoz közelebbi égitestek keringési sebessége nagyobb, így az előző folyamatban született csillagok lassan spirális mintázatot rajzolnak ki. Létrejön a kar, vagy kartöredék teletűzdelve kékes fényű csillaghalmazokkal és vöröses színben pompázó HII régiókkal. Az idő előrehaladtával a nagyobb tömegű, fényesebb csillagok elpusztulnak, így a kar (a kartöredék) „kivilágítása” megszűnik, a struktúra lassan elenyészik. Mindez a galaxis több pontján, az időben eltolva zajlik. Karok alakulnak ki itt, és tűnnek el ott.

Mint a fentiekből is látható, bár nem törekedtem a teljességre, nem csak egyetlen elmélet létezik, amely megpróbálja megmagyarázni, hogy miért is látunk spirál galaxisokat az világegyetemben. Az utóbbi időkben egyre többen adnak hangot annak, hogy talán más folyamatok alakíthatták ki a szabályos, szimmetrikus karokkal rendelkező galaxisok, mint például a pelyhes galaxisok korongbeli struktúráit. Előtérbe került annak vizsgálata, hogy miként lépnek fel az instabilitások a gázban, a csillagok mozgásában, mikor viselkednek állóhullámként a sűrűséghullámok, illetve mikor nem. A spirál galaxisokat pedig ennek megfelelően kezdték inkább osztályozni.

És akkor még nem is említettem, hogy a technika fejlődésének köszönhetően ma sokkal messzebbre tekinthetünk az univerzumban, így láthatjuk a galaxisok igen korai fejlődési állapotát. Ez a lehetőség a múltszázad közepén még nem állt a kutatók rendelkezésére.

Ma már tudjuk, hogy a korai világegyetemben egyáltalán nem voltak még spirál galaxisok. Ezek elődjei csak a korongból álltak, és fényes, masszív csillagkeletkezési csomókból. Alig volt még bennük rendezett struktúra. Milliárd évek teltek el, míg a dolgok lassan rendeződni kezdtek. A hatalmas csomók többnyire eltűntek, és lassan megjelent a központi dudor. A kisebb csomók elkezdték kirajzolni, az akkor még igencsak elmosódott, határozatlan spirálkarokat. Az első határozott karokkal rendelkező galaxisok akkor jelentek meg, amikor a világegyetem már nagyjából 3.6 milliárd éves volt. Erre a korszakra a spirálisok két típusa volt a jellemző. A „kétkarúak” és a vastag szabálytalan karokkal rendelkezők, melyek még mindig tartalmaztak csomókat. Az olyan négykarú galaxisokra, mint a mi Tejútrendszerünk vagy az Androméda galaxis 8 milliárd évet kellett várni az ősrobbanástól számítva.

Térjünk még vissza egy picit a felvételem célpontjához, vegyük szemügyre alaposabban. Az optikai tartományban készült felvételemen is nagyszerűen látszik, hogy az NGC7793 galaxis bővelkedik a csillagkeletkezési régiókban. Mindenfelé vöröses, némileg rózsaszínben hajló HII régiók tarkítják a korongját. A látványhoz pedig hozzáadódik a 100-150 pc (kb. 300-500 fényév) méretű OB csillagasszociációk csoportjának kék fénye. Az asszociációk tagjai, a nyílthalmazokkal ellentétben, nem kötődnek egymáshoz gravitációsan. Kiterjedésük pedig sokszorosa lehet a nyílthalmazokénak. Gázfelhők közelében, vagy abba ágyazódva akadhatunk rájuk. A felvételen a legnagyobb kék foltok mérete a 300 pc-et (közel 1000 fényév) is eléri. Bár ebben az esetben már inkább csillagkomplexumokról van szó, vagyis asszociációk csoportjáról.

Az NGC7793 karjainak struktúráját igazán azonban a róla készült infravörös felvételek teszik láthatóvá. A Spitzer űrtávcső könnyedén keresztüllát a sűrű gázfelhőkön és a poron.

