Az NGC5363 és NGC5364 galaxis páros – Az NGC5363 galaxis csoport

NGC5364-NGC5363-LRGB-20200513-T11-600s-TTK

Az NGC5364 spirál galaxis (balra) és az NGC5363 lentikuláris galaxis (jobbra) párosa

(Az NGC5363 galaxis csoportról készített fotóm kivágott részlete)

iTelescope.net T11 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI ProLine PL11002M CCD camera

A felvételek 2020-05-14 és 2020-05-20 között készültek – Új-Mexikó (Mayhill közelében) – 24 x 600 sec L (bin2), 10 x 600 sec R,G,B (bin2)

A Polaris Csillagvizsgálóban pár éve vettem át a „kisszakkör” vezetését, melyet a Magyar Csillagászati egyesület a 8-12 éves korosztály számára tart. A szakköri foglalkozásokra a tanévben szerdánként került sor. A COVID-19 helyzet miatt 2020 tavaszán a csillagvizsgálót is be kellett zárnunk. A sorozatnak így végé szakadt.

A tematikában éppen a galaxisok kerültek volna terítékre. Optimistán, bízva az újranyitásban, elkezdtem frissíteni a prezentációimat. Ezt egyébként is rendszerese megteszem, mikor felkészülök a következő foglalkozásra. A csillagászatban mindig vannak új eredmények és aktualitások. Mivel a szakkörök elmaradtak, így azokat az órákat arra használtam fel, hogy több anyagomat is átírtam, átszerkesztettem.

A gyűjteményemből nagyon hiányzott egy olyan illusztráció, ami szemléletesen megmutatja a spirál galaxisok és a lentikuláris/elliptikus galaxisok közötti különbségeket. Mindezt egyetlen fotón, hogy ne kelljen a diák között oda-visszaváltani. Ekkor merült fel bennem, hogy miért ne választhatnék olyan célpontokat a következő digitális észleléshez, ami egyben megfelel ennek az elvárásnak. Miért ne készíthetnék magam is ilyen asztrofotót?

Már csak a megfelelő jelöltet kellett kiválasztanom. Ebben nagy segítségemre voltak saját jegyzeteim, melyeket a korábbi megfigyelésekhez írt cikkekhez készítettem. Nem mindig használom fel ezeket az anyagokat, de gyakran merítek belőle újabb ötleteket. Most is így történt.

Merre találhatók ezek a galaxisok? Mit érdemes tudni róluk? Ismerkedjünk meg először röviden a Kozmosz legnagyobb struktúráival, hogy el tudjuk helyezni a látottakat!

Galaxishalmazok és kozmikus ritkulások

A világegyetem nagy léptékű szerkezete leginkább kusza pókhálóra hasonlít. A galaxisok, galaxis csoportosulásokba, galaxishalmazokba, szuperhalmazokba tömörülnek e gigantikus szálak mentén.

Ezek a definíciók a halmaztagok között lévő gravitációs kapcsolaton alapulnak, melyek különböző skálán működnek. A galaxis egy gravitációsan kötött rendszer. Gáz, por és csillagok milliói vagy milliárdjai alkotják. Ezt hierarchiában a galaxiscsoportok követik, melyek általában néhány tucat tagot számlálnak. A több száz vagy ezer galaxist tartalmazó galaxishalmaz egy ennél is nagyobb gravitációsan kötött objektum, ahol a kölcsönös vonzóerő elég erős ahhoz, hogy még a kozmikus tágulás sem fogja majd eltávolítani egymástól a galaxisokat.

A legközelebbi masszív galaxishalmaz a Virgo galaxishalmaz. Távolsága 16.5±0.5 Mpc (Mei és mások – 2007), vagyis 54 millió fényév. Becslések szerint 1500-2000 tagot számlál, melyek az égbolt közel 8 fokos területén oszlanak el. A halmaz átmérője 4.4 Mpc, ami 14.3 millió fényévnek felel meg (Fouqué és mások – 2001). Ez alig valamivel nagyobb, mint a Tejútrendszerünkkel együtt nagyjából 50 galaxist magában foglaló Lokális Csoport mérete, ami körülbelül 3 Mpc (10 millió fényév). Azonban, míg eme utóbbi tömege 2.3±0.7×1012 M (Peñarrubia és mások – 2014), addig a Virgo halmazé 1.2×1015 M (Fouqué és mások – 2001). Nagyságrendnyi különbségről van tehát szó. Nagyjából 2 billiónyi naptömeg az 1 billiárdnyi naptömeggel szemben. A Virgo halmaznak három, egyértelműen azonosítható alcsoportja is van. Ezek középpontjában az M87, az M86 és az M49 galaxis helyezkedik el. Valószínű, hogy a halmazt még mindig a formálódása közben figyelhetjük meg.

Galaxy-Clusters-around-the-Local-Group

Galaxis csoportok és galaxishalmazok a Lokális Csoport közelében.

Szerző: Andrew Z. Colvin

Az egymáshoz közeli csoportok és halmazok – melyek mindegyike gravitációs kötésben van –, egy még nagyobb struktúra gravitációs vonzásának hatása alatt állnak. Csakhogy, ott a gravitáció vonzó hatása már eltér a gravitációsan kötött rendszer csillagászati definíciójától. Ezeket hívják a csillagászok szuperhalmazoknak, melyek a világegyetem legnagyobb, galaxisokat tömörítő struktúrái.

Valójában nem is olyan egyszerű behatárolni ezeket. Évekkel ezelőtt még úgy gondolták a csillagászok, hogy a Lokális Csoport, és közel 100 másik halmaz és csoport is, a 100 millió fényév kiterjedésű Virgo Szuperhalmaz része. (Az elnevezést a legnagyobb tömegű tagja, a Virgo halmaz után kapta.) Kiderült azonban, hogy ez csak a jéghegy csúcsa. Ezek a halmazok együtt, még egy ennél is jóval nagyobb, és jól behatárolható struktúra részesei.

2014. szeptember 4-én jelent meg az a cikk a Nature-ben, melyben Brent Tully (University of Hawaii) és kutatócsapatának 8000 galaxis mozgásának megfigyelésén alapuló kutatási eredményét közölte. Az Ősrobbanás óta táguló világegyetem globális hatását figyelembe véve korrigálták a mért eredményeket, és ebből megkapták, hogy miként hatnak pusztás a galaxisok gravitációsan egymásra. Egy háromdimenziós térképet alkottak, mely teljesen újradefiniálta a szuperhalmazok fogalmát. A földrajzban is ismert vízválasztó vonalakhoz hasonló analógiával élve, a galaxisok csoportjai különböző gravitációs vonzócentrumok irányába igyekeznek, akárcsak a víz egy vízválasztó vonal két oldalán. Jól elhatárolható felületek vannak a világegyetemben, melyek egyik oldalán az egyik, míg a másik oldalán egy másik ilyen vonzócentrum felé mozognak a galaxisok, illetve azok csoportosulásai.

Mintegy 100 ezer társával egyetemben Tejútrendszerünk, a közel 160 Mpc (520 millió fényév) kiterjedésű Laniakea vagy más néven a Lokális szuperhalmazhoz tartozik. E szuperhalmaz összes galaxisa, legyen az magányos, vagy valamilyen kisebb csoport, esetleg népes halmaznak a tagja, mind a „Nagy Vonzó” („Great Attractor”) felé mozog. Tehát, a Lokális Csoport éppúgy részt vesz ebben a kozmikus áramlásban, mint a masszív Virgo halmaz.

A Laniakea szuperhalmaz. Azokat a filamenteket (szálakat), melyek mentén a galaxisokat összegyűjtötték a szerzők, és amely mentén a galaxisok együtt mozognak, halványkék színnel lettek jelölve. A vörös és fekete galaxisok különböző áramlásokhoz tartoznak. A videóban a Tejútrendszerünk van az origóban (zöld pötty), mely a feketével jelölt áramlásban vesz részt. Mint az látható, mi az ekképpen definiált Laniake szuperhalmaz külső peremén lakunk. A Lokális szuperhalmazban pedig különböző színekkel jelölték azokat a területeket, ahol a galaxisok sűrűbb, historikus csoportosulásai találhatók. Évtizedeken keresztül a csillagászok úgy vélekedtek, hogy mi a zöld régióval jelölt szuperhalmaznak vagyunk a részei. De kiderült, hogy ez is csak „kis szelete” valami sokkal nagyobbnak. A Laniakea hawaii nyelven mérhetetlen mennyet, mérhetetlen eget jelent. Ezzel az elnevezéssel próbálták a kutatók érzékeltetni, hogy milyen hatalmas struktúráról is van szó a világegyetemben. A 2014-ben Tully és kutatótársai által bevezetett új szuperhalmaz fogalom sokkal egyértelműbbé tette, hogy hol találhatóak eme grandiózus kozmikus képződmények határvonalai.

Forrás: R. Brent Tully, Helene Courtois, Yehuda Hoffman és Daniel Pomarède (Nature, vol 513, number 7516, p71 – 4 September 2014)

Laniakea-supercluster-TULLY

A Laniakea szuperhalmaz, és az új definíción (a galaxisok konvergáló mozgásán) alapuló, a Laniakea-t körülvevő szuperhalmazok. A kék pötty a Tejútrendszer pozícióját jelöli a szuperhalmazban.

Forrás: R. Brent Tully, Helene Courtois, Yehuda Hoffman és Daniel Pomarède (Nature, vol 513, number 7516, p71 – 4 September 2014)

A galaxisok, galaxishalmazok, szuperhalmazok kusza rostos hálózata mellett, legalább annyira érdekesek az ezeket elválasztó hatalmas ürességek. Azt is mondhatjuk, hogy a Univerzum buborékos szerkezetű, melynek „falain” helyezkednek el a galaxisok, illetve a korábban említett halmazok, szuperhalmazok. Pontosabb azonban, ha ezeket az ürességeket, inkább ritkulásoknak (Cosmic Void) nevezzük. A Világegyetem ezen területei ugyanis nem teljesen üresek. Bennük is találkozhatunk galaxisokkal, galaxishalmazokkal, de szignifikánsabban kevesebbel. A legközelebbi ilyen hatalmas „üreg”, a Lokális Ritkulás (Local Void) határa éppen extragalaktikus szomszédságunkban húzódik.

A Lokális Ritkulás létezését 30 évvel (1987) ezelőtt ismerte fel Brent Tully és Rick Fisher.  Tully és munkatársainak vizsgálata alapján a Lokális Csoportnál kezdőd ritkulás nagyjából 45-60 Mpc (150-200 millió fényév) kiterjedésű. Továbbá, centrumának távolsága legalább 23 Mpc-re (75 millió fényévnyire) van tőlünk. Meg kell jegyeznem azonban, hogy pontos kiterjedését a mai napig viszonylag nagy bizonytalanság övezi.

Laniakea-Local_Void1

Kozmikus áramlások és sűrűsödések a Laniakea szuperhalmazban. Ebben a metszetben jól látszik, hogy a Lokális Sűrűsödés elnyúlik egészen a Virgo galaxishalmaz mögé. A galaxisok kiáramlása a ritkulásból teljesen evidens ebben a nézetben.  Forrás: Hélène M. Courtois, Daniel Pomarède, R. Brent Tully, Yehuda Hoffman, Denis Courtois

A vizsgálatok tanúsága szerint a Lokális Ritkulás tágul. A Lokális Csoport és a környező galaxisok alkotta fal (Local Sheet) távolodik a ritkulás centrumától. Úgy tűnhet, mintha az „üresség” taszítana minket. A helyzet azonban nem ez. Arról van szó, ahogy azt már fentebb említettem, hogy a galaxisok mozgásából levonva a világegyetem tágulásának hatását, azok összeáramlása, koncentrációja figyelhető meg a Világegyetemben. Mindez meghatározott vonzócentrumok irányába történik, és a jelenség a gravitációnak köszönhető. De nemcsak e masszív képződmények játszanak fontos szerepet az egészben, hanem ellenpárjaik, a ritkulások is. A korábban említett vízválasztós példánál maradva, az is fontos tényező a víz áramlása szempontjából, hogy van-e magas hegy a közelben. A ritkulások pedig magas, meredek falú hegyeknek tekinthetők, ahol gyorsabban igyekszik a víz a völgybe. Vagyis, ezek közelében a helyi csoportok gyorsabban mozognak az „alacsonyabban fekvő”, vagyis a sűrűbb régiók felé, mint azt egyébként tennék. A nettó hatást pedig úgy érzékeljük, mintha a ritkulás „eltaszítaná” magától, a vonzócentrum pedig „húzná” maga felé a galaxisokat, és ennek a kettőnek a hatás pedig a tőlük való távolság függvényében összeadódik. A Lokális Ritkulást ugyan szinte teljesen galaxisok veszik körül, de ezek eloszlás nem egyenletes. Van olyan része, ahol szinte „semmi sincs”, erről a környékről így még több anyag képes távozni. Az analógiát tovább használva, a hegyek idővel egyre nagyobbá, kiterjedtebbé nőnek, miközben a róluk lezúduló víz a völgyekben összegyűlik. Az összeáramlással a ritkulások egyre nagyobb méreteket öltenek, és pontosan ez az, ami a Lokális Ritkulással is történik.

Egy 2017-es publikáció szerint létezik egy sokkal „meghatározóbb” ritkulás is, ami mintegy „eltaszít” minket magától. Így megoldás kínálkozik a Lokális Csoportnak a kozmikus mikrohullámú háttérsugárzáshoz viszonyított túlságosan nagy sebességére. Azonban, ezzel a mostani cikk keretein belül nem foglalkozom, mert nem egy átfogó kozmológiai cikk megírása volt a célom. Kizárólag a Lokális Ritkulásra koncentrálnék. Akit mégis érdekel a téma, annak Yehuda Hoffman, Daniel Pomarede, R. Brent Tully, Helene Courtois: The Dipole Repeller című cikkét ajánlom a figyelmébe, ami az arxiv.org-on szabadon elolvasható. A Nature-ben megjelent változat fizetős. Illetve, aki csak pár percet szánna rá, annak itt egy rövid kis videó.

Okkal emeltem ki külön a fentiekben a Virgo galaxishalmazt és a Lokális Ritkulást. Ezek nemcsak remek példái a Világegyetem galaxisokkal zsúfolt, illetve üresebb térségeinek, de a további mondandóm szempontjából is fontos szerepük lesz.

Galaxisok fonala a Lokális Ritkulás peremén és a Virgo galaxishalmaz között

Az elmúlt évtizedek teljes égboltra kiterjedő távcsöves felméréseinek hála, manapság már rengeteg galaxis radiális (látóirányú) sebességét és távolságát megmérték a csillagászok. Ezek a tömeges adatok, ahogy ezt fentebb is említettem, lehetőséget adnak arra, hogy a szakemberek megállapíthassák, a galaxisok látszólagos radiális mozgása (a valóságban ezt lehet csak mérni) mennyiben származik a tér tágulásából, és mennyiben egy halmazon vagy csoporton belüli lokális gravitációs hatás okozta mozgásából. A távolságok és a galaxisok pekuliáris mozgásának ismerete remek eszköz a csillagászok kezében, hogy feltérképezzék a masszív vonzócentrumokat és a ritkulásokat a Világegyetemben. (A galaxis pekuliáris sebessége alatt, az univerzum izotropikus tágulása miatti mozgáshoz viszonyított sebessége értendő, amit a Hubble áramlás ír le. Hubble áramlás pedig a tér tágulásából származó elmozdulása az anyagnak.)

Igor D. Karachentsev, Valentina E. Karachentseva és Olga G. Nasonova 2014-ben publikálták azt a cikket (Galaxy motions in the Bootes strip), melyben alaposan szemügyre vetették az általuk Bootes Sávknak (Bootes Strip) nevezett égterületet. A szerzők a Lokális Ritkulás és a Virgo halamaz között elhelyezkedő, szétszórt galaxisok alkotta Bootes Szálat (Bootes Filament) vizsgálták a galaxisok kinematikáján és elhelyezkedésükön keresztül. Tették mindezt azért, hogy következtetéseket vonhassanak le a Virgo halmaznak és a Lokális Ritkulásnak a környezetükre gyakorolt hatásáról.

Bootes-Strip-Stellarium-01-mark2

Az égboltnak azon szelete, melyet Karachentsev és munkatárai átvizsgáltak. A Bootes Sáv (Bootes Strip) galaxisai, a halvány vörössel megjelölt égterületen helyezkednek el.