NGC 7793 Spitzer

A Spitzer infravörös tartományban készült felvétele az NGC7793-ról. A kék a 3.6 mikronos, a zöld a 4.5 mikronos, a vörös szín az 5.8 és 8.0 mikronos infravörös emissziónak felel meg. Mivel a 3.6 mikronos sugárzáshoz erősen hozzájárulnak a csillagok is, így azt a képen erősen csökkentették. Ennek a levonásnak köszönhetően, a poros régiók jobban láthatóvá váltak. Kép forrása: NASA/JPL-Caltech/R. Kennicutt (University of Arizona) – SINGS (Spitzer Infrared Nearby Galaxy Survey) projekt

A kék és zöld szín az idősebb hidegebb csillagoktól származik, főleg ezek sugárzása uralja a 3.6 mikronos és 4.5 mikronos tartományt. 5.8 és 8.0 mikronos hullámhosszon a csillagok infravörös fénye azonban már elhalványul. Ebben a tartományban feltűnik a por szerkezete a galaxison belül. Egészen pontosan az úgynevezett policiklusos aromás szénhidrogének (PAH – Polycyclic Aromatic Hydrocarbons) sugárzását láthatjuk ezeken a hullámhosszakon.

A csillagok sugárzása által felmelegített por emissziója folytonos az infravörös tartományban. Ezt a folytonos spektrumot szilikát elnyelési vonalak (vagy sávok), illetve a policiklusos aromás szénhidrogének emissziós vonalai (vagy sávjai) tarkítják. A Spitzer teleszkóp infravörös kameráját pedig kimondottan úgy tervezték, hogy eme utóbbi megfigyelésére (is) alkalmas legyen. A csillagászok korábban azt tapasztalták, hogy ahol előfordul a csillagközi por, ott a policiklusos aromás szénhidrogének is előfordulnak. A csillagok sötét helyeken, sűrűs gáz- és porfelhők mélyén keletkeznek, ahová optikai tartományban vajmi kevés esélyünk van bepillantani. Az 5.8 és 8.0 mikronos emisszió azonban elárulja e fészkek helyét. Nemcsak elárulja, de egyben fel is tárja a részletek. Amíg a csillagkeletkező régióknak csak sziluettjét látjuk mindössze az optikai tartományában, addig a policiklusos aromás szénhidrogének szépen kirajzolják a ködök struktúráját.

Az előbbiek értelmében, így a vörös szín reprezentálja az NGC7793-ról készült felvételen azokat a területeket, ahol a csillagok következő generációja születik majd. Infravörös hullámhosszon még sokkal szembetűnőbb, hogy mennyire kaotikus az NGC7793 felépítése. A spirálkarok inkább csak töredezett ívek, és nem oly fenségesen csavarodnak, mint az M51 esetében, ahogy az a lenti, szintén a Spitzer űrtávcsővel készült képen látható. Zavaros szépségében mégis van számomra valami magával ragadó.

m51-infra

Az M51 (NGC5194) és az NGC5195 az infravörös tartományban a Spitzer űrtávcső felvételén. A színekre itt a fentebb leírtak érvényesek. Kép forrása: NASA/JPL-Caltech/R. Kennicutt (University of Arizona) – SINGS (Spitzer Infrared Nearby Galaxy Survey) projekt

Mikrokvazár és fekete lyukak az NGC7793-ban

NGC7793-P13-S26-01

Az NGC7793-ról készült felvételem részletének negatív változata. Két vonal fogja közre a P13 elnevezésű ultrafényes röntgenforrás (ULX) optikai tartományban is látható komponensét. A vörös kör azt a régiót jelöli, ahol az S26 nevű mikrokvazár lakik.

Mielőtt mesélnék az NGC7793 két furcsa lakójáról általánosságban is ismerkedjünk meg a csillagászati objektumok egy bizonyos csoportjával.