Olyan galaxisokat választottak ki, melyek radiális (látóirányú) sebessége 2000 km/s-nál kisebb volt. A kutatásban összesen 361 galaxist használtak fel mintaként. Megállapították, hogy ezek 56%-a nem magányos csillagrendszer, hanem csoportokat és párokat alkotnak. Egészen pontosan, 13 galaxis csoportról és 11 párról van szó. A 700 km/s és 1300 km/s radiális (látóirányú) sebességű galaxisok legtöbbje a sáv nyugati oldalán helyezkedik el, a Virgo halmaz szomszédságában. E nyugati galaxisok legtöbbje a Virgo halmaz erős gravitációs hatása alatt áll, vagyis annak középpontja felé mozog.

Bootes-Strip-1

Az ábra a galaxisok radiális (látóirányú) sebességét mutatja a Bootes Sávban. 14h környékén látható körív rész (zero velocity surface) választja el a Virgo halmaz centruma felé mozgó galaxisokat azoktól, melyek részt vesznek a kozmosz tágulásban. Ennek a körnek a sugara 7.2 Mpc (23.5 millió fényév) vagy 25 fok az égbolton (Karachentsev és mások – 2014). Ábra forrása: Karachentsev és mások – 2014

A Bootes Sávban a galaxisok eloszlásának egyik legmeghatározóbb sűrűsödése az NGC5846 kompakt csoport. Korábbi becslések szerint körülbelül 250 darab -12 magnitúdónál (MR) is nagyobb abszolút fényességű tagja lehet (Mahdavi és mások – 2005) ennek a halmaznak. Az NGC5846 csoport két alcsoportból áll össze a röntgen tartományban végzett megfigyelések tanúsága szerint. A tagok jellemzően két meghatározó galaxis körül, vagyis az NGC5846 és az NGC5813 elliptikus galaxis körül gyülekeznek. Mindazonáltal, a kinematikai jellemzők megkülönböztetnek egy másik alcsoportot is az NGC 5846 mellett. 9 galaxist az NGC5838 lentikuláris galaxis gravitációja ural.

Bootes-Strip-6

Az NGC5846 és az NGC5746 galaxis csoportok közeli nézete a Bootes Sáv régióban. A csoportok tagjait vonalak kötik össze a domináns galaxissal. Ábra forrása: Karachentsev és mások – 2014

A Bootes Sáv 361 galaxisából álló mintából csak 161 galaxis (45%) esetében volt ismert a távolságérték. Ezekre építve állapították meg, hogy ezek a csillagrendszerek 17 és 27 Mpc (55.4 és 88 millió fényév) között helyezkednek el. Hozzávetőleg 2/3-uk távolsága a 25 ± 5 Mpc (82 ± 16 millió fényév) tartományba esik. Fontos megjegyezni, hogy a legtöbbjüknek a távolsága a Tully-Fisher reláción alapuló érték, melynek pontossága körülbelül 20%. Ennek vonzata, hogy a látóirányú vastagsága a Bootes Szálnak összemérhető a tipikus távolságmérési hibával. Mégis, az adatokból ki tudták következtetni, hogy a Bootes Szál galaxisainak nagy része távolabb van tőlünk, mint a Virgo halmaz. Továbbá, hogy enyhén ívelt, és a csillagrendszerek távolsága folyamatosan csökken a Virgo halmaz felé. Sikerült pontosítaniuk a Virgo halmaz attribútumait is, és egyértelműen kimutatták, hogy ennek a hatalmas halmaznak a gravitációja miként vonzza maga felé a környező galaxisokat. Ugyanakkor, a Lokális Ritkulás pontos kiterjedése és centrumának pozíciója még további vizsgálatokra szorul.

Bootes-Strip-4

A Bootes Szálnak a Virgo halmazhoz és a Lokális Ritkuláshoz képesti pozícióját mutatja az ábra. A megfigyelő a diagram bal alsó sarkában helyezkedik el (LG, Lokális Csoport). A nyilak a Virgo halmaz gravitációs vonzásának, és a Lokális Ritkulás (korábban említett) taszító hatását reprezentáló vektorok. Látható, hogy ezek eredője a Bootes Szál különböző részén más és más. A Virgo halmaz körüli körív (zero velocity surface) választja el a Virgo halmaz centruma felé mozgó galaxisokat azoktól, melyek részt vesznek a kozmosz tágulásban. Ennek a körnek a sugara 7.2 Mpc (23.5 millió fényév) vagy 25 fok az égbolton (Karachentsev és mások – 2014). Ábra forrása: Karachentsev és mások – 2014

Az NGC5363 csoport galaxisai

NGC5363GG-LRGB-20200513-T11-600s-TTK

Az NGC5363 csoport galaxisai

iTelescope.net T11 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI ProLine PL11002M CCD camera

A felvételek 2020-05-14 és 2020-05-20 között készültek – Új-Mexikó (Mayhill közelében) – 24 x 600 sec L (bin2), 10 x 600 sec R,G,B (bin2)

Karachentsev és szerzőtársai a Bootes Sáv galaxisainak morfológiai besorolását külön is elvégezték, és nem csupán az égbolt felmérő programok keretében született katalógusok adataiból dolgoztak. Az egyes csillagrendszereket három nagy populációba osztották be: korai, köztes, és késői típus.

Bootes-Strip-2

A Bootes Sáv galaxisainak morfológiai besorolása: korai (Early types), köztes (Intermediate types), és késői (Late types) típus. Ez az ábra volt nagy segítségemre a fotó témájául szolgáló csoport kiválasztásában. Ábra forrása: Karachentsev és mások – 2014

A korai típusú galaxisok vörös árnyalatúak, erősen koncentráltak és kerek/elliptikus alakúak. A késői típusú galaxisok ellenben kékes árnyalatúak, alacsony koncentrációjúak, és domináns a galaktikus korongjuk. A köztes típusú galaxisok, ahogy a nevük is mutatja, az átmenetet képviselik. Vöröses színűek, közepes koncentrációjúak és van galaktikus korongjuk.

Hubble_-_de_Vaucouleurs_Galaxy_Morphology_Diagram-mini

Ma már tudjuk, hogy a Hubble-de Vaucouleurs galaxis morfológiai diagrammon a galaxisok fejlődése nem a balról jobbra irányt követi (elliptikus, lentikuláris, spirál galaxisok). Azonban, a korai elképzelések miatt, ma is használják a korai, köztes, késői típus kifejezéseket a csillagászok.

Felhasználva Karachentsev csapatának ábráját, átnéztem az Interneten elérhető STScI Digitized Sky Survey felvételeit az egyes csoportokról. Kimondottan olyat kerestem közöttük, ahol az égbolt viszonylag szűk területén a fent említett galaxis populációk vegyesen fordulnak elő. Alaposabban megnézve az említett ábrát, láthatóan csak kevés számú csoport vagy galaxis páros felelt meg ennek a kritériumnak. Ezek közül számomra az NGC5363 galaxis csoport volt az „első látásra szerelem”. Pontosan valami ilyesmit kerestem: prominens lentikulásris és spirál galaxis párosa egyetlen látómezőben, ahol az utóbbi korongjára ferde szögben látunk rá.

Az rögtön kiderült számomra, hogy az össze tagot nem tudom majd egyetlen képen megörökíteni. Például az NGC5363 centrális lentikuláris és a valamivel kisebb látszólagos méretű NGC5300 spirál galaxis távolsága az égen kb. 2.3 fok. A bérelni kívánt távcső látómezője pedig ennél jóval kisebb volt. Arra törekedtem, hogy a legtöbb nagyobb méretű halmaztagot „rápréselhessem” a felvételre. Ennek megfelelően kalkuláltam ki a távcsőnek megadott égi koordinátákat.

NGC5363GG-LRGB-20200513-T11-600s-TTK-annotated

A látómező azon galaxisai, melyek az NGC5363 galaxis csoporthoz tartoznak

Objektum RA (2000.0) DEC Magnitúdó (NED – Bt) Távolság (Mpc)** Morfológiai besorolás*** Szerepel a felvételen?
NGC5300 J134816.0+035703 13.6 21.6 tf Sc Nem
PGC1283560 J135143.0+052647 16.2   dE Nem
UGC08799 J135319.8+054618 16.32 12.1 sbf dE Nem
NGC5348 J135411.2+051338 14.18 19.8 tf Sc Igen
NGC5356 J135458.4+052001 13.63 19.5 tf Sb Igen
PGC1277985 J135502.7+050525 17.1   dEn Igen
PGC1279452* J135504.5+051122 17.18 14.8 TF BCD Igen
NGC5360 J135538.7+045906 14.8 21.5 TF Sm Igen
NGC5363 J135607.3+051517 11.1 16.6 TF S0 Igen
AGC232142 J135609.4+053234 17.38 15.1 TF Ir Nem
NGC5364 J135612.0+050052 11.19 19.5 tf Sbc Igen
SDSSJ13562 J135621.3+051944 17.37   dE Igen
UGC08857 J135626.6+042348 15.26   Sab Nem
PGC049602 J135655.6+050907 15.82   dEn Igen
PGC1266441 J135714.1+041826 17.1   Sm Nem
PGC1285591 J135723.6+053427 16.3   Sph Nem
UGC08986 J140415.9+040644 15.03   dEn Nem

Az NGC5363 galaxis csoport tagjai (Karachentsev és mások – 2014). Megadtam a koordinátákat, amennyiben az olvasó is meg szeretné figyelni őket. Feltüntettem továbbá az integrált (B szűrővel mért) fényességüket, nem a vörös eltolódáson alapuló távolság adatukat (amennyiben szerepelt ilyen), a morfológiai besorolásukat. Továbbá megjelöltem, hogy szerepelnek-e a felvételemen.

* Karachentsev és munkatársainál AGC232141, én a PGC-ben (Principal Galaxies Catalogue) szereplő azonosítóját tüntettem fel itt.

** Különböző távolságmeghatározási módszerekkel kapott értékek: sbf (surface brightness fluctuations) – a galaxis felületi fényesség fluktuációján alapuló módszer; tf/TF: A Tully-Fisher reláción alapuló módszer (TF: Karachentsev és szerzőtársai által elvégzett távolságmérés)

*** Karachentsev és munkatársai szerint

Az NGC5363 galaxis csoport a Bootes Szál Virgo halmazhoz közeli részén helyezkedik el. Annak gravitációs hatása alatt áll, így tulajdonképpen inkább a Virgo halmaz egyik nyúlványának tekinthető. Megnézve a fenti táblázatot szembetűnő, hogy a nagyobb halmaztagok szinte mind spirál galaxisok: NGC5364, NGC5356, NGC5348, NG5300 (nem szerepel a felvételemen). Kivételt képez az NGC5363 központi galaxis, mely a lentikuláris galaxisok egyik szép példánya. A kisebb méretűek inkább a törpe elliptikus galaxisok, vagy ahogy újabban nevezik őket törpe szferoidális galaxisok (Kormendy és Bedner felvetése alapján), illetve az irreguláris galaxisok közé sorolhatók be.

Mielőtt rátérnék a spirál galaxisok és a lentikuláris galaxisok közötti különbségek ismertetésére, vagyis amiért maga a kép illusztráció gyanánt készült, hadd emeljek ki külön két galaxist. Ez a kettő számomra két külön izgalmas csemege. Bár mind a kettő megjelenésében már elsőre is van valami különös, de talán mégsem ezeken akad meg elsőre az ember szeme a felvételen. Izgalmas mellékszereplői a csoportról készült fotónak. Az egyik ezek közül az NGC5360, melynek megjelenése ugyan irregularitást mutat, azonban Karachentsev-ék szerint ez egy spirál galaxis, melynél teljesen hiányzik az úgynevezett központi dudor (bulge). A másik személyes apró kedvencem a felvételen a PGC1279452, ami egy kék kompakt törpe galaxis (BCD – Blue Compact Dwarf). Ezeknek a szabálytalan alakú törpéknek a tömege a Tejútrendszer tömegének nagyjából a tizedét teszi ki. Masszív és forró csillagok hatalmas halmazaival teletűzdeltek, s mivel ezek magas felszíni hőmérsékletük miatt kékes árnyalatúak, így az egész galaxis kékben tündököl. Ez a helyzet a PGC1279452 esetében is. A masszív csillagok tömegüktől függően mindössze néhány millió, vagy néhány tízmillió évig léteznek. (A kisebb tömegű csillagok hosszabb ideig élnek.) Az, hogy olyan óriási számban fordulnak elő, annak a bizonyítéka, hogy csillagászati értelemben nem is olyan régen még viharos ütemű csillagkeletkezés zajlott ebben a kompakt törpében, s talán zajlik még most is. Most alatt természetesen azt a pillanatot értem, mikor is a fényük elindult felénk. Ezek a csillagrendszerek nem tartalmaznak túl sok port, sem nem túl sok fémet. A csillagászok minden elemet a hidrogénen és a héliumon túl a periódusos rendszerben fémnek neveznek. Egy csillag fémtartalmát általában a Naphoz szokták hasonlítani a kutatók. A világegyetem története folyamán, a csillagoknak hála egyre dúsabb lett fémekben. Az újabb és újabb csillaggenerációk már egyre több fémet tartalmaztak. A fémszegény BCD galaxisok megfigyelése tehát közelebb viheti a csillagászokat ahhoz, hogy megértsék milyen folyamatokban alakultak ki a Világegyetemben a legelső csillaggenerációk.

NGC5364-NGC5363-LRGB-20200513-T11-600s-TTK

A 16.6 Mpc-re, azaz 54 millió fényévre (Karachentsev és mások – 2014) lévő NGC5363 (a képen jobbra) lentikuláris galaxis. Ezt a típust gyakran átmenetnek szokták tekinteni a spirál és az elliptikus galaxisok között. A lentikuláris galaxisok alapvetően diszk alakúak akárcsak a spirál galaxisok. Nincsenek azonban spirálkarjaik, a korongban nem figyelhetők meg határozott struktúrák. Jellemző rájuk, hogy a központi dudor a galaxis korongjához képest viszonylag nagyméretű, és meghatározó a galaxis felépítése szempontjából. A Spitzer infravörös űrtávcsővel végzett megfigyelések szerint, az NGC5363 is pontosan ezt a felépítést követi: nagy méretű központi dudor és galaktikus korong.

Ugyanakkor, bizonyos lentikuláris galaxisokban, a küllős spirál galaxisokhoz hasonlóan szerkezet (az angol nyelvű irodalomban: bar) figyelhető meg. Bennük a csillagok dinamikája is nagyon hasonlatos a spirál galaxisokéhoz, ugyanis eltolva az ezek esetében érvényes Tully-Fisher reláció diagramját megkapjuk a lentikuláris galaxisokra jellemzőt.

Nem mondhatók elliptikus galaxisoknak sem, bár kétségtelenül vannak nagyon hasonlatos jegyeik. Éppen ezért, az elliptikus galaxisokat és a lentikuláris galaxisokat gyakran nem is olyan könnyű megkülönböztetni egymástól. Például, a színképük az öreg csillag populációjuknak hála alig tér el. A prominens központi dudor szintén jellemző mind a kettőre. Ezekben a csillagok mozgása véletlen eloszlást mutat. Nincs sem kitüntetett iránya, sem kitüntetett síkja a csillagok keringésének a centrum körül. Ellenben, a lentikuláris galaxisok korongjában van kitüntetett keringési irány, és a pályák is síkba rendezettek. Ez pedig, határozottan megjelenik az egész galaxis dinamikájában. Tekintve, hogy az elliptikusoknak nincs korongja, így megfigyelve a galaxison belüli mozgások jellegét, különbséget tudunk tenni a lentikuláris és az elliptikus csillagrendszerek között.

A lentikuláris galaxisokban csekély mennyiségű molekuláris gáz található, ezért alacsony bennük a csillagkeletkezési ráta. 21 cm-es rádióemissziójuk is jelentéktelen, mivel alig van bennük atomos hidrogént tartalmazó intersztelláris anyag. Az ionizált hidrogént tartalmazó HII régiók hiányában Hα sugárzásuk sem számottevő. Eme utóbbi tulajdonságok amúgy az elliptikus galaxisokra is jellemzők, azonban a lentikuláris típusúak porban viszonylag gazdagok. Röviden és általánosságban ezek mondhatók el erről a típusról. Ám nincs olyan, hogy átlagos lentikuláris galaxis, ez a példány pedig némileg ki is lóg a sorból.