A világegyetemben előforduló fekete lyukak tömege igen széles tartományban változik. A galaxisok magjában tanyázó, központi szupermasszív fekete lyukak (SMBH: supermassive black hole) tömege pár milliótól több milliárd naptömegig is terjedhet. A skála másik oldalán a Napnál 5-30-szor nagyobb tömegűek helyezkednek el, melyek a nagyon nagytömegű csillagok életét lezáró szupernóva-robbanását követően keletkeznek. A szakirodalom ezeket csak csillag tömegű fekete lyukaknak (stellar black hole, stellar-mass black hole) nevezi. A hipotézisek szerint, a két véglet között foglalnak helyet a köztes tömegű fekete lyukak (IMBH: intermediate-mass black hole), melyekre egyelőre csak viszonylag kevés jelölt akadt. A fekete lyukak, ahogy ez a nevükből is sejthető a környezetükre gyakorolt hatásuk révén figyelhetőek csak meg, vegyük sorra miként állnak elénk az univerzum porondján.

A kvazárok több milliárd fényéves távolságban lévő aktív galaxis magok (Active Galactic Nucleus – AGN). A ma elfogadott modellek szerint a kvazárok magjában szupermasszív központi fekete lyuk található. Ezek a fekete lyukak gravitációjukkal csapdába ejtve, mohón próbálják elnyelni a környezetükben található anyagot. Az étekként szolgáló intersztelláris gáz és por, mely a környező felhőkből, vagy éppen szétszaggatott csillagokból származik, akkréciós korongot formál. A korongot kívülről sűrűbb, lassabban keringő gázfelhők veszik körül. Az akkréciós korong anyaga miközben befelé örvénylik, egyre gyorsabban mozog és felhevül. A folyamatban a mozgási energiájának egy jelentős része elektromágneses sugárzássá alakul. Az akkréciós korong mindkét oldalán, arra merőlegesen, a forgástengely mentén plazmából álló jet-ek jönnek létre, melyek a fekete lyuk közeli erős mágneses terében közel fénysebességre gyorsított, töltött szubatomikus részecskékből állnak. Ezek a töltött részecskék a mágneses térben kifelé spirálozva felelősek az úgynevezett szinkrotronsugárzásért.

A jet-ek létrejöttének pontos mechanizmusa még a mai napig vita tárgyát képezi a kutatók körében. Valószínűsíthető, hogy az akkréciós korongban felcsavarodó mágneses térnek kitüntetett szerepe van abban, hogy a forgástengely mentén keskeny nyalábba terelődik a kiáramlás. A jet-ek, kilövellések hatalmasak is lehetnek, hosszuk nemritkán eléri akár a több millió fényévet. Ehhez képest maga a belső szerkezet, vagyis a korong és az azt körülvevő gázfelhők a fényéves nagyságrendbe esnek. Emlékeztetőül a Tejútrendszer átmérője 100000 fényév. A kvazárok óriási mennyiségű energiát sugároznak ki, méghozzá csillagászati értelemben véve roppant kis területről.

agn_tipusok

Az, hogy a galaxis aktív magját miként látjuk az égen, milyen objektumként soroljuk be, attól függ csak, hogy a jet milyen irányba mutat. Leegyszerűsítve, ha pontosan felénk mutat az egyik jet, akkor blazárként jelenik meg az objektum. Ha a jet szöge egy kisebb szöget zár be a látóirányunkkal, akkor kvazár vagy Seyfert I típusú galaxis figyelhető meg.  Amennyiben oldalról látjuk a jet-et, akkor rádió galaxisként, vagy Seyfer II típusú galaxisként észleljük. A dolog hátterében álló mechanizmus azonban minden esetben ugyanaz.

A köztes tömegű fekete lyukaknál teljesen hasonló akkréciós mechanizmusok működnek. Ebben az esetben is a környező por és gáz a napi menü. Leggyakrabban az ultrafényes röntgenforrásokkal (ULX: ultra-luminous X ray source) hozzák őket kapcsolatba.

A csillagok tömegének nagyságrendjébe esők, akkor válnak láthatóvá, ha van egy kísérőjük, akitől csillaganyagot tudnak zsákmányolni. Egy kettős rendszerben mindkét komponens esetén megvan az a térrész, amit az adott égitest gravitációja ural. Ezt Roche-térfogatnak nevetik. Ami azon kívül kerül az akár el is hagyhatja a rendszert, vagy a páros körüli pályára áll. A belső Langrange-ponton keresztül azonban anyag áramolhat át az egyik Roche-térfogatból a másikba. Ez meg is történik akkor, ha a fekete lyuk társa fejlődése során felfúvódik és kitölti a saját Roche-térfogatát. Az átáramló csillaganyag a fekete lyuk körül akkréciós korongot hoz létre, és beindul a kvazároknál már ismertetett folyamat, csak éppen „kicsiben”. Ennek köszönhetően intenzív röntgensugárzás keletkezik, és így a „láthatatlan” láthatóvá válik a Föld körül keringő röntgen távcsövek felvételein.