Az NGC5363 csillagainak túlnyomó többsége 8.5-9 milliárd éves (az illesztett modelltől függő érték). Főként öreg sárgás és vöröses fényű fősorozati, vagy a fősorozatról mer elfejlődött csillagok alkotják. Nem véletlen, hogy ezek árnyalatok dominálnak a galaxisban. Ennek a populációnak a kérész életű masszív csillagai már réges-régen kihunytak, s velük tovatűnt a hajdani kékes ragyogásuk. A galaxis vörös és halott (az angol nyelvű szakirodalomban használatos „red and dead” után). De valóban leállt volna teljesen a csillagkeletkezés? Az UV tartományban végzett megfigyelésekkel mégiscsak sikerült fiatal csillagok sugárzását detektálni az NGC5363-ban. Bár az UV sugárzásra más magyarázat is lehetne (például post-AGB csillagok, planetáris ködök), de a galaxisban sikerült még Hα sugárzást is detektálni. Így együtt ez már elég érv amellett, hogy fiatal csillagok populációja is megtalálható ebben a galaxisban, még ha a galaxis tömegének csak néhány százalékát (kb. 2%) teszi is ki. A legvalószínűbb, hogy egy másik galaxissal történt összeolvadás, annak bekebelezése válthatta ki ezt a csillagkeletkezési aktivitást. Ekkor tehetett szert az NGC5363 arra a gázra, melyből e csillagok keletkeztek. Majd a forró fiatal csillagok sugárzása ionizálta ezt a gázt, így létrehozva a megfigyelt Hα sugárzást. E lehetséges forgatókönyv a galaxis más egyéb tulajdonságait is megmagyarázza.

Az NGC5363 megjelenését nagyban meghatározza a benne található por. Nézzük csak meg azokat a porsávokat! Bár az optikai tartományban is nyilvánvaló, de igazán az infravörös tartományban tanulmányozható alaposabban. És amit a csillagászok így találtak, az még őket is nagyon meglepte: abnormálisan sok a por az NGC5363-ban. A galaxisokban az intersztelláris port az öregedő csillagok termelik az úgynevezett AGB fázisban (Asymptotic Giant Branch – Aszimptotikus óriás ág). A csillagok életük eme késői szakaszában jelentős mennyiségű tömeget veszítenek, az időszakonként eltérő sűrűségű és intenzitású csillagszél révén. Hihetetlen tűnik, de ebben a folyamatban könnyen kezdeti tömegüknek több mint a felétől is megszabadulhatnak. Ezek a Napnál akár ezerszer is fényesebb, vöröses árnyalatú óriás csillagok szó szerint ledobják külső rétegjeiket, és ennek egy részéből kondenzálódnak ki a porszemcsék. Azonban, a megfigyelések tanúsága szerint, százszor annyi por van a galaxisban, mint amit ezek az idősödő csillagok képesek lettek volna valaha is előállítani. Honnan ez a sok por? A legvalószínűbb, hogy ez is külső eredetű, akárcsak a fiatal csillagok kialakulásoshoz szükséges gáz. De az NG5363 héjakból álló felépítése (ami jobb monitoron a fotómon is felfedezhető), illetve a csillagok mozgása a galaxisban is egy korábbi kozmikus karambolra utal.

NGC5363-HII-Figure-Finkelman

Az NGC5363 belső vidékének R-band kontur térképe, a kontimuumból kivont Hα+[NII] képe és a B−R színindex térképe. Forrás: Finkelman és mások (2010).

Gondosan megvizsgálva az NGC5363 belső vidékének kontinuum képéből kivont Hα+[NII] képét, a HII régiók térbeli eloszlása küllős spirál szerkezetre emlékeztet. A B−R színindex térkép alapján pedig elmondható, hogy az erős takarásban lévő belső küllő egy összetettebb porszerkezet része, amely követi a spirálszerkezetet és a galaxis főtengelye mentén nyúlik tovább. Az NGC5363 azon lentikuláris galaxisok közé tartozik, melyeknek szorosan feltekeredett spirálkarja van, és ezekben csillagok keletkeznek. Nem sok ilyet ismerünk! Nagyon is kilóg a lentikuláris galaxisok sorából.

Az NGC5363 továbbá a LINER (Low Ionization Nuclear Emission Region) galaxisok csoportjába tartozik. A LINER-ek a nevüket magjuknak színképe alapján kapták, amiben tipikusan gyengén ionizált atomok (egyszeresen ionizált oxigén, nitrogén, kén, stb.) keskeny vonalai figyelhetők meg, míg az erősen ionizált atomok (például kétszeresen ionizált oxigén) vonalai viszonylag gyengék. A LINER galaxisok közel sem olyan ritkák, mint az elsőre gondolnánk. A megfigyelések azt mutatják, hogy a környezetünkben (486 elemű, legalább 12.5 magnitúdós (BT) galaxismintát tekintve) minden ötödik-harmadik galaxis ilyen. Érdekes, hogy túlnyomórészt inkább elliptikus és lentikuláris galaxisok esetén figyelhető meg ez a jelenség, bár számottevő a spirál galaxisok mennyisége is. Az irreguláris galaxisok között viszont csak elvétve akad ilyen.

Máig vitatott, hogy pontosan miért látjuk ezeket az emissziós vonalakat a LINER galaxisok színképében. Már abban sincs egyetértés a csillagászok között, hogy egyáltalán miként jön létre maga a gerjesztés. Egyesek szerint az intersztelláris gázban terjedő lökéshullámok (shock waves), míg mások szerint a fotoionizáció (intenzív UV sugárzás) okozza azt. Nemcsak az ionizációs mechanizmus kérdésében oszlik meg a kutatók véleménye, de annak forrását illetőleg is. A csillagászok egyik jelentős tábora szerint, e galaxisok esetében a centrumban tanyázó szupermasszív fekete lyukak okolhatók a gáz gyenge ionizációjáért. Az NGC5363 magjában is tanyázik egy ilyen szörnyeteg, melynek tömege 3.75418 x 108 naptömeg (Saikia és mások – 2015). Míg más csillagászok véleménye az, hogy a LINER galaxisok megfigyelhető tulajdonságai nem a központi fekete lyuk „munkálkodásának” eredménye.  Szerintük, a csillagkeletkezési régiók fiatal, masszív és egyben forró csillagai gerjesztik a gázt. Vannak olyan csillagászok, akik nem az aktív galaxismagban, vagy éppen az intenzív csillagkeletkezésben látják a megoldás kulcsát. Sőt, éppen ezek hiányával magyarázzák az egészet. Az 1 milliárd évnél öregebb, előrehaladott fejlődési állapotban lévő csillagok, az aszimptotikus óriás ág elhagyása után (post AGB phase) rövid ideig elég forrók ahhoz, hogy képesek legyenek gyengén ionizálni a környező csillagközi gázokat. Az emisszió megfigyelésére pedig azért nyílik egyáltalán lehetőségünk, mert sem az aktív mag, sem a fiatal forró csillagok keltette sugárzás nem ragyogja túl azt.

Az NGC5364 távolságadatai viszonylag nagy szórást mutatnak. Ne feledjük, hogy a Tully-Fisher reláción alapuló mérések pontossága nem éppen a legjobb! A NED (NASA/IPAC Extragalactic Database) oldalán felsorolt publikációkban található távolságok két szélsőértéke között közel 10 Mpc az eltérés. Csak az utolsó nagyjából két évtized méréseinek mediánja alapján, a galaxis távolsága 18.1 Mpc (59 millió fényév). Ehhez egészen jól illeszkedik Karachentsev és szerzőtársai által közölt 19.5 Mpc (63.6 millió fényév) távolság.

A galaxis korongjára srégen látunk rá (inklinációja 47 fok). Ebben a galaxisban szemmel láthatóan ma is aktív csillagkeletkezés zajlik. Tökéletes ellentéte az NGC5363-nak. Nem vörös és halott galaxis. Sőt! Figyeljük csak meg a karok kékes árnyalatát, és a HII régiók vöröses-rózsaszínes pöttyeit, melyek a csillagkeletkezés csalhatatlan jelei.

NGC5364-B-Band-and-Ha-Band

Az NGC5364 B szűrővel (balra) és Hα szűrővel készült felvétele. Az elsőn a csillagkeletkezési gyűrű és a spirál karok, míg az utóbbin a HII régiók eloszlása rajzolódik ki tökéletesen. Forrás: Grouchy és mások (2010)

Az NGC5364 egyik szembetűnő tulajdonsága a két szimmetrikus, egybefüggő és határozott spirálkar (grand design galaxy). A galaxis SA (r) bc morfológiai besorolású (Grouchy és mások – 2010). SA, mert nincs küllője. A karok a centrumból indulnak, én nem a küllő két végéről. A bc jelzés arra utal, hogy a karok nem szorosan ölelik körbe a centrumot. Az (r) jelzés pedig azt jelenti, hogy belső csillagkeletkezési gyűrűje is van.

A csillagkeletkezési gyűrűk jelenléte a nem küllős galaxisokban máig nagy talány. A numerikus szimulációk azt mutatják, hogy a gyűrűk létrejöttében a küllőnek (bar) esszenciális szerepe van. Annak gravitációs hatására a csillagközi gáz jól meghatározott régiókban képes felhalmozódni. Léteznek olyan elképzelések, hogy valaha ezeknek a galaxisoknak is volt küllője, de az mára feloszlott, vagy csak elhalványulva beleolvadt a galaktikus korongba. Vagy éppen ott van a küllő, csak éppen megfelelő hullámhosszon kell vizsgálni a galaxist. A XX. századba készült galaxis osztályozások (de Vaucouleurs és mások – 1991, Sandage és Tammann – 1981) egyedül a B (kék) szűrős felvételek alapján készültek. A kék színtartományban jól láthatóak a gyűrűk és a spirál karok a fiatal csillagok révén. A küllő viszont sokszor észrevehetetlen ezeken a fotókon, mivel az ezeket alkotó idősebb csillagpopulációk kevésbé sugároznak a kék tartományban. Ezek megfigyelésére sokkal alkalmasabb a közeli infravörös tartomány. Nem egy galaxisban sikerült utólag kimutatni a küllő jelenlétét az infravörös felméréseknek hála.

Az NGC5364 esetében azonban máig nincs tudomása a csillagászoknak arról, hogy lenne küllője. Pár kutató azonban meg van győződve arról, hogy kellően erős spirális sűrűséghullámok hatására is létrejöhetnek ezek a gyűrűk olyan galaxisokban, melyeknek korongjában korábban sosem alakult ki küllő (Rautiainen és Salo – 2010). A gyűrűk megfelelő körülmények között, a spirális hullámminta sebességének belső Lindblad-rezonanciájánál formálódnak az NGC5364-hez hasonló galaxisokban. Így, a sűrűséghullámok nemcsak a karok létezésért, de a csillagkeletkezési gyűrű létezéséjért is felelősek lehetnek ennél a galaxisnál.

Figyeljük meg, hogy ez a gyűrű mennyire látványosan kiugrik a galaxis belső korongjából a fotómon, és hogy a galaxisnak és a gyűrűnek a középpontja nem esik tökéletesen egybe! Ugyanígy hangsúlyos e fiatal behemót kék csillagok fénygyűrűje a fenti képen, a B (kék) szűrővel készült baloldali mozaikon is. A galaxis spirális struktúrája szintén igen markánsan megmutatja magát a kék tartományban. De a karokat határozottan követik az ionizált gáz HII régiói is. Kitűnik a Hα keskenysávban készült fotóról az is, hogy maga a gyűrű az északi oldalon sokkal intenzívebben sugároz ezen a hullámhosszon a déli oldalához képest. Ez a tendencia igaz az egész spirális szerkezetre is. Összességében, az ionizált gáz jelenléte a galaxis északnyugati oldalán sokkal dominánsabb. Hogy mi lehet mindennek az oka? Elképzelhető, hogy a tőle északra látható NGC5363 gravitációs hatása hagyott nyomot az NGC5364 morfológiáján (Grouchy és mások – 2010). És talán ennek köszönhető a galaxis nyugati és délnyugati oldalán lévő árapály képződmény is.

Végszó

Az NGC5363 galaxis csoportról készült felvételem révén hozzájutottam az általam áhított illusztrációhoz. Nem mondanám, hogy nem kötött le és nem volt szórakoztató az az 5-6 órányi pepecselés, amíg a képet feldolgoztam a Pixinsight nevű programmal. De mire elolvastam a galaxisokhoz tartozó tudományos publikációkat, már sokkal többet jelentett nekem egyetlen fotónál. Bepillanthattam a kép mögött rejlő titkokba. És azzal, hogy mindezt „papírra vetettem” megszületett a digitális észlelést lezáró szintézis is. Számomra így lett teljes az élmény. Ezzel természetesen még nem volt vége. Következő lépésként, a digitális észlelést feltöltöttem a Magyar Csillagászati Egyesület észlelési archívumába. Ott van igazán jó helyen, és nem a fiókomban, nem a saját oldalamon, nem egy közösségi médium oldalán.

Felhasznált irodalom:

Pascal Fouque, Jose M. Solanes, Teresa Sanchis, Chantal Balkowski: Structure, mass and distance of the Virgo cluster from a Tolman-Bondi model

M. A. Pahre, M. L. N. Ashby, G. G. Fazio, S. P. Willner: Spatial Distribution of Warm Dust in Early-Type Galaxies

Ido Finkelman, Noah Brosch, José G. Funes S.J., Alexei Y. Kniazev, Petri Väisänen: Ionized gas in E/S0 galaxies with dust lanes

A.E. Sansom, E. O’Sullivan, Duncan A. Forbes, R.N. Proctor, D.S.Davis: X-ray observations of three young, early-type galaxies

M.K.Patil, S.K.Pandey, D.K.Sahu, A.K.Kembhavi: Properties of dust in early-type galaxies

R. Brent Tully, Edward J. Shaya, Igor D. Karachentsev, Helene M. Courtois, Dale D. Kocevski, Luca Rizzi, Alan Peel: Our Peculiar Motion Away from the Local Void

Brent Tully: Our CMB Motion: The Local Void influence

Ido Finkelman, Noah Brosch, José G. Funes, S.J., Alexei Y. Kniazev, Petri Väisänen: Ionized gas in E/S0 galaxies with dust lanes

R. D. Grouchy, R. J. Buta, H. Salo, E. Laurikainen: Ring Star Formation Rates in Barred and Nonbarred Galaxies

Igor D. Karachentsev, Valentina E. Karachentseva, Olga G. Nasonova: Galaxy motions in the Bootes strip

Hélène M. Courtois, Daniel Pomarède, R. Brent Tully, Yehuda Hoffman, Denis Courtois: Cosmography of The Local Universe

R. Brent Tully, Helene Courtois, Yehuda Hoffman, Daniel Pomarède: The Laniakea supercluster of galaxies

CLUES (Constrained Local UniversE Simulations) projekt

Payaswini Saikia, Elmar Körding, Heino Falcke: The Fundamental Plane of Black Hole Activity in the Optical Band

Gustavo Morales, David Martínez-Delgado, Eva K. Grebel, Andrew P. Cooper, Behnam Javanmardi, Arpad Miskolczi: Systematic search for tidal features around nearby galaxies: I. Enhanced SDSS imaging of the Local Volume

NGC660

NGC660-LRGB-20191022-T11-600s-TTK

Az NGC660 Polárgyűrűs galaxis (Polar Ring Galaxy)

iTelescope.net T11 – Corrected Dall-Kirkham Astrograph Planewave 20″ – 51 cm, f/4.5 (fókusz reduktorral) – FLI ProLine PL11002M CCD camera

A felvételek 2019-10-22 és 2019-11-01 között készültek – Új-Mexikó (Mayhill közelében) – 29 x 600 sec L (bin2), 8 x 600 sec R,G,B (bin2)

Ez a roppant érdekes alakú csillagrendszer a Halak (Pisces) csillagképben található. Az NGC660 egy kis csoportosulás tagja, melyet legfényesebb galaxisa után M74 csoportnak is neveznek. Az M74-től az égbolton látszó távolsága valamivel kevesebb, mint 2.5 fok.

Fényessége 11.2 magnitúdó (V szűrővel) . Mivel a galaxis halvány, így a távcső okulárjába tekintve érdemes türelmesnek lenni. Anno, a környékbeli csillagok beazonosítása után, nekem elfordított látással (nem közvetlenül az objektumra tekintünk, hanem mellé) sikerült csak megpillantanom elsőre egy 25 cm-es Dobson távcsőben az oldalról látszó korongját. Vizuális és fotografikus észlelése is kihívások elé állítja az amatőrcsillagászt. Mindenképpen sötét, fényszennyezéstől mentes égbolton érdemes felkeresni.

NGC660-map1

Az NGC660 a Halak (Pisces) csillagképben. Hazánkban 55-56 fok magasságban delel, így az év késő őszi, kora téli időszaka a legalkalmasabb a megfigyelésére.

Tőlünk való távolsága máig némi bizonytalansággal terhelt. Csak az elmúlt 10-15 évet tekintve a csillagászok többször is megkísérelték meghatározni azt. A kapott értékek, ha nem is nagyságrendi, de jelentős szórást mutatnak. A mérések alapvetően két módszeren alapultak.

A világegyetem tágulásának köszönhetően a galaxisok színképében megfigyelhető vöröseltolódás nagysága azok távolságával arányos. Ezt az összefüggést nevezik Hubble-törvénynek. Az ember elsőre a vöröseltolódást, mint a távolodás sebességét értelmezi. A Doppler-effektusból kiindulva, szokás a vöröseltolódás mértékéül azt a sebességet megadni, amivel a galaxis távolodik tőlünk. Gyakran mondják, hogy a galaxisok távolodnak tőlünk, méghozzá látszólag annál nagyobb sebességgel, minél nagyobb a távolságuk. Ugyanezt érzékelnénk, egy másik tetszőleges galaxisból szemlélve az eseményeket. A távoli csillagrendszerek vöröseltolódása valójában nem a Doppler-effektushoz köthető, vagyis nem a megfigyelőtől távolodó galaxis mozgása okozza. Arról van szó, hogy az egész tér tágulása miatt a fény hullámhossza „megnyúlik” azon az úton, míg az adott galaxistól hozzánk elér. Minél távolabb van tőlünk az objektum, annál hosszabb utat tesz meg az onnan érkező elektromágneses sugárzás, így az égitest spektrumában a színképvonalak a távolsággal arányosan egyre jobban a vörös szín felé tolódnak. A vöröseltolódást megmérve kiszámítható tehát a távolság.

A másik lehetséges módszer az NGC660 esetében, a Tully-Fisher reláció használata (elliptikus galaxisok esetén nem használható, csak spirális és lentikuláris galaxisoknál). Ez egy tapasztalati összefüggés a galaxisok tömege vagy luminozitása és emissziós vonalainak szélessége, vagyis a galaxison belüli szögsebességek között. A részletekbe nem nagyon elmerülve, arról van szó, hogy a viszonylag könnyen mérhető galaxison belüli sebességekből meghatározható a galaxis luminozitása, és ebből pedig távolsága. Ugyanis, a galaxis csillagainak dinamikáját a galaxis tömege határozza meg, mely összefüggésben áll annak luminozitásával. Az így kapott luminozitást felhasználva, a látszólagos fényesség ismeretében a távolság már meghatározható.

A fentebb említett vizsgálati módszerek alapján, az NGC660  távolsága valahol 13.3 millió pc (43.3 millió fényév) és 14.7 millió pc (47.9 millió fényév)  között lehet. Ennek fényében, a galaxis mérete hozzávetőlegesen harmada vagy fele a mi galaxisunkénak (a távolság értékétől függően).

Az NGC660 polárgyűrűs galaxis (Polar Ring Galaxy). Ezen galaxisok körül csillagokból, gázból és porból álló gyűrűszerű képződmény figyelhető meg, mely jellemzően a galaxis korongjára nagyjából merőlegesen helyezkedik el. Az első ilyen galaxist 1978-ban figyelték meg csillagászok, és azóta is csak mintegy tucatnyit ismerünk belőlük. Ritkaságszámba mennek tehát a csillagrendszerek között.

NGC_4650A_I_HST2002

A polárgyűrűs galaxisok egy másik példánya a Hubble űrtávcső felvételén. Az NGC4650A galaxis a Centaurus csillagképben található. Forrás: The Hubble Heritage Team (AURA/STScI/NASA)

A gyűrű létrejöttére több magyarázat is létezik. A közös ezekben a teóriákban, hogy két galaxis gravitációs kölcsönhatása okozza, csupán a mikéntben vannak különbségek.

A korongra merőleges gyűrűk kialakulása a szimulációk szerint két galaxis ütközésével magyarázható. A karambolozó feleknek azonban nem azonos a „súlycsoportja”. Továbbá, a kisebb galaxis szinte teljes mértékben merőleges ütközőpályán közelíti meg a nagyobb tömegű tag korongját. Ebben a találkozóban a nagyobb fél kis partnerét teljesen megsemmisíti, és annak anyagából jön létre a nagyobb galaxis korongjára merőleges gyűrű alakú formáció. Maga a gyűrű annak mementója, hogy Dávid és Góliát harcában ezúttal nem Dávid győzedelmeskedett. A gyűrű maga a gázban gazdag kis galaxis, legalábbis ami megmaradt belőle.

Ahogy említettem, nem ismerünk túlságosan sok példányt ebből a galaxis típusból, de az NGC660 fajtájának is egyedi képviselője. A legtöbb esetben a polárgyűrűs galaxis csoportba sorolt csillagvárosok korongja úgynevezett korai lentikuláris galaxis jellemzőit mutatja. Az NGC660 korongja viszont inkább a késői lentikuláris galaxisokéra hasonlít. Ráadásul, a gyűrű nem is merőleges a galaxis korongjára, annak inklinációja durván 45 fok. Éppen ezért pár csillagász sokkal inkább preferálja a ferde gyűrűs galaxis (IRG: Inclined Ring Galaxy)  besorolását.

Ennek a tábornak a képviselői szerint, az NGC660 ferde gyűrűje nehezen értelmezhető két galaxis merőleges ütközésével. És itt lép be a második elképzelés: az árapály akkréció. Az NGC660 és a felé közelítő gázban gazdag galaxis csupán elhaladtak egymás közelében. Ennek során az NGC660 gravitációs árapály hatása „megtépázta” a másik galaxist, begyűjtve és gyűrűt formálva gázkészleteinek tekintélyes részéből.

Az biztos, hogy akár az első, akár a második elképzelés is legyen az igaz, az NGC660 mintegy újjáéledt. Hogy mire is célzok pontosan? Térjünk vissza egy pillanatra a lentikuláris (lencse alakú) galaxisokhoz. Morfológiai szempontból ezek a galaxisok átmenetet képeznek a spirál galaxisok és az elliptikus galaxisok között.

NGC4036 lenticular galaxy

A Nagy Medve csillagkép területén elhelyezkedő NGC4036 lentikuláris galaxis a Hubble Űrtávcső felvételén. A korong szinte struktúra nélküli. Egyedül a csillagközi por, az ami megtöri a viszonylagos egyhangúságot. Bár csillagok kialakulásához szükséges  intersztelláris gáz  nincs igazán bennük (nincsenek bennük hideg hidrogénfelhők), de sokuk porban gazdag. Forrás: ESA/Hubble & NASA – Judy Schmidt

A lentikuláris galaxisok alapvetően diszk alakúak akárcsak a spirál galaxisok. Nincsenek azonban spirálkarjaik, a korongban pedig álltalában nincsennek határozott struktúrák. Ugyanakkor, bizonyos lentikuláris galaxisokban, a küllős spirál galaxisokhoz hasonlóan szerkezet (az angol nyelvű irodalomban: bar) figyelhető meg. Bennük a csillagok dinamikája is nagyon hasonlatos a spirál galaxisokéhoz, ugyanis eltolva az ezek esetében érvényes Tully-Fisher reláció diagramját megkapjuk a lentikuláris galaxisokra jellemzőt.

Rádiósugárzásuk a 21 cm-es hullámhosszon nem szignifikáns, mivel híján vannak az atomos állapotban lévő hidrogén gáznak. Szintén nincs, vagy csak nagyon minimális mennyiségben fordul elő bennük molekuláris állapotú hidrogén. Mivel a hideg molekulafelhők nélkülözhetetlenek a csillagok keletkezéséhez, így manapság már nem zajlik bennük intenzív csillagkeletkezés. Utánpótlás hiányában a nagyobb tömegű, kékes árnyalatú csillagok már régen kivesztek ezekből a csillagrendszerekből. Csillagászati értelemben röpke életük szupernóva-robbanással zárult. Mára, csak a kisebb tömegű, és éppen ezért hosszabb életű sárgás, vöröses csillagok maradtak hátra. Ezek dominanciája, és a bennük lévő tekintélyes mennyiségű pornak a vörösítő hatása határozza meg a lentikuláris galaxisok színét.

NGC 936

A 8.2 m tükörátmérőjű VLT-vel (Very Large Telescope) és B, V, R, I szélessávú szűrőkkel készült felvétel az NGC936 küllős lentikuláris galaxisról. Forrás: ESO (Cerro Paranal, Chile)

Nem mondhatók elliptikus galaxisoknak sem, bár kétségtelenül vannak nagyon hasonlatos jegyeik. Éppen ezért, az elliptikus galaxisokat és a lentikuláris galaxisokat gyakran nem is olyan könnyű megkülönböztetni egymástól. Például, a színképük az öreg csillag populációjuknak hála alig tér el. A prominens központi dudor szintén jellemző mind a kettőre. Ezekben a csillagok mozgása véletlen eloszlást mutat. Nincs sem kitüntetett iránya, sem kitüntetett síkja a csillagok keringésének a centrum körül. Ellenben, a lentikuláris galaxisok korongjában van kitüntetett keringési irány, és a pályák is síkba rendezettek. Ez pedig, határozottan megjelenik az egész galaxis dinamikájában. Tekintve, hogy az elliptikusoknak nincs korongja, így megfigyelve a galaxison belüli mozgások jellegét, különbséget tudunk tenni a lentikuláris és az elliptikus csillagrendszerek között.

Ez elsőre remekül hangzik, de a megfigyeléseket több dolog is nehezíti. A teljességre törekvés nélkül, csak párat említenék ezek közül. A Doppler-effektusnak hála, a színképvonalak eltolódása sok mindent elárul a galaxison belüli mozgásokról. Kezdjük is a színképelemzés buktatóival. A spirál galaxisok esetében éppen a 21 cm-es emissziójukat szokták felhasználni, hogy kinematikájukat feltérképezzék. A lentikuláris galaxisok esetében ugye ez nem lehetséges. Mivel nincs jelentős, a fiatal és masszív csillagok által ionizált hidrogénkészletük, így a Hα emissziós vonalak vizsgálata szintén lehúzható a listáról. Maradnak az abszorpciós színképvonalak, de azokkal csak kevésbé megbízható eredményt lehet produkálni. Tegyük fel, hogy ezekre alapozva mégis elvégeztük a méréseket. Az értelmezésükhöz ismernünk kell pontosan a korong inklinációját (látóirányunkba eső tengelyferdeségét). Ez elengedhetetlen, ha a tényleges keringési sebesség érdekel minket. Ezt viszont nem is olyan triviális meghatározni ezen galaxisoknál. Akkor ott van még, hogy adott pontban nem egyszerű a korongon belüli rendezett, és a dudoron belüli rendezetlen mozgások szétválasztása. És így tovább. Lehet tehát a galaxisok csillagainak dinamikája alapján is definíciót alkotni, hogy mikor beszélünk elliptikus, és mikor lentikuláris galaxisról, de csillagász legyen a talpán aki kifésüli és értelmezi a mérési eredményeket.

Gyakran, inkább a felületi fényesség profil alapján szokták eldönteni a galaxisról, hogy az melyik típusba tartozik. Ez a profil leírja, hogy miként változik a galaxis fényessége a centrumtól távolodva. A spirál galaxisok, illetve a lentikuláris galaxisok korongjának profilja tipikusan lapos, míg az elliptikusak szférikus része, illetve a lentikulárisok központi dudorának profilja meredek esésű. A gyakorlat azonban sosem ennyire egyszerű, ugyanis lentikuláris galaxisok esetén a központi dudor jellemzően dominánsabb a koronghoz képest. Tipikusan akkor kap a galaxis lentikuláris, és nem elliptikus besorolást, ha felületi fényesség profilja nem írható le egyetlen indexszel (Sérsic index). Vagyis, csak több, különböző meredekségű görbével ábrázolható.

Sersic_models

Felületi fényesség profilok különböző Sérsic index-ek esetén. A vízszintes tengelyen található a centrumtól mért távolság logaritmusa, míg a függőleges tengelyen a felszíni fényesség logaritmusa. Az n=1 a spirál galaxisokat és a lentikulárisok korongját, az n=4 az elliptikus galaxisokat írja le jól.

Ma két elfogadott elmélet van kialakulásukra. Az egyik szerint a spirális szerkezetét elvesztett galaxisokról van szó, melyben kifogyott a nyersanyag a csillagkeletkezéshez. Míg a másik elmélet szerint galaxisok összeolvadása hozta létre eme korong alakú csillagvárosokat.

Gondoljunk csak bele, hogy a „vörös és halott” galaxis (az angol szakirodalomban gyakran használják a „red and dead” kifejezést a csillagokat már nem produkáló galaxisokra) egy ütközésnek, vagy éppen csak egy erőteljes gravitációs kölcsönhatást követő akkréciónak hála még egy esélyt kapott, hogy csillagok újabb nemzedékének adjon életet.

Az éppen folyamatban lévő csillagkeletkezés indikátorai a forró, és ezért kékes színű masszív csillagok tömeges jelenléte. Egy spirál galaxis csillagpopulációját 70%-ban az úgynevezett M típusú, Napunknál is kisebb tömegű, halvány vörös törpe csillagok alkotják. Ez az arány 90% az elliptikus galaxisoknál, és hasonló ezek arány a lentikuláris galaxisok esetében is. Hiába nagyobb a kis tömegű sárgás-vöröses halvány csillagok aránya, heves csillagkeletkezés esetén oly iramban keletkeznek csillagok ezeken a területeken, hogy igen magas lesz a nagy tömegű csillagok száma is. Ezek pedig fényükkel könnyűszerrel túlragyogják a kisebb testvéreiket. Így végső soron, nekik köszönhetően világítanak a fiatal csillagok halmazai kékes fényfüzérekként az NGC660 gyűrűjében. A masszív csillagok azonban tömegüktől függően mindössze néhány millió, vagy néhány tízmillió évig léteznek. (A kisebb tömegű csillagok hosszabb ideig élnek, ahogy már fentebb is utaltam rá.) Létezésük tehát annak bizonyítéka, hogy legalább az említett időintervallumokon belül intenzív csillagkeletkezés folyt az adott területen. Hasonlóan a fiatal masszív csillagok sugárzása által ionizált hidrogén gázfelhői, vagyis a HII régiók vöröses-rózsaszínes pamacsai is az „éppen zajló” csillagkeletkezés jelei. Nagy távolságok esetén, ahol már távcsövünk felbontása kevés, ezek fénye már gyakorta elvész a kék behemótok ragyogásában. Érdemes itt egy pillanatra megállni, és a leírtak tudatában újra megszemlélni az NGC660-ről készített felvételemet.

ngc660_gemini_legacy

Bár a saját felvételemen is már látszanak valamelyest a gerjesztett hidrogén felhők vöröses-rózsaszínes pamacsai, de érdemes megnézni ezt a Hawaiion lévő Gemini óriástávcsővel készült felvételt. Ezen tömegével látszanak vörös csillagkeletkezési régiók a gyűrűben, illetve a fiatal és fényes nagytömegű kék csillagok alkotta halmazok. A felvétel g, r, I, és Hα szűrőkkel készültek. Az ezekhez hozzárendelt színek: kék, zöld, narancs és vörös. A látómező 9.3×5.6 ívperc. Forrás: Gemini Observatory / AURA

A Hubble űrtávcsővel több száz különálló objektumra bontható fel az NGC660 gyűrűje. Ezeknek az objektumoknak tekintélyes hányada kék és vörös szuperóriás csillag. A gyűrű populációkának ezek csupán a legfényesebb tagjai, de tökéletesen megfelelnek korbecsléshez. A vizsgálatok alapján, a legfiatalabb csillagok csak alig 7 millió évvel ezelőtt alakultak ki. Továbbá, a gyűrű kb. 1 milliárd éves lehet a szín-indexén (V-I) alapuló megfigyelések szerint. Összességében tehát elmondható, hogy a hosszú ideje tartó csillagkeletkezés a gyűrűben még mind a mai napig is zajlik.