Roche-lobes-corrected

Az ábra a Roche-térfogatot szemlélteti. Az L1 a szövegben is említett belső Langrange-pont. Az eredeti ábra forrása: Wikipedia.org (az eredeti ábra hibás volt, így módosítottam)

A hosszú évtizedek kutatásai azt a képet formálták a fekete lyukakról a kutatók fejében, hogy minél nagyobb egy ilyen égitest tömege, annál gyorsabban képes habzsolni a gázt, és így annál intenzívebb a megfigyelhető elektromágneses sugárzás.

Ebből a képből lóg ki az NGC7793-ban a P13 ultrafényes röntgenforrás (ULX: ultra-luminous X-ray source). A röntgentartománybeli kiugró fényességével azonnal felkeltette a kutatók figyelmét. Érthető volt az izgatottságuk, mert úgy tűnt, egy újabb köztes tömegű fekete lyuk akadhatott horogra. Nekiláttak, hogy meghatározzák a fizikai paramétereket. A csillagászok szerencsés helyzetben voltak, ugyanis sikerült azonosítani a fekete lyuk kísérőjét az optikai tartományban. A körülbelül 20.5 (V) magnitúdós csillag az én felvételemen is látszik. B8I színképtípusa alapján, egy késői típusú kék szuperóriásról van szó. Luminozitásából és színképéből pedig következtetni lehetett a kísérő tömegére és sugarára. A kapott értékek szerint, a csillag tömege valahol 10 és 20 naptömeg között lehet, sugara pedig 40-60-szorosa központi csillagunkénak. A csillag fejlődése során kitöltötte Roche-térfogatát, és éppen anyagot ad át a fekete lyuknak. A csillagászok észrevették, hogy a színképben megfigyelhető abszorpciós és emissziós színképvonalak radiális sebességgörbéje éppen ellentétes fázisú. Ez a viselkedés a spektroszkópikus kettőscsillagok színképének egyik jellegzetessége, vagyis az olyan párosoké, ahol a komponensek szeparációja távcsővel lehetetlen, csak a színkép árulkodik arról, hogy ketten vannak. A közös tömegközéppont körüli keringésük során hol az egyik közelít felénk, a másik meg távolodik, hol pedig éppen fordítva. A változó radiális (látóirányú) sebesség miatt a színképvonalak hol a kék, hol a vörös felé tolódnak (Doppler-effektus). Mivel a P13 abszorpciós és emissziós színképvonalainak radiális sebesség görbéjének amplitúdója közel azonos, így ebből következően a csillag és a fekete lyuk tömegének is közel azonosnak kell lennie. A fekete lyuk tömegére így 10-20 naptömeget kaptak „mindössze”, vagyis az „csak” egy csillag tömegű fekete lyuk.

A fenti eredményeket taglaló publikáció még 2010-ben jelent meg. Már itt megjegyezték a szerzők, hogy még több mérésre van szükség a dolgok tisztázásához. A kutatócsapat tehát ezután sem pihent, és folytatták a vizsgálatokat, immáron több évnyi mintával a tarsolyukban újabb, pontosabb következtetéseket tudtak levonni.

A kísérő színképtípusát pontosították B9Ia-ra, és tömegére is kissé más értéket kaptak, azonban ez nagyságrendileg nem tért el a korábbi publikációtól. A csillag eredeti tömege anno 20-25 naptömeg lehetett, de mára már csak 18-23 naptömegű. A kék szuperóriás 8 évnyi fénygörbéjét (UV, V) tanulmányozva sikerült kimutatni, hogy a keletkező röntgensugárzás a kísérő fekete lyuk felé tekintő oldalát felfűti. A fűtött terület révén lehetőség adódott, hogy meghatározzák a keringési periódusát, melyre 64 napot kaptak, és a pálya excentricitását (elnyúltságát).