Jogosan merül fel a következő kérdés az olvasóban, ahogy a csillagászok is megfogalmazták azt. Ha csak megközelítette a kisebb galaxis az NGC660-ot, akkor hol van most? Hol a tettes? Az igazság az, hogy a csillagászok erre nem tudják a pontos választ. Amennyiben 1 milliárd évvel ezelőtt történt az esemény, akkor lehetséges, hogy mostanra már egyszerűen tovább állt. Vagyis, kimozgott abból a látómezőből, ahol eddig a csillagászok keresték.

A másik érdekesség, hogy árapálycsóváknak semmi nyoma, mint például az NGC1316, az NGC6769 és NGC6770 párosa, NGC2442, vagy az Arp 271 kölcsönható, illetve kölcsönhatáson átesett galaxisok esetében. Hogy csak pár korábbi fotómat említsem. Az igazság az, hogy mindkét említett modell esetében létrejöhet úgy a gyűrű, hogy nem alakul ki árapálycsóva. A csóva hiánya nem perdöntő bizonyíték az egyik vagy a másik elképzelés mellett.

Természetes, hogy amikor az ember először erre a galaxisra tekint, akkor a sárgás korong előtt látható kusza porsávok sziluettje, és a gyűrű ami megragadja a tekintetét. Az NGC660 magvidéke viszont legalább ennyire érdekes. Ennek megfigyelése viszont már messze túlmutat az amatőrcsillagász műszerek lehetőségein, de adott esetben még a látható elektromágneses sugárzás tartományán is. Mégis szót kell ejteni róla, hogy összeálljon az olvasó fejében a teljes kép erről a csillagrendszerről.

A mag vizsgálata talán segíthet eldönteni a fentebb boncolgatott kérdést. Amennyiben összeolvadás történt volna, akkor az NGC660 magja kettőséget kellene, hogy mutasson. Ennek viszont semmi nyomát nem találták egyelőre a csillagászok. Nincs jele annak, hogy a galaxis centrumában két szupermasszív fekete lyuk is helyet foglalna. Több olyan galaxist is ismerünk, miben két masszív fekete lyuk is található, mely egyértelmű bizonyítéka, hogy az két másiknak az összeolvadásaként jött létre.

NGC6240-3blackholes

Már korábban is ismert volt az NGC6240-ben egy szupermasszív fekete lyuk. Mivel az volt a kutatók feltételezése, hogy ez a furcsa alakú galaxis két másik összeütközése révén jött létre, így a VLT UT4 (Yepun) távcsövére szerelt MUSE műszerrel alapos vizsgálatnak vetették alá a csillagrendszert.

Ekkor jött a meglepetés, hogy nem egy, hanem rögtön másik két szupermasszív fekete lyukat is találtak a csillagászok. Ez az elsőként talált ilyen eset (2019), hogy egy galaxis centrumán környékén három ilyen behemót is tanyázik. Nincsennek is messze egymástól. Mind a három, egy nagyjából 3000 fényév átmérőjű térrészen belül helyezkedik el, ami a galaxis teljes méretének 1%-ka sincs. Egyenként kb. 90 millió naptömegűek. Az NGC6240 tehát nem is egy, hanem három galaxis összeolvadásának az eredménye. Kép forrása: P. Weilbacher (AIP), NASA, ESA, the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration, and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University)

Az NGC660 a LINER (Low Ionization Nuclear Emission Region) galaxisok csoportjába tartozik. A LINER-ek a nevüket magjuknak színképe alapján kapták, amiben tipikusan gyengén ionizált atomok (egyszeresen ionizált oxigén, nitrogén, kén, stb.) keskeny vonalai figyelhetők meg, míg az erősen ionizált atomok (például kétszeresen ionizált oxigén) vonalai viszonylag gyengék. A LINER galaxisok közel sem olyan ritkák, mint az elsőre gondolnánk. A megfigyelések azt mutatják, hogy a környezetünkben (486 elemű, legalább 12.5 magnitúdós (BT)  galaxismintát tekintve) minden ötödik-harmadik galaxis ilyen. Érdekes, hogy túlnyomórészt inkább elliptikus és lentikuláris galaxisok esetén figyelhető meg ez a jelenség, bár számottevő a spirál galaxisok mennyisége is. Az irreguláris galaxisok között viszont csak elvétve akad ilyen.

Máig vitatott, hogy pontosan miért látjuk ezeket az emissziós vonalakat a LINER galaxisok színképében. Már abban sincs egyetértés a csillagászok között, hogy egyáltalán miként jön létre maga a gerjesztés. Egyesek szerint az intersztelláris gázban terjedő lökéshullámok (shock waves), míg mások szerint a fotoionizáció (intenzív UV sugárzás) okozza azt. Nemcsak az ionizációs mechanizmus kérdésében oszlik meg a kutatók véleménye, de annak forrását illetőleg is.

A csillagászok egyik jelentős tábora szerint, e galaxisok esetében a centrumban tanyázó szupermasszív fekete lyukak a okolhatók a gáz gyenge ionizációjáért. Szerintük a kis luminozitású aktív galaxismagok (Low-Luminosity Active Galactic Nuclei – LLAGN), ahová a kevésbé fényes magú Seyfert galaxisok, és a LINER-ek is tartoznak, illetve azok a galaxismagok, melyek színképe a LINER-ek és a HII régiók közt átmenetet mutat, csupán a nagyságrendekkel intenzívebben sugárzó Seyfert galaxisoknak és a kvazároknak a rokonai. Ezen utóbbiak magjában, a szupermasszív fekete lyuk felé áramló anyag akkréciós korongot formál, s miközben befelé örvénylik, egyre gyorsabban mozog és felhevül. A folyamatban a mozgási energiájának egy jelentős része elektromágneses sugárzássá alakul. Az akkréciós korong mindkét oldalán, a forgástengely mentén plazmából álló jet-ek jönnek létre. A jet a fekete lyukhoz közeli erős mágneses térben közel fénysebességre gyorsított, töltött szubatomikus részecskék fókuszált nyalábja. A relativisztikus sebességgel mozgó töltött részecskék a mágneses térben kifelé spirálozva felelősek az úgynevezett szinkrotronsugárzásért. A kis luminozitású aktív galaxismagok hasonlóan működnek e csillagászok vélekedése szerint, csak éppen kevésbé energikusak. Míg például a kvazároknál a jet-ek hossza elérheti akár a millió fényéves nagyságrendet is, addig a kis luminozitású aktív galaxismagok esetében inkább csak fényéves méretekről lehet beszélni, de extrémebb esetekben is csak pár száz fényévről mindössze. Az eltérések az aktív galaxis magok, és a kis luminozitású aktív galaxismagok között a fekete lyukak tömegére, az anyagbefogás ütemére, az akkréciós korong fizikai paramétereire, illetve a fekete lyukat körbevevő galaktikus környezetre (por és gáz, azok hőmérséklete stb.) vezethetők vissza, hogy csak pár lehetséges okot említsek. Amennyiben tényleg rokoni szálak fűzik őket össze, akkor a LINER galaxisok alkotják az aktív magú galaxisok legnépesebb alosztályát, számuk messze lekörözi a nagyobb luminozitású Seyfert galaxisok és kvazárok számát.

 

agn_tipusok

Aktív galaxismag sematikus vázlata.

Black Hole – Fekete lyuk, Torus of Neutral Gas and Dust – Ionizálatlan gázok és por tórusza, Accretion Disk – Akkréciós korong, Radio Jet – Rádió Jet

Míg más csillagászok véleménye az, hogy a LINER galaxisok megfigyelhető tulajdonságai nem a központi fekete lyuk „munkálkodásának” eredménye.  Szerintük, a csillagkeletkezési régiók fiatal, masszív és egyben forró csillagai gerjesztik a gázt. Való igaz, hogy pár LINER galaxis esetében találtak erre utaló jeleket a közeli infravörös tartományban végzett spektroszkópiai vizsgálatok során. De a Spitzer űrtávcsővel is folytattak kampányt a csillagászok, melyben 33 LINER galaxist vetettek alá alapos spektroszkópiai vizsgálatnak a közép infravörös tartományban. Az átfogó minta elemzésével sikerült kapcsolatot kimutatni a fényes infravörös galaxisok (Luminous Infrared Galaxies – LIRGs) LINER emissziója és a csillagkeletkezési aktivitás között. Ezek olyan távoli galaxisok, amelyek főként a Világegyetem abban a korszakában léteztek, amikor a csillagkeletkezési ráta még jelentősen nagyobb volt a ma megfigyelhetőnél. A tömegével születő csillagokat egy ideig még körbevették azok a gázfelhők, amelyben keletkeztek. Az ezekben a felhőkben lévő por a csillagok fényének jelentős részét elnyelte, majd pedig visszasugározta infravörösben. Ezek az intenzív csillagkeletkezést produkáló galaxisok így nem is a látható fényben, hanem sokkal inkább infravörösben igazán fényesek. Innen származik a nevük is. Megjegyzem, hogy aktív galaxismag jelenlétét is detektálták pár esetben. Ellenben, ugyanezen vizsgálat eredményei szerint, a környező normál (nem csillagontó), az infravörösben kevésbé fényes galaxisok LINER emissziója nem a csillagkeletkezésre vezethető vissza. Nem utolsósorban az elliptikus és lentikuláris galaxisokban nem jellemző a masszív és éppen ezért forró fiatal csillagok jelenléte. Ugyanis, ezek csillagászati értelemben rövid ideig, tömegüktől függően mindössze néhány millió, néhány tízmillió évig élnek csak. Ezeknél a galaxisoknál pedig már sokkal régebben véget ért az aktív csillagkeletkezés korszaka.

Vannak olyan csillagászok, akik nem az aktív galaxismagban, vagy éppen az intenzív csillagkeletkezésben látják a megoldás kulcsát. Sőt, éppen ezek hiányával magyarázzák az egészet. Az 1 milliárd évnél öregebb, előrehaladott fejlődési állapotban lévő csillagok, az aszimptotikus óriás ág elhagyása után (post AGB phase) rövid ideig elég forrók ahhoz, hogy képesek legyenek gyengén ionizálni a környező csillagközi gázokat. Az emisszió megfigyelésére pedig azért nyílik egyáltalán lehetőségünk, mert sem az aktív mag, sem a fiatal forró csillagok keltette sugárzás nem ragyogja túl azt. Ez a magyarázat akár működőképes is lehet. Ehhez csak némi gázra és 1 milliárd évesnél öregebb csillagokra van szükség. Ez az elképzelés arra is választ adhat, hogy a LINER-ek miért főként öreg csillagok alkotta masszív galaxisok, amikben már igen kicsi a csillagkeletkezési aktivitás. Ugyanakkor azt se felejtsük el, hogy akadnak aktív magú LINER galaxisok is.

Nem könnyű eldönteni, hogy pontosan melyik teória a helyes, mert oly változatos morfológiájúak, annyira eltérő tulajdonságúak a LINER galaxisok. Könnyen lehet, és éppen e mellett teszik le a voksukat a legutóbb vázolt elmélet képviselői is, hogy az aktív magnak, a fiatal csillagok ionizációs hatásának, és a LINER tulajdonságnak a kérdését teljesen külön kell kezelni. Ez pedig jelentősen átrajzolhatja a galaxisokról alkotott képet, mivel évtizedek óta a LINER tulajdonságot az aktív mag indikátorának tekinti a kutatók jelentős része.

Mint említettem, az elliptikus és lentikuláris galaxisokban álltalában nem jellemző a masszív és éppen ezért forró fiatal csillagok jelenléte. De az NGC660 esetében a rádiótávcsöves vizsgálatok ennek ellentmondani látszanak. A galaxis központjának durván 32 fényév kiterjedésű régiója igen erős rádiósugárzást bocsájt ki. A csillagászok úgy vélik, hogy az NGC660 és a másik galaxis közötti kölcsönhatás eredményeként tekintélyes mennyiségű gáz áramolhatott a mag vidékére. Illetve, a gravitációs kölcsönhatás lökéshullámokat hozott létre ezekben a gázfelhőkben. Így, a magban is intenzív csillagkeletkezés indult be. Vagyis, nemcsak az NGC660 gyűrűjében zajlanak egyedül viharos csillagkeletkezési folyamatok. A magban hatalmas számban keletkeztek forró, fényes, kékes árnyalatú csillagok. És talán éppen ezen fiatal csillagoknak a környezetükre gyakorolt hatása felelős magáért a rádiósugárzásért. Ezek, az akár 100 naptömeget is meghaladó óriási „csillagszörnyek” rövid idő elteltével szupernóvaként robbantak fel. Ezáltal újabb lökéshullámokat keltve az intersztelláris anyagban. Végső soron, beindítva az újabb csillagkeletkezési hullámokat a csillagrendszer centrumában. Az egészet, mint egy megszaladó folyamatot kell elképzelni. Az NGC660 nemcsak polárgyűrűs, vagy mások értelmezése szerint ferde gyűrűs galaxis, de úgynevezett csillagontó galaxis is (starburst galaxy).

Mindenkit csak arra biztatnék, hogy észlelje bátran ezt az izgalmas galaxist, miközben eltöpreng egy picit a fenti dolgokon. Szemünk előtt a galaktikus evolúció egy ritka példánya. Egyetlen csillagrendszer, megannyi zavarba ejtő tulajdonsággal. Legalábbis, amíg a csillagászok ki nem bogozzák az összes szálat.

Felhasznált irodalom:

G.M.Karataeva, N.A.Tikhonov, O.A.Galazutdinova, V.A. Hagen-Thorn, V.A.Yakovleva: The stellar content of the ring in NGC 660

Brian E. Svoboda, Jeff Mangum: Temperature and Heating Mechanisms in the Polar Ring Galaxy NGC660

R. Riffel, A. Rodriguez-Ardila, I. Aleman, M. S. Brotherton, M. G. Pastoriza, C. J. Bonatto, O. L. Dors Jr: Molecular Hydrogen and [Fe II] in Active Galactic Nuclei III: LINERS and Star Forming Galaxies

Jeffrey G. Mangum, Jeremy Darling, Christian Henkel, Karl M. Menten, Meredith MacGregor, Brian E. Svoboda, Eva Schinnerer: Ammonia Thermometry of Star Forming Galaxies

R. Buta, K. Sheth, E. Athanassoula, A. Bosma, J. Knapen, E. Laurikainen, H. Salo, D. Elmegreen, L. Ho, D. Zaritsky, H. Courtois, J. Hinz, J-C. Muñoz-Mateos, T. Kim, M. Regan, D. Gadotti, A. Gil de Paz, J. Laine, K. Menendez-Delmestre, Sebastien Comeron, S. Erroz Ferrer, M. Seibert, T. Mizusawa, B. Holwerda, B. Madore: A Classical Morphological Analysis of Galaxies in the Spitzer Survey of Stellar Structure in Galaxies (S4G)

R. E. Mason, A. Rodriguez-Ardila, L. Martins, R. Riffel, O. Gonzalez Martin, C. Ramos Almeida, D. Ruschel Dutra, L. C. Ho, K. Thanjavur, H. Flohic, A. Alonso-Herrero, P. Lira, R. McDermid, R. A. Riffel, R. P. Schiavon, C. Winge, M. D. Hoenig, E. Perlman: The Nuclear Near-Infrared Spectral Properties of Nearby Galaxies

Megan Argo, Ilse van Bemmel, Sam Connolly, Robert Beswick: A new period of activity in the core of NGC660

Gömbhalmazok

gombhalmazok4-TTK-cut1

Négy gömbhalmaz fotóm: NGC2808 (jobb felső), M71 (bal felső), NGC3201 (jobb alsó), NGC5466 (bal alsó)

A Tejútrendszer halója

Had invitáljam meg az olvasót, hogy tartson velem egy rövid utazásra galaxisunk halójába. A csillagászok eredetileg a haló kifejezést a Tejútrendszer korongját körbevevő, csillagok alkotta szferoidális (forgási ellipszoid) alakú galaktikus alrendszer megnevezésére használták. Mint később látni fogjuk, az ismeretek bővülésével a kifejezés új tartalommal bővült.

Ahogyan galaxisunk nagyjából 100-120 ezer fényév átmérőjű, és pár ezer fényév vastagságú, jellemzően fiatalabb csillagok lakta vékony korongjának (thin disk), így a halónak sincs éles határa. Csillagainak 90%-a Tejútrendszerünk magjától 100 ezer fényévéves távolságon belül található, ugyanakkor pár objektum távolsága a 200 ezer fényévet is meghaladja.

Öreg, sok milliárd éves csillagok birodalma ez, melyek egy része népes gömbhalmazokba tömörülve rója útját galaxisunk magja körül. A haló objektumai elnyúlt pályákon keringenek, igen változatos hajlásszöggel a galaxis síkjához képest. Jelentős azon objektumok száma, melyek keringési iránya retrográd, vagyis a korong csillagainak keringési irányával ellentétes.

Annak köszönhetően, hogy a halóban a csillagok keletkezése már réges-rég leállt, a csillagok eloszlása, pályája, összetétele (fémtartalma) megőrizte a Tejútrendszer ősi korszakainak emlékét. Ezeket az égitesteket inkább mondhatjuk matuzsálemeknek, mint fosszíliáknak, ugyanis még mindig „élnek”, fejlődnek, változóban vannak.

A haló legősibb ma is létező csillagai mintegy 13 milliárd évvel ezelőtt keletkeztek, szintén ekkortájt alakultak ki az első gömbhalmazok. Talán korábban, mint maga a Tejútrendszer, melynek története egyes elképzelések szerint kicsit később, törpe szferoidális és szabálytalan alakú ős-galaxisok ütközésével és egyesülésével indult. A „galaktikus kannibalizmus” már a kezdetektől fogva fontos szerepet játszott a Tejútrendszer fejlődésében.

A belső haló csillagai pár milliárd évvel fiatalabbak. 11.4 milliárd éve (11.4±0.7 milliárd éve) születtek a fokozatosan összehúzódó hatalmas gázfelhő csomóiból, mely egyre laposabb forgási ellipszoid alakú térrészt töltött ki, ahogy galaxisunk formálódott. Több milliárd évre volt szükség, hogy a Tejútrendszer elnyerje a ma megfigyelhetőhöz hasonlatos formáját. A csillagok, por és gázfelhők alkotta lapos korong körülbelül 9 milliárd éve (8.8 ± 1.7 milliárd éve) létezik mindössze. Az összehúzódó gázt az impulzus megmaradás törvénye szinte tökéletesen kilapította. Ekkora alakult ki egy kitüntetett keringési irány, és rendeződtek egy síkba az égitestek pályái. Miközben az intersztelláris médium, vagyis a por és gázködök, és a belőlük születő csillagok megformálták a korongot, csillagvárosunk elkezdte bekebelezni a környező megmaradt ősi törpe galaxisokat. Így a külső haló tovább dúsult olyan öreg csillagokkal, melyek kevesebb, mint 2 milliárd évvel az ősrobbanás után alakultak ki. A befogott, majd szétszaggatott galaxisok csillagai szétszóródtak, beleolvadtak Tejútrendszerünkbe. Azonban a nagyobb, kompakt struktúrák, mint például a gömbhalmazok, vagy az elnyelt galaxisok magjainak csillagai jó eséllyel együtt maradhattak.

Halo-story2

Galaxisunk kialakulását szemléltető ábra – a: A Tejútrendszer története valószínűleg törpe szferoidális és szabálytalan alakú ős-galaxisok ütközésével és egyesülésével indult, melyek már tartalmazhattak csillagokat. b: Kezdetben a szabálytalan alakú és kaotikus gázfelhőben nem voltak kitüntetett keringési iránya a születő csillagoknak. c: A jelentős tömegűvé duzzadt, összehúzódó felhőben idővel kialakult egy kitüntetett forgási irány, a forgás üteme pedig egyre gyorsult az impulzus megmaradás törvénye értelmében. Az egész folyamat egy lapos forgó korongba terelte a gázt és a port. A később itt keletkező csillagok pályája így már síkban rendeződött, és kis excentricitású (közel kör alakú). Az ábra hiányossága, hogy nem tesz említést a kialakulás közben elnyelt környező törpe galaxisokról. Kép forrása: http://lifeng.lamost.org/

A haló tehát maga is több alrendszerből áll. Csillagaik más korokban, adott esetben különböző eseményeknek köszönhetően jöttek létre. Egy részük pedig eredetileg idegen galaxisokban született. A haló kialakulásának története megmagyarázza, hogy miért nincs kitüntetett keringési iránya, keringési síkja csillagainak és gömbhalmazainak, ellentétben galaxisunk korongjának csillagaival. A retrográd keringési irány kérdése sem okoz különösebb fejfájást, amennyibe ezek az égitestek Tejútrendszerünkön kívül keletkeztek. Bár ez utóbbi tulajdonság, a több részből összeálló kezdeti gázfelhőn belül uralkodó kaotikus állapotok következménye is lehet.

Milkywayhalo

A Tejútrendszer halójának felépítését ábrázoló rajz. – A külső haló (Outer halo) idősebb csillagai kevésbé lapult szferoid térrészt töltenek ki, mint a belső halóé (Inner Halo). A vékony korong (thin disk) geometriája leginkább egy hanglemezre emlékeztet. Átmérője 100-120 ezer fényév, míg az ide tartozó, a haló csillagaihoz képest fiatal csillagok 85%-a egy mindössze 3000 fényév vastagságú térrészben helyezkedik el. Forrás: NASA, ESA, és A. Feild (STScI)

Annak felismerése után, hogy a korongot öreg csillagok és gömbhalmazok veszik körül, még sokáig tartotta magát az a nézet, hogy a haló egyáltalán nem található intersztelláris anyag.

Ez a kép akkor indult gyökeres változásnak, amikor a csillagászok elkezdték feltérképezni a Tejútrendszer és más galaxisok halóját az optikai tartományon túl. A rádiótávcsövekkel a 21 cm-es hullámhosszon vizsgálódva felfedezték, hogy egyes spirál galaxisokban a korongtól több kpc (1pc ≈ 3.26 fényév) távolságban is található gáz. Ezt javarészt atomos hidrogén alkotja (a területek ionizációs foka igen alacsony: 1:10000) némi héliummal, és a héliumnál nehezebb elemekkel szennyezve. Az ilyen gázfelhőket HI régióknak nevezi a szakirodalom, és jellemzően a spirál galaxisok korongjában találhatóak nagy mennyiségben, alapanyagot szolgáltatva a csillagok keletkezéséhez. Mivel a HI területek „igazi” otthona a galaxis vékony korongja (thin disk), így ennek analógiájára megalkották a HI vastag korong (HI Thick disk) fogalmát. A HI vastag korong általában 5-10%-át tartalmazza a csillagváros teljes HI készletének. De előfordulnak igen extrém esetek is. Az NGC891 esetén a HI vastag korong több mint 10 kpc távolságig terjed ki a vékony korongon túlra és az atomos hidrogén 30%-át tartalmazza. A megfigyelések szerint Tejútrendszerünk is rendelkezik HI vastag koronggal, melynek legtávolabbi gázfelhői vertikálisan nagyjából 6-7 kpc távolságra helyezkednek el vékony korongtól.

De honnan származik ez a gáz? Az egyik lehetséges forrás maga a korong. Az úgynevezett galaktikus szökőkút jelenség során por és gáz hagyja el ezt a régiót a galaxis halójába áramolva. A ma széleskörűen elfogadott elképzelések szerint, ez a „párolgás” két mechanizmusnak köszönhető, mely a csillagok születésével és halálával kapcsolatos. Az egyik mozgatórúgó az aktív csillagkeletkezésben születő fényes, forró és nagytömegű csillagok szele, mely hatalmas erővel fújja ki az anyagot. A másik hatás éppen az ilyen nagytömegű és éppen ezért gyorsan fejlődő csillagok tragikus halálát követő szupernóvák fellángolásának köszönhető. Ezek a hatalmas erejű robbanások szintén hozzájárulnak a korongból történő anyag kilökődéséhez. Idővel ezek a hidrogén tartalmú felhők visszahullnak a vékony korongba.

De nemcsak a korong az egyetlen forrása az azon kívül detektált hidrogénfelhőknek. A csillagászokat már régen foglalkoztatta az a probléma, hogy miként képesek fenntartani a spirál galaxisok hosszú időn keresztül a bennük megfigyelhető csillagkeletkezési ütemet. A Tejútrendszerben évente 1-3 naptömegnyi csillag keletkezik. Ha figyelembe vesszük, hogy galaxisunk gázkészlete körülbelül 5.3 x 109 naptömeg, akkor csak a jelenlegi ütemmel számolva is már rég ki kellett volna merülnie a csillagok legyártásához szükséges forrásoknak. Valójában azonban az elmúlt 10 milliárd évben 2-3 faktorral még csökkent is a csillagok születési üteme. A csillagászok elkezdték hát keresni az utánpótlás lehetséges forrásait.

A gyanú először azokra a HI nagy sebességű felhőkre (High-Velocity Clouds: HVC) terelődött, melyeket a 21 cm-es hullámhosszon találtak a galaxis halójában a 1950-es évek közepén. Felfedezésükkor még nem volt pontosan ismert a galaxison belüli elhelyezkedésük, csupán az a furcsaság tűnt fel a kutatóknak, hogy ezek nem vesznek részt a korong rotációjában, továbbá radiális sebességük több mint 90 Km/s-mal eltért a korong rotációjában résztvevő interszteláris anyagétól. Eme utóbbi tulajdonságuk végett kapták a nevüket.

Fémtartalmuk jóval alacsonyabb, mint a Napé. A csillagászok minden elemet a hidrogénen és a héliumon túl a periódusos rendszerben fémnek neveznek. Egy csillag fémtartalmát általában a Naphoz szokták hasonlítani a kutatók. A világegyetem története folyamán, a csillagoknak hála folyamatosan dúsult fémekkel. Az újabb és újabb csillaggenerációk egyre több fémet tartalmaztak, így minél alacsonyabb fémtartalmú egy csillag a Naphoz képest, vélhetőleg annál ősibb objektum. Mivel a korong a haló és a központi dudor után keletkezett, így a galaxison belüli objektumok fémtartalma a korongban a legmagasabb. A HI nagy sebességű a Napnál alacsonyabb fémtartalmából így arra lehet következtetni, hogy ezek a felhők nem a korongból származnak. Úgy tűnt a kutatók tetten érték a hideg gáz beáramlását a Tejútrendszerbe. A felhők tömege azonban túl kevésnek bizonyult, ugyanis évente mindössze 0.1-0.2 naptömegnyi anyagutánpótlás érkezik a korongba, ha csak ezekkel számoltak.

Elméleti megfontolások és távoli galaxisok megfigyelései alapján született meg azaz elképzelés, miszerint nem hideg gáz formájában áramlik be az anyag a Tejútrendszerbe, hanem meleg vagy éppen forró ionizált gázként. Ez a halóba érkezve lefékeződik, lehűl, és „leülepedik” a galaxis korongjában. Először a meleg fázisát sikerült megfigyelni ezeknek a „láthatatlan” felhőknek közvetett módon. A csillagászok megvizsgálták a haló távoli csillagainak színképét az ultraibolya tartományban, és árulkodó abszorpciós vonalakat találtak bennük. Olyan elnyelési vonalak voltak ezek, melyet köztünk és a haló távoli csillaga között lévő 105-106 K hőmérsékletű gáz többszörösen ionizált elemei (Si II, Si III, Si IV, C III, C IV, O VI) hoztak létre.

Halo-gas-opo1126a

Az illusztráció a halóban található gázok viselkedését és azok származását szemlélteti.

A gázok egy része szökőkút szerűen „tör a magasba” a fiatal csillagoknak, és a szupernóváknak köszönhetően a Tejútrendszer korongjából. Ez a gáz később újrahasznosul. – Recycled galactic gas from supernovae

Az intergalaktikus térből nagysebességgel gáz áramlik be, mely lefékeződve, lehűlve a korongba jut. – Very fast clouds from intergalactic space, Decelerating Clouds.

Illusztráció forrása: NASA, ESA, and A. Feild (STScI)

A halóban lévő gáz forró fázisát, annak igen magas hőmérséklete miatt, már nem az ultraibolya, hanem a röntgentartományban kellett keresni. A Chandra, XMM-Newton és a Suzaku röntgen űrtávcsövekkel folytatott kutatások alapján bizonyossá vált, hogy a Tejútrendszer több százezer fényév sugarú, 1-2.5 x 106 K hőmérsékletű, ritka gázfelhőbe burkolódzik. Ennek tömege pedig eléri a 10 milliárd naptömeget, de egyes kutatók a 60 milliárd naptömeget sem tartják kizártnak.

Bár még sok részlet nem teljesen tisztázott, például pontosan miként, milyen mechanizmusok révén jut el a galaxis korongjába a gáz, de nagyon úgy tűnik, hogy a csillagászok meglelték azokat a forrásokat, ahonnan a Tejútrendszer folyamatosan újratölti a korong gázkészletét.

MilkyWayGaseoushalo

Fantáziarajz a galaxisunkat nagyjából 300 ezer fényév sugarú tartományban körülvevő gázról. Látható, hogy az a Nagy Magellán-felhőt (LMC) és a Kis Magellán-felhőt (LMC), vagyis a két legnagyobb kísérő galaxisunkat is beborítja. Forrás: NASA/CXC/M.Weiss, NASA/CXC/Ohio State/A.Gupta és mások.

Miután nagyon röviden áttekintettük a Tejútrendszer halójának kialakulását és felépítését, ideje, hogy a fentieken túl egy kicsit alaposabban megismerkedjünk a gömbhalmazokkal.

Gömbhalmazok

A gömbhalmazok több tízezernyi, több százezernyi, de akár milliónyi csillag (nagyjából) szférikus halmaza. A legnagyobbak átmérője, vagyis az a térrész, ahol a gömbhalmaz gravitációja uralja a teret, akár a 200 fényévet is elérheti.

Bár objektumonként jelentősen eltérhet, de általánosságban elmondható, hogy a csillagok távolsága a gömbhalmazokban nagyságrendileg 1 fényév. A magban azonban ennél is extrémebb a helyzet. Ott két csillag közé éppen beférne a Naprendszerünk. Százszor vagy akár ezerszer közelebb vannak egymáshoz a tagok, mint a Nap közelében a csillagok.

A Tejútrendszer valamivel több, mint 150 ismert gömbhalmazzal rendelkezik, de a valódi számuk 180 körül lehet. Ez sok, vagy kevés? Szomszédunk az Androméda galaxis 500 körüli számmal büszkélkedhet. De ezek a számok meg sem közelítik a hatalmas elliptikus galaxisok gömbhalmaz arzenálját. Maga az M87 13000 ilyen objektummal rendelkezik.

Az első gömbhalmazok felfedezése a XVII. század második feléhez köthető. A legelsőre, ami ma M22-ként ismert, Abraham Ihle (egyes vélemények szerint Hevelius) akadt rá a Nyilas csillagképben. A második Halley nevéhez köthető, aki Szent Ilona-szigetére tett utazása közben ismerte fel, hogy az ω Centauri valójában nem is egy csillag. Ez a gömbhalmaz lett később az NGC5139. Ők még nem ismerték fel ezen halmazok mivoltát. Messier-nek ugyan sikerült az M4-et csillagokra bontani, és ezzel ő volt az első, aki egy gömbhalmaz csillagait nemcsak egybeolvadó foltként láthatta, ennek ellenére a katalógusában szereplő gömbhalmazokat még ő is kör alakú ködökként írta le. William Herschel a távcsöveivel szinte egytől-egyig felbontotta a korábban mások, és az általa felfedezett gömbhalmazokat. A gömbhalmaz kifejezést is ő honosította meg.

Alapos kutatásuk csak a XX. század elején vette kezdetét. Harlow Shapley 1914-től kezdve igen intenzíven foglalkozott a Tejútrendszer gömbhalmazaival. A témában több tucat publikációja jelent meg. Shapley kutatásainak egyik segítője Helen Battles Sawyer volt. A hölgy maga is úttörő szerepet játszott a változócsillagok és a gömbhalmazok kutatásában. 1927 és 1929 között Shapley-vel közösen láttak neki a gömbhalmazok osztályozásának a csillagok koncentrációja alapján. Megalkották a később róluk elnevezett 12 fokozatú Shapley–Sawyer osztályozást (Shapley–Sawyer Concentration Class). A skálán római számokkal jelölik a koncentráció mértékét. Az I. osztályúak a legkoncentráltabbak, míg a XII. osztályba tartoznak a leglazább halmazok.