NGC7793-P13-artp

A P13-as ULX fantáziarajza. A fekete lyuk felöli oldalt felfűti az akkréciós korong röntgensugárzása. A rajzon az is látszik, ahogy a korong leárnyékolja a sugárzás egy részét. Kép forrása: International Centre for Radio Astronomy Research

A csillagászok kezükben a fekete lyuk társának paramétereivel, vagyis tömegével, keringési periódusával, a pálya alakjával, stb., illetve a megfigyelt luminozitás görbékkel, nekiláttak a rendszert modellezni. Eredményül azt kapták, hogy a fekete lyuk tömege nem lehet nagyobb 15 naptömegnél. Ellenkező esetben a Roche-térfogat túl kicsi lenne, amikor a B9Ia óriáscsillag a legközelebb kerül a fekete lyukhoz.

A modellek azt is megmutatták, hogy a röntgenforrás nagy fényessége, a 15 naptömegnél kisebb tömegű fekete lyuk esetében, az úgynevezett szuperkritikus akkrécióval (supercritical accretion) magyarázható. De mit is jelent ez? Ahogy fentebb is utaltam rá, a kibocsájtott sugárzás intenzitása függ a fekete lyuk tömegétől. Szférikus anyagbeáramlás esetén az objektum nem lehet fényesebb az úgynevezett Eddington luminozitásnál. A beáramló gázzal szemben áll ugyanis a sugárnyomás, így van egy limit, amit nem léphet át a sugárzás erőssége, különben az „elfújja” a beáramló anyagot. Amennyiben viszont egy vékony korongban spirálozik befelé a gáz, akkor a sugárzás anizotrópiája miatt a sugárzás túllépheti az Eddington határt, a korongot nem „fújja el” a sugárzás. Az, hogy milyen nagy luminozitást látunk, mennyivel lépi túl a sugárzás erőssége a küszöböt, nagyban függ a betekintési szögtől. Természetesen ebben az esetben is létezik egy elméleti maximum, de ennek tárgyalásától most eltekintek.

Eddington_Limit-c02

Az Eddington luminozitást, és a szuperkrikitus akkréciót szemléltető ábra. Részletek a fenti szövegben. Az eredeti ábrák forrása: Shin Mineshige és mások

Az előzetes várakozásokkal ellentétben a P13 ultrafényes röntgenforrás tehát nem egy köztes tömegű fekete lyukat tartalmaz, mindössze egy masszív csillag tömegű fekete lyukat, ami kicsi tömege ellenére meglepően „nagyétvágyú”.

Végezetül ejtenék pár szót az az NGC7793 egy másik különös lakójáról. Ez az NGC7793-S26 (a továbbiakban csak S26) jelű HII régióban található mikrokvazárról.

Az NGC7793-ról készült kompozit képen A képen megjelölt NGC7793-S26 HII régió egy mikrokvazárt rejt magában. A Chandra űrtávcső felvételéről származik, és a különböző energiájú röntgensugárzást jelöli a vörös, a zöld és a kék szín. A világoskék az optikai tartománynak felel meg (luminance kép). Ez az utóbbi felvétel a VLT (Very Large Telescope array) egyenként 8.2 méteres átmérőjű tükrökkel rendelkező távcsőrendszerével készült. Az aranyszínű régiók pedig a CTIO 1.5 méteres távcsővel felvett Hα keskenysávú felvételről származnak.

Kép forrása: http://chandra.harvard.edu – Röntgentartomány (NASA/CXC/Univ of Strasbourg/M. Pakull és mások); Látható fény (ESO/VLT/Univ of Strasbourg/M. Pakull és mások); H-alfa (NOAO/AURA/NSF/CTIO 1.5m)

Ahogy fentebb is írtam, a kvazárok és az aktív galaxisok „védjegye” a két hatalmas jet. Ritkán, eddig nem teljesen tisztázott okokból, azonban a csillag tömegű fekete lyukak esetében is keletkeznek jet-ek, melyek a rádiótartományban két lebenyként figyelhetőek meg. Mivel ezen kilövellések mérete eltörpül a galaxisok magjából kiindulókéhoz képest, ezért gyakran nevezik az ilyen fekete lyuk és egy csillag alkotta rendszereket mikrokvazároknak.