Az osztályozást hosszú évtizedek során használták és még használják ma is a csillagászok. Nem is olyan régen azonban a gömbhalmazok egy új típusát fedezték fel a csillagászok az NGC5128-ban (Centaurus A), melyeket sötét gömbhalmazoknak neveztek el. Alapvetően érvényes szabály a gömbhalmazokra, hogy a fényesebbek egyben nagyobb tömegűek is, mivel több csillagot tartalmaznak. A sötét gömbhalmazok azonban kilógnak a sorból, ugyanis tömegük jóval nagyobb, mint amit fényességük alapján várhatnánk. A felfedezés viszonylag friss, és egyelőre nincs elfogadható pontos magyarázat a rejtélyre. Természetesen elméletek már most is akadnak, melyek a láthatatlan tömeget igyekeznek megmagyarázni. Elképzelhető, hogy e gömbhalmazok magjai fekete lyukakat, vagy más sötét csillagmaradványokat rejtenek magukban, melyek felelősek lehetnek a tömegtöbbletért. Úgy tűnik azonban, hogy ezzel csak részben lehet megoldani a problémát. Egy másik elképzelése szerint a különös gömbhalmazok a ma még nem igazán értett sötét anyagból tartalmaznak tekintélyes mennyiséget. Ez viszont ellentmond pár ma elfogadott elméletnek, melyek szerint a gömbhalmazokban egyáltalán nincs sötét anyag. A lehetséges magyarázatok egyelőre nem többek, mint spekulációk. A kutatók mindenesetre a jövőben megvizsgálják, hogy más galaxisok is tartalmaznak-e ilyen különös gömbhalmazokat. Mindenesetre javaslat született új osztály bevezetésére. Könnyen lehet, hogy a lassan egy évszázados Shapley-Sawyer osztályozás új kategóriával bővül.

Shapley azonban nemcsak a gömbhalmazok osztályozásával érdemelte ki, hogy megemlékezzünk róla. Ő volt az, aki elsőként megpróbálta meghatározni a gömbhalmazok térbeli eloszlását a galaxisban azok távolságának meghatározásával. A gömbhalmazok bővelkednek RR Lyrae változócsillagokban. Ezen halmazváltozóknak is nevezett csillagok pulzációs periódusa és abszolút fényessége között reláció áll fenn, így tökéletesek távolság meghatározására, akár csak a Cepheida változók. Elég megmérni a periódusukat, amiből meghatározható abszolút fényességük, vagyis milyen fényesek lennének, ha 10 pc távolságba lennének tőlünk. Az látszó fényesség és a számított abszolút fényességből a távolság már meghatározható. Shapley Cepheida változócsillagoknak hitte az RR Lyrae változócsillagokat, melyekről csak később derült ki, hogy valójában halványabbak az előzőknél. Így bár Shapley túlbecsülte a gömbhalmazok távolságát, mégis képet alkotott azok valós térbeli eloszlásáról. Megállapította, hogy a Tejúttól északra és délre azonos a gömbhalmazok eloszlása, azonban az egész égboltra nézve aszimmetrikus. A halmazok erős koncentrációt mutattak a Nyilas csillagkép irányába.

ShapleyGCsm

Shapley vizsgálatai alapján a gömbhalmazok eloszlása. Az origóban a Nap látható, míg a vörös X a Tejútrendszer centrumát jelöli. – Forrás: Prof. Richard Pogge

A kapott távolságadatokból, az eloszlásból meghatározta Tejútrendszerünk dimenzióit, mely nagyobbnak bizonyult, mint előtte gondolták. Feltételezte, hogy a gömbhalmazok nagyjából szférikus eloszlást mutatnak a galaxis centruma körül. Erre alapozva pozíciójuk és távolságuk alapján a Nap galaxis centrumához viszonyított pozícióját is sikerült meghatároznia. Ahogy fentebb is említettem, a távolság adatokat már eleve hiba terhelte, továbbá nem vette figyelembe az intersztelláris por fényelnyelő hatását, ennek ellenére korszakalkotó felismeréseket tett. Kutatásai közelebb vittek minket galaxisunk és benne elfoglalt helyünk megismeréséhez.

Az előző szekcióból megtudhattuk, hogy a gömbhalmazok igen ősi objektumok. A legfiatalabb is legalább 8-10 milliárd éves. A Tejútrendszeren belül gömbhalmazok generációiról lehet beszélni, melyek más időben, különböző eseményeknek köszönhetően jöttek létre. De honnan tudják mindezt a csillagászok?

A gömbhalmazok korát, azok Hertzsprung-Russel diagramja (HRD) alapján határozzák meg. A halmaz tagjai jó közelítéssel egyszerre keletkeztek. Arról, hogy mit is jelent a „jó közelítés”, egy kicsit később még szó lesz. Az egyszerre született (azonos fémtartalmú) csillagok megfigyelhető fejlődési állapota csak a kiindulási tömegtől függ. A nagyobb tömegű fényesebb és forróbb csillagok hamarabb elhasználják hidrogén készleteiket, és elhagyják a fősorozatot. Az idő előrehaladtával már csak a kisebb tömegű, és kevésbé fényes csillagok maradnak a fősorozaton.

Megnézve egy gömbhalmaz Hertzsprung-Russel diagramját rögtön szembetűnő, hogy a valaha legfényesebb, a Nap tömegét több mint nyolcszorosan meghaladó csillagok mind hiányoznak a fősorozatról. Ezek réges-régen „kihunytak”, miután szupernóvaként lángoltak fel. De a közepes tömegűeket, vagyis a Nap tömegét nagyjából kétszeresen, de maximum nyolcszorosan meghaladó csillagokat sem találjuk már ott. Bennük is leálltak a fúziós energiatermelő folyamatok, ma a gömbhalmazok fehér törpe populációját gyarapítják, hogy aztán sok-sok évmilliárd év alatt nagyon lassan kihűljenek. 10 milliárd év után a gömbhalmazokban – márpedig a Tejútrendszer gömbhalmazai jellemzően ennél is idősebbek -, már csak a Nap tömegével összemérhető, illetve a Nap tömegénél kisebb tömegű csillagok belsejében folyik energiatermelés.

NGC5466-HRD1

Az NGC5466 Hertzsprung-Russel diagramja. Main Sequence – Fősorozat, Giant Branch – Óriás ág, Horizontal Branch – Horizontális ág, Asymptotic Branch – Aszimptotikus óriás ág

Az ábra forrása: Alberto Barolo, Mattia Dal Bo, Elisa Naibo

A Nap tömegének nagyságrendjébe eső, a fősorozatot elhagyó csillag esetén a hidrogén fúzió már régen nem a magban zajlik. Ekkora, a hidrogén héliummá történő átalakítása már a magot körülvevő külső héjba tevődik át, melynek következtében a csillag felfúvódik, és külső része lehűl, így jut el a vörös óriás fázisba. A horizontális ág tagjai pedig a magjukban már héliumból szenet hoznak létre. Ez a folyamat a kék szín irányába tolja a csillag fényét. Az óriások és a horizontális ág közötti rés baloldalán találhatóak a már korábban említett RR Lyrae csillagok. Azért van ott a rés, mert csillagászati értelemben, a két fejlődési állapot közötti utat a csillagok hamar bejárják. Ahogy pedig erre az előbb is rámutattam, az RR Lyrae váltózó csillagok magjában már javában folyik a hélium szénné alakítása. Miután a hélium is elfogy, az addigra szénben és oxigénben gazdag magban, a fúzió az azt körülvevő külső héjba tevődik át. Az energia nagy része azonban nem itt keletkezik, hanem a külsőbb hidrogén héjban. A csillag külső rétegei ismét felfúvódnak és lehűlnek. Ennek köszönhetően a csillag fényessége ismét megnő túlszárnyalva a korábbi vörös óriás fázist, színe pedig ismét a vörös felé tolódik. A csillag elfoglalja helyét az aszimptotikus óriás ágon. A gömbhalmazokról készült felvételeken ezek és a korábban említett vörös óriások láthatóak, mint fényes narancs és vörös színű domináns csillagok, meghatározva a halmaz látványát. Ezen csillagok tömege már nem elég nagy, hogy a héliumnál nehezebb elemek fúziója beinduljon. A héjakban is idővel elfogynak a tartalékok, leáll a fúzió. A csillag külső rétegeit a világűrbe pöfékelve megindulnak a fehér törpévé válás útján.

Minél idősebb egy halmaz, annál lejjebb tolódik az a pont (Turn Off Point) a fősorozaton, ahol a csillagok „elkanyarodnak” az óriás ág felé. Felrajzolva a HRD-t egy adott halmazra, az előbb említett pontnak a meghatározásával, továbbá felhasználva a csillagfejlődési elméleteket, megbecsülhető a halmaz kora.

Amennyiben a kedves olvasó még egyszer alaposan megnézi a fenti ábrán a HRD-t feltűnhet neki valami furcsaság, hacsak eddig nem tűnt már fel. A fősorozatot meghosszabbítva ott, ahol az az óriás ág felé elkanyarodik (Turn Off Point), csillagokkal találkozunk a diagramon. (A piros szaggatott vonallal határolt területről van szó). Ezek a csillagok nagyon nem illenek bele abba a képbe, amit éppen az imént vázoltam fel. A fősorozat közelében abban a tartományban találhatóak, ahonnan korábban a nagytömegű kékes csillagok már régen elfejlődtek. Mit keresnek mégis ott, ezek a kék vándoroknak nevezett égitestek?

Létezésükre a ma elfogadott egyik magyarázat, hogy halmaztagok összeolvadásával jönnek létre. Az így keletkező csillag potenciálisan nagyobb tömegű, mint a fősorozaton tartózkodó társaik. A nagyobb tömegű csillagok pedig forróbbak és így kékebbek is. Az ellentmondás ezek fényében mindössze csak látszólagos. Az összeolvadást látszik megerősíteni, hogy jellemzően a gömbhalmaz sűrűbb régiói környékén fordulnak elő. Illetve, sokuk igen gyorsan forog. A leggyorsabban forgók pedig a centrum körül figyelhetőek meg, melyek közül ráadásul néhány igen gyorsan, hiperbola pályán mozog. Ezek sorsa már megpecsételődött, úton vannak, hogy végleg elhagyják a halmazt. A másik favorizált elmélet szerint e csillagokat a kezdetben nagyobb tömegű párjuk hizlalta fel. Mivel a társ nagyobb tömegű volt, így gyorsabban fejlődött. A fősorozatot elhagyva felfúvódott és kitöltötte a Roche-térfogatát, így a ma a kék vándorok jellegzetességeit mutató komponens megszerezhette annak anyagát. Ezt az elméletet látszik alátámasztani, hogy bizonyos kék vándorok felszínének szén és oxigén tartalma jóval kevesebb, mint az szokásos. Ez pedig anyagátadásra utal.

Egyes kutatások arra engednek következtetni, hogy a két mechanizmus akár egyszerre is jelen lehet a gömbhalmazokban. Míg az anyagátadásos „megfiatalodás” inkább a külső régiókra, addig az ütközéses/összeolvadásos keletkezés inkább a halmaz magja környékén lehet jellemző. Az igazság az, hogy nehéz eldönteni, hogy melyik elmélet a helyes. Könnyen lehet, hogy ez a kérdés nem is a gömbhalmazokban dől majd el.

Kék vándorok nyílthalmazokban is előfordulnak. Csillagászok a Hubble Űrteleszkóppal megvizsgálták az NGC188 21 kék vándorát. Miért éppen nyílthalmaz volt a célpont? Mert a gömbhalmazokkal ellentétben nem zsúfolt csillagkörnyezetben kellett elvégezni a megfigyeléseket. Azért választották ezt a nyílthalmazt, mert 7 milliárd éves korával az egyik legöregebb a Tejútrendszerben, s így a kék vándoraik sem annyira „kékek”, megkönnyítve a kísérők kimutatását. Több jelöltről már eleve tudható volt, hogy kettős rendszer része. Az egymáskörül „táncoló” tagok vagy közelednek felénk, vagy távolodnak tőlünk. A spektrumukban pedig mindez megmutatkozik (Doppler-effektus). A kettősség másik jele, hogy a főkomponens spektrumára rárakódik a második tag színképe. Vagyis valójában nem egy, hanem két csillag spektrumát látjuk. Ezek a spektroszkópiai kettőscsillagok. Az izgalmas kérdés a kísérő mibenléte volt. A kék vándorok emissziójában kerestek olyan UV többletet, melyet csak egy fehér törpe társ okozhat, és 7 csillag esetében találtak is ilyet.

A közvetett bizonyítékok mellett, így közvetlen bizonyíték is van már arra, hogy a kék vándoroknak a fejlődésben előrehaladott kísérőik vannak. Ezek a fehér törpék a Nap tömegével nagyjából megegyező, illetve nem sokkal nagyobb tömegű csillagoknak a felfúvódást követő végstádiumai. A fúziós folyamatok már megszűntek bennük, így szép lassan kihűlnek. 7 csillag esetén meglett tehát a társ, akitől korábban a ma kék vándorok „gúnyáját” viselő csillagok anyagot szereztek. A vizsgálati módszer limitációjának köszönhetően az öregebb, 11000 K alá hűlt fehér törpék már nem ragyognak elég fényesen az UV tartományban, így a Hubble-el azokat már nem lehet detektálni. Vagyis, csak az utóbbi 250 millió évben kialakult fehér törpék megfigyelésére volt csupán mód. Mindazonáltal további 7 csillag színképe, és kísérőjének kikövetkeztetett tömege alapján arra gyanakodnak a kutatók, hogy azok körül is fehér törpe kísérő keringhet. Nagyon óvatosan fogalmazva, a következő a konklúziója a publikációnak: a tömegátadásos folyamatok alsó limitje 33% körüli, vagyis legalább a kék vándorok egyharmada köszönheti ennek a létét. Jóval kisebb valószínűséggel ugyan, de ez a limit akár 67% is lehet. Mindenesetre az NGC 188 21 csillagának kutatását még nem zárta le a csapat, és tervezik folytatni a munkát.

Fentebb, elejtettem egy fontos megjegyzést, mely mindenképpen magyarázatra szorul. A gömbhalmazokat sokáig úgy kezelték, amiben minden csillag egyszerre keletkezett. A kutatók azonban felfedezték, hogy bizonyos gömbhalmazok nem is egy nemzedék csillagaiból állnak. Van olyan példánya ezen objektumoknak, melyeknél az első nemzedék után 100 millió évvel alakult ki a következő. De olyan is akad, ahol 3 különböző generációt sikerült kimutatni. Minderre a gömbhalmazok utóbbi időben elvégzett spektroszkópiai és fotometriai elemzése világított rá.

Az első árulkodó jelre a halmaztagok kémiai összetételének vizsgálatakor bukkantak a csillagászok. Egyes gömbhalmazokban különböző hélium és fémtartalmú csoportok jelenlétét sikerül kimutatni, mely nagy valószínűséggel azok különböző életkorából fakad. Ugyanis, a később született csillagok már tartalmazták a korábbi generációk által legyártott elemeket, melyeket azok késői fejlődési fázisukban kibocsájtott csillagszél, illetve a nagyobb tömegűek halálakor bekövetkező szupernóva-robbanások révén juttattak, az akkor még a gömbhalmazokban jelenlévő intersztelláris gázba. Éppen ezért, az ebből a szennyezett gázból születő újabb populációk már héliumban és fémekben jóval gazdagabbak lettek.

Alig pár bekezdéssel feljebb írtam, hogy a gömbhalmazok HRD-je elárulja annak korát. Bár bizonyos kételyek már korábban felmerültek, de szinte egészen a XX. sz. végéig úgy tűnt, hogy a csillagokra egyetlen izokron illeszkedik, vagyis ebből következően csillagai mind egyszerre keletkeztek. Az izokron pedig elárulja, hogy mikor. Az izokron a csillagfejlődésben használt kifejezés, mely a HRD-n az azonos korú csillagokat összekötő görbét jelöli. Főként a műszerek fejlődésének köszönhetően, azonban alaposabb vizsgálatok kimutatták, hogy több esetben a horizontális ág vagy a fősorozat nem reprodukálható csak egyetlen csillagpopulációval, vagyis több izokron fedi csak le a halmazt.  Az izokron elhelyezkedése a HRD-n, illetve az alakja függ a csillagok kémiai összetételétől, ugyanis a más-más összetételű csillagok némileg eltérő utat járnak be fejlődésük során. A halmaz szín-fényesség diagramja, és a spektroszkópiai vizsgálatok együttesen tehát igazolták azt a tényt, hogy pár gömbhalmazban valóban különböző összetételű, ebből következően pedig különböző korú csillagpopulációk élnek együtt.

Bár eddig a gömbhalmazoknak csak egy részekről derült ki, de a kutatók egyre inkább hajlanak arra, hogy szinte minden halmaz tartalmaz kémiai inhomogenitást, csak éppen még nem akadtunk a nyomára. A jövőbeli megfigyelések reményeik szerint el fogják dönteni ezt a kérdést.

NGC2808-3pop

NGC2808-iso

Az NGC2808 gömbhalmaz fősorozatának részlete, amelyben 3 csillagpopuláció is elkülöníthető Piotto és kutatótársainak 2007-es tanulmánya szerint. (A jelölés egy-egy populáció alaposabb vizsgálatnak alávetett csillagát jelöli.) Az alsó ábrán látható, hogy több izokronnal írható csak le a gömbhalmaz fősorozata. Ezek az izokronok a csillagok kémiai összetételben (hélium tartalmában) térnek el egymástól. – Forrás: Piotto és mások, Bragaglia és mások

Az idők során sok titkát feltárták a csillagászok a gömbhalmazoknak. Pontos kialakulásuk azonban a mai napig nem pontosan tisztázott. Az elméletek a megfigyelések mögött kullognak, mivel a gömbhalmazok nem egy jellemzőjére több magyarázat is létezik. A versengő teóriák között pedig adott esetben nem könnyű választani a megfigyelések alapján.

A legtöbb elmélet igyekszik megmagyarázni, hogy miként keletkeztek a különböző csillagpopulációk, illetve próbálják kezelni azt a tényt, hogy miért más és más egy-egy gömbhalmaz felépítése. A megfigyelések folyamatosan egyre finomodnak. A kémiai összetétel vizsgálata a korai modellekben gyakran arra korlátozódott, hogy a fémességet a hidrogén és vas arányaként kezelték. A mai elméletek már a hélium tartalommal, az egyes fémek egymáshoz viszonyított arányával, vagyis a nátrium/vas és oxigén/vas arány alapján az oxigén-nátrium antikorrelációval is számolnak. Természetesen az a tény sem elhanyagolható, hogy a modellek erősen építenek a csillagfejlődési elméletekre, melyek sokat csiszolódtak mára.

A. A. R. Valcarce és M. Catelan modellje arra alapoz, hogy egy gömbhalmaz ma megfigyelhető összetétele nagyban függ attól, hogy mekkora volt a gömbhalmaz progenitorának tömege. Megkülönböztet kis, közepes, és nagytömegűt. A hasonló, csak a kiindulási tömegben eltérő kezdetek után három lehetséges kimenetet írnak le, mely magyarázatot ad a megfigyelhető populációk eloszlására és kémiai összetételére.

Mind a három történet teljesen hasonlóan kezdődik. Az ősi hatalmas gázfelhő gravitációs kollapszusát követően, a ködbe ágyazódva kialakul a csillagok első generációja. A csillagok eloszlása és a kémiai összetételük ekkor még teljesen homogén. Az ősi felhő anyagának 60-80%-a megmarad, nem alakul csillagokká, ugyanis annak tömeg nagy területen oszlik el, így csak újabb lökés, sokk hatására tud benne kialakulni lokális csomósodás. A gáz továbbzuhan a halmaz gravitációs központja felé. Az előbb említett lökés meg is érkezik, amikor az első generáció masszív csillagai elkezdik gyors csillagszél formájában ledobni anyagukat, mely beleütközik a befelé hulló gázba. Egy idő után ez a kidobódó anyag, a csillag tömegétől függően, szinte csak héliumból áll olyan elemekkel szennyezve, melyek részt vettek a csillagban zajló fúzióban, egészen pontosan a CNO, NeNa és MgAl ciklusban. Minden más tekintetben a masszív csillagokból kiáramló csillagszél összetétele megegyezik az ősi gázfelhőjével. Innen a történet háromfelé ágazik.

A kistömegű progentitor nem képes a halmazban tartani az első generáció masszív csillagai által kidobott gázt, a befelé hulló anyag sebessége pedig viszonylag alacsony. Egyszerűen nem jut be az ősi felhőből elég anyag, nem teremtődnek meg a feltételek csillagok keletkezéséhez a mag környékén. Az első generáció nagytömegű csillagainak halálakor fellángoló szupernóvák teljesen kisöprik az ősi gázt, és ezzel együtt a szupernóva-robbanásban a csillagról lelökődött anyag is távozik a halmazból. A második generáció annak a gáznak az összesűrűsödéséből születik meg, melyet korábban a nagytömegű csillagok ledobtak magukról, mikor fejlődésük során az aszimptotikus szuperóriás, illetve aszimptotikus óriás ágon tartózkodtak. A második generáció kémiai összetételét nagyban az első generáció produktumai határozták meg.

progenitor-kicsi

Kistömegű progenitor esetén a gömbhalmaz fejlődése. A vörös pöttyök az első, míg a narancs a második generációt jelöli. A pöttyök mérete a tömegre utal. A nyilak a gáz mozgási irányát jelölik, mérete a sebességre utal, a szín pedig az eredetére. Az ábrán az egyes fázisok időpontja is szerepel. a) Az első generáció keletkezése. b) A lassan befelé áramló gáz gyakorlatilag nem jut el a központig, a masszív első generációs csillagok csillagszele ebben megakadályozza. c) az első generáció szupernóvái által kidobott gáz elszökik a halmazból. d) A gáz összegyűlik az első generáció masszív csillagainak csillagszeléből, melynek intenzív szakasza arra az időre esett, amikor azok az aszimptotikus szuperóriás, illetve aszimptotikus óriás ágon tartózkodtak. e) Kialakul a második generáció. f) Fellobbannak a második generáció szupernóvái, melyek ismét tisztára söprik a halmazt.  g) A napjainkban megfigyelhető kémiai összetétele a halmaznak.

Közepes tömegű progenitor esetén a halmaz mélyebb gravitációs potenciál gödörrel rendelkezik, így a beáramló ősi gáz nagyobb sebességre tud gyorsulni. A masszív csillagok kidobott anyaga bár a külső részeken megpróbál elszökni, addig a halmazban marad, míg az útját álló befelé áramló gázzal együtt a szupernóvák ki nem takarítják. Mindeközben a mag környékén a csillagszél összeütközik az összegyűlő ősi gázzal, és a kinetikus energiából termikus energia lesz. A gáz felfűtődése pedig megakadályozza a csillagok keletkezését.  Később, az első szupernóva-robbanások végül összepréselik a központban lévő gázt, melyből újabb csillagok születnek. A megfigyelések szerint a második generáció héliumban már dúsabb a masszív csillagok ledobott anyagának köszönhetően, azonban fémekben nem annyira gazdag. Mi ennek a második jellemzőnek az oka? Feltételezve, hogy a szupernóva-robbanások majdnem szimmetrikusan történnek, és a maghoz nem túlságosan közel, a halmaz központjában a gáz csak kevéssé dúsul fel fémekben. A szupernóvák anyagának csak kis része keveredik el a magban található gázban. A robbanások emellett ki is söprik a külső részen korábban összekeveredett gázt a halmazból. A közepes tömegű progenitorral rendelkező halmazok még mindig nem elég nagytömegűek ahhoz, hogy képesek legyenek megtartani a szupernóvák kidobott anyagát. A gravitációs potenciálgödör nem elég mély, és kintről befelé áramló gáz sem elég nagytömegű, hogy visszatartsa a robbanások kifelé törő gázait.

Ennek köszönhetően, a később születő harmadik generáció sem lesz túlságosan gazdag fémekben. A modellek szerint nemcsak a szupernóvák anyagát, de a második generáció nagytömegű csillagainak csillagszelét sem képes megtartani a halmaz, az szinte akadálytalanul távozik a környező világűrbe. Az első generáció szupernóváinak hulláma után a centrum felé hulló gáz egyedüli utánpótlása éppen ennek a generációnak a közepes tömegű csillagai. Ezek a csillagok kis sebességű kiáramlás révén veszítenek tömeget. Azonban ezt is hamarosan kisöprik a második generáció szupernóvái. A második nagytakarítás után új gázfelhő kezd kialakulni a centrumban, az első és a második generációs közepes tömegű csillagok által kidobott anyagból. Az ebből keletkező harmadik generáció kémiai összetétele éppen ezért az első és a második generációé közé esik. Amíg van gáztartalék újabb és újabb bár egyre kevésbé népes populációk születhetnek, melyek összetétele egyre jobban hasonlít az első populációéra.

progenitor-kozepes

Közepes tömegű progenitor esetén a gömbhalmaz fejlődése. A jelölések az előző ábra logikáját követik. A vörös pöttyök az első, a kék a második, míg a zöld a harmadik generációt jelöli. a) Megszületik az első generáció. b) A gáz összegyűlik az első generáció csillagainak csillagszeléből és a befelé áramló ősi gázból. c) Az első generáció szupernóvái felrobbannak, mely kiváltja a második generáció születését, és egyben kisöpri azt a gázt, ami nem érte el a magot. d) Az első generációs és második generációs csillagok szupernóva-robbanásai. e) A gáz összegyűlik az első és második generációs az aszimptotikus szuperóriás, illetve aszimptotikus óriás ág csillagainak csillagszeléből. f) A harmadik generáció születése. g) A napjainkban megfigyelhető kémiai összetétele a halmaznak.

A nagyon nagytömegű progenitor esetében a halmaz fejlődése hasonlóan indul, mint a közepes tömegűeknél. A befelé áramló ősi ködből megszületik az első generáció. Mivel ebben az esetben a halmaz még mélyebb gravitációs potenciál gödörrel rendelkezik, mint az előző esetben, így a beáramló ősi gáz még nagyobb tömegben áramlik be és nagyobb sebességre gyorsul. Ez előzőeknek köszönhetően a masszív csillagok kidobott anyaga nem képes eltávozni a rendszerből, így idővel héliumban sokkal dúsabb lesz a környezet, mint az előző esetben. Végül a mag környékén összegyűlő gázban az első generáció szupernóvái indítják be a csillagkeletkezést. A megszülető második generáció csillagai tehát héliumban igen dúsak lesznek, de fémtartalmuk alig haladja meg az első generációét (az előző szekcióban már részletezett okból). Ezekből a halmazokból már a szupernóvák anyaga sem tud eltávozni. Összeütközve a befelé áramló gázzal, elkeveredik vele, miközben késlelteti annak magba áramlását. Kis idő elteltével a fémekben feldúsult gáz, mely a második generáció keletkezése után megmaradt, összegyűlik a mag környékén. A kialakuló felhőbe belekeveredik a második generáció masszív csillagai, és az első generáció masszív és közepes tömegű csillagai által kidobott anyag. Ez a három tényező határozza meg a harmadik generáció kémiai összetételét. Megjegyzem, hogy a megfigyelhető harmadik generáció összetételét a legnehezebb összeegyeztetni az elméletekkel, mert viszonylag sok forrásból származik a kialakulásukban szerepet játszó gázfelhő. A harmadik generáció megszületése után az előzőekhez hasonló újabb ciklus kezdődik. A ciklusok között az egyik jelentős különbség, hogy egyre kisebb tömegűek a csillagok az aszimptotikus szuperóriás, illetve aszimptotikus óriás ágon, melyek kidobott anyaga hozzájárul a következő generáció kialakulásához. A befelé áramló gáz egyre kevésbé szennyezett, mert a kisebb tömegű csillagok által kibocsájtott csillagszél összetétele kevésbé tér el attól, mint amiből kialakultak. A kisebb tömegű csillagok másként „működnek”, mint „fajsúlyosabb” társaik. Ennek következtében, minden egyes új generáció összetétele egyre jobban hasonlít az első generációéhoz.

progenitor-nagy

Masszív progenitor esetén a gömbhalmaz fejlődése. A jelölések az előző ábra logikáját követik. A bordó pöttyök az első, a kék a második, a sárga a harmadik, míg a piros a negyedik generációt jelöli. a)  Megszületik az első generáció. b) A gáz összegyűlik az első generáció csillagainak csillagszeléből és a befelé áramló ősi gázból. c) Az első generáció szupernóvái felrobbannak, mely kiváltja a második generáció születését. d) Összegyűlik az a kevert összetételű gáz, mely az első generációs szupernóvák, az első és második generáció masszív csillagainak csillagszeléből, és a második generáció kialakulása után megmaradt gázból áll. e)  A harmadik generáció születése, miután a szupernóva-robbanások korszaka véget ér. f) Az előző generációk az aszimptotikus szuperóriás, illetve aszimptotikus óriás ágon kibocsájtott csillagszeléből származó anyag összegyűlik. g) A negyedik generáció születése. h) A napjainkban megfigyelhető kémiai összetétele a halmaznak.

A most bemutatott elmélet viszonylag jól leírja, hogy miként alakultak ki a csillagok egyes generációi a gömbhalmazokban. Illetve megmagyarázza a halmazok közötti különbségeket. Természetesen ezzel nem tekinthető lezártnak a gömbhalmazok kialakulásának kérdése. Ennek a modellnek az ellenőrzésével kapcsolatban az egyik felmerülő probléma, hogy nehéz megmondani a gömbhalmazok kiindulási tömeget. Igaz, hogy mostani tömegük elég jól ismert, de a gömbhalmazok tömege a múltban nagyobb volt. Egyrészt a szupernóvák tekintélyes mennyiségű gázt fújtak ki a halmazból. Másrészt az idők során a csillagok egy része kölcsön hatva társaival szert tett a gömbhalmazban érvényes szökési sebességre, így ezek egyszerűen elillantak a halmazból. Harmadrészt a Tejútrendszer gravitációja keltette árapályerők is tekintélyes számú halmaztagot szakítottak ki a gömbhalmazból, miközben az elhaladt a mag közelében, vagy éppen keresztezte a galaxisunk síkját. Milyen jó lenne, ha ismernénk a gömbhalmazok teljes dinamikai történetét! A nehézségek ellenére a szerzőknek végül sikerült becslést adni a kiindulási tömeg alsó határára, a ma megfigyelhető első generációs csillagok, és az azt követő generációk aránya alapján, megvizsgálva azt különböző gömbhalmazokra. Ugyan így lehetségessé vált a modelljük tesztelése, de további kutatásokra lesz majd még szükség, hogy durva becsléseken túl pontosabb kiindulási tömeg birtokában lehessen ellenőrizni ezt az elképzelést.

Remélem, hogy a fenti rövid áttekintésnek köszönhetően sikerült képet alkotnia az olvasónak a gömbhalmazokról és azok lakóhelyéről, és a jövőben újra velem tart majd egy-egy rövid ismertetés erejéig. A csillagos ég bővelkedik a látnivalókban.

Felhasznált irodalom:

E.F. del Peloso, L. da Silva, G.F. Porto de Mello, L.I. Arany-Prado: The age of the Galactic thin disk from Th/Eu nucleocosmochronology III. Extended sample

Jason Kalirai: The Age of the Milky Way Inner Halo

Antonino Marasco: The Gaseous Halo of The Milky Way

A. Gupta, S. Mathur, Y. Krongold, F. Nicastro, M. Galeazzi: A huge reservoir of ionized gas around the Milky Way: Accounting for the Missing Mass?

Matthew A. Taylor, Thomas H. Puzia, Matias Gomez, Kristin A. Woodley: Observational evidence for a dark side to NGC 5128’s globular cluster system

Alberto Barolo, Mattia Dal Bo, Elisa Naibo: Photometric analysis of the globular cluster NGC5466

G. Piotto, L. R. Bedin, J. Anderson, I. R. King, S. Cassisi, A. P. Milone, S. Villanova, A. Pietrinferni, A. Renzini: A Triple Main Sequence in the Globular Cluster NGC 2808

Raffaele Gratton, Eugenio Carretta, Angela Bragaglia: Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters

A. A. R. Valcarce, M. Catelan: Formation of Multiple Populations in Globular Clusters: Another Possible Scenario

Natalie M. Gosnell, Robert D. Mathieu, Aaron M. Geller, Alison Sills, Nathan Leigh, Christian Knigge: Implications for the Formation of Blue Straggler Stars from HST Ultraviolet Observations of NGC 188