A Tejútrendszerünkben ennek az égitest típusnak az egyik prominens képviselője az SS443, de az NGC7793 mikrokvazárjának jet-jei messze lekőrözik azét. Eme utóbbinak a mérete kétszer akkora, energiája pedig tízszerese az SS443-énak. Az S26 a világegyetem általunk ismert „legfényesebb” ilyen objektuma. A fenti képen, a bal felső kinagyított kis képkockán (röntgentartomány) jól látszik a fekete lyuknak a környező gázra gyakorolt hatása. Középen a kékes-zöld röntgenfolt jelöli a fekete lyuknak és társának a „búvóhelyét”. Az idők folyamán a kilövellések, a környező intersztelláris anyagba 1000 fényév kiterjedésű forró gázbuborékot fújtak. Egymással szemben, a mikrokvazár két ellentétes oldalán pedig az figyelhető meg, ahogy a jet-ek az intersztelláris gázba ütköznek, és felfűtik azt.

Miért érdekli annyira a csillagászokat a kvazárok és rádió galaxisok kistestvérei? Miért ölnek annyi energiát az NGC7793 különös objektumainak tanulmányozásába? A válasz roppant egyszerű: közel vannak, így rajtuk keresztül megérthetjük a távoli nagyok működését. Segítségükkel bepillantást nyerhetnek az akkréciós folyamatok rejtelmeibe. Láthatják kicsiben és közelről, milyen hatása van a jet-eknek, illetve az akkréciós korongban és a fekete lyuk közelében keletkező sugárzásnak a környezetre. Így arra is meglelhetik a választ, hogy az aktív galaxis magok miként befolyásolták a galaxis fejlődését az univerzum hajnalán.

Zárszó

Messzire kalandoztam a Balatontól úgy hiszem. Nem volt nehéz, mert a csillagászok több nemzedéke által kemény munkával kitaposott, néha tévutakkal tarkított ösvényen kellet csupán végiggyalogolnom. Bízom benne, hogy e galaxis szépségén túl sikerült, a számomra gyakorta többet jelentő mögöttes dolgokból is átadnom valamelyest az olvasónak. Miért? Hogyan? Felnőve se féljünk feltenni e kérdéseket, és keresni a válaszokat.

Felhasznált irodalom:

I. D. Karachentsev, E. K. Grebel, M. E. Sharina, A. E. Dolphin, D. Geisler, P. Guhathakurta, P.W. Hodge, V. E. Karachentseva, A. Sarajedini, P. Seitzer: Distances to Nearby Galaxies in Sculptor

W. Gieren, G. Pietrzynski, A. Walker, F. Bresolin, D. Minniti, R.P. Kudritzki, A. Udalski, I. Soszynski, P. Fouque, J. Storm, G. Bono: The Araucaria Project. An improved distance to the Sculptor spiral galaxy NGC 300 from its Cepheid variables

Marija Vlajić, Joss Bland-Hawthorn, Kenneth C. Freeman: The Structure and Metallicity Gradient in the Extreme Outer Disk of NGC 7793

Elmegreen, Debra Meloy; Elmegreen, Bruce G.: Arm classifications for spiral galaxies

Bruce G. Elmegreen: Star Formation in Spiral Arms

Pietrzyński, G.; Ulaczyk, K.; Gieren, W.; Bresolin, F.; Kudritzki, R. P.: A survey for OB associations in the Sculptor Group spiral galaxy NGC 7793

C. Motch, M.W. Pakull, F. Grisé, R. Soria: The supergiant optical counterpart of ULX P13 in NGC7793

C. Motch, M. W. Pakull, R. Soria, F. Grisé , G. Pietrzyński: A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source

M. A. Dopita, J. L. Payne, M. D. Filipović, T. G. Pannuti: The Physical Parameters of the Micro-quasar S26 in the Sculptor Group Galaxy NGC 7793